
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

EXPLAINING UNSOLVABLE PLANNING TASKS

WITH UNSATISFIABLE CORES

Igor Nicolai Bongartz

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Gerhard Lakemeyer

Additional Advisor:
M.Sc. Francesco Leofante Aachen,

December 23, 2018

Abstract

Explaining unsolvable planning tasks is a difficult challenge in the new field of
eXplainable AI. We investigate an approach using the Planning as Satisfiability
and Bounded Model Checking paradigm, together with minimal UNSAT cores of
SMT. The generated minimal UNSAT cores are then used to explain unsolvable
and solvable subtasks of the original planning task. Moreover, it is possible to
state plan infeasibility by analyzing the minimal UNSAT cores. Finally, the
presented approach is evaluated on a benchmark of well-known planning tasks.

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

Acknowledgments
I am thankful for the opportunity to write this Master Thesis. Working on this aca-
demic work was a true challenge. The topic required creativity, formal specification
of my ideas, their implementation and the empirical examination of the approaches.
Facing these tasks required the complete knowledge, which I obtained during my
Bachelor and Master studies over the last six years. Furthermore, I am confident that
I will be able to apply those skills throughout the rest of my life.

I want to thank all the people which supported me during these nine months of
research. First I mention Francesco Leofante. He was my adviser for this thesis and
helped me with many obstacles. Next I thank all the people at the i2 who supported
and assisted me, for example, while testing inside SMT-RAT. A big thanks goes to
Erika Ábrahám, who made this work possible and to my second examiner Gerhard
Lakemeyer.

Of course my family and friends have been a really helpful as well. Moreover, thank
you Anna, Luke, Max, Pauline and Zoe, who despite their own work helped me out
by reading through 82 pages of theoretical computer science gibberish.

And, as last time, at the end, thank you Saskia for your constant motivation, ad-
vice, warning, supply of sweets, Korean background music and everything everything
else. But this time there is one more little human I need to mention. Dear Gustaf
Noel, I want to thank you for being the boy you are.

Contents

1 Introduction 9

2 Preliminaries 11
2.1 SAT Modulo Theories . 11
2.2 Planning . 19
2.3 Explainable Artificial Intelligence . 28

3 Deciding Planning Tasks with UNSAT Cores 31
3.1 Classification of UNSAT Cores . 31
3.2 Bounded Model Checking with UNSAT Cores 34

4 Explaining Planning Tasks with UNSAT Cores 39
4.1 Unsolvable Subtasks . 40
4.2 Solvable Subtasks . 44
4.3 Reasons of Infeasibility . 45

5 Evaluation 47
5.1 UNSAT Benchmarks . 47
5.2 Deciding Planning Tasks . 48
5.3 Explaining Planning Tasks . 57

6 Conclusion 61
6.1 Summary . 61
6.2 Discussion . 61
6.3 Future Work . 62

Bibliography 63

Appendix 68

A Instances of Planning Tasks 69
A.1 Bottleneck . 69
A.2 Pegsol-Invasion . 69
A.3 Chessboard-Pebbling . 70
A.4 Slidingtiles . 70

B Benchmark Results 75
B.1 Deciding Planning Tasks . 75
B.2 Explaining Planning Tasks . 75

viii Contents

Chapter 1

Introduction

Computer systems which imitate human actions are confusing if their actions do not
fit to our own choices. In such cases a user might ask for an explanation for the
performed or announced actions. Use-cases for such systems are classification (Ma-
chine Learning approaches which detect dogs on pictures1), games (AIs which play
Go [SSS+17] or Chess [SHS+17]) or plan execution (planning the next steps of a
semi-autonomous rover at a rescue site [KJK+12]). In order to trust the system, it is
important to understand the decision making throughout its algorithm. The challenge
is to return understandable and rational reasons instead of describing the algorithm
itself [FLM17].

We will focus in particular on the field of Planning. A planning task contains a
goal state which has to be reached by a sequence of actions from some initial state
in a domain [ENS92]. The complexity of a planning task lies in the number and size
of its fluents and operators. Solutions can be obvious to humans for simple domains
but oftentimes they are difficult to detect due to the huge amount of possibilities.
Planning in general has been studied for a long time and efficient planners have been
developed for various planning task specifications at ICAPS2 (planners generating
plans as fast as possible or optimal plans).
Only recently the problem of unsolvable planning tasks has been raised in the plan-
ning community. The first International Unsolvability Planning Competition was
organized at ICAPS 20163. As a reaction, available planners have been modified or
new approaches have been developed to detect unsolvable planning tasks (e.g., Ai-
dos [SPS+16], SymPA [Tor16], CLone [SH16], and iPlanProver [SK16]).

Besides the development in the planning community, a new field of eXplainable AI
(XAI) has been established4. The aim of XAI is to provide AI systems and models
which can explain their actions. In terms of Explainable Planning (XAIP) this can
contain the following information: 1. Why is an action necessary? 2. Why is a dif-
ferent action a bad choice? 3. Why is something not possible? As stated in [FLM17]
an answer to the third question, the case of infeasibility for some planning task, is a

1https://www.kaggle.com/c/dog-breed-identification
2https://ipc2018-classical.bitbucket.io/#description
3https://unsolve-ipc.eng.unimelb.edu.au/
4http://icaps18.icaps-conference.org/xaip/

10 Chapter 1. Introduction

difficult challenge. This problem of XAI is the topic of this Master Thesis. To the
best of our knowledge explaining unsolvable planning tasks has not been studied so far.

The approach we investigate uses tools from SAT Modulo Theories (SMT) to ex-
tract details about causes of infeasibility instead of only responding »the planning
task is unsolvable«, and stating the infeasibility of planning tasks.
In SMT we evaluate satisfiability of logical formulas by searching for a satisfying
assignment of variables, or proving that none exists. Following the Planning as Satis-
fiability paradigm [KSAH92], [KMS96] in this work we translate planning tasks into
encodings of SMT problems. If the encoding is satisfiable it is possible to extract
a plan solving the corresponding planning task. In contrast, unsatisfiability of the
encoding states only that no plan of a specific length solves the given planning task,
but plans of different length might exist. It is possible to extract minimal unsatis-
fiable (UNSAT) cores5 of the original unsatisfiable encoding to identify parts of the
planning task which are solvable and unsolvable.
Moreover, it is possible to state infeasibility of the given planning task. Referring
to the Bounded Model Checking (BMC) paradigm [Bie09], we enroll the transition
scheme of the planning task from 1 up to a predetermined bound, and only if no plan
solving the planning task can be found we conclude infeasibility. Even if most efforts
have been exerted on efficiently finding solutions for solvable planning tasks [Rin12],
recently interest increased in improving to show infeasibility of planning tasks with
BMC as well. This is achieved, for example, by over-approximating the set of reach-
able states in each enrolling of the transition scheme and once only dead ends are
found infeasibility is stated [Sud14], [SK16].
We propose a technique called BMC using UNSAT cores (BUS) to state infeasibility
of planning tasks making use of the generated minimal UNSAT cores of an unsat-
isfiable encoding [CGS11] for each enrolling. The generated cores are then checked
for witnesses of infeasibility of planning tasks, describing a conflict in the transition
scheme, which prohibits reaching the goal from the initial configuration [Str04]. The
gathered information states problems rising from leaving the initial and reaching the
goal configuration, and is similar to the reachability information in [Sud14], [SK16]
but achieved in a different way as there is no need to maintain additional infor-
mation. Due to the evaluation in a forward and backward fashion, the worst-case
number of BMC iterations is reduced by a factor of 2, as in other tools using bidirec-
tional search [Tor16]. However, generating all minimal UNSAT cores is exponential in
the size of the encoding and increases the solving time of the original BMC algorithm.

The presented thesis is structured as follows: First the necessary preliminaries about
SMT, Planning and XAI are presented in Chapter 2. Next, Chapter 3 contains the
definition and properties of BUS and Chapter 4 describes how to use UNSAT cores
for XAI. Evaluations of three experiments can be found in Chapter 5. We test min-
imal UNSAT core generation algorithms in Section 5.1, decide planning tasks with
the proposed BUS approach in Section 5.2, and explain planning tasks with the tool
PEX (Planning EXplainer) encapsulating BUS in Section 5.3. Finally, we discuss and
conclude the thesis in Chapter 6.

5Later in Section 2.1.4 we will refer to minimal UNSAT cores as minimal unsatisfiable subsets
(MUSs) and use this description throughout the thesis.

Chapter 2

Preliminaries

The work in the presented Master Thesis is based on three fields of research: SAT
Modulo Theories (SMT), Planning and eXplainable AI (XAI). We investigate the
challenge, which arises if we try to explain unsolvable planning tasks to users. As
stated in [FLM17] it is already a difficult challenge to prove infeasibility of planning
tasks because an exhaustive search of the state space has to be performed [Tor16].
In addition to investigate infeasibility of planning tasks we focus on explaining the
causes of infeasibility in order to provide useful information, which enables the user
to perform necessary actions. The tools are from the field of SMT (Section 2.1)
while the general problem we are tackling is based on Planning (Section 2.2) and XAI
(Section 2.3).

2.1 SAT Modulo Theories
The field of SMT deals with first order logic (FOL) formulae and is based on the
Satisfiability Problem (SAT) which we explain first. Then we present the necessary
extensions of SAT for the SMT blueprint. If the SAT/SMT procedure states un-
satisfiability of a formula it is possible to extract a part of the formula which is
already unsatisfiable, a so-called unsatisfiable (UNSAT) core. Several sophisticated
algorithms exist to generate UNSAT cores. For this thesis we take a closer look at
the algorithms CAMUS [LS08] and Basic Linear Search (BLS) [MSHJ+13], which
generate all minimal UNSAT cores.

2.1.1 First Order Logic (FOL)
FOL is based on a set of an infinite number of symbols grouped into logical and
non-logical symbols [End01]. Logical symbols are parentheses (,), logical connective
symbols ∧,¬, and variables x,y, Non-logical symbols are quantifiers ∀, n-ary
predicates, and n-ary functions with n ∈ N0. A specification of the non-logical symbols
is called a language. We define finite sequences of symbols (so-called expressions):

• A 0-ary function is called a constant.

• A term is obtained by applying the n-ary term-building operation Ff (t1, . . . ,tn) =
f t1, . . . ,tn zero or more times with ti being a constant, a variable or a term
itself.

12 Chapter 2. Preliminaries

• An n-ary predicate P t1, . . . ,tn with ti a term is called an atom.

• Formulae are atoms (or formulae) combined via quantifiers and logical connec-
tive symbols. A formula which contains only variables bonded by quantifiers is
a sentence. Variables which are not bonded are called free variables.

• An atom or its negation are called literals.

• A disjunction of literals is called a clause.

Any so far defined expression is called grounded if no free variables occur in it.
A conjunction of clauses defines a formula in conjunctive normal form (CNF). Equi-
satisfiable CNF formulae can be provided for every formula in polynomial time via
Tseitin’s encoding [Tse83]. Clauses can be seen as constraints and a formula as a
constraint system [LS08].

A structure A provides a non-empty domain |A| and uses it to define constants, pred-
icates and functions. Constants are elements of |A|. Every n-ary predicate PA ⊆ |A|n
is a subset of the domain. Every n-ary function fA : |A|n → |A| maps into the do-
main.
An assignment a : V → |A| maps each free variable v ∈ V of a formula into the
domain. Once all free variables are replaced by their specification a(v) we can check
whether the obtained sentence is satisfied in A (we refer to [End01] for a formal def-
inition of satisfaction). In case no assignment yields a sentence, which is satisfied in
A the formula is unsatisfied. If a formula with free variables is satisfied in A for all
assignments, we call this a tautology. A structure A is a model (indicated by |=A ϕ)
of a sentence ϕ if for all assignments ϕ is satisfied with respect to A.
We introduce the concept of logical implication Γ |= ϕ with a set of formulae Γ and
a formula ϕ as a statement that every structure which is a model of every formula
γ ∈ Γ together with an assignment a is a model of ϕ with a as well. A theory T
is a set of sentences closed under logical implication (for every t ∈ T the statement
T |= t⇒ t ∈ T holds).
FOL is undecidable (in fact semi-decidable) for some more expressive theories (e.g.,
Peano arithmetic). Decidable fragments of FOL exist (e.g., Pressburger arithmetic
and propositional logic (PL) [SW97]), balancing expressibility and tractability. PL
contains only Boolean variables and connective symbols, and omits quantifiers, pred-
icates, and functions.

2.1.2 Satisfiability Problem (SAT)

SAT is used in many applications, thanks to its improving efficiency [CGS11]. The
procedure is used to determine satisfiability of PL formulae [End01]. If an input for-
mula is satisfiable (SAT), an assignment for each variable can be found such that the
overall formula resolves to TRUE. Otherwise it can be stated, no assignment satisfies
the formula, making it unsatisfiable (UNSAT).
Although the problem is NP-complete, as stated by the Cook Levin theorem [Coo71],
well performing algorithms exist. The Davis-Putnam-Logemann-Lovecup (DPLL) al-
gorithm is at the core of state-of-the-art SAT solvers [DLL62]. It uses the techniques
of enumeration, boolean constraint propagation (BCP), and conflict resolving. A def-
inition of the algorithm can be found in Algorithm 1.

2.1. SAT Modulo Theories 13

Algorithm 1 DPLL

1: procedure DPLL(ϕ)
2: while true do
3: while ¬BCP() do
4: if ¬resolveConflict() then
5: return UNSAT
6: if ¬decide() then
7: return SAT

First, we apply method BCP on the formula to detect, if the initially empty par-
tial assignment enforces other variables to be assigned to a certain value. Once BCP
terminates, we check if a conflict occurred and, if yes, whether it can be resolved. Re-
solving with resolveConflict uses techniques of resolution, clause learning and
backtracking to detect which assignments on which level are responsible for a conflict.
If a conflict cannot be resolved we know that the formula is UNSAT. Otherwise we
continue with decide. This method searches, based on heuristics, for the next unas-
signed variable. If no variable can be found it means we found a satisfying assignment
and return SAT [CGS11].
The SAT problem is often used to show for other constraint satisfaction problems via
polynomial reduction their membership to the NP-complete problems [LS08].

Example 2.1.1 (PL formulas). Consider the following PL formulas:

ϕ = (x) ∧ (¬x ∨ y)

ϕ′ = (x) ∧ (¬x ∨ y) ∧ (¬y)

The first formula ϕ is satisfiable with the assignment {x→ TRUE, y → TRUE}.
The second formula ϕ′ is unsatisfiable as the first and third clauses require x to be
TRUE and y to be FALSE, but then the second clause is not satisfied.

2.1.3 SAT Modulo Theories (SMT)

Similar to SAT we are interested in satisfiability, but this time for FOL formu-
lae [End01]. Therefore the SMT procedure is a combination of SAT and some decision
procedures for specified theories (standard descriptions of such theories are provided
by SMT-LIB6). Throughout this thesis, besides the class of PL formulas, we are inter-
ested in the SMT logic of QF_LIRA, QF_LRA and QF_LIA. These classes consist
of quantifier-free linear real and/or integer arithmetic formulae and serve as specifi-
cation languages to translate planning task into SMT problems.

Here we describe the lazy SMT procedure for an input formula ϕ [BSST09]. We
alternate between the decision procedure for the propositional skeleton ϕskeleton of
the input formula and for the considered theory. The skeleton is obtained by replac-
ing each clause with a fresh propositional variable. If the SAT procedure states that
ϕskeleton is already unsatisfiable, we return UNSAT. In case that a satisfying assign-
ment is found, the activated clauses must be consistent in the theory. Therefore, a

6http://smtlib.cs.uiowa.edu/index.shtml

14 Chapter 2. Preliminaries

ϕ

Apply SAT on ϕskeleton

Check consistency of assignment

UNSAT

SAT

assignment µ learned
clauses ϕ′

Figure 2.1: Visualized SMT procedure

decision procedure for the corresponding theory has to be applied (e.g., Simplex for
QF_LRA [DNS05]). If the clauses set to TRUE and the negation of the clauses set
to FALSE do not contradict each other we return SAT. Otherwise we add a clause
describing the conflict found on the theory level and preventing SAT from finding the
same assignment again. This alternation is executed up to the point that a satisfying
assignment has been found or all assignments are proven to be inconsistent. A visu-
alization of SMT can be found in Figure 2.1.
Examples of SMT solvers are MiniSAT [ES03], SMT-RAT [CKJ+15] and Z3 [DB08].
In order to compare SMT solvers benchmarks have been created based on the SMT-
LIB format. For example, a collection of benchmarks containing several theories can
be found on the web-based service StarExec 7.

Example 2.1.2 (FOL formulas). Consider the following FOL formulas from the
theory QF_LRA:

ϕ = (0 ≤ x) ∧ (x ≤ 10)

ϕ′ = (x ≤ 0) ∧ (10 ≤ x)

The first formula ϕ is satisfiable with the assignment {x→ 5}. The second formula
ϕ′ is unsatisfiable because no real number fulfills both clauses.

2.1.4 UNSAT Cores

From this point on, unless stated otherwise, we use ϕ as the set of clauses equivalent
to a FOL formula. If a given set ϕ of clauses is stated unsatisfiable it is possible that
a subset ϕ′ ⊆ ϕ of clauses is already unsatisfiable as well. This subset of clauses is
called UNSAT core and can be minimal or a minimum. A UNSAT core is minimal
if removing any clause yields a satisfying subset of clauses. It is possible that several
minimal UNSAT cores exist. A smallest of those with respect to the number of clauses
is called a minimum.

