
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

OVER-APPROXIMATIVE REDUCTION OF POLYTOPES

IN THE CONTEXT OF HYBRID SYSTEMS

REACHABILITY ANALYSIS

Igor Nicolai Bongartz

Examiners:
Prof. Dr. Erika Ábrahám

Additional Advisor:
Prof. Dr. Jürgen Giesl Aachen,

February 29, 2016

Abstract

Flowpipe-based reachability analysis for hybrid systems allows to over-approximate
the set of reachable states of a given hybrid automaton to verify safety of a
modeled system. Execution time and memory consumption of this analysis are
in�uenced by the complexity of the underlying state sets used. In this work I
focus on over-approximative reduction of polytopes as state set representations
to ameliorate the execution time and the memory consumption of a reachability
analysis algorithm. The introduced modi�cations show that an improvement is
possible but requires careful selection of suitable strategies and parameters for
reduction.

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

Acknowledgements

I am thankful for the opportunity to write this bachelor thesis. Developing this aca-
demic work taught me multiple areas of research. The topic required creativity, formal
speci�cation of my ideas, their implementation and the empirical examination of the
approach. This was the �rst time I had to unite all these processes.

I want to thank all the people which supported me during these �ve months of exces-
sive research. First I mention Stefan Schupp. He was my supervisor for this thesis and
helped me out in many situations. Next I thank all the people at the i2 who listened
to me or explained me some details about hybrid systems or the complex universe of
C++. A big thanks goes to Erika Ábrahám, who made this work possible and to my
additional advisor Jürgen Giesl.

Furthermore my family has been a great help in several ways. For example the
idea to motivate me with a delicious mousse au cholocat as reward. Or my aunt Ana
and her husband Dan, who despite their own work had the time to read through 40
pages of theoretical mess (at this time).

And at the end, thank you Saskia for your daily motivation, advice, warning and
everything else.

Contents

1 Introduction 9

2 Background 11

2.1 Hybrid Systems . 11
2.2 Reachability Analysis of Hybrid Systems 13
2.3 Representations of Polytopes . 15
2.4 Operations on Polytopes . 17

3 Reduction 21

3.1 Strategies . 23
3.2 Comparisons . 31
3.3 Heuristic for Polytope Reduction . 34

4 Experimental Results 37

4.1 Reduction for Polytopes . 38
4.2 E�cient Storing of a Set of H-Polytopes 40
4.3 Improvement of Memory Consumption 43
4.4 Improvement of Execution Time . 44

5 Conclusion 47

5.1 Summary . 47
5.2 Discussion . 48
5.3 Future work . 48

Bibliography 49

A Polytopes and Results of Experiments 51

A.1 H-Polytopes . 51
A.2 Results of Experiment 4.1 . 52
A.3 Results of Experiment 4.2 . 54
A.4 Results of Experiment 4.3 . 58
A.5 Results of Experiment 4.4 . 60

viii Contents

Chapter 1

Introduction

�Alice is an architecture student and got her �rst job. She had to build a house of
solid brick in Nehcaa. One problem is that she lives in Engoloc which lies around 1
hour's drive away. Alice was quite nervous about this project so she decided to prepare
herself well. The next day she went to a free space and started building the house out
of solid bricks. The construction took a long time but the e�orts have been worth it.
Alice created a beautiful house. She wanted to do it exactly like this in Nehcaa. After
she woke up she packed her belongings and went to the house. There she noticed that
the house was too big to be moved by hand. She would need a helicopter to move the
house from Engoloc to Nehcaa. Angry about her bad planning she called a helicopter
service and ordered the house to be carried to the actual construction site.�

We are surrounded by plenty of technical systems which are helpful but safety-critical
at the same time. These systems o�er an interface for users but are controlled by a
technical architecture (e.g. a car or an elevator). The driver decides when the car
accelerates but the cause of acceleration is not done by the power of his pure thinking.
The acceleration is caused by the engine which can be damaged in several ways such
that the safety of the driver is no longer guaranteed. An elevator receives only the
desired �oor of the building and behaves autonomous from this point on. The possible
threats are for example a longer drive (from the ground �oor to the fourth �oor) or
a failure of the control systems, thus a cuto� of the air supply.
These systems can have discrete states (on, o�, up, down, go, stop, several levels)
and a continuous development of physical components (position, speed, acceleration).
Systems with such a structure are speci�ed as hybrid systems. In general the safety of
technical systems is tested due to multiple repetitions of simulations. But these exe-
cutions are not su�cient. The system can still be insecure because the testing team
stopped an experiment or one repetition before a failure would have been discovered.
An alternative is the use of a formal veri�cation method. Due to rules which describe
the dynamics of a system one can compute the set of reachable states. Comparing
these states with a set of bad states allows a judgment on the system. The application
of formal methods requires an abstraction of hybrid systems. Such a speci�cation of
a hybrid system is for example a hybrid automaton and the computation of reachable
states can be referred to as reachability analysis. The investigation of whether the
system is secure or not is called safety veri�cation.

10 Chapter 1. Introduction

The approach of this work focuses on a more e�cient use of the data structures
of reachability analysis which might o�er an amelioration. The reachability analysis
is a hard problem and, dependent on the dimension and complexity of the state set,
the execution time can be long. The general time complexity class can not be in�u-
enced without changing the algorithm.
The result of a reachability analysis of a hybrid system can be large. In 2-dimensional
space a result of a simple hybrid system does already require ≈ 500 kByte or up to
≈ 1,5 MByte. More complex systems cause greater results. It can be of interest, that
the size of these results is reduced in context of storage.
In this work I present approaches to accomplish these improvements for a �owpipe-
based reachability analysis of hybrid systems. To achieve this I study the reduction
of polytopes. A reduction Pred is an over-approximation of an input polytope P and
reduces the amount of data required to represent the reduction. Due to the reduced
complexity of Pred further operations require less computational e�ort than with P .
Of course an over-approximation in�uences the reachability analysis in misleading
to wrong results. If a bad state is reached by the over-approximative analysis it
is possible that a more exact computation of reachable states returns the opposite.
Nevertheless if the over-approximative analysis deduces that the system is secure the
original hybrid system is secure too.

In the �rst part (Chapter 2) I de�ne hybrid automata, the reachability analysis, poly-
topes and two possible representations of polytopes. With this knowledge in mind I
present several strategies how to reduce polytopes (Chapter 3). I then analyze the
advantages and disadvantages of each strategy. Due to the outcome of my analysis I
develop a simple heuristic for the use of the di�erent strategies. In Chapter 4, I ana-
lyze the performance of the strategies dependent on speci�ed criteria. Furthermore I
embed the reduction of polytopes in a reachability analysis algorithm to achieve the
ameliorations I presented in the prior passage. In Chapter 5 I summarize and discuss
my results and give an outlook towards possible future improvements. The de�nition
of the polytopes used in this work and results of experiments can be found in the
Appendix A.

Chapter 2

Background

To apply formal methods on a given hybrid system, an abstract model of this system
is required. Hybrid automata are a popular speci�cation used to describe hybrid sys-
tems. In the following I provide required background information on hybrid systems
and hybrid automata as well as reachability analysis as an approach towards their
veri�cation. Furthermore I give an introduction on convex polytopes as a state set
representation for reachability analysis and de�nitions of set operations required in
this context.

2.1 Hybrid Systems

A hybrid system combines continuous and discrete behavior. A simple example which
I also use later for the experiments is a bouncing ball. If I have a ball in my hand I
can let it fall from a prede�ned height and observe the behavior. First in falls down.
After it hits the �oor it bounces upwards. At some point the ball reaches its reversal
point and falls down again. The height of this point is lower than the initial height the
ball was dropped from. Then the procedure repeats until the ball lies on the ground.
This small example is already a hybrid system. A common model for a hybrid system
is a hybrid automaton. It is de�ned by its initial state, the actions which modify the
continuous evolution of variables depending on the time t, an invariant which dictates
a certain limit for the variables and discrete-transitions. This leads us to the formal
de�nition of hybrid automata.

De�nition 2.1. (Hybrid automata [HKPV95]) A hybrid automaton is a tuple HA =
(Loc, V ar, Lab,Edge,Act, Inv, Init) with following meaning of its components:

� (Loc) The locations are de�ned by the �nite set Loc. For the purpose of visu-
alization they can be displayed as vertices of a graph.

� (V ar) The variables are represented by the �nite set V ar, which describes con-
tinuous components of the system. The total number of variables determines
the dimension d of a system. All variables can be described by a vector x ∈ Rd.
In combination with a location l ∈ Loc a state s ∈ Σ is de�ned as: s := (l, x).

� (Lab) The �nite set of labels Lab are assigned to the transitions as a signal
caused by a system. They are used to synchronize compositional hybrid au-

12 Chapter 2. Background

moving

ḣ = v
v̇ = −g

h ≥ 0

h = 0, v < 0
v := −v · c

h ∈ [10,10.2]
v = 0

Figure 2.1: The hybrid automaton of a bouncing ball with g = 9.81 and c = 0.75.

tomata. If several automata are combined and transitions have to react on the
same signal they are marked by a label.

� (Edge) The elements of the �nite set Edge correspond to transitions between
the vertices of the graph. The de�nition of an edge is:

e = (l, ι, µι, l
′) with l,l′ ∈ Loc, ι ∈ Lab, µι ∈ 2R

d

The locations l and l′ de�ne the source and target location. The set µι := (x, x′)
de�nes the guard of the transition with x and the reset of all variables with x′.
For each location each transition exists as a stutter -transition with an empty
label ε ∈ Lab.