Different techniques exist on how to generate UNSAT cores. Apart from using ϕ as
a trivial UNSAT core, more sophisticated approaches return smaller UNSAT cores.
For example, the resolution graph can indicate a smaller subset of clauses belonging
to a UNSAT core, as used in the Z3 solver [DB08]. However, this method does not
necessarily return a minimal UNSAT core.
In order to generate a minimal UNSAT core, more dedicated techniques have to be

7https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=294832

2.1. SAT Modulo Theories 15

Algorithm 2 Propagate Choice of Set and Element

1: procedure propagateChoice(C,C,Ci)
2: for all C ′ ∈ C do
3: if Ci ∈ C ′ then
4: C = C \ {C ′}
5: for all C ′i ∈ C do
6: for all C ′ ∈ C do
7: if C ′i ∈ C ′ then
8: C ′ = C ′ \ {C ′i}
9: C ← removeSupersets(C)

10: return C

used. General approaches are addition or deletion. These techniques start with an
empty satisfiable or the complete unsatisfiable set of clauses and iteratively add or re-
move clauses up to a point the subset is un- or satisfiable. Specialized approaches for
more complex algorithms as mixed-integer or nonlinear programming exist [Chi08].
The next step is not only to generate a single minimal UNSAT core, but to enumerate
all of them. The general principle of enumerating can be applied here while using one
of the above techniques as a procedure to generate the next minimal UNSAT core. For
each detected minimal UNSAT core we add a blocking clause, prohibiting to generate
the same minimal UNSAT core again. If the procedure states that no more minimal
UNSAT core can be found, we know that we detected all of them. However, brute
force enumerating is inefficient, because the worst case yields an exponential number
of minimal UNSAT cores in the size of clauses.
We can make use of the duality between all minimal correction subsets (MCSs) and
minimal unsatisfiable subsets (MUSs aka minimal UNSAT cores) via their hitting set
definition. An MCS defines a set of clauses, which once removed from ϕ yield a satis-
fiable subset of clauses. Each MUS is an irreducible hitting set of all MCSs and each
MCS is one of all MUSs [LS08]. For a hitting set (HIT) H of a collection of sets C
it holds that for each set C ∈ C at least one element Ci ∈ C is in H. A HIT is irre-
ducible if no element can be removed without violating the hitting set property from
H. The complement of an MCS is a maximum satisfying subset (MSS)8. Techniques
generating all MCSs are more efficient than generating all MUSs and speed up the
procedure. Two approaches based on this observation are CAMUS [LS08] and Basic
Linear Search (BLS) [MSHJ+13]. Because both aim to generate all MUSs via the
hitting sets of all MCSs, they only differ in their MCSs generation. All algorithms
will be presented in detail.

Hitting Set Generation

An irreducible hitting set (iHIT) H from a set of sets C is computed by iteratively
choosing a set C ∈ C and an element from this set Ci ∈ C [LS08]. In our case Ci is a
clause, C is a set of clauses and C is a set of set of clauses.
The element Ci is then added to H and two modifications on C are performed. We say
that we propagate the choice of Ci and C in C (Algorithm 2). First from Line 2 on,
all sets C ′ ∈ C with Ci ∈ C ′ are removed from C. Next from Line 5 on, all remaining

8The abbreviations MCS, MSS and MUS were introduced in [LS08]. From this point on we will
use this notation for consistency.

16 Chapter 2. Preliminaries

Algorithm 3 Irreducible Hitting Set Generation

1: procedure hittingSetGeneration(C,H)
2: if C = ∅ then
3: print(H)
4: else
5: for all C ∈ C do
6: for all Ci ∈ C do
7: H ′ = H ∪ Ci
8: C′ ← propagateChoice(C,C,Ci)
9: hittingSetGeneration(C′,H ′)

elements from the set C \Ci are removed from all other remaining sets C. After these
modifications it has to be ensured that no sets are supersets of other sets.

In order to generate all iHITs H we have to apply the above principle to a recur-
sive algorithm, where we loop independent of the order over all possible sets and
elements. The break condition of the algorithm is an empty C and then we print the
detected iHIT H(Algorithm 3). The input is the set of sets C and a currently empty
iHIT H. Once the initial call of the algorithm terminates all iHITs of H have been
printed.

Example 2.1.3 (Hitting Set Generation). Assume we have the following set of sets:
C := {{C1}, {C2,C3}, {C2,C4}}. All iHITs are: H = {{C1,C2},{C1,C3,C4}}.

This hitting set generation algorithm can only be applied on C if no set Ci * Cj is a
subset of another with Ci,Cj ∈ C. Otherwise the second modification can remove sets
which are subsets of a chosen set and H would be no iHIT anymore. For example,
let us consider C := {{C1,C2},{C2}} with the correct iHITs H = {C2}. However,
choosing C1 of the first set of clauses first, would cause the second set of clauses {C2}
to disappear, thus resulting into a false iHITs H = {{C1}}

CAMUS

The algorithm CAMUS [LS08] (representing the phrase Compute All Minimal Unsat-
isfiable Subsets) can be found in Algorithm 4.
First we apply the method getSelector, such that all clauses Ci are replaced by
C ′i defined as ¬si ∨Ci with clause-selector variables si. This can be seen as an impli-
cation si → Ci allowing to activate or deactivate the underlying clause Ci. By simply
deactivating all clauses we obtain a satisfiable set of clauses.
Next, we increase a variable k, indicating the number of clauses which are allowed
to be deactivated. This is realized with an atmost constraint, enforcing that only at
most k many clause-selector variables are FALSE. This constraint can be handwrit-
ten, encoded by a cardinality encoder or handled internally via watching literals and
returning UNSAT, if more than k selector variables are set to FALSE. All deactivated
clauses indicate an MCS, because removing those clauses yields a satisfiable set of
clauses.
We remember already found MCSs by asserting blocking clauses (BCs). For some
MCS M := {C1, . . . , Cn} we add the blocking clause ϕBCCAMUS

:=
∨
C∈M sC to the

set of blocking clauses ϕBCs. This clause assures that at least one of the clauses

2.1. SAT Modulo Theories 17

Algorithm 4 CAMUS

1: procedure CAMUS(ϕ)
2: ϕselector ← getSelector(ϕ)
3: ϕBCs = ∅
4: k = 0
5: while solve(ϕselector ∪ ϕBCs) do
6: k++
7: ϕatmostk = ϕselector ∪ atmost(k)
8: while solve(ϕatmostk ∪ ϕBCs) do
9: Model m← getModel(ϕatmostk ∪ ϕBCs)

10: ϕBCs = ϕBCs ∪ getBlockingClause(M)

11: return hittingSetGeneration(getMCSs(ϕBCs))

belonging to an MCS must be activated, prohibiting that this MCS appears again.
Once the set of clauses, extended by the atmost constraint, is unsatisfiable we know
that no MCS of size k exists anymore. If ϕselector extended by the already found
blocking clauses ϕBCs is still satisfiable more MCSs of size k′ > k must exist and we
increase k by one. Else we extracted all MCSs and can make use of the hitting set
duality to generate all MUSs.

Example 2.1.4 (CAMUS on a PL formula). For this example, we extend the formula
ϕ′ from Example 2.1.1 to

ϕ′′ =

C1︷︸︸︷
(x) ∧

C2︷︸︸︷
(¬x)∧

C3︷ ︸︸ ︷
(¬x ∨ y)∧

C4︷︸︸︷
(¬y)

with the indices representing the clauses. This updated formula is unsatisfiable as
well because the original formula ϕ′ is already unsatisfiable. In the first step we extend
each clause by a selector variable and obtain a set of clauses

ϕselector = getClauses((¬s1 ∨ x) ∧ (¬s2 ∨ ¬x) ∧ (¬s3 ∨ ¬x ∨ y) ∧ (¬s4 ∨ ¬y))

with getClauses(ϕ) extracting the set of clauses from a FOL formula ϕ. The
first call of solve(ϕselector ∪ ϕBCs) is true as we can simply deactivate all clauses
(by setting s1,s2,s3,s4 → FALSE).
Now we add the atmost(1) constraint and check if only deactivating one clause
yields a satisfying set of clauses. This is true indeed because we can deactivate C1

(representing the MCS {C1}) and obtain a satisfying assignment x,y → FALSE. The
blocking clause s1 is then added to the complete set of blocking clauses and ensures
that C1 is never deactivated in the future again.
Next, we increase k up to 2, because no other MCS of size 1 can be found. In this iter-
ation of the outer loop we find the MCSs represented by the blocking clauses s2∨s3 and
s2 ∨ s4. No other MCSs exist and we collected all MCSs: {{C1}, {C2,C3}, {C2,C4}}.
After generating all hitting sets we obtain all MUSs as shown in Example 2.1.3:
{{C1,C2},{C1,C3,C4}}.

18 Chapter 2. Preliminaries

Algorithm 5 Basic Linear Search (BLS)

1: procedure BLS(ϕ)
2: ϕBCs = ∅
3: while solve(ϕBCs) do
4: ϕMCS = ∅
5: ϕMSS = ϕBCs
6: for all clause ψ ∈ ϕ do
7: if solve(ϕMSS ∪ ψ) then
8: ϕMSS = ϕMSS ∪ ψ
9: else

10: ϕMCS = ϕMCS ∪ ψ
11: ϕBCs = ϕBCs ∪ getBlockingClause(ϕMCS)

12: return hittingSetGeneration(getMCSs(ϕBCs))

Basic Linear Search (BLS)

The algorithm BLS [MSHJ+13] can be found in Algorithm 5. The aim is to construct
all MSSs and extract the corresponding MCSs. First the current MSS is initialized
with all up to this point detected blocking clauses. The current MCS is set to the
empty clause. Then we iterate over all clauses in ϕ and check whether the current
clause is satisfiable together with the current MSS. If the solving procedure states
SAT we extend the current MSS by that clause. Else it is added to the current MCS.
After all clauses in ϕ have been considered, we obtain a new MCS with respect to
the blocking clauses. We apply this procedure as long as the set of blocking clauses
is satisfiable.
For each found MCS we assert the corresponding blocking clause. For a given MCS
M := {C1, . . . , Cn} we add the blocking clause ϕBCBLS

:=
∨
C∈M C. Note the differ-

ence compared to CAMUS, where we use the clause-selector variables for the blocking
clause.
A possible improvement is called caching [PM17]. For each UNSAT solver call we
store the returned UNSAT core. If a superset of any UNSAT core is about to be
tested we avoid it. This is possible due to Proposition 1 in [PM17].

Example 2.1.5 (BLS on a PL formula). For this example, we use the same formula
ϕ′′ as in Example 2.1.5.

ϕ′′ =

C1︷︸︸︷
(x) ∧

C2︷︸︸︷
(¬x)∧

C3︷ ︸︸ ︷
(¬x ∨ y)∧

C4︷︸︸︷
(¬y)

Assume we chose the clauses getClauses(ϕ′′) in order of their indices. Then,
in the first iteration we obtain ϕMSS1

= C1 ∪ C3 and ϕMCS1
= C2 ∪ C4. The set

of clauses ϕMCS1
corresponds to the MCS {C2, C4} and yields the blocking clause

C2 ∨ C4.
The next iteration yields ϕMSS2

= ϕBCs∪C1∪C4 and ϕMCS2
= C2∪C3 corresponding

to the MCS {C2, C3} and the blocking clause C2 ∨ C3.
Then we obtain ϕMSS3 = ϕBCs ∪C2 ∪C3 ∪C4 and ϕMCS3 = C1 corresponding to the
MCS {C1} and the blocking clause C1.
No other MCSs exist because ϕBCs is now unsatisfiable and we collected all MCSs:

2.2. Planning 19

1 2 3 4

before
after

1 2 3 4

Figure 2.2: Visualized solvable pegsol-invasion instance. Locations which need to be
filled are marked with a second circle. Initially filled locations are black.

{{C1}, {C2,C3}, {C2,C4}}. After generating all hitting sets we obtain all MUSs as
shown in Example 2.1.3: {{C1,C2},{C1,C3,C4}}.

2.2 Planning
The planning problem has challenging variations. We could be interested in an optimal
plan (with respect to some metric) or just use the first sound plan, which we are
able to detect. Besides detecting plans for solvable planning tasks, the problem of
proving infeasibility of planning tasks, which cannot be solved by any plan, exists. In
Section 2.2.1 we first present the definition of planning tasks. Next in Section 2.2.2
we argue about decidability of planning tasks in order to understand which subset
of planning tasks we can tackle later on. Finally, we list state-of-the-art planners for
the problem of detecting plans for solvable planning tasks and stating infeasibility of
planning tasks in Section 2.2.3.

2.2.1 Definitions
Before moving to more practical definitions of a planning task we take a closer look
from a theoretical view upon it. Then we present the PDDL definition, a standard
description language, encoding a planning task in two files, describing its domain
and problem [KBC+98]. The third definition follows the Planning as Satisfiability
paradigm [KSAH92], [KMS96] encoding a planning task in a FOL formula, arguing
about its satisfiability and obtaining a plan as a side product.

Example 2.2.1 (Pegsol-Invasion). Pegsol-invasion is one of the domains which we
later use in the evaluation in Chapter 5. The task is to fill a set of locations by making
use of the following rule: If three locations X,Y,Z are a line, X,Y are filled and Z
is free, then Z can be filled by clearing X and Y (we jump from X over Y to Z).
A visualization of a solvable instance can be found in Figure 2.2 with four locations
l1,l2,l3,l4. Initially l1,l2 are filled, l3,l4 are free and l3 is desired to be filled.
This instance can be turned unsolvable, if we desire to fill l4 instead of l3.

Formal

We use the formal definition for planning tasks from [ENS92]. Let L be a FOL
language with finitely many constants, predicates and functions and a supply of an
infinite number of variables. A state is a set of grounded atoms from L. A grounded

20 Chapter 2. Preliminaries

atom a is true in state S if a ∈ S. Otherwise, a is false in S. An action is defined by a
name α(X1, . . . , Xn) (α a description, and X1, . . . ,Xn denoting n input variables) and
three lists. Among those lists is one list of literals (preconditions Preα) and two lists of
atoms (additions Addα, and deletions Delα) following the STRIPS-blueprint [FN71].
Preconditions represent what needs to be fulfilled in order to execute the action, and
additions and deletions state how executing the action affects the environment. Atoms
which are modified by actions can be described as fluents of the domain.
An action α(X1, . . . , Xn) is θ-executable in a state S if a substitution θ mapping all
variables to grounded terms exists, which fulfills two conditions:

• {θ(A)|A ∈ Preα} ⊆ S (all positive atoms need to be in S)

• {θ(B)|¬B ∈ Preα} ∩ S = ∅ (no negated atoms are allowed in S)

Then the state after applying α is defined as S′ := (S − θ(Delα)) ∪ θ(Addα) and
we write S α,θ

==⇒ S′. After applying n many actions on S0 we obtain

S0
α1,θ1

====⇒ S1
α2,θ2

====⇒ . . .
αn,θn

====⇒ Sn.

A planning task P := (S0,A,G) consists of an initial state S0, a goal G and a set
of actions A. The goal G is an existentially closed conjunction of atoms. If a sequence
of descriptions α1, . . . , αn and a sequence of substitutions θ1, . . . , θn exist, such that a
grounded instance of G is true in Sn, then an n-plan exists, which is a plan of length
n.

Example 2.2.2 (Formal definition of pegsol-invasion). Here we define a formal
pegsol-invasion instance P = (S0,A,G) motivated by Example 2.2.1. The necessary
FOL language L consists of variables X,Y,Z, the constants l1,l2,l3,l4 representing four
locations, the 3-ary predicate "inline", and the unary-predicate "filled".
The initial configuration states which locations are in line and initially filled.

S0 = { inline(l1,l2,l3), inline(l2,l3,l4),

inline(l3,l2,l1), inline(l4,l3,l2),

filled(l1), filled(l2)}

All grounded atoms which are not inside S0 (e.g., filled(l3)) are false in S0. Thus,
we know that l3 is not filled (or free) in S0.
The actions A consist only of one action which is called "jump" and defined as follows:

• Namejump: jump(X,Y,Z)

• Prejump: {inline(X,Y,Z), filled(X), filled(Y), ¬filled(Z)}

• Deljump: {filled(X),filled(Y)}

• Addjump: {filled(Z)}

The atoms filled(li) with i ∈ {1, . . . ,4} are fluents, because they are modified
by action jump(X,Y,Z). In contrast, inline(lx,ly,lz) with x,y,z ∈ {1, . . . ,4} are not
fluents.
Finally the goal is defined as G = {filled(l3)}. A 1-plan exists with α1 = jump and
θ1(X,Y,Z)→ (l1,l2,l3).

2.2. Planning 21

Listing 2.1: Domain encoding of PDDL instance of pegsol-invasion

1 (d e f i n e (domain pegso l−i nva s i on)
2 (: requ i rements : typing) (: types l o c a t i o n − ob j e c t)
3 (: p r ed i c a t e s
4 (IN−LINE ?x ?y ? z − l o c a t i o n)
5 (f i l l e d ? l − l o c a t i o n)
6)
7 (: a c t i on jump
8 : parameters
9 (? from − l o c a t i o n

10 ? over − l o c a t i o n
11 ? to − l o c a t i o n)
12 : p r e cond i t i on
13 (and
14 (IN−LINE ? from ? over ? to)
15 (f i l l e d ? from)
16 (f i l l e d ? over)
17 (not (f i l l e d ? to))
18)
19 : e f f e c t
20 (and
21 (f i l l e d ? to)
22 (not (f i l l e d ? from))
23 (not (f i l l e d ? over))
24)
25)
26)

PDDL

We use the PDDL definition for a planning task P = (S0,A,G) with L the language
of P from [KBC+98]. The planning task is split into two files called domain.pddl
and problem.pddl.
A domain file consists of requirements, types, constants, predicates and
actions. An action is defined by its parameters, preconditions and effects.
A problem file consists of a domain reference, an init and a goal description.
Preconditions and goal descriptions are function-free first-order formulas. Additions
and deletions are grouped into one place, the effects. Instead of a delete list, a dele-
tion is achieved by mentioning the negation of a statement as an effect. This was not
possible before because both the addition and the deletion lists contain only atoms.
Conditional effects and universal quantifiers can be used while describing the effects.
The requirements of a planning task state, what a planner needs (from a set of require-
ment flags) to handle in order to solve the planning task. This is necessary as some
planners focus on less complex domains. E.g., if a planner uses the STRIPS-blueprint,
it cannot handle conditional effects, which can be described in PDDL. However, the
expressiveness of PDDL is restricted compared to the formal definition introduced
before [KBC+98]. Every constant, predicate and action is defined respectively to the
available types of objects.

22 Chapter 2. Preliminaries

Listing 2.2: Problem encoding of PDDL instance of pegsol-invasion

1 (d e f i n e (problem pegso l−invas ion−example)
2 (: domain pegso l−i nva s i on)
3 (: o b j e c t s
4 l 1 − l o c a t i o n
5 l 2 − l o c a t i o n
6 l 3 − l o c a t i o n
7 l 4 − l o c a t i o n)
8 (: i n i t
9 (IN−LINE l1 l 2 l 3)

10 (IN−LINE l3 l 2 l 1)
11 (IN−LINE l2 l 3 l 4)
12 (IN−LINE l4 l 3 l 2)
13 (f i l l e d l 1)
14 (f i l l e d l 2)
15)
16 (: goa l
17 (f i l l e d l 3)
18)
19)

Similar to the SMT-LIB format, PDDL is a standard for planning tasks, making it
easy to compare different tools.

Example 2.2.3 (PDDL definition of pegsol-invasion). A PDDL pegsol-invasion in-
stance motivated by Example 2.2.1 with given planning task P = (S0,A,G) with lan-
guage L can be found in Listings 2.1, 2.2. The requirements demand that typing is
handled by the planner, in order to introduce the type location. The predicates are the
same which appear in L and the action jump is defined similar to the jump action
inside A. The initial and goal configuration are defined respectively to S0 and G from
P .

Planning as Satisfiability

In this section we present the Planning as Satisfiability paradigm [KSAH92], [KMS96].
Using a PDDL specification, combined with a plan horizon ph ∈ N, it is possible to
encode the dynamics into an SMT-LIB file. This file represents a FOL formula which
can be transformed into a set of clauses ϕph, which is solvable with SMT solvers de-
scribed in Section 2.1.3. If the solver detects satisfiability, we know that the planning
task is solvable and a ph-plan exists. Otherwise the solver detects unsatisfiability and
we know that no ph-plan exists. Note that unsatisfiability of one encoding does not
prove infeasibility of the planning task, although, as we will see in Chapter 3, it can
yield a witness for infeasibility.
Various approaches exist to translate a PDDL planning task into an SMT problem,
such as SMTPlan [CFLM16], Reinforced Encoding [BBT15], and one based on the
SAS+ formalism [HCZ10]. The disadvantage of automatically created translations
is their size, as they offer functionalities, we are not interested in (e.g., SMTPlan

2.2. Planning 23

enables the planning for hybrid systems). Therefore, we construct hand-crafted en-
codings, following the description in [Tac18] closely. The structure of the hand-crafted
encodings includes variable declaration, bounds on variables, action definitions and
initial/goal clauses (Example 2.2.4).

Definition 2.2.1 (SMT-LIB encoding ϕph). For a plan horizon ph and a planning
task P = (S0,A,G) with language L we can define a FOL formula, transformable into
a set of clauses ϕph. Assume that L does not contain any function symbols (we will
see later, this assumption rules out undecidable planning tasks).

ϕph := getClauses(ϕphaction ∧ ϕinitial ∧ ϕ
ph
goal)

with getClauses(ϕ) transforming a FOL formula ϕ into a equisatisfiable set of
clauses.
We introduce for every predicate symbol in L and plan step 1 ≤ i ≤ ph all possible
variables. To do so, we need to list all grounded predicates. We add the action
variables Ai for every plan step 1 ≤ i ≤ ph, encoding which action is used in which
step.
The formula ϕphaction encodes all possible actions for every plan step by specifying their
preconditions, effects and what does not change inside the domain for every plan step
from 2 up to ph. The structure of the encoding of a single action ai states, if the
action identified by the index i is chosen, its preconditions, effects and conditions,
what is not allowed to change, are enforced to be fulfilled.

ϕactionj
i

:= (Aj = i)⇒
(
ϕipreconditions ∧ ϕieffects ∧ ϕinotchange

)
The amount of possible actions NA is obtained by listing all possible groundings

of all actions in A. Due to the fact, the amount of possible actions might be much
greater than the amount of executable actions, we can reduce this number by additional
domain knowledge and manually modifying the encoding. The action variables must
be restricted to the size of possible actions, (1 ≤ Aj) ∧ (Aj ≤ NA).
The formula ϕinitial contains a full specification of the world state. Note that in the
formal definition it is enough, to state what holds initially in S0 and every grounded
atom which is not contained, is assumed to be false in S0. The formula ϕphgoal mentions
the variables corresponding to all grounded atoms in G.
We encode the initial configuration, the transitions between states and the goal config-
uration. If the encoding is satisfiable for some ph ∈ N we can analyze the assignment
and print the action-indices assigned to the action variables in every step. Otherwise
the encoding is unsatisfiable, stating that it is not possible to reach G from S0 by
applying ph many actions.

Example 2.2.4 (Planning as Satisfiability definition of pegsol-invasion). Here we
define a pegsol-invasion instance referring to the Planning as Satisfiability paradigm
motivated by Example 2.2.1 for a given planning task P = (S0,A,G) with language
L. We use ϕph as a FOL formula over Boolean and Integer variables. The boolean
variables, taken from L, are filledji and inlinejx,y,z with i,x,y,z ∈ {1, . . . ,4} repre-
senting the locations and j ∈ {1, . . . ,ph} the plan step. The integer variables are Aj,
representing which action is chosen at step j ∈ {1, . . . ,ph} of the plan.
As indicated, we can reduce the size of variables by only using inlinex,y,z for one plan
step instead of inlinejx,y,z, because inlinex,y,z does not represent a fluent and will not
change throughout the plan.

24 Chapter 2. Preliminaries

The possible amount of actions depends on the domain and number of variables in this
action. The jump action has three variables which represent all locations. Because we
have 4 locations, we obtain 4·3·2 = 24 actions. If we replace the index of each action by
the 3-tuple of corresponding locations we get a set of actions A = {a123,a124, . . . ,a432}
containing all 24 actions axyz. Each action indicates jumping from x over y to z.
E.g., action a123 encodes jumping from l1 over l2 to l3:

ϕjaction123
:= (Aj = 1)⇒

preconditions︷ ︸︸ ︷
inline123 ∧ filledj−11 ∧ filledj−12 ∧ ¬filledj−13 ∧

effects︷ ︸︸ ︷
¬filledj1 ∧ ¬filled

j
2 ∧ filled

j
3 ∧

notchange︷ ︸︸ ︷
filledj4 = filledj−14

Note we assume, that action a123 is the first element of the set of actions. The
other actions are encoded in a similar way.
The initial and goal configuration are defined as follows:

ϕinitial := inline123 ∧ inline321 ∧
inline234 ∧ inline432 ∧
¬inline124 ∧ . . . ∧ ¬inline431 ∧
filled11 ∧ filled12 ∧ ¬filled13 ∧ ¬filled14

ϕgoal := filledph3

Here we applied already the optimization that we are only using one plan step for
every non-fluent variable.

Lemma 2.2.1. The planning task P = (S0,A,G) with language L is solvable iff the
encoding ϕphmin is satisfiable for some minimal phmin ∈ N.

Proof. ⇒ We know that the given planning task is solvable, and thus there exists
some minimal phmin-plan for phmin ∈ N, allowing to reach G from S0. By definition
the encoding for ϕphmin is satisfiable and yields the phmin-plan as a side effect of the
satisfying assignment.
As we know that the phmin-plan is minimal, no ph†-plan with ph† < phmin allows
reaching G from S0. Thus, by definition all encodings ϕph

†
are unsatisfiable.

⇐ Because ϕph is satisfiable, we can extract a ph-plan from the satisfying assign-
ment proving feasibility of the given planning task.

Once we have the general idea in mind, we can combine the encodings with the
principles of Bounded Model Checking (BMC) [Bie09]. At the beginning of BMC an
upper bound b is defined. The highest bound is called the completeness threshold
(b ≤ CT). For every given finite state system such an CT exists.
The loop starts with some value v stating that the system executes v many steps. If

2.2. Planning 25

1 2 3 4 5 . . .

Figure 2.3: Undecidable pegsol-invasion example

the encoding for v is satisfiable the property has been proven, and if it is unsatisfiable
v is increased up to b.
What can be ensured once the upper bound is reached? If the upper bound CT is
reached the investigated property does not hold, otherwise we find a witness for some
value v < CT . Classical planning is only concerned with safety properties and thus
less complex than the diverse properties investigated in model checking (as liveness
and nested temporal properties). In more detail for classical planning, if the upper
bound CT is reached without finding any plan yet, we conclude that no plan exists
for the given problem; otherwise we find such a plan for some plan horizon ph < CT .
Later we will see that depending on the complexity of the planning domain the prob-
lem instance is decidable or not. This fact states, the given system does not represent
a finite state system anymore. Therefore it cannot be ensured that a completeness
threshold exists.

It is possible to use domain knowledge to pre-compute a fixed plan horizon phfix
such that satisfiability of ϕphfix ensures plan existence. Otherwise plan infeasibility
is guaranteed. An example for this approach is an encoding for the RoboCup Logis-
tics League (RCLL) [NRF+15]. The RCLL simulates an industry 4.0 environment
by asking a robot fleet to work on dynamically announced orders. The robots have
to coordinate their actions in order to gain as many points as possible in a fix time
window. Depending on the complexity of orders we know which actions are required.
Then only the best partial order and assignment of robots matters. However, it is
difficult to argue, if those plan horizons exist for a given planning task without do-
main dependent knowledge. A possible approach to answer this question consists of
an exhaustive state space search in order to analyze all possible plans.

2.2.2 Decidability

As indicated in the description of Planning as Satisfiability decidability of a planning
task is an important property to detect its infeasibility. We refer to the definition
by [ENS92]. Planning is in general undecidable, if allowance of function symbols is
granted or an infinite number of constant symbols are available. If both properties
do not hold the planning task is decidable.

Example 2.2.5 (Decidable planning task). The planning task instance specified in
Example 2.2.1 is decidable as we have no function symbols and only finitely many
constants. We obtain an undecidable instance by imagining that we have an infinite
line of locations as displayed in Figure 2.3. This results in an infinite number of
locations (constant symbols). Depending on the order in which we test the available
actions we find the solution or not (making the process semi-decidable).

26 Chapter 2. Preliminaries

2.2.3 Tools

Even though state-of-the-art planners focus on detecting plans for solvable planning
tasks, some planners, which are dedicated to conclude infeasibility of planning tasks,
exist as well.

Solvable Planning Tasks

For solving a planning task, planners aim, for example, to generate optimal, bounded-
cost, satisficing or agile plans in the International Planning Competition at ICAPS
20182. The first three variants aim to generate good plans with respect to their cost
and the last variant focuses on the time for generating a single plan. Examples are
LAPKT-BFWS-Preference [FGFR18], Saarplan [FGS18], and Remix [Sei18].
The tool LAPKT-BFWS-Preference has the best performance on the agile track. It
is based on the Best-First Width Search (BFWS) approach. Due to the focus on state
novelty it is search-dependent but goal-independent [KT17]. In general, the state
novelty ω(s) of a state s is defined as the smallest set of atoms Q which appear first
in some state. For the given tool this principle has been extended by a set of heuristic
functions h1, . . . ,hn. Then we prune all states for which ω(s) > k with a threshold k.
If k converges to the number of atoms in the planning task the algorithm simulates
Breath First Search (BFS). We obtain polynomial complexity for fix values of k while
omitting completeness. Surprisingly, the quadratic case of k = 2 solves already many
planning tasks. The final version for the competition uses some post-processing to
optimize a found plan with the approaches WA∗ [RW14] and h2 [AT15] up until the
time window ends.

Unsolvable Planning Tasks

Recently the problem of unsolvable planning tasks has been evaluated in the Un-
solvability International Planning Competition at ICAPS 20163. Various approaches
have been used, among them are, Aidos [SPS+16], SymPA [Tor16], and CLone [SH16].
Here we will present the tool SymPA, a tool with one of the best performances.
SymPA, based on the Fast Downward planning system [Hel06], uses h2 to pre-process
the planning task [AT15] and is a variation of SymBA∗ [TLB16]. The approach, sim-
ilar to SymBA∗, consists of a bidirectional search in the original and abstract state
spaces in order to find dead ends. Abstract state spaces describe planning tasks in-
duced by a subset of the variables in the original planning task. They are closely
related to the term subtask introduced in Section 2.2.4.

2.2.4 Further Definitions

To improve readability throughout this thesis we present some further definitions
concerning planning tasks.

Encoding ϕph

Each encoding of the set of clauses ϕph of the planning task for a plan horizon ph
contains a subset of clauses ϕinitial and ϕphgoal representing the initial and goal con-
figuration of the planning task. The remaining information is described by the set of
clauses ϕphdomain.

2.2. Planning 27

ϕph := ϕinitial ∪ ϕphgoal ∪ ϕ
ph
domain

Plan Horizon ph

In general, we will describe our approach referring to the current plan horizon. This
plan horizon represents the current bound in the BMC paradigm. If we are given a
fixed plan horizon ph we identify all smaller plan horizons as ph† and all greater once
as ph∗ with ph† < ph < ph∗, unless specified otherwise.

Subtask of a Planning Task

We define a subtask as an abstraction of a given planning task by relaxing certain
properties of the initial or goal configuration.

Definition 2.2.2 (Subtask S). A subtask S of the original planning task P = (S0,A,G)
with language L and the corresponding set of clauses ϕph for some ph ∈ N is a subset
of the clauses ϕphS ⊂ ϕph with

• ∅ 6= ϕS,initial ∪ ϕphS,goal ⊂ ϕinitial ∪ ϕ
ph
goal,

• ϕphS,domain = ϕphdomain.

We call a subtask trivial if either no initial or no goal clauses appear. All other
subtasks are non-trivial.

In terms of the formal definition of planning tasks, a subtask can be understood
as a set of planning tasks, where all dropped initial or goal configurations appear with
all their possible variations.

Example 2.2.6 (Subtask of pegsol-invasion). A planning task of pegsol-invasion con-
sists of the operator definition and an initial and goal configuration. The initial con-
figuration states, for example, whether a location is filled or not. Let us now consider
the subtask where the information that l4 is initially free is dropped. This results in
two new planning tasks. In one l4 is still free, but in the other l4 is considered filled.
If we recall Example 2.2.4 the subtask would correspond to the initial specification
ϕS,initial := ¬free11 ∪ ¬free12 ∪ free13. The variable free14 is not fixed by ϕS,initial
anymore.
This subtask is non-trivial as the information about fluent freeph3 is contained in the
goal configuration, besides other specifications in the initial configuration.

Definition 2.2.3 (Feasibility of subtasks). A subtask is solvable iff one of its planning
tasks is solvable. The subtask is unsolvable iff no planning task is solvable.

Definition 2.2.4 (Minimal unsolvable and maximal solvable subtask). An unsolvable
subtask is minimal iff every further subtask is solvable. Contrary, a solvable subtask
is maximal iff every supertask of the subtask is unsolvable.

If a planning task consists of several subtasks, plan infeasibility of one subtask is
a witness for infeasibility of the original planning task. The other way does not hold.
It is not true that if a planning task is unsolvable, all subtasks are unsolvable as well.
A trivial subtask shares no fluents between its initial and goal state and thus feasibility
does not depend on any actions as all fluents in the goal configuration can be assigned
with their initial value. Later in Section 3.1 we will see that minimal subtasks are
closely related to MUSs in the context of Planning.

28 Chapter 2. Preliminaries

2.3 Explainable Artificial Intelligence

This section offers an overview about challenges in eXplainable AI (XAI) in general
and Explainable Planning (XAIP) in particular. Recent development in this field of
research has been pushed by DARPA’s XAI program9. The program aims in creating
AI systems and models which can explain themselves.

A popular example of such a self-explaining system is the decision tree (DT) [Qui86].
A DT aims to classify objects specified by a set of attributes. The procedure a DT is
based on is easily accessible to humans and therefor fulfills the requirements asked for
by the program. An explanation is simply that the values of the attributes conclude a
certain class. However, a DT is limited in its expressiveness and easily outperformed
by tools with a similar functionality.

Let us consider a contrary example, which is not self-explanatory, from some computer
vision system. The task is that after looking at a picture the system declares whether
it displays a dog or not1. After the system is trained with some data set, it can be
applied in daily life. The decision the classifier makes can be correct or wrong. How
can the system explain its conclusions? Of course, it is possible to simply provide the
principles (via a paper-reference) or the implementation (via the source-code) of the
tool. This can be difficult to understand for a user with no technical background. A
more convenient way could be to highlight a segment of the image, which indicates a
dog appears on the picture. An alternative is to refer to the head, the tail, the body,
and the legs. These properties indicate that it is, for example, an animal. Further,
the shape of the ears refers to a dog. The highlighted visual information is easily
interpretable by humans, while the theoretical principles or the source-code are not.

In general, it can be observed, the more powerful an AI system is, the less under-
standable it is by humans. Such complex programs are often regarded as black-boxes
stating that no effort is made in explaining any component9. A problematic conse-
quence of such black-boxes arises in crucial situations where all possible actions have
far-reaching effects. If the human’s intuition contradicts the decision of the system,
the human will be left confused and follow some intuition accompanied with one of
these thoughts: 1. »Who knows how the system concluded that action? I will perform
an action based on my experience!« or 2. »Even if I do not understand the system it
will surely have its reasons. I rather disregard my experience!«
Both possibilities are not what is intended by the use of computer systems and can
be ameliorated by XAI such that the following scenarios appear: 1. »The machine
put too much attention on less important details. I will perform an action based on
my experience!« or 2. » I accept that I forgot important details. I rather disregard my
experience!«
[FLM17] states that basically three reasons form the basis of XAI: 1. Trust, 2. inter-
action, and 3. transparency. Trust is needed in cases that computer systems assist
humans. Interaction is required if full autonomy is not possible and humans and
computer systems operate side by side. Transparency is necessary in full autonomic
applications, e.g., for legal issues, such that performed actions can be ensured not to
be discriminating.

9https://www.darpa.mil/program/explainable-artificial-intelligence

2.3. Explainable Artificial Intelligence 29

Algorithm 6 CAMUS with clauses of interest

1: procedure CAMUS(ϕi,ϕn)
2: ϕselector ← getSelector(ϕi)
3: ϕBCs = ∅
4: k = 0
5: while solve(ϕselector ∪ ϕn ∪ ϕBCs) do
6: k++
7: ϕatmostk = ϕselector ∪ ϕn ∪ atmost(k)
8: while solve(ϕatmostk ∪ ϕBCs) do
9: Model m← getModel(ϕatmostk ∪ ϕBCs)

10: ϕBCs = ϕBCs ∪ getBlockingClause(M)

11: return hittingSetGeneration(getMCSs(ϕBCs))

2.3.1 Explainable Planning
In this thesis we focus on the problem of XAIP. Several topics are analyzed in this field
of research. Plan Explanation aims to present generated plans in an understandable
form [SBM11], [CFT+18]. Plan Explicability analyzes how well generated plans can
be understood by humans [ZSK+17]. Based on these approaches, Model Reconcilia-
tion reasons about plans consistent with the human’s view on the domain [CSK17].
Moreover, efforts have been made to provide decision support in the context of Human
Team Planning [KS17]. In this context several questions are of interest [FLM17]. For
simplicity the proposed questions are grouped into the following:

1. Why did you do that?

2. Why do I need to replan at this point?

3. Why can’t you do that?

The first question aims to explain the necessity of some actions with respect to
similar actions and overall cost by executing them. Answers are that discarding some
actions results in a plan with worse metric or could even prohibit plan existence.
The second question is out of scope for this thesis, as it requires monitoring and re-
planning while the initial plan is currently executed.
The third question demands an explanation for infeasibility. A planning task can
be impossible to solve due to the 1. domain itself, 2. the environmental conditions
and/or 3. the goals one tries to achieve. Note that several causes can exist prohibiting
feasibility of a planning task.