� (Act) The activities in the �nite set Act de�ne for each location l how each
variable changes over time. An activity a ∈ Act has the following de�nition:

a := (l,ξ̇(t)) with l ∈ Loc, ξ̇(t) ∈ Rd × Rd

The di�erential equation ξ̇(t) describes the evolution for each variable due to
the elapsing of time.

� (Inv) The �nite conditions of the set Inv de�ne valid assignments for variables
of V ar depending on the location. An element of Inv is i := (l,x) with l ∈ Loc
and x ∈ Rd.

� (Init) The �nite initial state set Init de�nes all initial states of the hybrid
system. An element of Init is de�ned as follows:

init := (l,x) with l ∈ Loc

The vector x ∈ Rd represents the initial valuation of all variables.

In a hybrid automaton the set of reachable states Σ is de�ned as the set of states
reachable from an initial state by letting time elapse. A new state can be reached
by the composition of two rules: A time-transition inside the current location and a
discrete-transition which can lead to another location. The usage of these transitions
is de�ned by following the rules:

e=(l,ι,µι,l
′)∈Edge (x,x′)∈µι (l′,x′)∈Inv

(l,x)
e−→(l′,x′)

ruleDiscrete

a=(l,ξ̇(t))∈Act ξ̇(0)+x=x ξ̇(t)+x=x′ t≥0 ∀0≤t′≤t: (l,ξ̇(t′)+x)∈Inv
(l,x)

t−→(l,x′)
ruleTime

2.2. Reachability Analysis of Hybrid Systems 13

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10

Figure 2.2: The �owpipes generated by a forward reachability analysis with timestep =
10 ms and timebound = 4 s for the bouncing ball model.

An execution step is the combination of a discrete- and a time-transition. Each
state reachable by one or more execution steps from one of the initial states, called
execution path, is reachable. With the de�nition of hybrid automata we are able to
present a hybrid automaton for this system. A bouncing ball can be described by
two variables: its height h and its velocity v. If we drop the ball at the initial height
h ∈ [10,10.2] it has an initial velocity v = 0. As long as the ball is falling it is
subject to earths gravity, thus h decreases with the di�erential equation ḣ = v while
v decreases with v̇ = −g and g = 9,81 m/s2. If h = 0 is reached our ball hits the
�oor. Therefore we introduce the invariant h ≥ 0. If the guard is satis�ed the ball
bounces. This leads to a reset of the velocity v = −v · c with 0 < c < 1 to simulate
friction and elasticity of the ball. We set the constant to c = 0.75. Now v constantly
decreases from its maximum and the procedure starts all over again until the ball lost
all of its energy [Gue09] [E. 16b]. The hybrid automaton is displayed in Figure 2.1.

2.2 Reachability Analysis of Hybrid Systems

The reachability analysis computes the set of reachable states of a hybrid system. The
safety veri�cation uses the result of reachability analysis to compare the set of reach-
able sets with a set of bad states. If we start our computation from an initial state
we call it forward reachability analysis. An alternative is the backward reachability
analysis. There we start from a speci�ed state (e.g. a bad state) and compute the set
of states backwards. In this work I focus on the forward version as used by the c++
library HyPro which is part of an ongoing research project in the group theory of
hybrid systems [E. 16a]. If we use reachability analysis with safety veri�cation to our
initial bouncing ball example we can say that on the �oor lies a cat which has a size
of 1. The bad state is reached if the ball drops to a height h ≤ 1. Does the ball hit
the cat? For answering this question we can make use of reachability analysis results.

The analysis evaluates time-transitions with a time discretization timestep which de-

14 Chapter 2. Background

�nes the smallest processing of time for the computations. First an initial reachable
set R is de�ned by all initial states which do not violate their invariants (Line 1).
From this point on the algorithm iterates by alternating between time- and discrete-
transitions (Line 5). Step by step R increases. If R does not increase anymore a
�xed-point is reached and the analysis is �nished (Line 7). If R intersects with the
set of bad states the analysis is terminated. Introducing a local timebound allows to
enforce termination in case a �xed-point can not be detected. This algorithm can be
de�ned formally as follows:

De�nition 2.2. (Forward Reachability Analysis [E. 15]) The structure of the algo-
rithm is de�ned by Algorithm 1 with forward time closure de�ned as

Tl(R) = Tl(s := (l,x)| ∀s ∈ R) = {(l,x′)| ∀(l,x),(l,x′)∃t : (l,x)
t−→ (l,x′)}

and the postcondition

De(R) = De(s := (l,x)| ∀s ∈ R) = {(l′,x′)| ∀(l,x),(l′,x′)∃e : (l,x)
ι−→ (l′,x′)}.

Algorithm 1 Forward Reachability Analysis

1: R = {s ∈ Init|s ∈ Inv}
2: R = Tl(R)
3: Rnew = R
4: while (Rnew 6= ∅) do
5: Rnew = Tl′(De(R))
6: if (Rnew ⊆ R) then
7: return R
8: end if

9: R = R ∪Rnew
10: end while

11: return R

The reachability analysis makes use of state set representations in order of rep-
resenting sets of reachable states. For example, an invariant can be encoded as an
inequality and a reset as an equation. An alternative we are interested in is the reach-
ability analysis using geometric shapes.
The �rst segment of a �owpipe is a geometric shape we obtain after an initialization
procedure (Figure 2.3). We work with a �xed timestep and dependent on the con-
tinuous behavior of the system we lose information between the segments. Without
the initialization the set of reachable states does not represent the state space of the
hybrid system [Gue09]. First we perform a time-transition from the initial state init
(1) and compute the convex hull of these two shapes (2). Next we bloat the convex
hull (3) in order to over-approximate the dynamics of the hybrid systems which are
represented as curved lines in the Figure. If the system is non-autonomous we apply
a second bloating to consider the external in�uence (4). Every bloating is performed
as a Minkowski -sum of the current shape and a box.
A time-transition is computed as follows (Figure 2.4a): Linear dynamics of the hy-
brid system are computed as a linear transformation of the segment s and return the
segment s∆t. If the hybrid system contains non-linear dynamics other techniques are
used to calculate the set of reachable states. The new segment represents the state

2.3. Representations of Polytopes 15

(1)

(2)(3)

(4)

sinit

sinit∆t

sfirst

Figure 2.3: The preparation of the �rst segment sfirst with init ∈ Init.

reached after a timestep from s. It is possible that the new segment violates the
invariant of the current location. Therefore we compute the intersection of s∆t and
the invariant inv of the location and receive the result of a time-transition s′. All
segments computed for one location are referred to as a �owpipe. Thus, the result
of reachability analysis is a set of �owpipes. Due to the de�nition of the reachability
analysis we alternate between time- and discrete-transition.
In order to perform a discrete-transition we have to consider the guard which enables
the discrete jump for a state s, the reset and the invariant of the new location (Fig-
ure2.4b). We intersect the computed segments with all guards of outgoing transitions
of the current location. If the intersection is not empty we compute a linear reset
as a linear transformation. After the reset we intersect the reseted segment with the
invariant of the location and obtain its initial set si.
The reachable set of the analysis is the set of all computed segments. If any of these
segments intersects with the bad states the analysis is terminated. If any new segment
is fully contained in an older segment a �xed-point is reached.
The reachability analysis for hybrid automata is undecidable. Over-approximation
is necessary for the reachability analysis in order compute the correct reachable set
of states of a hybrid system. If the reachability analysis concludes that the hybrid
automaton is safe this property does also hold for the hybrid system. Every more
speci�c over-approximation of reachable states leads to the same result. However
over-approximation causes a drawback. If the analysis returns the insecurity of the
systems the hybrid system is not necessarily insecure because the responsible state
could have been added due to over-approximation.

2.3 Representations of Polytopes

There are several possible types of state representations (e.g. zonotopes, support-
functions, boxes [E. 15]) as which I refer to as geometrical shapes. In this work I con-
sider convex polytopes. Reduction of polytopes is intuitive, it has been done already
[Fre08] and polytopes are used by the c++ library HyPro which I use to analyze
my approach. Moreover, polytopes are the most complex type of representation and
methods using other representations have the same or smaller time complexity. Such
that, if we achieve an improvement of reachability analysis the amelioration works for

16 Chapter 2. Background

s

s∆t

inv

s′

(a) Derive s′ from s.

s

guard1

guard2

reset

inv

inv

si

s′i

(b) Derive si and s′i from s.

Figure 2.4: The continuous and discrete behavior of a hybrid system are described as
time- (a) and discrete-transitions (b).

other state set representations too.
Before I specify the reduction in the next chapter I de�ne polytopes and operations
on sets of polytopes required for reachability analysis. These de�nitions prepare the
reader to understand the formal de�nition of reduction and its usage in reachability
analysis. I restrict myself to polytopes and not the more general case of polyhedron,
because in context of reachability analysis polytopes are more likely than polyhedra
and the presented approaches can be modi�ed to work with polyhedra. Polytopes
are bounded polyhedra and allows to specify subsets of a d-dimensional space as an
intersection of a �nite set of half-spaces. Each half-space is represented as a linear
constraint.

De�nition 2.3. (Polytopes [Zie95]) Polytopes are the bounded convex set in a d-
dimensional space speci�ed as the intersection of a �nite set of half-spaces H =
{h1, . . . , hH}. Each half-space h ∈ H is de�ned as h = {x ∈ Rd|n · x ≤ o} with
the normal -vector n ∈ Rd and the o�set o ∈ R, such that

P :=
⋂
h∈H

h.