Example 2.3.1 (Passing a bridge). Imagine that we try to reach a destination and
need to pass two bridges. If the first bridge is already down, we cannot reach the
destination, independent of the second bridge. But if the second bridge is down as
well it does not matter if the first bridge is up again. Returning only the information
that the first bridge is down is enough to explain infeasibility itself, but for a wider
picture it is helpful to understand all components causing infeasibility.

In the next Chapter 3 we propose a technique which aims to detect causes of all
three types regarding Question 3. and return this information in a useful format to
the user.

30 Chapter 2. Preliminaries

Algorithm 7 Basic Linear Search (BLS) with clauses of interest

1: procedure BLS(ϕi, ϕn)
2: ϕBCs = ∅
3: while solve(ϕBCs ∪ ϕn) do
4: ϕMCS = ∅
5: ϕMSS = ϕBCs ∪ ϕn
6: for all clause ψ ∈ ϕi do
7: if solve(ϕMSS ∪ ψ) then
8: ϕMSS = ϕMSS ∪ ψ
9: else

10: ϕMCS = ϕMCS ∪ ψ
11: ϕBCs = ϕBCs ∪ getBlockingClause(ϕMCS)

12: return hittingSetGeneration(getMCSs(ϕBCs))

2.3.2 Clauses of Interest in Planning
After presenting approaches about how planning tasks are encoded as SMT problems
and what is required in order to explain unsolvable planning tasks, we define an
extension of the MUS generation algorithms allowing to define a subset of so-called
clauses of interest. Instead of considering all clauses of a formula ϕ we define a
classification into

ϕ = ϕinterest ∪ ϕnointerest = ϕi ∪ ϕn.

The motivation of this procedure is, we might not be interested, if certain parts of
the encoding contribute to MUSs or not. For example, the constraints bounding the
action variable will appear in some MUS, because removing this restriction allows the
solver to define unintended actions based on no rules. Each clause can be marked as
a clause of interest or not. We make the choice from a computational point of view
to only mark the initial and goal clauses as clauses of interest.

Both algorithms need to be modified in order to work with clauses of interest. In
CAMUS we extend only the clauses of interest with clause selector variables and add
ϕn to the two solver calls. In BLS, similarly, we add ϕn to the outer solver call.
Moreover, we initialize the current MSS with the blocking clauses and ϕn. Finally,
we do not iterate over all clauses but over all clauses of interest. In both algorithms
the blocking clauses are only created by use of the clauses of interest. Changes can
be seen in Algorithms 6, 7.
The returned MUSs consist of ϕn and a subset of the clauses of interest. In fact,
they are not strictly minimal anymore, because it is possible that removing a clause
from ϕn still yields a unsatisfiable set of clauses. Therefore, we say that the MUSs
are minimal with respect to the clauses of interest. Removing any clause of interest
from the obtained MUSs returns a satisfiable set of clauses. Moreover, we say that
an MUS is non-empty with respect to the clauses of interest, if at least one of the
clauses of interest appears in the MUS. Every time we use the expression MUSs from
this point on, we refer to MUSs with respect to their clauses of interest.

Chapter 3

Deciding Planning Tasks with
UNSAT Cores

In this chapter, we study MUSs with respect to clauses of interest in the context of
Planning and present an approach on how to use those together with the original
BMC approach which we call BMC using UNSAT cores (BUS). First, we classify
UNSAT cores into three distinct classes and analyze their impact on plan feasibility.
Section 3.2 offers a description of BUS and its correctness is examined in Section 3.2.2.
Further comments on the complexity of BUS are presented in Section 3.2.3.

Besides the condition that given planning tasks must be decidable we put an ad-
ditional requirement on the encoder translating PDDL specifications into SMT en-
codings. The plans returned in the solving process are not allowed to contain any
loops. This requirement does not reduce the expressiveness of the planning problem,
as a loop does not add any information to the plan. Omitting loops in the satisfying
assignments in our encodings is crucial for BUS (Proof 3.2.2). To do so we have to
add the following formula for a set F of fluents and the plan horizon ph:

ϕphomitloops :=
∧

i<j≤ph

∨
f∈F

f i 6= f j

with f i the variable encoding the assignment of fluent f in plan step i and i,j ≤
ph. The formula ϕphomitloops ensures that at least one pair of assignments for each
pair of plan steps (i,j) with i < j differs. Once ϕphomitloops is transformed into an
equisatisfiable CNF-formula we add its set of clauses to the current encoding ϕph of
the planning task.

3.1 Classification of UNSAT Cores

Motivated by Section 2.3.2, the clauses in the encoding ϕph of the planning task can
be classified into the initial and goal configurations as clauses of interest and the
domain as the other clauses.

32 Chapter 3. Deciding Planning Tasks with UNSAT Cores

ϕph = ϕphi ∪ ϕ
ph
n

ϕphi = ϕinitial ∪ ϕphgoal
ϕphn = ϕphdomain

with (ϕinitial ∪ ϕphgoal) ∩ ϕ
ph
domain = ∅, and ϕinitial ∩ ϕphgoal = ∅. Throughout enrolling

the transition sequence we can apply CAMUS or BLS for every plan horizon ph ∈ N
to generate all MUSs C1, . . . ,CN . These MUSs are of the following form:

ϕphCi
= ϕCi,initial ∪ ϕ

ph
Ci,goal

∪ ϕphCi,domain

with i ∈ {1, . . . ,N}, ϕCi,initial ∪ ϕ
ph
Ci,goal

⊆ ϕinitial ∪ ϕphgoal and ϕ
ph
Ci,domain

= ϕphdomain.
Because the domain clauses are not among the clauses of interest they do not change
for any MUS and do not need to be analyzed further. The set of clauses of interest
appearing in an MUS Ci is a subset of the original clauses of interest. We use those
clauses to classify possible UNSAT cores in order to argue about their impact on
XAIP and plan feasibility.

Definition 3.1.1 (Classes of UNSAT cores with respect to clauses of interest in the
context of Planning). We propose three classes of non-empty UNSAT cores. If the
UNSAT core generation algorithm only generates the empty MUS, we call this the
empty core. Otherwise we obtain a non-empty MUS C.

• If ϕphC,goal is empty, we call C an initial core.

• Else if ϕphC,initial is empty, we call C a goal core.

• Else we call C a mixed core.

Example 3.1.1 (An initial, goal and mixed core in the pegsol-invasion planning
task). We refer to Example 2.2.4. The UNSAT core C1 with the clauses of interest

ϕC1,initial ∪ ϕ
ph
C1,goal

:= {¬free11,¬free12}

is an initial core. The UNSAT core C2 with the clause of interest

ϕC2,initial ∪ ϕ
ph
goal := {¬freeph3 }

is a goal core. The combination of the above UNSAT cores resulting in C3 with
the clauses of interest

ϕC3,initial ∪ ϕ
ph
C3,goal

:= {¬free11,¬free12, free
ph
3 }

is a mixed core.

As indicated before in Section 2.2.4, an MUS defines a subtask because removing
initial and goal clauses allows the solver to search for a ph-plan solving the subtask
by re-assigning variables, which have been assigned via the initial and goal clauses
before. In fact, a mixed core describes a non-trivial subtask and an initial or goal core
describes a trivial subtask. Thus, every MUS states that no ph-plan solves a certain
subtask.

3.1. Classification of UNSAT Cores 33

Lemma 3.1.1. An MUS C in the context of Planning appears for some plan horizon
ph iff no ph-plan exists solving the minimal subtask SC defined by C.

Proof. ⇒ Assume that the subtask defined by an MUS is solvable by a ph-plan. Then
the encoding of the subtask for plan horizon ph is satisfiable. This contradicts the
assumption because a UNSAT core is unsatisfiable by definition.
Now we investigate the case that no ph-plan solves SC but that SC is not minimal
and some subtask of SC exists which is not solvable by any ph-plan as well. In this
case C is no true MUS, as the subtask of SC states, there is a smaller unsolvable
subtask than SC . This contradicts that C appeared.

⇐ If no ph-plan exists solving the minimal subtask SC , an encoding exists corre-
sponding to the subtask which is unsatisfiable. Because the subtask is minimal, every
subtask of SC can be solved by a ph-plan, and therefore the encoding truly defines
an MUS.

In case of a trivial subtask, the initial or goal core do not only state that no ph-plan
exists, but no ph∗-plan as well.

Lemma 3.1.2. If the empty core, or an initial or goal core C appears for some plan
horizon ph then no ph∗-plan exists solving the minimal subtask SC defined by C for
ph ≤ ph∗

Proof. We consider the case that an initial core appeared. Assume that the subtask
defined by an initial core is solvable by some ph∗-plan. Then we can create a ph-plan
by removing the last (ph∗ − ph) steps of the ph∗-plan. This contradicts the fact that
the appearance of an initial core prohibits existence of a ph-plan after Lemma 3.1.1.
The case of the empty and a goal core works similarly.

Note that the other direction does not hold, because unsolvable non-trivial minimal
subtasks exist as well.

3.1.1 Impact of UNSAT Cores

Each introduced class has influence on plan feasibility. We investigate for each class
what we can deduct from its appearance after generating all MUSs for some plan
horizon ph using Lemmas 3.1.1, 3.1.2.

• The empty core states that no ph-plan exists in the given domain, because the
encoding of ϕphdomain is already unsatisfiable. Intuitively, even though we can
specify any planning tasks by setting the initial and goal configuration it is
impossible to obtain any executable ph-plan. This is a strong argument as it
states that ph is an upper bound for all possible plans in the domain. Sound
plans can only be of length ph†. Therefore, the empty core is a witness for plan
infeasibility if no ph†-plan has been found solving the original planning task.

• An initial core states that no ph∗-plan with ph∗ ≥ ph exists for the corresponding
trivial subtask as shown in Lemma 3.1.2. Thus, no sequence of states exists
starting in S0 and reaching any Sph and only dead ends have been found in the
forward search. Therefore an initial core is a witness for plan infeasibility if no
ph†-plan has been found solving the original planning task.

34 Chapter 3. Deciding Planning Tasks with UNSAT Cores

• A goal core states that no ph∗-plan with ph∗ ≥ ph exists for the corresponding
trivial subtask as shown in Lemma 3.1.2. Thus, no sequence of states exists
starting in some S′0 and reaching a grounded instance of G = Sph and only dead
ends have been found in the backward search. Therefore a goal core is a witness
for plan infeasibility if no ph†-plan has been found solving the original planning
task.

• A mixed core states that no ph-plan exists for the corresponding non-trivial
subtask, but some ph-plan do exist which solve subtasks of this subtask. Thus,
extensions of the existing ph-plans result in dead ends or in a ph∗-plan solving
the subtask (or even the original planning task).

The information we get from the MUSs is similar to reachability information col-
lected in tools as iProverPlan [SK16] and SymPA [Tor16]. However, the way this
information is collected is different. Instead of maintaining a set of reachable states
we make use of a principle mentioned in [Str04]. While enrolling the transition scheme
of the planning task, a conflict can occur stating that no connection exists between
an initial and goal configuration. This information is detected by the use of MUSs
and the appearing of the empty core, or initial or goal cores.

It is possible to use less clauses of interest as described so far. In general, less clauses
of interest speed up the UNSAT core generation algorithms and are more accessible.
However, depending on the initial or goal clauses we do not mark as clauses of interest,
we have to redefine our classification. For example, if we do not consider some initial
clauses as clauses of interest, those clauses will appear in every MUS. Therefore, it is
impossible to detect the empty core or a goal core. If we detect the empty core with
the modified clauses of interest the empty core corresponds to an initial core, and a
goal core corresponds to a mixed core. Only the initial core is a correct initial core.
The empty core and an initial core are still witnesses for plan infeasibility.

3.2 Bounded Model Checking with UNSAT Cores
In this section we describe how BMC using UNSAT cores (BUS) works in the context
of Planning. The classical approach of BMC (Section 2.2.1) uses some completeness
threshold CT up to which we increase our bound. In practice it is not applicable to
use CT as an upper bound. Rather we use a bound of which we know we can reach
it in a reasonable time. But in this case reaching the bound does not answer if the
planning task is unsolvable. By use of the BMC approach we have three possible
answers in terms of XAI: The planning task is 1. solvable, 2. unsolvable or 3. it
might be solvable.
We use the interpretations of classes in Section 3.1.1 as a motivation to decide for each
plan horizon, whether to increase the plan horizon or deduce that the given planning
task is unsolvable. A visualization of the approach can be found in Figure 3.1.
The difference between BUS and the classical BMC approach is the moment we can
deduce plan infeasibility. Originally, plan infeasibility can only be stated once CT is
reached and no plan was found. If CT is not reached, we can only return the third
answer. In contrast, BUS enables to return the second answer possibly for any plan
horizon (in the worst case after reaching CT /2 as we will see later in Proof 3.2.3).
Note that depending on the planning task and the resources BUS does not find a
witness for infeasibility and needs to state that the planning task might be solvable.

3.2. Bounded Model Checking with UNSAT Cores 35

domain.pddl problem.pddl ph = 1

Encoder

Solver

ϕph

planning task
is solvable
with a ph-plan

SAT

Get MUSs

UNSAT

Analyze UNSAT cores

all MUSs

planning task
is unsolvable

If ∃Ci with Ci
an initial or goal core

If ∀Ci with Ci
a mixed core
then ph++

empty core

Figure 3.1: Visualized BUS for some planning task

3.2.1 BUS

We start with a planning task specified by its PDDL description The planning task’s
domain (domain.pddl) and problem description (problem.pddl), together with
an initial plan horizon ph = 1, are then fed into an encoder producing an encoding
representing a set of clauses ϕph. Next a SMT solver is called with ϕph as input.
If the formula is SAT, we abort the BMC procedure and return the ph-plan offered
as a side product by the satisfying assignment. Otherwise we continue by generating
all MUSs C1, . . . ,CN .
If the MUS generation yields only the empty core, we abort the procedure and return
plan infeasibility. Else if one MUS is an initial or a goal core the planning task is
unsolvable as well and we abort the procedure. Else all MUSs are mixed cores, stating
that the planning task can be still solvable. Therefore, we increment ph by one and
start all over with a new encoding.

Example 3.2.1 (BUS on an unsolvable instance of pegsol-invasion). In order to
demonstrate BUS, we consider an unsolvable instance of the pegsol-invasion domain.
The Example 2.2.1 is solvable but can be turned unsolvable by changing the goal con-
figuration. Now we want location l4 to be filled. There exist 24 = 16 possible states
as each location can be filled or free. Thus, we know that the longest possible plan
has 16 steps without containing any loop (independent of the fact whether such a plan
is sound) and a standard BMC procedure needs to enroll the transition scheme up to
the completeness threshold of at most 16 without analyzing the domain further. The
clauses of interest are:

36 Chapter 3. Deciding Planning Tasks with UNSAT Cores

plan horizon MCSs MUSs
1 {3},{4},{5} {3,4,5}
2 {4,5} {4},{5}

Table 3.1: MCSs and MUSs generated throughout performing BUS on an unsolvable
pegsol-invasion instance. The numbers indicate which clause appeared specified in
Example 3.2.1.

1. l1-initial with filled11

2. l2-initial with filled12

3. l3-initial with ¬filled13

4. l4-initial with ¬filled14

5. l4-goal with filled
ph
4

After running BUS on this instance, we obtain several MCSs and MUSs displayed
in Table 3.1. The first iteration returns three MCSs containing each one clause,
resulting into a mixed core with three clauses. Therefore, BUS decides to increase the
plan horizon and generates one MCS with two clauses. This MCS yields two MUSs,
one initial and one goal core. Each of these cores is a witness for plan infeasibility
and causes BUS to stop, stating that the planning task is unsolvable.

3.2.2 Correctness

First, we proof the assumption that, in order for BUS to detect plan infeasibility, the
encoding of a planning task has to prohibit loops in all plans.

Lemma 3.2.1. If we can leave the initial respectively reach the goal configuration in
up to ph steps without applying loops and a loop is possible on this ph-plan then no
initial respectively goal core appears for any ph∗.

Proof. Assume that an initial or goal core appears for ph+1, stating that no ph∗-plan
exists (as shown in Lemma 3.1.2) and for all ph† ≤ ph only mixed cores appeared.
We know that a loop is possible at some point in the ph-plan. Thus, we can construct
a new ph∗-plan for ph∗ > ph where we run into and stay, or start in and leave the
loop. Because ph∗-plans are possible, and therefore a ph + 1-plan as well, no initial
or good core can appear, contradicting our assumption.

In order to prove correctness of BUS we have to prove the following theorem stating
the relation between the original decidable planning task and BUS. BUS behaves
correctly for solvable planning tasks as shown in Lemma 2.2.1.

Theorem 3.2.2. The planning task is unsolvable iff the MUS generation returns only
the empty core, or at least one initial or goal core on the encoding for some ph ∈ N
and for every ph† < ph the encoding is unsatisfiable and all cores are mixed cores.

3.2. Bounded Model Checking with UNSAT Cores 37

S0

Gn-plan

(a) Solvable planning task

S0

SNS0

S′0

G
NS0

-plan

NG-plan

(b) Unsolvable planning task

Figure 3.2: The displayed paths in the state space indicate (a) a solving n-plan and
(b) the longest possible plans from S0 and to G.

Proof. ⇐ Knowing that for ph and all ph† < ph the encodings are unsatisfiable we
have only to show that the same holds for all ph∗ in order to prove infeasibility of
the given planning task. If the empty core, or an initial or a goal core is returned no
ph∗-plans exists (Lemma 3.1.2).

⇒ We know that the given planning task is unsolvable, and thus ∀ph ∈ N there
exists no ph-plan allowing to reach G from S0. Therefore, ∀ph the corresponding
encoding ϕph is unsatisfiable and we can generate all MUSs. We show that if the
planning task is unsolvable, then for some plan horizon ph the UNSAT core genera-
tion will return the empty core, or an initial or goal and all encodings ϕph

†
yield only

mixed cores.
Because we cover decidable planning tasks, we know that there exists an upper bound
N for all possible states in the domain. Moreover, because the given planning task
is unsolvable, we can define two subsets of states. First the states reachable from S0

and the states from which G is reachable (note that these two set of states do not
strictly fill the complete state space as states might exist which are not reachable from
S0 or from which G is reachable). Let us define the longest plan executable from S0

as the NS0
-plan with NS0

steps. Similarly, the longest plan executable to G is the
NG-plan with NG steps. It is possible to extract trivial minimal subtasks SS0

and SG
which still hold the same property. Because the original planning task is unsolvable,
we know that no states reachable in NS0 steps are among the states from which we
can reach the goal state in less than NG steps. These circumstances are displayed in
Figures 3.2a, 3.2b. Even though the possibility of a N -plan exists, we can define the
N ′-plan as the longest possible plan in the domain with N ′ ≤ N .
Assume that NS0

< NG holds. We know that no (NS0
+ 1)-plan exist for the trivial

minimal subtask SS0 . Once we reach the plan horizon ph = NS0 + 1 we obtain the
corresponding initial core. The case of NS0 > NG works in a similar way. The third
case of NS0

= NG and NS0
,NG < N ′ simply yields an initial and a goal core.

If NS0
= NG = N ′ holds, then the MUS generation will return the empty core for the

plan horizon N ′ + 1. This is true, because due to the definition of N ′ no N ′ + 1-plan
exists in the domain.
For all ph† only mixed cores appear. Assume that an initial or goal core appears for
some ph†. Then we know that no ph†-plan exists for the corresponding initial or goal
configuration. But such a plan can be simply constructed by omitting (NS0

− ph†) or
(NG − ph†) actions from the available longest plans.

38 Chapter 3. Deciding Planning Tasks with UNSAT Cores

3.2.3 Complexity
In this section we investigate the overall complexity in terms of how many iterations
BUS requires. The advantage of using MUSs with BUS is a speedup in terms of
solving less iterations. It is possible to answer the question whether a planning task
is solvable or not within dCT2 e steps.
Moreover, we can use the MUSs to solve solvable subtasks and combine the generated
plans to a plan solving the original planning task by matching the reached and left
world state. Detecting a n-plan solving the planning task is possible in dn2 e iterations.
However, depending on the found solutions of the subtasks no match might be found.
Note that in practice it is difficult to determine CT . Even if we know CT it might be
not possible to compute BUS up till dCT2 e from a computational point of view.

Lemma 3.2.3. We need at most dCT2 e many iterations to terminate BUS for some
planning task.

Proof. We know that CT is the upper bound for the classical BMC procedure for
some planning task. The bound CT stands for a CT -plan, which is the longest pos-
sible plan in this domain. As indicated in Section 3.1.1 the MUSs tell us something
about the forward and the backward search. If an initial core appears, we know that
it is impossible to leave the initial configuration for some amount of steps, and cor-
respondingly for goal cores. BUS will detect the smaller value first (or both at the
same time if they are equal).
Knowing that the longest possible plan is a CT -plan, we know that the worst-case
detection of plan infeasibility is that we can move as many steps from some initial
configuration as we can move to some goal condition. The longest possible leave- and
reach-plans are CT2 (or bCT2 c and d

CT
2 e in the odd case) many steps long.

If no empty, initial or goal core appeared up to dCT2 e we know that it is possible to
leave and reach the planning task for dCT2 e steps and therefore they must at least
share one state S. The new plan to and from S is a witness for feasibility.

Chapter 4

Explaining Planning Tasks with
UNSAT Cores

In this chapter we present ideas how to use the MCSs and MUSs generated while
performing BUS to explain the causes of infeasibility. More precisely we investigate
what is not possible of a planning task (Section 4.1), what is possible (Section 4.2),
and why some subtasks are not possible (Section 4.3). All presented features are
implemented in the tool called PEX (Planning EXplainer).

As presented in Chapter 3 we obtain for every plan horizon in the procedure a set of
MCSs and MUSs. Every iteration indicates solvable and unsolvable subtasks. Two
useful possibilities exist among which the user can chose from.

1. Explain an unsolvable planning task with only one unsolvable subtask as a
witness and collect all solvable subtasks on the way.

2. Explain an unsolvable planning task with all unsolvable subtasks as witnesses
and collect all possible solvable subtasks. This requires an exhaustive search of
the state space. Due to the possibly higher execution time we output available
explanations on the run and provide the possibility to abort.

Additionally, to running BUS with the pegsol-invasion instance in Example 3.2.1
we introduce a new domain, chessboard-pebbling, in Example 4.0.1, which highlights
other information which can be extracted from the generated MCSs and MUSs. The
output of BUS on an unsolvable 3×3 chessboard-pebbling instance can be found in
Example 4.0.2.

Example 4.0.1 (Chessboard-Pebbling). Chessboard-pebbling is one of the domains
which we later use in the evaluation in Chapter 5. The task is to empty the top
left location and its right and below neighbors of a two dimensional chess field. It is
possible to modify the locations by the following rule: If a location is filled and the
locations right and below are free, the location can be cleared by filling the locations
right and below. The standard definition is unsolvable and can turned solvable by, for
example, modifying the initially free locations. A visualization of a 3×3 chessboard-
pebbling instance can be found in Figure 4.1.

40 Chapter 4. Explaining Planning Tasks with UNSAT Cores

6 8 9

3 5 7

1 2 4

before after

6 8 9

3 5 7

1 2 4

Figure 4.1: Visualized 3×3 chessboard-pebbling instance. Positions which need to be
cleared are marked with a second circle. Initially filled locations are black.

Example 4.0.2 (BUS on an unsolvable instance of chessboard-pebbling). We use the
unsolvable 3×3 chessboard-pebbling instance specified in Example 4.0.1. There exist
29 = 512 possible states as each location can be filled or free. Thus, we know that the
longest possible plan has 512 steps without containing any loop (independent of the
fact whether such a plan is sound) and a standard BMC procedure needs to enroll the
transition scheme up to the completeness threshold of at most 512 without analyzing
the domain further. The clauses of interest are:

1. l1-initial with filled11

2. l2-initial with filled12

3. l3-initial with filled13

4. l1-goal with ¬filledph1

5. l2-goal with ¬filledph2

6. l3-goal with ¬filledph3
Note that we did not marked the initial assignment of the other (all free) locations.
This accelerates BUS on this instance and improves readability for the example. It can
be argued if not marking those clauses as clauses of interest is a loss of information
which could be used for explaining this planning task.
After running BUS on this instance, we obtain several MCSs and MUSs displayed in
Table 4.1. The first four iterations yield only mixed cores. Then, the fifth iteration
returns the empty core (actually an initial core as indicated in Section 3.1.1) and BUS
terminates.

4.1 Unsolvable Subtasks
Each MUS indicates a subtask which is already unsolvable. All of them can be
returned to the user to highlight difficulties of a planning task. This is valuable in-
formation for the user, even if we cannot gather enough information to state plan
infeasibility due to computational limits. Unsolvable subtasks describe which compo-
nents of the domain influence each other. Maybe the user has the power to modify

4.1. Unsolvable Subtasks 41

plan horizon MCSs MUSs

1
{1,2},{1,3},{1,5},{1,6},
{2,4},{2,3,5,6},{3,4},

{4,5},{4,6}

{1,2,4},{1,3,4},{1,4,5},
{1,4,6},{2,3,5,6}

2

{1,2},{1,3},{1,5},{1,6},
{2,4},{2,3,5},{2,3,6},
{2,5,6},{3,4},{3,5,6},

{4,5},{4,6}

{1,2,3,4},{1,2,4,5},
{1,2,4,6},{1,3,4,5},
{1,3,4,6},{1,4,5,6},

{2,3,5,6}

3 {1},{2,3,5},{2,3,6},
{2,5,6},{3,5,6},{4}

{1,2,3,4},{1,2,4,5},
{1,2,4,6},{1,3,4,5},
{1,3,4,6},{1,4,5,6}

4 {2,3},{2,5},
{2,6},{5,6} {2,5},{3,6}

5 - -

Table 4.1: MCSs and MUSs generated throughout performing BUS on an unsolvable
chessboard-pebbling instance. The numbers indicate which clauses appeared specified
in Example 4.0.2.

the domain (e.g., by replacing a battery) or to choose a different opportunity to tackle
the planning task again (e.g., wait some time for the weather to change).
Next, we distinguish between the appearance of initial, goal, and mixed cores

Initial and Goal Cores

We know that initial and goal cores describe trivial unsolvable subtasks. These MUSs
can be easily transformed to a comprehensive output. In order to completely explain
an unsolvable planning task, we have to mention all initial and goal cores as indicated
in Example 2.3.1.

Definition 4.1.1 (Output if the empty core was generated). »All plans have been
considered.«

Definition 4.1.2 (Output if an initial core was generated for plan horizon ph). »We
cannot leave the initial configuration specified by the initial core for ph many steps.«

Definition 4.1.3 (Output if a goal core was generated for plan horizon ph). »We
cannot reach the goal configuration specified by the goal core in ph many steps.«

Example 4.1.1 (Output of an initial and goal core). The last iteration of BUS on
the unsolvable pegsol-invasion planning task in Example 3.2.1 returned an initial and
goal core. The output of the initial core is:

»We cannot leave the initial configuration of l4 for 2 steps.«

The output of the goal core is:

»We cannot reach the goal configuration of l4 in 2 steps.«

Each witness may be generated in several iterations throughout BUS and has a
smallest plan horizon phmin for which it was generated first. We propose to return
all witnesses ordered by their size (the number of clauses), starting with the smallest
one, and if several of the same size exist, we order these by their corresponding phmin,
starting with the smallest one.

42 Chapter 4. Explaining Planning Tasks with UNSAT Cores

Mixed Cores

Up to the point where we discover a witness for plan infeasibility, we obtain only
mixed cores. We take a closer look to those mixed cores and divide them further
into three classes. This classification is motivated by the fact that some fluents are
shared among the initial and goal configurations in subtasks and some are not. A
pair of fluents indicates that no ph-plan exists if we specify that the fluent starts with
a certain assignment and ends with another one. Therefore, a ph-plan exists leaving
the original initial assignment or reaching the original goal assignment of that fluent.
A fluent which does not appear as a pair is called a single.
Singles which belong to a pair in the original planning task indicate difficulties in this
planning task. They state that, because a fluent is assigned to a certain value initially
or is requested to contain a certain value at the end, they prohibit other fluents to be
fulfilled in ph many steps. Even if these difficulties might be resolved by analyzing
higher plans, they still signal sources of problems for the overall planning task to the
user.
Let us specify a second definition for the set of fluents in the initial and goal config-
uration:

ϕinitial ∪ ϕphgoal := ϕphsingles ∪ ϕ
ph
pairs

Definition 4.1.4 (Classes of mixed cores). Three classes for a mixed core C in the
context of Planning exist.

• If ϕphC,singles is empty, we call C a pair core.

• Else if ϕphC,pair is empty, we call C a single core.

• Else we call C a double mixed core (because it is mixed in terms of initials and
goals, and singles and pairs).

Definition 4.1.5 (Output if a pair core was generated for plan horizon ph). »The
combination of all pairs prohibits a ph-plan for them.«

Definition 4.1.6 (Output if a single core was generated for plan horizon ph). »The
combination of all singles prohibits a ph-plan for them.«

Definition 4.1.7 (Output if a double mixed core was generated for plan horizon ph).
»Because of the singles no ph-plan exists for the combination of pairs.«

Example 4.1.2 (Output of a pair and double mixed core). Among the MCSs and
MUSs generated in Example 4.0.2 we find pair and double mixed cores. For example,
the first iteration returns the double mixed core {1,2,4} stating that:

»Because location l2 is initially filled no 1-plan exists for clearing location l1. But
there exists a 1-plan clearing location l1.«

The second iteration returns the following output for the pair core:

»The combination of clearing locations l1 and l2 prohibits a 2-plan for them.«

Similar to witnesses, each mixed core has a phmin for which it appears first. We
propose to return all classes of mixed cores ordered by their size (the number of

4.1. Unsolvable Subtasks 43

C1 C2

C3

C4 C5 C6

Figure 4.2: The three MUSs are {C1,C2,C3},{C1,C2,C4},{C1,C2,C5,C6}. The only
shared set is {C1,C2} and the three support sets are {C3}, {C4} and {C5,C6}.

clauses), starting with the greatest one, and if several of the same size exist, we order
these by their corresponding phmin, starting with the smallest one.

Additionally to the plain MUSs we present a source of information combining dif-
ferent MUSs. It is possible to create a shared set of clauses which is a non-empty
subset of more than one MUS. Once a shared set has been detected we can specify for
each relevant MUS the support set as the remaining clauses in the MUS with respect
to the shared set. All support sets indicate why the shared set is not solvable. This
information is more general than the plain MUS, because several MUSs are grouped
into one shared set along with all support sets. A visualization of how MUSs, a shared
set and all relevant support sets are connected can be found in Figure 4.2.

Definition 4.1.8 (Shared Set and its Support Sets). A shared set S ⊂Mi is a non-
empty subset of each Mi ∈ MSHA ⊆M with |MSHA| > 1 and M the set containing
all generated MUSs in one iteration of BUS. The support sets consist of all sets Mi\S
with Mi ∈MSHA.

Definition 4.1.9 (Output if a shared set was detected for plan horizon ph). »The
support sets prohibit a ph-plan for the shared set.«

Example 4.1.3 (Output of a shared set). In the third iteration of Example 4.0.2 we
detect the shared set {1,4} along with the support sets

{{2,3},{2,5},{2,6},{3,5},{3,6},{5,6}}

generating the following output:

»Each combination of initial and goal specification of locations l2 and l3 prohibits a
3-plan for the subtask freeing l1.«

We propose to return all shared sets ordered by their size (the number of clauses),
starting with the greatest one, and if several of the same size exist we order these by
one of several possible criteria.

1. Order by descending argmax
i
|SUPi| (maximum support set), the sizes of the

greatest support set for each shared set.

44 Chapter 4. Explaining Planning Tasks with UNSAT Cores

2. Order by descending Σi|SUPi| (accumulative support sets), the accumulative
sizes of all support sets for each shared set.

3. Order by descending |SUPs| (amount of support sets), the amount of support
sets for each shared set.

4.2 Solvable Subtasks
Complementary to explaining unsolvable subtasks with MUSs it is possible to present
solvable subtasks with the MCSs obtained in the first phase of the UNSAT core
generation algorithms. We obtain a set of MSSs via the complements of all MCSs.
Further we do not consider all MSSs which describe trivial subtasks. These solvable
trivial subtasks do only state that we can explore the state space from the initial or
reach the goal configuration, which is unrelated to the given planning task.

Definition 4.2.1 (Output of a maximal solvable non-trivial subtask for plan horizon
ph). »The specified subtask is solved by a ph-plan.«

Alternative assignments for the fluents of the original planning task which do
not appear in the subtask exist and can be returned by analyzing the satisfying
assignment. Note that we have no control about which assignment is chosen by the
SMT solver for all free variables. A better alternative is to return an expression
describing all possible values for the corresponding fluent. This is trivial for Boolean
variables (as we need only to flip the assigned truth value) but difficult for, e.g.,
variables over reals and requires quantifier elimination techniques [Nip10].

Example 4.2.1 (Output of a maximal solvable subtask). Throughout applying BUS
on the unsolvable chessboard-pebbling instance in Example 4.0.2 we collect several
maximal solvable subtasks. Examples are subtask {1,2,4} (second iteration) with out-
put:

»The subtask with initially filled locations l1 and l2, and clearing location l1 is
solvable with a 2-plan.«

Further, subtask {1,2,3,5,6} (third iteration) with output:

»The subtask with initially filled locations l1,l2 and l3, and clearing locations l2,l3 is
solvable with a 3-plan.«

Throughout BUS, we generate at most as many maximal non-trivial solvable sub-
tasks as we obtain MCSs. Similar to witnesses, each MSS has a phmin for which it
appears first. We propose to return all subtasks ordered by their number of initial
configurations, starting with the greatest one, and if several of the same size exist we
order these first by their greatest overall size, and secondly by their corresponding
phmin, starting with the smallest one.
We define this order motivated by the fact that the larger a subtask is, the closer it is
to the original planning task, and the shorter the solving plan is, the less unnecessary
actions are performed in order to reach the goal configurations.

Example 4.2.2 (Output of the most helpful maximal solvable non-trivial subtask).
Following the described principle, we output the maximal solvable non-trivial subtasks
{1,2,3,5,6}, due to the full initial configuration, first.

4.3. Reasons of Infeasibility 45

S0

7

3

G

Figure 4.3: Subtasks which are executable in S0 are marked with 3. The ones which
are not executable are marked with 7, or reach the border of the set of reachable
states from S0.

4.3 Reasons of Infeasibility

In this section we present a reason of infeasibility for some planning task. A reason
describes an action, necessary to solve a subtask, which is not executable in some
state reachable from the original initial configuration. The motivation to return that
specific action is the possibility that this action is necessary to solve the original
planning task. Note that it cannot be ensured that the detected action is truly
necessary. Depending on the actual subtask and plan the detected reason might be
not helpful for a user.
Listing all reasons can be seen as an exhaustive search in the state space, where we
check for each state S if some actions are executable in S. If no action is executable in
S and S is reachable from S0, then S is on the border of reachable states (Figure 4.3).

Definition 4.3.1 (Reason R for infeasibility of a planning task). A reason R is a pair
(S,α) with S a world state reachable from S0 with a ph-plan and α ∈ A an action. No
assignment θ exists such that α is executable in S. The set of all reasons is denoted
as R.

Example 4.3.1 (Helpful and non-helpful reasons). First, we present a helpful rea-
son. Imagine that in order to reach a destination we need to pass a bridge which is
currently maintained. A subtask of the given planning task can ignore the fact that
the bridge is down and requires passing the bridge. If we analyze the plan solving the
subtask in the original planning task we detect that it is not possible to pass the bridge.

Next, we describe a non-helpful reason. Now we consider the possibility that the sub-
task ignores the initial position. If the corresponding plan solving the subtask consists
only of entering the building at the destination, we detect the reason that we cannot
enter the building because we are not in front of it.