Each polytope can be represented by its half-spaces. This representation is called
the H-representation and the corresponding polytope a H-polytope. The set of points
which ful�ll the equation nT ·p = o for all p ∈ Rd is speci�ed as hyperplane. Note that
a point and a normal -vector determine the o�set of a half-space. The common way
to implement a H-polytope is to transform the set H into a matrix N ∈ RH×d and a
vector o ∈ RH . Every row Ni represents a normal -vector ni and every i-th entry in
o stands for the o�set oi of the half-space hi ∈ H. The polytope P can be de�ned by
the inequality:

P := {x ∈ Rd|N · x ≤ o}.

An alternative is the V-representation de�ned by a �nite set of points, called ver-
tices V, which represents the convex hull of a V-polytope P . The number of vertices

2.4. Operations on Polytopes 17

x0

1

y

h2

h1�

�

p′

p

Figure 2.5: The half-spaces h1 and h2 with p ∈ h1,h2 and p′ /∈ h1,p
′ ∈ h2.

is V . The corresponding de�nition of P is:

P :=

{∑
v∈V

λv · v|λv > 0 and
∑
v∈V

λv = 1

}
.

It can happen that some half-spaces are redundant due to the existence of others.
Redundancy in this context means, that the half-space does not provide required
information to de�ne the polytope. Let us consider following half-spaces h1 and h2

h1 : n1 =

(
0
1

)
, o1 = 0 and h2 : n2 =

(
0
1

)
, o2 = 1

The half-space h1 de�nes a subset of h2, because all points p ∈ R2 which satisfy
nT2 · p ≤ 1 also satisfy nT1 · p ≤ 0. But a point p′ ∈ R2 with nT1 · p = 0.5 is still inside
the half-space h2 but not in the half-space h1. Figure 2.5 shows these circumstances.
Therefore h2 is redundant if we consider the set H = {h1,h2} = {h1}. It is possible
that a combination of half-spaces causes another half-space to be redundant as shown
in Figure 2.6a. Similar to a redundant half-space I de�ne a redundant point p as a
point which does not belong to the vertices of a polytope VP (Figure 2.6b).

De�nition 2.4. (Redundant half-space or point) A half-space h of a set H is called
redundant i� PH/{h} = PH and therefore H ⊂ {h}. A point p of a set V is called
redundant i� PV/{p} = PV .

Every non-redundant half-space h of a H-polytope determines a facet fh which
represents the non-redundant section of h. A facet is a (d − 1)-dimensional object.
The volume of hyperplaneh is in�nite while the volume of hyperplanef is �nite.
The intersection of two a�ne independent half-spaces is a (d− 2)-dimensional object
usually referred to as ridge r [Zie95]. For d = 2 a facet of a polytope is a bounded
line and a ridge a point (Figure 2.7).

2.4 Operations on Polytopes

Multiple operations are required in the context of �owpipe-based reachability analysis
to manipulate one or more polytopes. The complexity of these operations strongly
depends on the used representation type. An easy time complexity means that the

18 Chapter 2. Background

x

y

h1

h2

h3

h4

�

�

v
p′

P

(a) The half-space h4 is redundant.

x

y

�

�

�

�

V

v1

v2

v3

p
P

(b) The point p is redundant.

Figure 2.6: A polytope P is de�ned as a H- (a) and a V-polytope (b).

execution time is estimated as a polynomial execution time. If a time complexity
is hard the execution time is estimated as an exponential time in the dimension d.
Important for most operations is the conversion of a polytope P between its H- and
V-representation, called facet and vertex enumeration problem [AB95]. This is a hard
problem [E. 15].
If we want to convert the H-representation of P into its V-representation we have to
compute all vertices of P . To achieve this we consider all permutations of d half-spaces
{h1, . . . ,hd} with hi ∈ H. Each permutation determines a point p. If the inequality
N · p ≤ o given by the matrix de�nition of P holds, p is a vertex v and belongs to
V. Otherwise it is a point caused by redundant half-spaces and does not belong to
the vertices which determine the convex hull of P (point p′ in Figure 2.6a). This
conversion can be done in O(Hd) [D. 92].
On the contrary, for the conversion of the V-representation into its H-representation,
we have to compute the convex hull of all vertices v ∈ V to specify the half-spaces
of P . The execution time of this conversion has the same time complexity as the
determination of vertices [AB95]. The convexHull -algorithm used by c++ library
HyPro is implemented according to Barber et al. [CB96]. In the following section
I de�ne operations on sets of polytopes essential for the �owpipe-based reachability
analysis: Membership, union, intersection, Minkowski-sum and linear transformation
[E. 15].

� (Membership) The membership of a point p ∈ Rd can be solved in linear time
dependent on d for H-polytopes. If N · p ≤ o holds for p the point lies inside
the polytope.

If we want to compute the membership for a V-polytope we have to solve fol-
lowing linear programming problem:

∃λv1 , . . . ,λvH : p =
∑
vP∈V

λvP · vP , λvP ∈ [0,1] and
∑
vP∈V

λvP = 1

� (Union) A union of two polytopes is in general not convex and therefore no
convex polytope anymore. Thus we de�ne the union of two polytopes as their
convex hull.

2.4. Operations on Polytopes 19

x

y

�

�

�

�

r3

r4

r2

r1

f4

f1

f2

f3

P

h3

h1

h4
h2

Figure 2.7: Facets describe the relevant part of half-spaces.

The uni�cation of two V-polytopes is the union of all vertices, which can consist
of redundant points.

P1 ∪ P2 := {v| ∀v ∈ VP1
∪ VP2

}

The union of two H-polytopes is computationally expensive because the united
polytope consists of new half-spaces. One possible algorithm converts the two
H-polytopes into their V-representations. After the application of the union for
V-polytopes the result is converted back into a H-polytope.

� (Intersection) The intersection of two H-polytopes is the uni�cation of their
half-spaces, which can result in redundant half-spaces.

P1 ∩ P2 := {h| ∀h ∈ HP1 ∪HP2}

If we compute an intersection of two V-polytopes, we follow a similar procedure
as for H-polytopes in union. First the V-polytopes are converted into their H-
representation. Afterwards we compute the intersection for this representation
and transform the result back into a V-polytope.

� (Minkowski -sum) The Minkowski -sum of two polytopes is de�ned as the addi-
tion of all elements of the two polytopes:

P ⊕ P ′ := {a+ b| ∀a ∈ P, b ∈ P ′}

The Minkowski -sum of two V-polytopes is a polytope described by the set of
points PointsM .

PointsM := {v + v′| ∀v ∈ VP , v′ ∈ VP′}

A possible version of the Minkowski -sum of two H-polytopes is the Minkowski -
sum of their V-representations.

20 Chapter 2. Background

� (Linear Transformation) A linear transformation can move, scale and/or rotate
a polytope P in the d-dimensional space. In general a linear transformation of
a point p ∈ Rd is de�ned as follows:

A · p+ b = p′ with A ∈ Rd×d, b ∈ Rd

This is easy to realize for V-polytopes. The transformed polytope P ′ can be
de�ned by the new set of points V ′ computed as follows:

V ′ := {v′ = Av + b| ∀v ∈ VP }

If we want to transform a H-polytope the only consistent element is the number
of half-spacesH. But every half-space can be modi�ed due to the linear transfor-
mation. Therefore we apply the linear transformation on the V-representation
of the H-polytope.

Chapter 3

Reduction

�The �rst job in Nehcaa went �ne after her house arrived. However the responsible
person was annoyed due to the money spent on the helicopter service. Later Alice got
a phone call and received her second job in Nehcaa. Without hesitation she ran to her
desk and started brainstorming. Alice thought, that of course the plan-house has to
become smaller such that she could carry it to Nehcaa without any additional e�ort.
First she planned to construct only the relevant walls without all the gadgets. Then
she stood up and monologized about di�erent lighter material and sat down again.
"Maybe I should build a small version of the house of plastic... but it could be easily
broken", Alice said. Then suddenly she jumped up and got a bunch of paper. How
about drawing the house!�

The size of a H-polytope P is proportional to the number of half-spaces H and the
dimension d plus di�erent overheads of the polytope OHP , a half-space OHhalfspace

and the number type OHNumber

De�nition 3.1. (Size of a H-polytope P)

size(P) = OHP +HP · (OHhalfspace + dP ·OHNumber)

The de�nition will be veri�ed in the next chapter using the software tool massif
from valgrind [Dev16]. The critical part of a H-polytope is the number of half-
spaces and their overhead which is large in high dimensions. Moreover the number
of half-spaces of polytopes grows with operations like the intersection (Section 2.4)
in�uencing contrary the execution time of operations.
The reduction of polytopes is similar to the approaches of Alice to simplify her plan-
house. The new versions require less space and the drawing on paper enables a faster
planning. Similarly, a reduction of half-spaces o�ers two advantages. First, a smaller
H-polytope consumes less memory. Second, the operations can be done faster if less
half-spaces have to be compared with guards, invariants or bad states.
The reduction of half-spaces leads to a reduction of the polytope P which I refer to as
Pred. The reduction Pred has to be an over-approximation to preserve the correctness
of any safety veri�cation algorithm (Figure 3.1).

reduce(P)→ Pred with P ⊆ Pred

This condition indicates the disadvantage of reduction. Alike the reachability analysis,
the segments have to be over-approximated. But the result of an algorithm using over-

22 Chapter 3. Reduction

x

y

P

Pred

Figure 3.1: A polytope P and a possible over-approximative reduction Pred.

approximations is not strictly the result of the original system. Reductions are one
additional over-approximation to the already over-approximated set representations.
We exchange an improvement in speed and memory consumption against a loss of
precision. To compute a reduction the original polytope P has to be considered,
regarding its half-spaces H and vertices V. Half-spaces of P have to be dropped or
replaced by new half-spaces to achieve a reduction. This can be done by multiple
di�erent strategies.
I focus on reduction in the context of reachability analysis for hybrid systems, thus I
de�ne di�erent criteria with following parameters:

� Timered: minimize(time(reduce(P)))

� Memory[P→Pred]: minimize
(
size(Pred)
size(P)

)
� V olume[P→Pred]: minimize

(
volume(Pred)
volume(P)

)
with volume(Pred)

volume(P) ≥ 1

If we regard only one criterion we get reductions we might not want. As an exam-
ple, we de�ne an algorithm to compute the smallest Pred possible (Memory[P→Pred]).
This yields a triangle in 2-dimensional space, a tetrahedron in 3-dimensional space
and so on (a polytope with the smallest number of half-spaces possible in the di-
mension). But volume(Pred) can be much greater than volume(P) and therefore the
reduction causes an intersection with a bad state in the context of reachability anal-
ysis of hybrid systems. In this case we have to include the criterion V olume[P→Pred].
Another point which has to be considered is the context in which the reduction is em-
bedded. If we are interested to store the result of a reachability analysis the criterion
Timered is of no interest. But if the reduction is used inside the reachability analysis
the algorithm has to be fast. There exists several applications of the reduction algo-
rithm only in the reachability analysis.
Besides hybrid systems the reduction of polytopes can be used as a pure graphical
tool to smooth objects too. If operations create polytopes with many half-spaces, an
over-approximative reduction can be used as a smoothing tool. Graphical programs
are known to consume a lot of memory and the smoothed polytopes requires less.
All these applications share some similar criteria but on the other hand they demand
an unique combination.

3.1. Strategies 23

pre-section

compute information I,
test P and i

main-section

compute Pred

post-section

test Pred

P,i,I

Pred

P,i

Pred ∨ P

Figure 3.2: The general structure of a reduction for a H-polytope P and input pa-
rameters i.

3.1 Strategies

I developed nine strategies which can be assigned to 3 di�erent families. All strategies
determine the set S:

� A drop-strategy erases a half-space h from P .

� drop performs the basic idea.

� dropSmooth additionally manipulates the neighbors of h.

� A unite-strategy computes a new half-space as an average of several half-spaces
from P and replaces them.

� unite focuses on two half-spaces a and b.

� uniteSmooth additionally considers the neighbors of a and b.

� uniteVertices uses the vertices of a and b.

� uniteWeight weights a and b with their volume.

� A directed -strategy replaces concerned half-spaces by speci�c directions given
as parameters, so that the appearance of Pred is in�uenced.

� directedLocal removes the locally concerned half-spaces.

� directedHorizon removes the globally concerned half-spaces.

� directedTemplate replaces P by an adjusted template polytope.

Each version of reduction can be split up in its pre-, main- and post-section (Fig-
ure 3.2). During the pre-section the required information of a H-polytope P is com-
puted: The half-spaces H, the vertices V and a map membersOfVertices to know
which half-space belongs to which vertex and therefore the neighborhood information
of half-spaces. The number of half-spaces is de�ned as H. While the half-spaces
belong to a H-polytope the vertices are computed by the conversion described in Sec-
tion 2.4 in O(Hd). The map membersOfVertices is determined as follows: for each
vertex v we deduce all half-spaces h ∈ H which ful�ll the equality nh · v = oh. The

24 Chapter 3. Reduction

x

y

�

P

h
Pred

(a) Drop the half-space h.

x

y

h

hl

hr

hlsmo

hrsmo

�

�

�

�

�

PPred

hlsmo =
hl + h

hrsmo =
hr + h

(b) Drop h and smooth the neighbors.

Figure 3.3: The strategies drop (a) and dropSmooth (b).

corresponding runtime is O(V H). If no information is needed the pre-section is dis-
pensable.
The main-section of the reduction uses the informations to modify P in a speci�ed
way to obtain Pred. The reduced polytope can be unbounded and has to be examined
in the post-section before the reduction returns a result-polytope. The time complex-
ity of each strategy refers to the pre- and main-section, because depending on the
application an unbounded reduced polytope can be wanted.

Characteristics for each strategy are:

� Input parameters

� Number of dropped half-spaces drop = HP − HPred with HPred < HP if we
disable the option to return a greater reduction

� time(reduce(P))

3.1.1 Drop a half-space of P

The strategy drop erases a requested half-space h of P .

reducedrop(P, h)→ Pred with h ∈ H

This strategy does not need any preparation in the pre-section. In the main-section
the half-space h is taken from P and we obtain Pred. Therefore this reduction can be
done in constant time (Figure 3.3a).

Characteristics of reducedrop:

dropdrop ∈ {0,1}
time(reducedrop) = O(1)

3.1. Strategies 25

x

y

a b
u

� ��

P

Pred u =
a+ b

Figure 3.4: A polytope P reduced by unite with a and b.

3.1.2 Modi�cation of Drop

The strategy dropSmooth is a modi�cation of the strategy drop (see Section 3.1.1) and
replaces each neighboring half-space n of h by a smoothed version nsmo additionally
to the deletion of h.
During the pre-section we collect all neighbors of h by calculating the map member-
sOfVertices. This information is used in the main-section to compute all smoothed
versions of the neighbors. I compute an addition of two half-spaces n and h as the
addition of their o�sets and normal -vectors. The normal -vector of nsmo is the aver-
age of n and h, therefore closer to the normal -vector of h. All neighbors and h are
deleted and all smoothed neighbors are inserted (Figure 3.3b).

Characteristics of reducedropSmooth:

dropdropSmooth ∈ {0,1}
time(reducedropSmooth) = O(Hd)

3.1.3 Unite half-spaces of P

The strategy unite replaces two neighboring half-spaces a and b with a half-space u
which represents their average.

reduceunite(P, a, b)→ Pred with a, b ∈ H

During the pre-section we verify if a and b are neighbors. In most cases it is impossible
to know the neighbor informations of the half-spaces beforehand. If this test holds
the reduction proceeds with the main-section.
The new union half-space u is the addition of a and b (as the addition in Section 3.1.2).
Then a and b are replaced by u (Figure 3.4).

Characteristics of reduceunite:

dropunite ∈ {0,1}
time(reduceunite) = O(Hd)

26 Chapter 3. Reduction

x

y

br

a

b al

u

�

�

P

Pred

u =
b+ al + a+ br

Figure 3.5: A polytope P reduced by uniteSmooth with a and b.

3.1.4 First Modi�cation of Unite

The strategy uniteSmooth extends the strategy unite (see Section 3.1.3). Instead of
computing the average of the half-spaces a and b this strategy �rst modi�es these
half-spaces.
The normal -vector of the new union half-space nusmo is the addition of nasmo and
nbsmo . Both vectors nasmo and nbsmo are determined by the sum of all neighboring
normalized normal -vectors:

nxsmo = nneix1 + nneix2 + . . .+ nneixNx

with x ∈ {a,b}, Nx = |neighborsx|, neixi ∈ {neighborsx} and i ∈ {1, . . . ,Nx}

The o�set ousmo of the new half-space is determined by evaluating every v ∈ V against
the new plane such that ∀v : nTusmo · v ≤ ousmo and ∃v : nTusmo · v = ousmo . With v
and nusmo I generate usmo as presented in Section 2.3. Then a and b are replaced by
usmo (Figure 3.5).

Characteristics of reduceuniteSmooth:

dropuniteSmooth ∈ {0,1}
time(reduceuniteSmooth) = O(Hd)

3.1.5 Second Modi�cation of Unite

Contrary to the basic strategy unite (see Section 3.1.3) the modi�cation uniteVertices
does not focus on the directions of a and b. Instead it determines the vertices the
half-spaces a and b belong to. A permutation of d vertices determines a hyperplane.
The normal -vectors of these hyperplanes in�uence the new half-space.
The new union half-space uver is computed as follows:

3.1. Strategies 27

x

y

u

�

�

�

�

�

P

b

a

vb

va

Pred

u
determined by

va,vb

Figure 3.6: A polytope P reduced by uniteVertices with a and b.

1. Detect all vertices which belong to the half-spaces a and b, but not to both of
them.

2. Create all permutations of d vertices.

3. Loop over all permutations and compute a potential normal -vector npot with
the vertices determined by the current permutation. The resulting vector has
the correct orientation if the scalar product of npot and a or b is greater than
zero. Otherwise npot = −npot.

4. Update a vector n as the addition (as in Section 3.1.2) of n and the normalized
version of npot. Then repeat the loop until all permutations are examined.

The normal -vector of uver is n. The correct o�set ouver is computed as in Section 3.1.4.
Then a and b are replaced by uver (Figure 3.6).

Characteristics of reduceuniteV ertices:

dropuniteV ertices ∈ {0,1}
time(reduceuniteV ertices) = O(V d)

3.1.6 Third Modi�cation of Unite

The strategy uniteWeight uses a weighting of the half-spaces a and b dependent of
the volume of the facets fa and fb while the basic strategy unite 3.1.3 executes the
pure addition.
The normal -vector nuwei of the union half-space uwei is the weighted addition of the
normalized normal -vectors of a and b.

nuwei = wa · na + wb · nb with wa,wb ∈ Q

Both weights represent the volume of the facet fa and fb of their half-spaces. In 2-
dimensional space the volume is de�ned as follows: A facet f has two ridges which are
at the same time two vertices V1 and V2 of P . The volume of f is the norm of V1−V2.
If the dimension of P is higher the weights are computed by an approximative method
(Figure 3.7a). The norm of a crossproduct of two vectors represents the volume of

28 Chapter 3. Reduction

x

y

a

b
c

d
bc

cd

f

(a) Determine the average of norms.

x

y

�

�
b

a

u
�

P wb

wa
Pred u =

wa · a+ wb · b

(b) Compute the weighted average of a and b.