We generate a (possibly empty) set of reasons Rsubtasks ⊆ R by executing the
plans of the maximal solvable non-trivial subtasks from the Section 4.2. It is possible
that the ph-plan solving a subtask is completely executable in the original planning
task. In this case we conclude that there does not exist any reason not to reach the
subtask in the context of the original planning task.
The other possibility is that for some ph† < ph the ph†,th-action is not executable in
Sph†−1. We detect such an action by the following procedure:

1. Loop over all maximal solvable non-trivial subtasks obtained from the original
planning task provided by BUS.

46 Chapter 4. Explaining Planning Tasks with UNSAT Cores

6 8 9

3 5 7

1 2 4

(a) Reason appears.

6 8 9

3 5 7

1 2 4

(b) No reason appears.

Figure 4.4: World states of the domain chessboard-pebbling appearing in reasons for
infeasibility. In (a) freeing l1 is not possible after freeing l2 because of the initially
filled location l3. In contrast, the world state in (b) is the goal state of the subtask.

2. Generate for each subtask all possible plans. This is realized by adding a block-
ing clause for each found plan and solving the encoding extended by the blocking
clauses until it becomes unsatisfiable. The generated plans are added to the set
of all plans (each plan only needs to be checked once even if it solves several
subtasks).

3. Loop over all obtained plans.

4. Create for the current plan an encoding containing the original initial but no
goal configuration along with enforcing the first n actions (starting with n = 1)
of the plan.

5. If the encoding is satisfiable increase n until it reaches the end of the plan.
Otherwise analyze the assignment of the encoding in step (n − 1) and add the
detected reason R to Rsubtasks.

Example 4.3.2 (Reasons in the chessboard-pebbling planning task). We reconsider
the solvable subtasks of Examples 4.2.1,4.2.2. The subtasks specified by the MSS
{1,2,4} has a reason:

• The 1-plan is freeing location l2.

• World state S is defined by a set of fluents which assignments are indicated in
Figure 4.4a.

• The action α which is not executable is freeing location l1.

The other subtasks specified by the MSSs {1,2,3,5,6} and {2,3,4,5,6} are examples
for executable subtasks by executing (for both subtasks) the following actions (other
partial orders exist): free l2, free l5, and free l3 resulting in the world state indicated
in Figure 4.4b. Because these two subtasks are executable in the original planning
task, we can return them to the user.

Chapter 5

Evaluation

This chapter presents evaluations of the approaches and algorithms presented through-
out this thesis. First, we analyze the MUS generation algorithms CAMUS and BLS
with respect to two different SMT solvers Z3 and SMT-RAT in Section 5.1 in order
to determine the most suitable SMT solver and MUS generation algorithm for the
later experiments. The benchmarks consist of general UNSAT SMT-LIB encodings,
as well as hand-crafted encodings of well-known planning domains.
Next in Section 5.2, the planning domains used in the experiment before are solved
by the approach BUS, and compared with the original BMC approach and state-of-
the-art planners focusing on proving plan infeasibility. The aim is to conclude if BUS
can compete with those tools which are not interested in explaining the unsolvable
planning tasks. Moreover, we analyze the relation between the solving time and the
amounts of generated MCSs and MUSs.
Finally, we run the tool PEX (Planning EXplainer) on the same planning domains
in Section 5.3 and give examples how we can explain unsolvable planning tasks by
returning a witness of infeasibility (if found before the timeout), mixed cores, a shared
subset, a maximal non-trivial solvable subtask for which no reason exists and a reason.

5.1 UNSAT Benchmarks

For this experiment we use benchmarks from the web-based service StarExec [SST14]
and consider encodings representing domains of the Unsolvability International Plan-
ning Competition Track (IPC)3.

5.1.1 Encodings

The platform StarExec7 is used to test and compare tools for various techniques, not
only SAT and SMT, but also theorem provers, constraint solvers, model checkers, and
software verifiers.
We will use the QF_LRA, QF_LIA, and QF_LIRA benchmarks from the Unsat-
Core Track. Note that we only use a subset of QF_LIA benchmarks due to the huge
number of instances. In the IPC several planners competed in proving infeasibility on
instances of well know planning domains. We use four of these domains and generate
for each domain encodings depending on various plan horizons. In total we run the
tools on 3388 benchmarks, 2453 from StarExec and 935 from IPC.

48 Chapter 5. Evaluation

scoreZ3 scoreSMT−RAT draws timeouts
all 2474 620 15 279

StarExec 1544 615 15 279
IPC 930 5 0 0

Table 5.1: Scores of SMT solvers SMT-RAT and Z3

scoreCAMUS scoreBLS draws timeouts
all 1369 1135 7 877

StarExec 581 1118 7 747
IPC 788 17 0 130

Table 5.2: Scores of MUS generation algorithms CAMUS and BLS

We are interested in comparing the solvers and the MUS generation algorithms. For
all experiments we compare two approaches and plot a graph where the x-axis is used
for one tool’s solving times, and the y-axis for the second tool’s solving times. The
diagonal line indicates instances where draws (both tools solved with the same speed)
appeared. All marks in the upper triangle state that the approach of the x-axis was
faster and all below state the same for the approach of the y-axis. Note that even
if we used a one-minute timeout the system does not state that a timeout appeared
but prints a time close to 60 seconds (for example 59.5s). Thus, we treat all solving
times above 59s as timeouts.

5.1.2 Results

We evaluate the solvers SMT-RAT and Z3. The results are visualized in Figure 5.1
and the scores are displayed in Table 5.1. The SMT solver Z3 solves about 79% of all
benchmarks faster than SMT-RAT (disregarding timeouts). If we consider only the
encodings representing planning instances from the IPC the value increases even to
99%. This makes Z3 a convenient solver for the next experiments.

Next, we compare the MUS generation algorithms CAMUS and BLS based on Z3
on all benchmarks. The results are visualized in Figure 5.2 and the scores are dis-
played in Table 5.2. On the complete set of benchmarks, the tool CAMUS performs
better on about 54% (disregarding timeouts). This does not indicate that one of the
two algorithms is truly better than the other. But if we distinguish the benchmarks,
we see that BLS generates cores faster on 65% of the StarExec benchmarks and CA-
MUS on 97% of the IPC benchmarks. Therefore, we use the combination of Z3 and
CAMUS for BUS in the next experiment.

5.2 Deciding Planning Tasks

We use 16 unsolvable and 4 solvable planning task instances from four domains of the
IPC benchmarks from ICAPS 20163 to evaluate BUS. A git repository is available
containing all planners and domains used during the IPC10.

10https://bitbucket.org/planning-researchers/unsolve-ipc-2016

5.2. Deciding Planning Tasks 49

0 10 20 30 40 50 60
0

20

40

60

Z3/s

SM
T
-R

A
T
/s

StarExec
IPC

Figure 5.1: Comparison of SMT solvers SMT-RAT and Z3

0 10 20 30 40 50 60
0

20

40

60

CAMUS/s

B
L
S
/s

StarExec
IPC

Figure 5.2: Comparison of MUS generation algorithms CAMUS and BLS

50 Chapter 5. Evaluation

p1 p2

g1 g2

before after

p2

p1

g1 g2

Figure 5.3: bottleneck01-cus

5.2.1 Domains

Four domains are encoded manually into SMT-LIB files. Among them are the domains
bottleneck, chessboard-pebbling, pegsol-invasion and slidingtiles. For some domains we
added custom instances of reduced complexity. In addition to unsolvable instances
we test solvable instances as well.
We encapsulate each planning task in a Python script which we call a generator. For
a given plan horizon ph the generator creates an SMT-LIB encoding representing the
problem instances such that satisfiability means that a plan of length ph exists. If
the encoding is unsatisfiable no ph-plan exists. These generators are required as BUS
increases the plan horizon in each step.
We do not make use of available translators as they have several problems when tasked
with our use-case. Some return bloated encodings because they offer functionalities
we are not interested in (for example, SMTPlan [CFLM16] enables planning in hybrid
systems). Therefore, using those encodings would increase the solving time unneces-
sarily. A second problem is the impossibility of marking clauses as clauses of interest
before the translation. It is possible to post-process the encodings, but this requires
analyzing the automatically created encodings. Finally, the translator needs to be
able to extend the basic encoding with the information to omit loops, to ensure the
properties BUS demands for as described in Section 3.

Bottleneck

The bottleneck domain consists of a set of locations which are connected and a
number of persons which try to reach goal locations. No location can be visited
twice and the available connections between locations can prohibit a solution. A
visualization of an action in the domain can be found in Figure 5.3. This domain
has no need for additional clauses because the number of visited states grows with
each step in a plan. The bottleneck planning task can be found in the directory
domains/FINAL/bottleneck/ of the git repository10. Instances differ in the size
of persons, locations, and connections between locations and are described in the
Appendix A.1.

5.2. Deciding Planning Tasks 51

3 B

1 2

before after

3 2

1 B

Figure 5.4: slidingtiles1

Pegsol-Invasion

The pegsol-invasion domain was already introduced in Example 2.2.1. It consists of
filling a set of locations by making use of the following rule: If two locations next to
each other are filled then a third free neighboring location forming a line with the first
two ones can be filled and the two filled locations are cleared. This domain has no need
for additional clauses because the number of filled locations decreases with each step
in a plan. The most popular field for pegsol is a cross of width 3. The pegsol-invasion
version uses a rectangle with the top filled with free locations. The pegsol-invasion
planning task can be found in the directory domains/FINAL/pegsol-row5/ of
the git repository10. Instances differ in the size of the rectangle, initially filled and
desired free locations and are described in the Appendix A.2.

Chessboard-Pebbling

The chessboard-pebbling domain was already introduced in Example 4.0.1. It consists
of clearing a set of locations by making use of the following rule: A filled (not free)
location can be cleared by turning the free locations below and right into filled ones.
This domain has no need for additional clauses because the number of filled locations
grows with each step in a plan. The chessboard-pebbling planning task can be found in
the directory domains/FINAL/chessboard-pebbling/ of the git repository10.
Instances differ in the size of locations, initially filled and desired free locations and
are described in the Appendix A.3.

Slidingtiles

The slidingtiles domain consists of reaching a desired placement of tiles by moving a
tile to the neighboring (left, above, right, and below) blank location. This domain
needs the additional clauses prohibiting loops as the actions allow to move the same
tile back and forth, thus entering a loop. The most popular field for slidingtiles is
a 3×3 grid with 8 tiles (indicated by numbers from 1 to 8). A visualization of an
action in the domain can be found in Figure 5.4. The slidingtiles planning task can be
found in the directory domains/FINAL/slidingtiles/ of the git repository10.
Instances differ in the size of the rectangle, the initial and goal mapping of the tiles
and are described in the Appendix A.4.

52 Chapter 5. Evaluation

5.2.2 Results

The detailed results are displayed in Appendix B.1. We analyze three properties
of BUS. First, the additional computational cost of generating all MUSs. Next, we
compare the state-of-the-art planner SymPA with BUS in terms of solving speed.
Finally, we investigate the solving speed, and amount of MCSs/MUSs progression
over the iterations of BUS.

Additional Computational Cost of generating all MUSs

To begin with, we analyze the additional computational cost caused by generating all
MUSs of an unsatisfiable encoding. We test as many encodings as possible within a
one-minute timeout, with generating all MUSs and without. Because we can test this
procedure only on unsolvable instances, we omit the four solvable instances in this
experiment. The two variants represent the efforts BUS (generating all MUSs) has to
make compared to the original BMC planning approach (not generating all MUSs).
The amounts of checked plan horizons for both variants are visualized in Figure 5.5
and displayed in Table B.1.
As expected, the second variant reaches a higher plan horizon as the first one. Note
that this does not directly state that the original BMC planning approach outper-
forms BUS, because it is possible that the necessary completeness threshold is still
higher than the reached plan horizon, but BUS reaches already a lower plan hori-
zon stating plan infeasibility. This is the case for the instance chessboard-pebbling1.
BUS states plan infeasibility within the one-minute timeout. And the second variant
reaches iteration 332, but needs to reach iteration 512 to state plan infeasibility as
described in Example 4.0.2.
The plot shows a linear dependency between the two variants which is closer to the
diagonal line than one might expect. This is due to the complexity of the planning
tasks. As we can see in Table B.1, infeasibility has been detected early for all instances
which have been solved within the timeout. Apart from the instance pegsol-invasion2’
the witness was close to detecting the empty core (or it was the empty core) which
reappears from this point on. This explains the observed dependency. In order to
detect the empty core, CAMUS only requires one solver call.
As stated in Section 2.3.2, we decided to introduce clauses of interest from a compu-
tational point of view. We see already that we check less iterations when marking all
initial and goal specifications instead of a subset of those. Moreover, if we use the
original CAMUS algorithm (all clauses are regarded as clauses of interest and used
for generating all MUSs) we are not able to check even one iteration for all instances.
Therefore, the assumption proposed in Section 2.3.2 is justified.

Comparison of BUS and SymPA

Next, we compare the solving times of the state-of-the-art planner SymPA [Tor16]
and BUS. The comparison of solving times is visualized in Figure 5.6 and displayed
in Table B.2. It is no surprise that SymPA outperforms BUS. Moreover, we see that
BUS is not able to detect plan infeasibility of planning tasks where SymPA has no
problems.
This result highlights the possibility to use both procedures in parallel. Thus, even if
we cannot state plan infeasibility and only collect information in terms of XAI with
BUS, we can still answer the question whether the planning task is unsolvable.

5.2. Deciding Planning Tasks 53

0 50 100 150 200 250 300 350
0

100

200

300

MUSs/#iterations

no
M
U
Ss
/#

it
er
a
ti
on
s

Figure 5.5: Amounts of iteration reached within one-minute, with generating all MUSs
and without.

0 5 10 15 20 25 30 35
0

10

20

30

SymPA/s

B
U
S/
s

Figure 5.6: Comparison of BUS and SymPA on deciding planning tasks.

54 Chapter 5. Evaluation

2 4 6 8 10 12 14
0

2

4

6

8

10

12

iteration

B
U
S/
s

bottleneck8
pegsol-invasion3

chessboard-pebbling3
slidingtiles1

Figure 5.7: BUS solving time progression depending on the iterations.

Progression of Solving Time and generated MCSs, MUSs of BUS

We display the amount of generated MCSs and MUSs of BUS, along with the number
of clauses of interest and actions in Tables B.3, B.4. Additionally, we plot the progres-
sion of the solving time, the amount of MCSs, and the amount of MUSs depending
on the iterations in Figures 5.7,5.8, 5.9. For this experiment we use one instance of
each domain: bottleneck8, pegsol-invasion3, chessboard-pebbling3, slidingtiles1. The
dependency of all generated MCSs and MUSs with the solving time is plotted in Fig-
ures 5.10, 5.11.

The progression of properties dependent on the iterations indicate a linear depen-
dency. Only for the solving time (especially for the instance bottleneck8) an expo-
nential dependency due to the increasing encoding seems possible. In the case of
MCSs and MUSs we observe that the amount of discovered MCSs and MUSs stays
constant throughout BUS.
This indicates that some MCSs and MUSs are detected multiple times (e.g., for the
slidingtiles1 instance where the MCSs and MUSs of complete iterations appear again).
It needs to be investigated if there are some principles on which the MCSs and MUSs
in the context of Planning are based on. If such exist, it might be possible to pre-
compute a set of MCSs and MUSs, accelerating the overall procedure.
The amount of all generated MCSs and MUSs (Figures 5.10, 5.11) indicates a linear
dependency on the solving time of BUS for each instance. This underlines the result
of the MCSs and MUSs progressions over the iterations. Not only for each iteration
we obtain a constant amount of MCSs and MUSs, but also for different instances of
the same domain the difference is constant.
One explanation for the constant amount of new MCSs and MUSs is that the number
of clauses of interest stays constant as well. Thus, the solving time increases because
the encoding becomes bigger, but not the amount of MCSs and MUSs.

5.2. Deciding Planning Tasks 55

2 4 6 8 10 12 14
0

20

40

60

80

100

iteration

#
M
C
Ss

bottleneck8
pegsol-invasion3

chessboard-pebbling3
slidingtiles1

Figure 5.8: Progression of generated MCSs depending on the iterations.

2 4 6 8 10 12 14
0

20

40

60

80

iterations

#
M
U
Ss

bottleneck8
pegsol-invasion3

chessboard-pebbling3
slidingtiles1

Figure 5.9: Progression of generated MUSs depending on the iterations.

56 Chapter 5. Evaluation

0 5 10 15 20 25 30 35
0

50

100

150

BUS/s

#
M
C
Ss

bottleneck
pegsol-invasion

chessboard-pebbling
slidingtiles

Figure 5.10: Amount of MCSs dependent on BUS solving time

0 5 10 15 20 25 30 35
0

20

40

60

80

BUS/s

#
M
U
Ss

bottleneck
pegsol-invasion

chessboard-pebbling
slidingtiles

Figure 5.11: Amount of MUSs dependent on BUS solving time

5.3. Explaining Planning Tasks 57

5.3 Explaining Planning Tasks
In this section we present outputs of the tool PEX encapsulating BUS and evaluating
the generated MCSs and MUSs. We analyze the output of PEX on four instances of
the same domains used in the second experiment in Section 5.2.

5.3.1 Results
The output of PEX consist of the following components:

1. Witnesses (if found before the timeout)

2. Pair, single and double mixed clauses

3. Shared sets along with their support sets

4. Maximal solvable non-trivial subtasks with executable plans in S0

5. Reasons

We present this information for one instance of each domain: bottleneck3, pegsol-
invasion1, chessboard-pebbling1, slidingtiles1. Some outputs of the chessboard-pebbling
domain have been analyzed already in Chapter 4 and is reused in this evaluation be-
sides adding new output.

bottleneck3

For instance bottleneck3 we obtain:

• Witnesses ({2}):

»We cannot leave the initial configuration where p2 starts in location 2 for 6
steps.«

• Pair core ({1,2,4,5}):

»The combination persons p1,p2 moving from location 1 respectively 2 to 7
respectively 8 prohibits a 4-plan for them.«

• No single core:

• Double mixed core ({2,3,6}):

»Because of person p2 starting in location 2 no 4-plan exists for person p3
moving from 3 to 9.«

• Shared sets: We obtained two shared sets of size two {1,4} and {3,6} with both
having the same value for criteria maximum support set and accumulative sup-
port sets. Only criterion amount of support sets distinguishes them, returning
{3,6} with support sets {1,4},{2},{5} first.

»Person p1 moving from 1 to 7, person p2 starting in 2, and moving to 8
prohibits a 4-plan for person p3 moving from 3 to 9.«

58 Chapter 5. Evaluation

The other shared sets {1,4} with support sets {2,5},{3,6} yields the following
output:

»Person p2 moving from 2 to 8, and person p3 moving from 3 to 9 prohibits a
4-plan for person p1 moving from 1 to 7.«

• Maximal solvable subtask ({1,2,3,4}):

»Letting reach person p1 its goal and using the original positions of the other
persons without specifying any goal for them is solved by a 2-plan.«

• Reason ({1,3,4,5}):

»It is not possible for p2 to move left in the initial configuration.«

pegsol-invasion1

For instance pegsol-invasion1 we obtain:

• Witnesses ({1,3,4}):

»We cannot leave the initial configuration where l1,l3,l4 are free for 1 step.«

• No pair core:

• Single core ({3,4,7}):

»The combination initially free locations l3,l4 and filling l1 prohibits a 1-plan
for them.«

• Double mixed core ({1,2,7}):

»Because of location l2 is initially free no 1-plan exists filling l1.«

• Shared set {3,7} with support sets {1},{4},{5}:

»The initial configuration of locations l1,l4,l5 prohibits a 1-plan for obtaining a
filled location l1 with location l3 initially free.«

• Maximal solvable subtask (1,4,5,6,7) (Not executable in S0):

»Using the original planning task without specifying the initial configuration
of locations l2,l3 is solved by a 1-plan.«

• Reasons ({1,3,6,7}):

»It is not possible to jump from l5 over l4 to l3 in the initial configuration.«

5.3. Explaining Planning Tasks 59

chessboard-pebbling1

For instance chessboard1 we obtain:

• Witnesses (empty core):

»All plans have been considered.«

• Pair core ({2,3,5,6}):

»The combination of freeing locations l2,l3 prohibits a 1-plan for them.«

• No single core:

• Double mixed core ({1,2,3,4}):

»Because of the initially filled locations l1,l2,l3 no 2-plan exists for freeing l1.«

• Shared set {1,4} with support sets {{2,3},{2,5},{2,6},{3,5},{3,6},{5,6}}:

»Each combination of initial and goal specification of locations l2,l3 prohibits a
2-plan for the subtask freeing l1.«

• Maximal solvable subtasks ({1,2,3,5,6}):

»The subtask with initially filled locations l1,l2 and l3, and clearing locations
l2,l3 is solvable with a 3-plan.«

• Reasons ({1,3,4,5}):

»We cannot free location l1 after freeing location l3 because l2 is still filled.«

slidingtiles1

For instance slidingtiles1 we obtain:

• Witnesses (empty core):

»All plans have been considered.«

• Pair core ({2,4,5,7}):

»The combination of changing location top-right from 2 to 1, and location
bottom-right from B to 3 prohibits a 2-plan for them.«

• Single core ({1,3,5,7}):

»The combination of the initial locations top-left, bottom-left, and obtaining
tile 1 at location top-right and tile 3 at location bottom-right prohibits a

1-plan for them.«

• Double mixed core ({2,3,4,6,7}):

60 Chapter 5. Evaluation

»Because starting with 2 at the top-right no 5-plan exists for changing the
bottom tiles from 3 to 2 and B to 3.«

• Shared set {6,7} with support sets {1,2},{1,3},{1,4},{2,3,4}:

»The initial configuration combinations of the top-line, left-line,
top-left-diagonal, and all locations except the top-left prohibits a 5-plan for

obtaining 2 at the bottom-left and 3 at the bottom-right.«

• Maximal solvable subtasks {1,2,3,4,5,6}:

»Using the original planning task without specifying the goal configuration of
the bottom-right location (3) is solved by a 4-plan.«

• Reasons ({2,3,5,6,7}):

»It is not possible to move the bottom-left tile to the top in the initial
configuration.«

As stated before, it is difficult to define at what point the returned output is helpful
for a user or not. Every user might have different opinions about how helpful some
information is, depending on its current situation. Therefore, the only possibility to
state that generated information for explaining unsolvable planning tasks is helpful or
not in terms of trust, interaction and transparency, is to make a survey with humans.
Properties of PEX which can be investigated are:

1. Is the explanation helpful or not?

2. Does the user know this already, or is the information new?

3. Is the explanation presented in an understandable way, or does the user have
to use additional efforts?

4. Are there too many explanations or not enough?

The first property is crucial in terms of XAI, as a system which outputs only
information which is not helpful, or trivial, does not explain the detected problem to
users. Improvement can only be achieved by defining new heuristics deciding which
MCSs and MUSs to use for explanations and how to interpret them. The second
property is more difficult to tackle, as it is challenging for a system to predict the
user’s knowledge. This point can be improved by asking the user to input his knowl-
edge about the planning task before the evaluation. An understandable explanation is
related to the topic of Plan Explanation [SBM11], [CFT+18]. If we output too much
information we need again to use heuristics in order to decide what information to use.

All returned reasons (except of the chessboard1 instance) only indicate actions which
cannot be executed in the initial configuration. This information is obvious and does
not explain the planning task as it was intended. Besides the difficulty to output help-
ful reasons, the other information highlights valuable information about the planning
task. For example, the shared set for the pegsol-invasion instance indicate which spe-
cific locations cause problems (and which do not). A second example is the maximal
solvable subtask for the slidingtiles instance. The fact that not pursuing a goal loca-
tion for one specific tile yields a solvable planning task, is not directly accessible to
human users.

Chapter 6

Conclusion

6.1 Summary

In this Master Thesis we tackled the question why some planning task is unsolvable in
terms of XAI. We applied tools of SMT, namely generating all MUSs, and the related
Planning as Satisfiability and BMC paradigm, in order to investigate which parts of
the planning task cause the problem and which parts are still solvable.
During our research we discovered, MUSs in the context of Planning, besides offering
valuable information for XAI, enable to detect, whether a planning task is unsolvable
or not. The gathered information is similar to the reachability information maintained
in other approaches as in [Tor16], [SK16], but collected in a different way, inspired
by [Str04]. We proposed an algorithm based on BMC using MUSs, in order to state
infeasibility of a planning task, called BUS. The approach of analyzing the MUSs in
terms of XAI is implemented in a tool called PEX built upon BUS.
The evaluations showed that computational efforts have to be made for generating
all MUSs, but at the same time we obtain the possibility to state plan infeasibility
in each BMC iteration. However, BUS is clearly outperformed by state-of-the-art
planner SymPA [Tor16]. Nevertheless, the generated MUSs offer to return a collection
of information about the investigated planning task. Note that most of this informa-
tion is available, even if we cannot state plan infeasibility yet due to computational
resources.

6.2 Discussion

The first question arising when investigating problems in XAI is, whether the obtained
information is truly helpful for a user, interacting with the system. In general, the
information about unsolvable subtasks, solvable subtasks and reasons of infeasibility
is helpful, because each type of information addresses different facets of the planning
task a human user might try to identify as well.
Unsolvable subtasks state, which parts of the planning task are not possible (or not
possible yet due to a too small plan horizon), by arguing over parts of the initial or
goal configuration. Similarly, the solvable subtasks signal which parts are already
solvable. Reasons describe problems of the planning task on the action level. While
enrolling the transition scheme of an unsolvable planning task the problem occurs

62 Chapter 6. Conclusion

somewhere between the initial and goal configuration. This picture is similar to the
one presented in [Str04].
We reach our target in terms of XAIP, if a user thinks »I did not know this before
and have now better insights about why the planning task is not solvable.« However,
the worst case is not as bad as one might expect. Every chunk of information we
return, is based on sound deductions and we do not return wrong conclusions. The
less helpful information we might return is trivial information, which the user already
knows.

6.3 Future Work
After deriving initial results how to use UNSAT cores in order to explain unsolvable
planning tasks, there is a lot of potential for future work.
First, the overall algorithm needs to be improved in terms of speed. Even if the
main bottleneck is to generate all MUSs, other parts can be accelerated by faster
approaches or better maintenance of available information. For example, we use a
naive approach of checking whether the plans of solvable subtasks are executable
in the original planning task by rechecking each sequence of actions. This can be
improved by keeping track of all executable actions. If a sequence of actions has
been tested already, we skip these solver calls. Other ways to accelerate the approach
are lying in the SMT solver, the hitting set generation or the used data structures.
Not only SMT solvers can be used which are faster in general, but also faster for
planning tasks in particular. In [Str04] techniques are mentioned to adapt dedicated
methods of variable ordering and remembering clauses for the next iteration in the
BMC paradigm. A different way to accelerate the process is to use several techniques
in parallel [Str04]. One thread could run state-of-the-art planners dedicated to detect
plan infeasibility, and PEX is run besides to gather information for XAIP.
Next, we need to classify the generated MUSs in terms of information for XAIP. In this
work we proposed unsolvable subtasks (which can have the form of witnesses of plan
infeasibility or shared subsets), solvable subtasks (which are executable in the original
planning task or a reason exists, why this is not the case), and reasons (an action is
not applicable in a reachable state). As seen in the evaluations, the displayed reasons
are mostly indicating actions, which are not possible in the initial configuration. Here
the available reasons have to be analyzed further in order to return more helpful ones.
An alternative approach is to consider more clauses as clauses of interest for additional
sources of information. However, this depends whether it is possible to decrease the
overall computational time of PEX.
Finally, the most difficult task in terms of XAIP, is which information to pick for
the user, or in which order we display the results, if we decide to provide a set of
information. At this point we face the problem, mentioned at the beginning of the
thesis, the perception of computer systems and humans differs.

Bibliography

[AT15] Vidal Alcazar and Alvaro Torralba. A Reminder about the Importance
of Computing and Exploiting Invariants in Planning. International Con-
ference on Automated Planning and Scheduling, 2015:2–6, 2015.

[BBT15] Tomas Balyo, Roman Barták, and Otakar Trunda. Reinforced Encoding
for Planning as SAT. cta Polytechnica CTU Proceedings, 2:1, 2015.

[Bie09] Armin Biere. Bounded Model Checking. Handbook of Satisfiability,
185(99):457–481, 2009.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories. Frontiers in Artificial Intelligence and
Applications, 185(1):825–885, 2009.

[CFLM16] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni. A
Compilation of the Full PDDL + Language into SMT. International
Conference on Automated Planning and Scheduling, (Icaps):79–87, 2016.

[CFT+18] Tathagata Chakraborti, Kshitij P Fadnis, Kartik Talamadupula, Mishal
Dholakia, Biplav Srivastava, Jeffrey O Kephart, and Rachel K E Bel-
lamy. Visualizations for an Explainable Planning Agent. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial In-
telligence, pages 5820–5822. International Joint Conferences on Artificial
Intelligence Organization, 2018.

[CGS11] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Comput-
ing small unsatisfiable cores in satisfiability modulo theories. Journal of
Artificial Intelligence Research, 40:701–718, 2011.

[Chi08] John W. Chinneck. Feasibility and Infeasibility in Optimization: Al-
gorithms and Computational Methods. Springer Publishing Company,
Incorporated, 1st edition, 2008.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Abraham. SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving. In Theory and Applications of Satisfiability
Testing, pages 360–368. Springer International Publishing, 2015.

[Coo71] Stephen A Cook. The Complexity of Theorem-Proving Procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, pages 151–158. ACM, 1971.

64 Bibliography

[CSK17] Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambham-
pati. Balancing Explicability and Explanation in Human-Aware Plan-
ning. CoRR, abs/1708.0, 2017.

[DB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT Solver.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4963
LNCS:337–340, 2008.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM, 5(7):394–397,
1962.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. Journal of the ACM, 52(3):365–473, 2005.

[End01] Herbert B. Enderton. Chapter TWO - First-Order Logic. In A Mathe-
matical Introduction to Logic (Second Edition), pages 67 – 181. 2001.

[ENS92] Kutluhan Erol, D. Nau, and Vs Subrahmanian. When is planning decid-
able. In Proc. First Internat. Conf. AI Planning Systems, pages 222–227.
1992.

[ES03] Niklas Eén and Niklas Sörensson. An EXtensible SAT-solver. Theory
and Applications of Satisfiability Testing, 2919:502–518, 2003.

[FGFR18] Guillem Franc, Hector Geffner, U Pompeu Fabra, and Miquel Ram. Best-
First Width Search in the IPC 2018 : Complete , Simulated , and Poly-
nomial Variants. International Planning Competition (IPC 2018), De-
terministic Part, 9:23–27, 2018.

[FGS18] Maximilian Fickert, Daniel Gnad, and Patrick Speicher. SaarPlan : Com-
bining Saarland’s Greatest Planning Techniques. Proceedings of the 9th
International Planning Competition (IPC 2018), pages 10–15, 2018.

[FLM17] Maria Fox, Derek Long, and Daniele Magazzeni. Explainable Planning.
First IJCAI Workshop on Explainable AI (XAI), 2017.

[FN71] Richard E Fikes and Nils J Nhsson. STRIPS : A New Approach to the
Application of Theorem Proving to Problem Solving. Artificial Intelli-
gence, 2:189–208, 1971.

[HCZ10] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. A Novel Transition
Based Encoding Scheme for Planning as Satisfiability. Artificial Intelli-
gence, pages 89–94, 2010.

[Hel06] Malte Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[KBC+98] Craig Knoblock, Anthony Barrett, Dave Christianson, Marc Friedman,
Chung Kwok, Keith Golden, Scott Penberthy, David E Smith, Ying Sun,
and Daniel Weld. PDDL - The Planning Domain Definition Language.
Technical report, CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control, 1998.

Bibliography 65

[KJK+12] Geert Kruijff, Miroslav Jan, Shanker Keshavdas, Benoit Larochelle,
Hendrik Zender, Nanja Smets, Tina Mioch, Mark Neerincx, Jurriaan
Van, Francis Colas, Geert Kruijff, Miroslav Jan, Shanker Keshavdas,
Benoit Larochelle, and Hendrik Zender. Experience in System Design for
Human-Robot Teaming in Urban Search & Rescue. Springer Tracts in
Advanced Robotics, 92, 2012.

[KMS96] Henry Kautz, D McAllester, and Bart Selman. Encoding plans in propo-
sitional logic. Proceedings of the Fifth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR-96), pages 374–
384, 1996.

[KS17] Joseph Kim and Julie A Shah. Towards Intelligent Decision Support in
Human Team Planning. In AAAI Fall Symposium Series, pages 5769–
5770, 2017.

[KSAH92] Henry Kautz, Bart Selman, Mountain Avenue, and Murray Hill. Plan-
ning as Satisfiability. In Proceedings of the 10th European Conference on
Artificial Intelligence, pages 359–363. John Wiley \& Sons, Inc., 1992.

[KT17] Michael Katz and Alexander Tuisov. Adapting Novelty to Classical Plan-
ning as Heuristic Search. In ICAPS, number Icaps, pages 172–180. 2017.

[LS08] M H Liffiton and K A Sakallah. Algorithms for Computing Minimal Un-
satisfiable Sets of Constraints. Journal of Automated Reasoning, 40(1):1–
42, 2008.

[MSHJ+13] Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti,
and Anton Belov. On computing Minimal Correction Subsets. IJCAI
International Joint Conference on Artificial Intelligence, pages 615–622,
2013.

[Nip10] Tobias Nipkow. Linear Quantifier Elimination. Journal of Automated
Reasoning, 45(2):189–212, 2010.

[NRF+15] Tim Niemueller, Sebastian Reuter, Alexander Ferrein, Sabina Jeschke,
and Gerhard Lakemeyer. Evaluation of the robocup logistics league and
derived criteria for future competitions. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 9513:31–43, 2015.

[PM17] Alessandro Previti and Carlos Menc. Improving MCS Enumeration via
Caching. In Theory and Applications of Satisfiability Testing, pages 184–
194. Springer International Publishing, 2017.

[Qui86] J R Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106,
1986.

[Rin12] Jussi Rintanen. Planning as Satisfiability : Heuristics. Artificial Intelli-
gence, 193:45–86, 2012.

[RW14] Silvia Richter and Matthias Westphal. The LAMA Planner : Guiding
Cost-Based Anytime Planning with Landmarks. Journal of Artificial
Intelligence Research, 39:127–177, 2014.

66 Bibliography

[SBM11] Shirin Sohrabi, Ja Baier, and Sa McIlraith. Preferred Explanations: The-
ory and Generation via Planning. Aaai, 3:261–267, 2011.

[Sei18] Jendrik Seipp. Fast Downward Remix. Ninth International Planning
Competition (IPC 2018), pages 67–69, 2018.

[SH16] Marcel Steinmetz and Jörg Hoffmann. CLone : A Critical-Path Driven
Clause Learner. Proceedings of the 1st Unsolvability International Plan-
ning Competition (IPC 2016), 2016.

[SHS+17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. CoRR, abs/1712.0:1–19, 2017.

[SK16] Martin Suda and Konstantin Korovin. iProverPlan: a system description.
UIPC 2016 Planner Abstracts, pages 6–7, 2016.

[SPS+16] Jendrik Seipp, Florian Pommerening, Silvan Sievers, Martin Wehrle, and
Chris Fawcett. Fast Downward Aidos. 1st Unsolvability International
Planning Competition (IPC 2016), pages 28–38, 2016.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, Yutian Chen, Timothy Lillicarp, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel, and Demis Hassabis. Master-
ing the game of go without human knowledge. Nature, (550(7676)):354.,
2017.

[SST14] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-
community infrastructure for logic solving. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8562 LNAI:367–373, 2014.

[Str04] Ofer Strichman. Accelerating Bounded Model Checking of Safety Prop-
erties. Formal Methods in System Design, 24:5–24, 2004.

[Sud14] Martin Suda. Property Directed Reachability for automated planning.
Journal of Artificial Intelligence Research, 50:265–319, 2014.

[SW97] Klaus Schneider and Holger Weindel. An Efficient Decision Procedure
for S1S. M. Pfaff., Linz, 1997.

[Tac18] Armando Tacchella. SMarTplan: a Task Planner for Smart Factories Âť.
CoRR, abs/1806.0:1–16, 2018.

[TLB16] Álvaro Torralba, Carlos L. López, and Daniel Borrajo. Abstraction
Heuristics for Symbolic Bidirectional Search. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
pages 3272–3278. 2016.

[Tor16] Alvaro Torralba. SymPA : Symbolic Perimeter Abstractions for Proving
Unsolvability. UIPC 2016 Planner Abstracts, pages 8–11, 2016.