Figure 3.7: Volume-approximation of a 2-dimensional facet f with the ridges a,b,c,d
(a) and the reduction with uniteWeight of a polytope P (b).

the spanned parallelotope. I determine the norms of all neighboring ridges of a facet.
The average of these norms represents an approximative volume of the facet. For each
facet I loop over all permutations of d neighboring vertices {v1, . . . ,vd}. All permu-
tation vertices determine one hyperplane but a corresponding normal -vector n with
a particular norm. The vector n is computed as the cross-product of all di�erence-
vectors dfi = vi − v1 ∀i ∈ {2, . . . ,d}. The norms of these cross-products are added
and normalized by dividing through the total number of cross-products. Finally we
achieve the approximative volume sizef of a facet f . These sizes are used as weights
wa = sizefa and wb = sizefb . The o�set ouwei is computed as in Section 3.1.4. Then
a and b are replaced by uwei (Figure 3.7b).

Characteristics of reduceuniteWeight:

dropuniteWeight ∈ {0,1}
time(reduceuniteWeight) = O(2 · V d)

3.1.7 Replace Half-spaces of P by a Template Polyhedron

The strategy directedLocal receives a set of directions, computes the correct half-spaces
and erases all concerned half-spaces of P .

reducedirectedLocal(P, directions)→ Pred

with directions = {d1, . . . ,dD}, ∀di ∈ Rd and D the number of directions given.

In the pre-section the vertices V and membersOfVertices are computed. Option-
ally we can test if HPred ≥ HP holds and return P as the result. The �nal number
of half-spaces HPred depends on the P and directions and not simply on H and D.
Even if D ≥ H holds, several directions can be redundant and HPred is still smaller
than H.
The main-section consists of a loop through all given directions:

3.1. Strategies 29

x

y
d1 d2

d3

d4

�
v

P

cone

(a) The cone de�ned by d1 and d2 is
extended by d4 but not by d3.

x

y

d1
�

�

�

P Pred

d1

is input

(b) The direction d1 is used as input and the dotted
facets are locally concerned.

Figure 3.8: Usage of a cone to deduce redundant directions (a) and the reduction
with directedLocal of a polytope P (b).

1. Find the correct vertex vdi for the current direction di ∈ directions such that
dTi · vdi = odi and d

T
i · v ≤ odi for all other v ∈ V.

2. Loop through all members of vdi in membersOfVertices and erase them from P .

3. Insert the new half-space into P .

The directed -strategies have one disadvantage against the other families. If more than
d new directions are mapped to a vertex v the strategies create redundant half-spaces.
They can be removed while reducing. Therefore a cone conev is created for each ver-
tex v of d half-spaces (Figure 3.8a). For details on polyhedral cones I refer the reader
to Ziegler [Zie95]. If a new direction dnew is mapped to v we can test if dnew is inside
the cone or not. Following a failed test we update the cone and remove the newly con-
tained half-space. An alternative is to use the method removeRedundantPlanes(Pred)
from c++ library HyPro after the reduction. This function examines a H-polytope
PH while testing PH/{h} for all h ∈ H. If PH/{h} = PH the half-space h is redundant.
A renouncement of this test increases the speed of reduces(P) and the size of Pred
for strategies using template directions (Figure 3.8b).

Characteristics of reducedirectedLocal:

dropdirectedLocal ∈ {dropbegin, . . . , dropend}
time(reducedirectedLocal) = O(Hd)

To determine a polytope in d-dimensional space we need at least d + 1 half-spaces.
Therefore we set dropend = H − d+ 1 if D > H − d+ 1 and otherwise dropend = D
due to the removing of only locally concerned half-spaces. If the option to return P
if HPred > H is enabled the bound dropbegin is 0 and otherwise H −D such that it
can be negative.

3.1.8 First Modi�cation of Directed

The strategy directedHorizon is de�ned as directedLocal 3.1.7 with one di�erence: In-
stead of collecting only members of vdi , all half-spaces h ∈ H with hT · di > 0 are

30 Chapter 3. Reduction

x

y

d1

�

�

�

P Pred

d1

is input

Figure 3.9: A polytope P reduced by directedHorizon with direction d1.

erased from P . They determine the horizon of the direction di ∈ directions (Fig-
ure 3.9).

Characteristics of reducedirectedHorizon:

dropdirectedHorizon ∈ {dropbegin, . . . , H − d+ 1}
time(reducedirectedHorizon) = O(Hd)

If the option to return P if HPred > H is enabled the bound dropbegin is 0 and
otherwise H −D such that it can be negative.

3.1.9 Second Modi�cation of Directed

The strategy directedTemplate works as the strategy directedLocal (see Section 3.1.7).
But instead of receiving a set of directions as input this strategy needs only an as-
signment for a constant t.
The strategy uses an automatic generation of directions: I compute t vectors starting
with the vector v by rotating t times with an angle of 360°/t. The computed set of
vectors describes an uniformly distributed set of directions in two dimensions. These
vectors are �lled into empty d-dimensional vectors at the positions of two dimensions
such that all dimension pairs are covered. For example, if we are in 3-dimensional
space and specify t = 7 we compute a heptagon for the dimensions (1,2), (1,3) and
(2,3). With this vector generation it is possible to create polytopes in each dimension.
Therefore I combine every generated direction with the o�set o = 1 and the result is
a bounded uniform polytope T .

The structure of this reduction is the same as in Section 3.1.7. The reduction Pred
is the template polytope T with diverse o�sets and P does not require to be modi-
�ed. The post-section is skipped, because Pred is per de�nition bounded (Figure 3.10).

3.2. Comparisons 31

x

y

d1

d2

d3

d4

� �

� �

� �

� �

�

P

Pred

Figure 3.10: A polytope P reduced by directedTemplate with T[d=2,t=4].

Characteristics of reducedirectedTemplate:

dropdirectedTemplate ∈ {0, H −D}
time(reducedirectedTemplate) = O(Hd)

If the option to return P if HPred > H is enabled dropdirectedTemplate is 0 and other-
wise H −D such that it can be negative.

3.1.10 Tests in Post-Section

Certain properties of Pred have to be checked in the post-section of the reduction. The
reduction Pred can be unbounded. If the test isBounded(Pred) does not hold P is
returned. To test this property I use linear optimization in the direction of removed
half-spaces. If the maximization returns unboundedness, Pred is unbounded itself.
The strategy directedTemplate returns a bounded reduced polytope Pred due to its
uniform distributed directions. If this strategy is used the test isBounded(Pred) is
omitted.
During the development of the strategies I tested if P is contained in Pred. If this
test does not hold, the implementation of the strategy is broken, due to the de�nition
of Pred. Each strategy computes an over-approximation, but numerical accuracy can
lead to wrong computations in case �oating point arithmetic is used.
If all tests are passed the reduction returns Pred and otherwise P .

3.2 Comparisons

Every strategy focuses on di�erent details of the input polytope P . But all of them
share functionality such that the behavior is alike in speci�c situations. The unite-
strategies return the same Pred if we reduce Punite. Another example are the strategies
directedLocal and directedHorizon, which compute only one Pred if we reduce Pdirected.
On the other hand, for every strategy a polytope P exists which results in a unique
reduction Pred. Furthermore on certain polytopes one strategy s can be the best
regarding the criterion V olume[P→Pred].

In this passage I examine relations of the developed strategies. For this purpose I

32 Chapter 3. Reduction

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

a b

(a) The unite-strategies (red) behave sim-
ilar.

-1

-0.5

 0

 0.5

 1

-200 -100 0 100 200

(b) The strategies uniteWeight and
dropSmooth are close to drop.

Figure 3.11: Possible reductions of the polytopes Punite (a) and Pequal (b).

use several representative polytopes to display the similarities and di�erences. The
polytopes are de�ned in the Appendix A.1. First I present the similarities between
the strategies.

� (Punite for the unite-strategies):
The four strategies di�er if the two half-spaces a and b have di�erent sizes in
d = 2 or if they have di�erent shapes for d > 2. Moreover if the neighbors of a
and b are not symmetric the uniteSmooth-strategy returns di�erent reductions
than the other unite-strategies. Symmetric for two half-spaces a and b of a poly-
tope P means that for every neighbor na of a with the scalar product SPa,na a
neighbor nb exists with SPb,nb = SPa,na .
The behavior is equivalent because the information taken by the extended
unite-strategies results in the same addition: The strategy unite adds a and
b. The �rst modi�cation uniteSmooth adds asmo and bsmo. The scalar prod-
ucts SPa,asmo and SPb,bsmo are the same and therefore the modi�cation has no
in�uence. The result of uniteWeights is similar because the weights are iden-
tical and non-relevant. In 2-dimensional space the normal -vector deduced by
the strategy uniteVertices is explicit and represents the missing facet fc of an
isosceles triangle determined by the facets fa and fb. Therefore fc has the same
angle to fa and to fb. The addition of a and b represents exactly this facet fc.
Every single explanation is meant for Punite and the reduction as done in Fig-
ure ??. In this case it is better to apply always the fastest strategy unite.

� (Pequal for the strategies drop, dropSmooth and uniteWeight):
Computing the average of the half-spaces a and b by the strategy uniteWeight
requires the volume of their facets. If the proportion of volumes is extreme the
reduction is close to the result of drop erasing the half-space with the smaller
facet. Another similarity can be found between drop and dropSmooth. If the
scalar products SPh,hl and SPh,hr are close to 1 the e�ect of modifying the
neighbors is negligible. In this case it is better to use the fastest strategy drop

3.2. Comparisons 33

-1

-0.5

 0

 0.5

 1

-4 -3 -2 -1 0 1 2 3 4

(a) The directed-strategies (red) behave
similar.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-30 -25 -20 -15 -10 -5 0 5 10

(b) uniteVertices (red) is equal to
uniteWeight.

Figure 3.12: Possible reductions of the polytopes Pdirected (a) and PuniteExtended (b).

(Figure 3.11b).

� (Pdirected for the strategies directedLocal and directedHorizon):
As I described in Section 3.1.8 these two strategies di�er only in the fact that
directedHorizon removes more half-spaces than directedLocal. If there are no
additional half-spaces which ful�ll the criterion, these two strategies are similar
(Figure 3.12a).

� (PuniteExtended for the strategies uniteVertices and uniteWeight):
Even if both strategies focus on di�erent details they return the same results
(Figure 3.13, 3.12b). The explanation for this behavior is that the strategies
compute the facet fc of an triangle determined by fa and fb. In other words,
let us consider a triangle ABC with fa the facet between the vertices AB, fb
between BC and fc between CA. The strategy uniteVertices computes fc. The
normal -vector of fc can be represented as a 90° rotation of C−A. The strategy
uniteWeight adds the normalized normal -vectors na and nb depending on their
weights. To stay consistent with the triangle example, the weighted normalized
normal -vectors n′a, n

′
b of a and b are the 90° rotations of A − B and B − C,

in the correct directions. The addition of n′a and n′b corresponds to the 90°
rotation of the addition of A−B and B −C which is the normal -vector of the
facet fc determined by uniteVertices. Only the number of cross products, which
have to be calculated and therefore the runtime, di�ers. In higher dimensions
uniteVertices is faster. The strategy uniteWeight computes the size of two facets
and therefore (worst case) O(2 ·V d) crossproducts for d > 2 while uniteVertices
has to deal with O(V d) crossproducts. The similarity can only be found in 2-
dimensional space because the half-space u of uniteVertices is explicit and the
volume of facets is computed precisely. In higher dimensions both computations
refer to approximative methods.

Next I examine the di�erences between the strategies. I do not consider the di-
rected -strategies because they depend on the given directions. Once the directions
are determined the strategies behave similarly to the unite-strategies. Moreover they

34 Chapter 3. Reduction

x

y

nb

na

nc

�

�

�

fa

fbfc

A

B

C

Figure 3.13: The addition na+b returns fc rotated by 90° to the left.

can reduce more than one half-space at once. This yields a greater volume increase.
I declare a strategy as the best strategy causing the smallest volume increase for an
exemplary polytope due to the empirical results of the experiment in Section 4.1.

� (PdropBest) The polytope PdropBest is a square with a small corner missing. The
size of the corner -facet fc of the half-space c is small compared to the other
sizes (Figure 3.14a). A drop of c returns the square and the volume increase is
small compared to the actual size of PdropBest.
Every other strategy computes with more than one half-space and returns a
bigger reduction.

� (PuniteBest) The reduction PredBest of PuniteBest can be computed by all unite-
strategies. The polytope PuniteBest is a regular square. The result PredBest
is a triangle which consists of PuniteBest in addition to two triangles TU1

and
TU2

(Figure 3.14b). These triangles have in total the volume of the square.
If we consider the drop-strategies we notice, that the right angle between all
half-spaces prohibits the use of the strategy drop. The dropSmooth strategy
works but computes always a triangle with three sub triangles TD1 , TD2 and
TD3

besides the original square. The two greater sub triangles have in total the
volume of the square and the third the volume of the quarter square. Therefore
the unite-strategies are better than dropSmooth for PuniteBest.

� (PuniteV erticesBest = PuniteWeightBest) As explained before these strategies be-
have the same. This polytope is a rectangle with a greater side. The strategies
unite and uniteSmooth do not consider the size of the facets and therefore cause
a huge volume increase. The two remaining unite-strategies compute a poly-
tope PredBest which is a triangle the volume of which is double the volume of
the original rectangle as for PuniteBest. Additionally, for the same reason the
drop-strategy can not be used for this polytope and the strategy dropSmooth
computes a greater polytope too (Figure 3.12b).

3.3 Heuristic for Polytope Reduction

In this section I present a heuristic Heu to decide which strategy along with which
half-space or half-spaces can be used for a good reduction. Good in this case means

3.3. Heuristic for Polytope Reduction 35

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

c

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

c

(a) The strategy drop performs the best
reduction.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3

P

TU1

TU2

TS1
TS3

TS2

(b) The unite-strategies (red) are better
than dropSmooth (yellow).

Figure 3.14: Representative polytopes PdropBest (a) and PuniteBest (b).

that the decision leads to Pred with a small volume increase. The heuristic Heu choses
between the drop- and unite-strategies, because the directed -strategies depend on the
directions which are given as input. There exists in�nitely many possible directions.
If these strategies are excluded, there is only a �nite number of possible parameters
due to the �nite half-spaces which de�ne a polytope. I am interested in a fast and
non-perfect procedure in order to reduce computation time at the cost of precision.

Heu(P)→ Pred

My de�nition of Heu is in�uenced by Frehse [Fre08] and examples PsBest presented
in the prior Section. The heuristic Heu has two types of measures: the scalar product
SPx,y of two neighbor half-spaces x and y; and sizef , the volume of a facet f .
I explain my intuition for the weights:

� The volume increase for the strategy drop depends on the size of the facet fh of
the half-space h I want to drop and the scalar product of h with the neighbors.
A small sizefh and great scalar products cause a small volume increase.

� The strategy dropSmooth is a good choice if the size sizefh is big while the
sizes of the neighbor facets are small. Equivalent to the strategy drop if the
scalar products are close to 1 (i.e. if the normal -vectors are similar) the volume
increase is smaller.

� If the scalar products are close to 1, especially the scalar product SPa,b the
average of the half-spaces a and b causes a good reduction.

Of course this intuition is not perfect. But it represents the basic advantages and
disadvantages of the strategies, which depend all on di�erent parts of P . The heuris-
tic Heu has to examine strategies and input parameters in order to deduce a good
decision.

De�nition 3.2. (Heuristic Heu) In the beginning Heu computes V, membersOfVer-
tices and membersOfHalfspaces. Next the size of each facet (complexity: O(H · V d))

36 Chapter 3. Reduction

and the scalar product (of normalized normal -vectors) of all neighbor-pairs (complex-
ity: O(H2)) are determined and saved in sizesOfFacets and scalarproductsOfHalfs-
paces. The sizes are computed as the weights of the strategy uniteWeights in Sec-
tion 3.1.6. The initialization of sizes dominates the time complexity. The scalar
products SPx,y are added by one: SP ′x,y = SPx,y + 1. This modi�cation ensures that
the weights are positive.
After this initiation-process H computes the best decision for the strategies:
drop, dropSmooth, unite and uniteVertices. These are the formulas for the weights:

weightdroph =
scalarproducts

sizefh
,

scoredropSmoothh =
sizefh · scalarproducts

sizes

with scalarproducts =
∏
xy SPx,y for all half-spaces x,y where x = h or y = h,

sizes =
∏
x sizesOfFacets(x) for all facets of neighbors x and fh the facet of the

half-space we want to drop.

weightuniteab = 2 · SPa,b + scalarproducts

with scalarproducts =
∏
xy SPxy for all half-spaces x,y where only one of them is

the half-space a or b.

After computing the weightuniteab the heuristic Heu compares the sizes sizefa and
sizefb . If the smaller size sizemin is less than x · sizemax I chose as result for the
unite-strategies uniteVertices, otherwise the strategy unite. In contrast to unite the
strategies uniteVertices and uniteWeight consider the size of facets. Moreover, uniteV-
ertices is faster than uniteWeight.
Besides the weights the indices of the most promising half-spaces are remembered.
All weights are compared and the strategy with the highest weight is taken as the
strategy to reduce P with. Finally the reduction Pred is the result of Heu.

The heuristic Heu can be modi�ed in multiple ways. The weights and its compo-
nents can be combined with o�sets and constants. For example the constant x used
to decide which unite-strategy is not de�nite. During my experiment I de�ne x = 0.8.
If x is close to 1 Heu chooses uniteVertices in most cases which can result in a slower
but more precise reduction (if the unite-strategies are chosen).

Chapter 4

Experimental Results

�Equipped with her new ideas Alice started the planning of her house. Right as she
was about to start she paused again. When should the house be planned on paper?
Maybe after she �nished constructing the house of solid brick. Then she could do a
precise plan and take the plans with her. But this would need even more time as the
last time. On the other hand the responsible person would not be upset again. Or
an even better solution: I construct a skeleton of the house and from this point on I
develop the house on paper. But in this case I have to be as general as possible. A
theory-house made on paper could be stable while the real construction would collapse!�

In this chapter I examine how reduction of polytopes in�uences �owpipe-based reach-
ability analysis. Does reduction of segments provides e�cient modi�cations for reach-
ability analysis algorithm? In the beginning, I reason about the size calculation of a
H-polytope (De�nition 3.1). Then I apply reduction using the previously developed
heuristic Heu on representative polytopes examining Timered and V olumeP⇒Pred .
The second experiment concerns the storage of the set of reachable states R from a
�owpipe-based reachability analysis of hybrid systems. I use the model of a bouncing
ball as de�ned in Section 2.1. Next, I apply reduction to the reachability analysis
itself in order to ameliorate its memory consumption. Instead of saving each segment
I save a reduction of a set of segments. The last experiment focuses on reducing the
execution time of reachability analysis. As a more detailed object (e.g. a polytope
with many half-spaces) usually causes longer execution times for operations, I ex-
amine reduction of objects regarding on the overall execution time for reachability
analysis.