Bibliography 67

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus.
In Automation of Reasoning, pages 466–483. 1983.

[ZSK+17] Yu Zhang, Sarath Sreedharan, Anagha Kulkarni, Tathagata Chakraborti,
Hankz Hankui Zhuo, and Subbarao Kambhampati. Plan Explicability
and Predictability for Robot Task Planning. In ICRA 2017 - IEEE In-
ternational Conference on Robotics and Automation, pages 1313–1320.
Institute of Electrical and Electronics Engineers Inc., 2017.

68 Bibliography

Appendix A

Instances of Planning Tasks

We describe all instances used throughout the experiments in Section 5.2, 5.3 and
provide visualizations.

A.1 Bottleneck
We use the following instances in the bottleneck domain:

1. Instance with two persons and 5 locations (Figure A.1a).

2. Instance with three persons and 7 locations (Figure A.1b).

3. Instance with three persons and 8 locations (Figure A.1c).

4. Instance with four persons and 9 locations (Figure A.1d).

5. Instance with four persons and 10 locations (Figure A.1e).

6. Instance with four persons and 11 locations (Figure A.1f).

7. Instance with four persons and 10 locations (Figure A.1g).

8. Instance with four persons and 11 locations (Figure A.1h).

9. Instance with four persons and 12 locations (Figure A.1i).

10. Solvable instance with four persons and 10 locations (Figure A.1j).

A.2 Pegsol-Invasion
We use the following instances in the pegsol-invasion domain:

1. Instance with one filled location with 6 locations in one row (Figure A.2a).

2. Instance with four filled locations with 14 locations in two rows of 7 locations
(Figure A.2b).

3. Instance with 9 filled locations with 24 locations in three rows of 8 locations
(Figure A.2c).

70 Appendix A. Instances of Planning Tasks

4. Solvable instance with 5 filled locations with 24 locations in three rows of 8
locations (Figure A.2d).

We introduce for each instance two versions (the second one marked with an
apostrophe). The first version marks only the initially filled, and the location which
is initially free and desired to be filled as clauses of interest. The second version marks
the initial and goal specification of all locations as clauses of interest.

A.3 Chessboard-Pebbling
We use the following instances in the chessboard-pebbling domain:

1. Instance with a 3×3 field with the locations l1,l2,l3 initially filled and desired
to be free (Figure A.3a).

2. Instance with a 4×4 field with the locations l1,l2,l3 initially filled and desired
to be free (Figure A.3b).

3. Instance with a 5×5 field with the locations l1,l2,l3 locations initially filled and
desired to be free (Figure A.3c).

4. Solvable instance with a 5×5 field with the location l1 initially filled and the
locations l1,l2,l3 desired to be free (Figure A.3d).

We introduce for each instance two versions (the second one marked with an
apostrophe). The first version marks only the initial and goal specification of the
locations l1,l2,l3 as clauses of interest. The second version marks the initial and goal
specification of all locations as clauses of interest.

A.4 Slidingtiles
We use the following instances in the slidingtiles domain:

1. Instance with a 2×2 field (Figure A.4a).

2. Solvable instance with a 2×2 field (Figure A.4b).

A.4. Slidingtiles 71

p1 p2

g1 g2

(a) bottleneck1

p1 p2 p3

g1 g2 g3

(b) bottleneck2

p1 p2 p3

g1 g2 g3

(c) bottleneck3

p1 p2 p3 p4

g1 g2 g3 g4

(d) bottleneck4

p1 p2 p3 p4

g1 g2 g3 g4

(e) bottleneck5

p1 p2 p3 p4

g1 g2 g3 g4

(f) bottleneck6

p1 p2 p3 p4

g1 g2 g3 g4

(g) bottleneck7

p1 p2 p3 p4

g1 g2 g3 g4

(h) bottleneck8

p1 p2 p3 p4

g1 g2 g3 g4

(i) bottleneck9

p1

g1 p2 p3 p4

(j) bottleneck10

Figure A.1: Visualized bottleneck instances. Persons start in their ip location and
need to go to the gp location. Valid connections are defined by the lines between the
locations. Already visited locations are marked with a second circle.

72 Appendix A. Instances of Planning Tasks

1 2 3 4 5 6

(a) pegsol-invasion1

8

1

9

2

10

3

11

4

12

5

13

6

14

7

(b) pegsol-invasion2

17

9

1

18

10

2

19

11

3

20

12

4

21

13

5

22

14

6

23

15

7

24

16

8

(c) pegsol-invasion3

17

9

1

18

10

2

19

11

3

20

12

4

21

13

5

22

14

6

23

15

7

24

16

8

(d) pegsol-invasion4

Figure A.2: Visualized pegsol-invasion instances. Locations which need to be filled
are marked with a second circle. Initially filled locations are black.

A.4. Slidingtiles 73

7 8 9

4 5 6

1 2 3

(a) chessboard1
13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

(b) chessboard-pebbling2

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

(c) chessboard-pebbling3

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

(d) chessboard-pebbling4

Figure A.3: Visualized chessboard-pebbling instances. Locations which need to be
cleared are marked with a second circle. Initially filled locations are black.

3 B

1 2

2 3

B 1

(a) slidingtiles1

B 3

1 2

3 2

B 1

(b) slidingtiles2

Figure A.4: Visualized sliding-tiles instances. The left pattern shows the initial loca-
tion of tiles, and the right pattern shows the goal location of tiles.

74 Appendix A. Instances of Planning Tasks

Appendix B

Benchmark Results

We provide the results of the experiment in Section 5.2, 5.3.

B.1 Deciding Planning Tasks

We examine for each planning task several properties:

1. The amount of iterations we can reach with generating all MUSs or without
(Table B.1).

2. The solving times of BUS, PEX, and SymPA (Table B.2).

3. The amount of MCSs, MUSs, clauses of interest, and actions (Table B.3).

B.2 Explaining Planning Tasks

We display for one instance of each domain the generated MCSs and MUSs. Note that
we use the same instance of chessboard-pebbling as in Chapter 4 and add the clauses
of interest and generated MCSs and MUSs here for completeness. The used instances
are bottleneck3 (Table B.5), pegsol-invasion1 (Table B.6), chessboard-pebbling1 (Ta-
ble B.7), and slidingtiles1 (Table B.8).

Definition B.2.1 (Clauses of interest for bottleneck3). The clauses of interest with
the current plan horizon ph are:

1. p1-initial with p11 = 1

2. p2-initial with p12 = 2

3. p3-initial with p13 = 3

4. p1-goal with p
ph
1 = 7

5. p2-goal with p
ph
2 = 8

6. p3-goal with p
ph
3 = 9

76 Appendix B. Benchmark Results

Definition B.2.2 (Clauses of interest for pegsol-invasion1). The clauses of interest
with the current plan horizon ph are:

1. l1-initial with ¬filled11

2. l2-initial with ¬filled12

3. l3-initial with ¬filled13

4. l4-initial with ¬filled14

5. l5-initial with ¬filled15

6. l6-initial with filled16

7. l1-goal with filled
ph
1

Definition B.2.3 (Clauses of interest for chessboard-pebbling3). The clauses of in-
terest with the current plan horizon ph are:

1. l1-initial with filled11

2. l2-initial with filled12

3. l4-initial with filled14

4. l1-goal with ¬filledph1

5. l2-goal with ¬filledph2

6. l4-goal with ¬filledph4

Definition B.2.4 (Clauses of interest for slidingtiles1). The top-left location is marked
with 1, the top-right with 2, the bottom-left with 3, and the bottom-right with 4. The
clauses of interest with the current plan horizon ph are:

1. tileAt1-initial with tileAt11 = 1

2. tileAt2-initial with tileAt12 = 2

3. tileAt3-initial with tileAt13 = 3

4. tileAt4-initial with tileAt14 = 4 (with 4 representing the blank B)

5. tileAt2-goal with tileAt
ph
2 = 1

6. tileAt3-goal with tileAt
ph
3 = 2

7. tileAt4-goal with tileAt
ph
4 = 3

B.2. Explaining Planning Tasks 77

domain instance #itwitness #itempty #itMUSs #itnoMUSs

bottleneck 1 4 5 72 106
2 5 7 23 78
3 6 7 25 78
4 6 - 7 63
5 7 - 8 62
6 8 - 8 62
7 - - 6 61
8 7 - 7 63
9 - - 8 61
10 - - 6 6

pegsol-invasion 1 1 1 195 258
2 3 3 114 159
3 8 8 65 97
4 - - 3 3
1’ 1 3 172 258
2’ 3 9 27 159
3’ - - 5 97

chessboard-pebbling 1 5 5 241 332
2 10 10 121 191
3 11 11 23 24
4 - - 4 4
1’ 5 5 237 332
2’ 10 10 115 191
3’ - - 10 24

slidingtiles 1 13 13 55 94
2 - - 3 3

Table B.1: Results of the experiment in Section 5.2.2. For each instance we analyze
in which iteration a witness is found (#itwitness), in which iteration the empty core
was generated (#itempty), and how many iterations can be reached with generating
all MUSs (#itMUSs) and without (#itnoMUSs).

78 Appendix B. Benchmark Results

domain instance BUS/s PEX/s SymPA/s
bottleneck 1 0.75 1.75 0.151

2 3.1 11.3 0.151
3 3 9.8 0.150
4 21.1 - 0.148
5 27.4 - 0.146
6 28.1 - 0.154
7 - - 0.144
8 32 - 0.148
9 - - 0.148
10 1.2 2.3 0.204

pegsol-invasion 1 0.06 0.07 0.145
2 0.35 0.61 0.153
3 2.4 5.8 0.16
4 0.39 0.74 0.228
1’ 0.21 1.3 0.145
2’ 1.3 - 0.153
3’ - - 0.16
4’ 0.42 1.1 0.228

chessboard-pebbling 1 0.96 3.3 0.147
2 3.1 13.4 0.204
3 5.5 21.3 0.237
4 0.67 2.2 0.212
1’ 1.03 0.07 0.147
2’ 3.9 0.07 0.204
3’ - - 0.237

slidingtiles 1 6.9 25.2 0.172
2 0.65 1.4 0.18

Table B.2: Results of the experiment in Section 5.2.2. We run BUS up to the point
that the first witness is detected, PEX until the empty core was generated, and SymPA
until it terminates.

B.2. Explaining Planning Tasks 79

domain instance #MCS #MUS #coi #action
bottleneck 1 11 7 2+2 8

2 30 [31] 16 [20] 3+3 12
3 44 18 3+3 12
4 66 30 4+4 16
5 106 33 4+4 16
6 153 64 4+4 16
7 76 28 4+4 16
8 80 29 4+4 16
9 100 38 4+4 16
10 10 5 4+4 16

pegsol-invasion 1 0 0 2+1 8
2 4 2 5+1 20
3 14 7 10+1 52
4 4 2 10+1 52
1’ 6 [11] 8 [16] 6+1 8
2’ 22 [176] 19 [201] 14+1 20
3’ 19 11 5 52
4’ 7 2 10+1 52

chessboard-pebbling 1 31 20 3+3 4
2 67 36 3+3 9
3 77 42 3+3 16
4 17 8 3+3 16
1’ 31 20 9+3 4
2’ 69 40 16+3 9
3’ 71 38 25+3 16

slidingtiles 1 87 73 4+3 8
2 13 12 4+3 8

Table B.3: Results of the experiment in Section 5.2.2. We note how many MCSs and
MUSs have been generated throughout BUS and how many clauses of interest (#coi,
split into clauses of interest for the initial and goal configuration) and actions each
instance has. The amounts of MCSs and MUSs in square brackets indicates how many
PEX generated. This happens because BUS terminates after detecting one witness,
while PEX continues until the empty core was generated.

80 Appendix B. Benchmark Results

instance iteration time #MCS #MUS
bottleneck8 1 0 0 0

2 0.43 16 4
3 0.85 32 8
4 1.19 40 11
5 2.13 56 15
6 3.87 64 18
7 10.72 74 24

pegsol-invasion3 1 0 0 0
2 0.22 2 1
3 0.42 4 2
4 0.65 6 3
5 0.9 8 4
6 1.22 10 5
7 1.63 12 6
8 2.21 14 7

chessboard-pebbling3 1 0 0 0
2 0.41 9 5
3 0.78 21 12
4 1.14 27 18
5 1.42 33 20
6 1.74 39 22
7 2.17 47 26
8 2.7 55 30
9 3.35 63 34
10 4.24 71 38
11 5.5 77 42

slidingtiles1 1 0 0 0
2 0.33 5 6
3 0.58 9 10
4 0.96 19 17
5 1.27 24 23
6 1.78 38 32
7 2.36 43 37
8 3.03 49 42
9 3.85 54 47
10 4.77 68 56
11 5.43 73 62
12 6.5 83 69
13 7.45 87 73

Table B.4: Results of the experiment in Section 5.2.2. Progression of solving time,
the amount of MCSs, and the amount of MUSs over the iterations.

B.2. Explaining Planning Tasks 81

plan horizon MCSs MUSs

1
{1,2,3},{1,2,6},{1,3,5},
{1,5,6},{2,3,4},{2,4,6},
{3,4,5},{4,5,6}

{1,4},{2,5},{3,6}

2 {1,3},{1,6},{2,3},{2,6},
{3,4},{3,5},{4,6},{5,6} {1,2,4,5},{3,6}

3 same as 1 same as 1

4
{1,2,5},{1,3},{1,6},{2,3},
{2,4,5},{2,6},{3,4},{3,5},

{4,6},{5,6}

{1,2,4,5},{1,3,4,6},
{2,3,6},{3,5,6}

5 same as 1 same as 1
6 {1,2,5},{2,4,5} {1,4},{2},{5}
7 - -

Table B.5: MCSs and MUSs generated throughout performing BUS on an unsolv-
able bottleneck instance. The numbers indicate which clauses appeared specified in
Definition B.2.1. Bold set of clauses indicate witnesses.

plan horizon MCSs MUSs

1 {1,2,7},{1,3,4},{1,4,5},
{2,3},{3,4,7},{4,5,7}

{1,2,7},{1,3,4},{1,3,5},
{1,3,7},{2,3,5},{2,4},
{3,4,7},{3,5,7}

2
{1,2,3,5},{1,2,4,7},
{1,3,4,7},{2,3,5,7},

{2,4,5}

{1,2},{1,4,7},{1,5},{2,3},
{2,4},{2,7},{3,4},{5,7}

3 - -

Table B.6: MCSs and MUSs generated throughout performing BUS on an unsolvable
pegsol-invasion instance. The numbers indicate which clauses appeared specified in
Definition B.2.2. Bold set of clauses indicate witnesses.

plan horizon MCSs MUSs

1
{1,2},{1,3},{1,5},{1,6},
{2,4},{2,3,5,6},{3,4},

{4,5},{4,6}

{1,2,4},{1,3,4},{1,4,5},
{1,4,6},{2,3,5,6}

2

{1,2},{1,3},{1,5},{1,6},
{2,4},{2,3,5},{2,3,6},
{2,5,6},{3,4},{3,5,6},

{4,5},{4,6}

{1,2,3,4},{1,2,4,5},
{1,2,4,6},{1,3,4,5},
{1,3,4,6},{1,4,5,6},

{2,3,5,6}

3 {1},{2,3,5},{2,3,6},
{2,5,6},{3,5,6},{4}

{1,2,3,4},{1,2,4,5},
{1,2,4,6},{1,3,4,5},
{1,3,4,6},{1,4,5,6}

4 {2,3},{2,5},
{2,6},{5,6} {2,5},{3,6}

5 - -

Table B.7: MCSs and MUSs generated throughout performing BUS on an unsolvable
chessboard-pebbling instance. The numbers indicate which clauses appeared specified
in Definition B.2.3.

82 Appendix B. Benchmark Results

plan horizon MCSs MUSs

1 {1,2,6},{2,3,4},{2,3,5},
{2,4,6,7},{5,6}

{1,3,5,7},{1,4,5},{2,5},
{2,6},{3,6},{4,5,6}

2 {1,2},{2,3},{5,6},{6,7} {1,3,5,7},{1,3,6},
{2,5,7},{2,6}

3
{1,2,4},{1,2,5},{1,2,6},
{1,4,6},{2,3,4},{2,3,5},
{2,3,6},{2,4,7},{5,6},{6,7}

{1,2,5,7},{1,3,4,6},
{1,3,5,7},{1,3,6,7},
{2,4,5,7},{2,6},{4,5,6}

4 {1,2},{1,4},{2,3},
{5,6},{7}

{1,2,5,7},{1,2,6,7},
{1,3,5,7},{1,3,6,7},
{2,4,5,7},{2,4,6,7}

5

{1,2,4},{1,2,5},{1,3,4},
{1,3,5},{1,3,6},{1,4,5},
{1,4,6},{2,3,4},{2,3,6},
{2,4,7},{3,4,7},{5,6},

{5,7},{6,7}

{1,2,5,7},{1,2,6,7},
{1,3,5,7},{1,3,6,7},
{1,4,6,7},{2,3,4,6,7},
{2,3,5,6},{3,4,5,7},

{4,5,6}

6 {1,3},{1,4},{2,3,4,6},
{2,4,5,6},{7}

{1,2,7},{1,3,5,7},{1,4,7},
{1,6,7},{3,4,7}

7 {1,3,4},{1,3,5},{1,3,6},
{1,4,5},{3,4,7},{5,7}

{1,4,5},{1,7},{3,4,7},
{3,5},{4,5,6}

8 same as 6 same as 6
9 same as 5 same as 5
10 same as 4 same as 4
11 same as 3 same as 3
12 same as 2 same as 2
13 - -

Table B.8: MCSs and MUSs generated throughout performing BUS on an unsolv-
able slidingtiles instance. The numbers indicate which clauses appeared specified in
Definition B.2.4.

	Introduction
	Preliminaries
	SAT Modulo Theories
	Planning
	Explainable Artificial Intelligence

	Deciding Planning Tasks with UNSAT Cores
	Classification of UNSAT Cores
	Bounded Model Checking with UNSAT Cores

	Explaining Planning Tasks with UNSAT Cores
	Unsolvable Subtasks
	Solvable Subtasks
	Reasons of Infeasibility

	Evaluation
	UNSAT Benchmarks
	Deciding Planning Tasks
	Explaining Planning Tasks

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography
	Appendix
	Instances of Planning Tasks
	Bottleneck
	Pegsol-Invasion
	Chessboard-Pebbling
	Slidingtiles

	Benchmark Results
	Deciding Planning Tasks
	Explaining Planning Tasks