(Veri�cation of De�nition 3.1): To con�rm my de�nition for the size of a H-polytope I
create a template-polytope T depending on the parameters t and d as in Section 3.1.9.
I make use of the heap pro�ler called massif from the software valgrind to analyze
the actual memory consumption of the systems heap [Dev16]. The tool distinguishes
between parts of the executable. Thus I can deduce the actual size of the H-polytope.
It is possible to run the program with di�erent combinations of t and d to compare
the data (see Table 4.1a) with the developed function.

From our tests we can deduce a linear development if we consider the size of poly-
topes as a function of the number of half-spaces Heu for every dimension d ∈ {2,3,4}

38 Chapter 4. Experimental Results

Table 4.1: Sizes of template-polytopes

t
d

2 3 4

50 2 12 24
100 6 24 48
500 24 96 192
1000 48 192 384
2000 96 384 768

(a) The sizes (in kByte) of template-
polytopes depend on t and d.

0 500 1,000 1,500 2,000
0

20

40

60

80

100

H/counts

si
z
e P

/k
B
yt
e

(b) Sizes of 2-dimensional polytopes de-
pendent of H (massif is solid, function
(see De�nition 3.1) is dotted).

Figure 4.1: Sizes of polytopes determined by massif (a) and plotted (b).

(Figures 4.1b, 4.2a and 4.2b). The dotted line represents the function de�ned in 3.1
and is close to the values determined by massif (values and linear regression as solid
line). The developing of a function for the size of a H -polytope is important for the
next experiments. The use of massif has a huge drawback. The execution time of a
program increases and an analysis of the actual time of the algorithm is impossible.
A possible analysis is a sequential execution. First we execute the program itself to
measure the time and then apply massif to determine the size of the polytope.

4.1 Reduction for Polytopes

In this experiment I apply each strategy presented in Section 3.1 except of the directed -
strategies and the heuristic Heu on representative polytopes in the dimension 2 to
5. While the heuristic Heu returns a �nal Pred the single strategies have to be
applied on every half-space h or every neighbor-pair of half-spaces (a,b). Therefore
I loop over all half-spaces and all pairs of half-spaces. Instead of returning all result
polytopes I display the best reduction for each strategy corresponding to the criterion
V olumeP⇒Pred .
The volume of a polytope volume(P) is calculated by a sampling based approximation.
Depending on the boundaries dimin and dimax of each dimension di with i ∈ {1, . . . ,d}
I create a grid of d−dimensional points. Each point represents a d−dimensional cube
of a speci�c volume:

volumeCube =

d∏
i=1

(dimax − dimin)

r
.

A high resolution r leads to a more precise grid but increases the execution time of
the approximation. If a point is contained in the polytope the volume of the cube is
added to the volume of the polytope P .
In the beginning I compute the absolute size volume(P), such that I can calculate
the relative volume increase for every reduction Pred.

4.1. Reduction for Polytopes 39

I show the results of one polytope in each dimension (Table 4.1). The remaining
results are added in the Appendix in Section A.2. The formal de�nition of each poly-
tope can be found in Appendix in Section A.1.

Table 4.1: Reduction of PuniteBest, P3dCube, P4dCube and P5dCube

PuniteBest P3dCube

strategy V[r=400]/% i time/ms V[r=100]/% i time/ms

drop × × 0.07 × × 0.07

dropSmooth 125 0 0.23 365 1 0.52
unite 100 (2,1) 0.23 110 (5,1) 0.49

uniteSmooth 100 (2,1) 0.22 110 (5,1) 0.52
uniteVertices 100 (2,1) 0.27 110 (5,1) 0.71
uniteWeight 100 (2,1) 0.23 110 (5,1) 0.75
Heu[x=0.8] 100 unite(1,0) 0.22+0.23 110 unite(2,0) 1.4+0.51

P4dCube P5dCube

strategy V[r=25]/% i time/ms V[r=12]/% i time/ms

drop × × 0.07 × × 0.07

dropSmooth 1100 1 1.7 3700 0 7.5
unite 130 (3,1) 1.64 85 (2,0) 7.4

uniteSmooth 130 (3,1) 1.77 85 (2,0) 7.5
uniteVertices 130 (3,1) 5.84 85 (2,0) 439
uniteWeight 130 (3,1) 8.78 85 (2,0) 807
Heu[x=0.8] 130 unite(2,0) 33+1.7 85 unite(2,0) 4133+7

V is the relative volume increase approximated with the resolution r, the column i
determines the input parameters and time represents the execution time of the

reduction. For H the time is de�ned as timeheuristic + timereduction. A "×" means
that for all i the reduction is unbounded.

My �rst observation is that while the dimension d and the number of half-spaces H
increase linearly, the execution time augments much faster. Only the execution time
of the strategy drop rises slowly. The strategy itself has the time complexity O(1) but
the test isBounded(Pred) depends on the polytope Pred. The strategies dropSmooth,
unite and uniteSmooth have a similar execution time. The strategies uniteVertices
and uniteWeight are always slower. The measured execution times correspond to the
time complexities of the strategies. The heuristic Heu has the worst performance. In
Figure 4.3 I plot the number of half-spaces in relation to the execution time and the
dimensionality of the respective objects. The bottleneck for the calculation of Heu is
the computation of sizes. If we remove this part the value time decreases from ≥ 3 h
to 69 s for PT[d=5,t=6]

. The remaining time of 69 s is dominated by the computation of
the V-representation of the polytope with 48 half-spaces. The knowledge about the
vertices of the polytope P is indispensable for the heuristic and the reduction.
The results of the heuristic Heu are not satis�able (Heu returns a Pred worse than
PredBest in 7 of 14 cases). But this was not my aim in the �rst place as I pointed
out in Section 3.3. The heuristic Heu has to be fast which is not satis�ed as well

40 Chapter 4. Experimental Results

0 1,000 2,000 3,000 4,000 5,000 6,000
0

100

200

300

400

H/counts

si
z
e P

/k
B
yt
e

(a) d = 3

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

200

400

600

800

H/counts

si
z
e P

/k
B
yt
e

(b) d = 4

Figure 4.2: Sizes of d-dimensional polytopes dependent of H (massif is solid, function
(see De�nition 3.1) is dotted).

and therefore it is not usable in general because of its bad execution time in higher
dimensions. An example for an examined hybrid system, the 10 vehicle platoon is
31 dimensional and its initial set consists of 2 · 31 = 62 half-spaces [X. 15], as every
variable is bounded by an interval initially and therefore needs two half-spaces. During
a reachability analysis the number of half-spaces of the computed segments usually
grows. Thus, a fast algorithm to compute or approximate the volume of a facet is
needed to create e�cient heuristics.

4.2 E�cient Storing of a Set of H-Polytopes
The result of reachability analysis is the set of reachable states R and consists of
several �owpipes. If a segment of one �owpipe is contained in another segment the
hybrid system has a �xed-point. Each segment is represented as H-polytopes in our
setup. The size of a �owpipe is the sum of sizes of all segments. Depending on the
timestep, timebound and hybrid system itself the result R can be meticulous and large
as the house of solid brick developed by Alice. In this experiment I test a composition
of algorithms to decrease the size of a result R which has no �xed-point. This idea is
similar to the �rst approach of Alice. I use a combination of a convexHull-algorithm
and the reduction of polytopes to create a reduced version Rred of R. The size of the
new result is smaller and its �owpipes still do not intersect in order not to create an
additional �xed-point.

I use the hybrid system of a bouncing ball model de�ned in Section 2.1. The re-
sult is RbouncingBall. We use double precision for our computation, and the constants
timestep = 10 ms and timebound = 4 s. I iterate over the �owpipes of RbouncingBall
and create the convex hull of up to c segments (the last convex hull which is com-
puted on a �owpipe is a cluster of clast ≤ c segments). Each convex hull is reduced
by the strategy directedTemplate[d=2,t] with the variable t. This strategy is one of
the strategies which can decrease the number of half-spaces by more than one in a
single reduction step. Moreover it depends only on one variable and the reduction is
bounded by de�nition. The c segments are replaced by the reduced convex hull. I

4.2. E�cient Storing of a Set of H-Polytopes 41

0 10 20 30 40
0

1,000

2,000

3,000

4,000

H/counts

ti
m
e/
m
s

d = 2
d = 3
d = 4
d = 5

Figure 4.3: Time of heuristic Heu approximated by a polynomial curve in dependency
of the number of half-spaces H.

de�ne a condition for Rred, which is violated if the �owpipes of Rred intersect and
the �owpipes of R do not.

(cmax and tmin for R) If the convex hulls of two or more �owpipes intersect R has an
upper bound cmax such that for every c > cmax the �owpipes of the reduction Rred
intersect. The upper bound for cmax is the highest number of segments of a �owpipe.
If cmax exists R can have a lower bound for the variable t de�ned as tmin such that
for every t < tmin the �owpipes of the result Rred intersect. These constants restrict
the amount of possible assignments.

The obtained reduction Rred can violate the condition depending on c and t. There-
fore I have to test if the resulting �owpipes of Rred intersect. Additionally I test if all
segments of RbouncingBall are contained in Rred. This can be false due to numerical
instability. Moreover Rred depends on two decisions. If I remove the redundant planes
(1) or not (2) and if I allow the reduction to reduce with a set of directions which is
greater than the number of half-spaces of the convex hull. I test both options (1) and
(2) and expect option (1) to return a smaller Rred and (2) to be faster. Furthermore
I allow to reduce a polytope even if the number of new half-spaces is greater than the
number of original half-spaces. If we input the convex hull of c clustered segments
into the method removingRedunantPlanes the computation does not terminate (due
to problems with the linear optimizer).
If the tests hold we calculate the relative size decrease sizedecrease := size(Rred)/size(R).
The reduction Rred depends on the variables c for the clustering and t for the reduc-
tion by directedTemplate[d=2,t]. In the case of c = 1 no convex hull is computed at
all. For a big c and small t the sizedecrease might be small, but the probability of an
intersection of �owpipes is huge. A greater t prevents Rred from intersecting, but the
size of Rred grows.
First I perform the reachability analysis to obtain RbouncingBall with a size of 480656
Byte. Next I compute Rred without the reduction of the convex hull. The main part
of the experiment consists of the iteration through multiple assignments of c and t

42 Chapter 4. Experimental Results

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10

Figure 4.4: The best Rred (orange) for c = 43 and t = 50 with sizedecrease = 3.2%.

with the options (1) and (2).

The results are plotted in Figure 4.5a (1) and 4.5b (2) and the single values stand
for:

� The green values represent sizedecrease of the pure convex hulls.

� The blue values stand for successful computations of Rred for multiple t.

� The red values belong to a t and show the �rst value of c which leads to an
intersection.

The characteristic constants cmax and tmin exist and can be set to cmax = 59 and
tmin = 7. The detailed data of the test is added in the Appendix A.3. The experiment
with the setting (1) returns the best value for c = 43 and t = 50 with sizedecrease =
3.2% (Figure 4.4). The best value of setting (2) is sizedecrease = 9.2% for c = 16 and
t = 15. The red values of (1) describe an exponential drop with a weak increase in
the end, while the development of red values of (2) seems to be subject to quadratic
evolving. If we increase c and t while using option (1) the result is below 11% which
is a satisfying reduction. Moreover the values (blue and red) of (1) lie below or on
the green values. This behavior depends on the removing of redundant planes. Every
plane which was unnecessarily added by the reduction is removed and the worst case
is that the number of half-spaces left corresponds to the original convex hull. The
values (blue and red) created by using option (2) do not show this property. If we
increase c and t with option (2) the size of the reduction converges to the size of the
original result. For t = 500 the size of Rred is 85.3% of size(RbouncingBall).
The only bene�t of option (2) against option (1) is the fact that every iteration of
(2) has an execution time less than 4 seconds, while the execution time of some
iterations of (1) are as much as 40 seconds. Though, the augmented execution time
and size(Rred) appear only for high c and t, the successful computations of Rred for
c ≈ 30 are e�cient for both options. Therefore I determine that option (1) is the
better algorithm.

4.3. Improvement of Memory Consumption 43

0 10 20 30 40 50 60
0

20

40

60

80

100

c

si
z
e d
e
c
r
e
a
s
e
/%

(a) Reduction with removing redun-
dant half-spaces.

0 10 20 30 40 50 60
0

20

40

60

80

100

c

si
z
e d
e
c
r
e
a
s
e
/%

(b) Reduction without removing re-
dundant half-spaces.

Figure 4.5: The size decrease in dependency of c with only clustering (green), reduc-
tions with intersecting �owpipes (red) and without (blue).

4.3 Improvement of Memory Consumption

During a reachability analysis the default algorithm saves every segment as a H-
polytope. The single segments are needed to check if a �xed-point is reached. This
part of the algorithm can be replaced by storing the reduction of a cluster of several
segments. Therefore the �xed-point check has to be executed with the reduction of
segments. If the test holds the �owpipe has to be recalculated, otherwise the algo-
rithm proceeds. The recalculation implies a drawback concerning the execution time.
However in this experiment I concentrate on the bouncing ball model with no �xed-
point. Results of the last experiment in Section 4.2 show, that Rred can be reduced to
≈ 5% of the size of RbouncingBall. In this experiment the �owpipes are modi�ed with
the same procedure as in the last experiment, but with reduction carried out during
their computation. I expect similar results concerning sizedecrease. The important
aspect of this experiment is the additional time which is required for the convexHull-
algorithm and the reduction of polytopes. In the end every user has to decide which
values of timeincrease are bad. I say that a timeincrease of 200% for a sizedecrease of
5% is a fair exchange.

Initially I perform the forward �owpipe-based reachability analysis to determine
size(RbouncingBall) = 480656 Byte and time = 2619 ms. The value for time is
the average of 10 executions. Then I apply reduction with the same parameters as
in Experiment 4.2 to replace the computed segments by their reduced convex hull.
Instead of removing all original segments by their reduction, I remember the segments
which are required to compute the discrete-transition. If we perform this step with
the reduced segments we lose the precision of the non-modi�ed reachability analysis.
The result Rred has to be veri�ed and if the �owpipes do not intersect the new size
and the additional execution time can be analyzed. I perform the modi�ed reacha-
bility analysis with multiple assignments of c and t which are in�uenced by the last
experiment (Section 4.2). I am interested in the pairs (t,cGood) and (t,cBad) with

44 Chapter 4. Experimental Results

cGood < cBad. The �rst pair computes the last Rred with no intersection while the
second pair returns a Rred with intersection depending on a �xed t. Moreover, I ex-
ecute the experiment again having removed redundant planes (1) and keeping them
(2). I expect an time advantage in the modi�ed reachability analysis without remov-
ing the redundant planes compared to the analysis which removes them.
The detailed results are put in the Appendix A.4. The best values for sizedecrease
are 11.2% for t = 25 and c = 25 (2) and 5% for t = 75 and c = 47 (1). As ex-
pected the best computation with option (1) is slower than the best of option (2):
257% > 183% (6.7 s> 4.8 s). But there exist several Rred from option (1) which
have a better sizedecrease and a similar timeincrease. For t = 20 and c = 15 we obtain
timeincrease = 183% with sizedecrease = 8.6% which is less than the best size decrease
of option (2). The fastest computation (2) returns a result with sizedecrease = 14.2%
for t = 15, c = 12 and timeincrease = 167% (4.4 s). For high c and t option (1) has a
timeincrease of up to 1684% (44 s) while the highest value of option (2) is 506% (13
s). Both modi�cations cause an increasing of execution which renders the method
unusable time increase for t = 500 and c = 57. But the option (2) can be the more re-
liable choice even if sizedecrease is not even noticeable at some point. If the �owpipes
computed by reachability analysis can be analyzed in advance somehow (for example
a reduction dependent on the size of the input polytopes) option (1) can be used with
reasonable assignments for c and t.

During the experiment I noticed one problem of numerical instability. Depending
on the uniformly generated directions computed by the algorithm described in Sec-
tion 3.1.9 the computations inside the reachability analysis can be precise, lack preci-
sion or do not terminate. Therefore I use two di�erent start vectors for the generation
of directions: v = (1,0)T and v∗ = (1,1)T which can prevent this behavior. In general
the generation is done with v but for some t it did not work. The computation did
not terminate or the output was distorted. For these situations I chose v∗ marked as
t = i∗ in the tables of this experiment. The empty entries of the tables are caused
by the failure of any performed computation. The use of v and v∗ should have no
in�uence.

4.4 Improvement of Execution Time

Every segment has to be compared with guards and invariants whose execution time
highly depends on the number of half-spaces. A reduction of half-spaces of a segment
decreases the computation time of all operations, if the reduction of polytopes itself
costs less time. A reduction of a polytope by the strategy directedTemplate deter-
mines an upper guard for the number of half-spaces H of the reduced polytope. As
start vector I choose v = (1,0)T or v∗ = (1,1)T as in the last Experiment 4.3.
I manipulate the segments computed by reachability analysis during runtime in order
to in�uence the execution time. After the initialization of the �rst segment of a �ow-
pipe I perform a reduction with the strategy directedTemplate [d=2,t] depending on the
variable t of segments. This idea corresponds to the �nal version of Alice's planning:
First the complex object is simpli�ed and then the development proceeds with this
simpli�ed version. The modi�ed �rst segment has half as much half-spaces as before
and if the following segments computed by linear transformations stay inside the in-
variant the new segments keep the initial number of half-spaces. Of course working

4.4. Improvement of Execution Time 45

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10

(a) Decrease the size to 5% with c = 47
and t = 75.

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10

(b) Decrease the execution time to 62%
with t = fS/2.

Figure 4.6: Flowpipes of modi�ed reachability analyses.

with an over-approximation enables the possibility of intersection of �owpipes which
do not intersect beforehand.

The setup characteristics for sizebouncingBall = 480656 Byte and time = 2619 ms
are the same as in the last experiment. Dependent of this information I determine
sizeDecrease and timeDecrease. For this experiment I iterate over the natural number
t ∈ [3,20]. Moreover the experiment is also performed for some t with a di�erent
generation of directions. After the result of the last experiment I decided to analyze
the in�uence of the input directions. Therefore I use the vector v and v∗ as start
vectors for the generation of directions. The results of sizeDecrease and timeDecrease
achieved by the use of the vector v∗ are marked by brackets (x) beside the other
results. I performed the reduction with v∗ after the reduction with v and only for the
t, which I expected to lead to a time decrease. If a reduction leads to an intersection
the result is marked with a "−" beside the value.

The results are added to the Appendix A.5 and show that the improvement of exe-
cution time is possible for the bouncing ball model. The best value for timeDecrease
is 67%. In larger hybrid systems the computation time of reduction by the strat-
egy directedTemplate might be even smaller compared to the actual time used by
reachability analysis without reduction. Therefore I assume that timeDecrease can be
decreased further. I mention this assumption because in this example of modifying
the reachability analysis the amount of possible t is small. Only 7 of 16 assignments
for t lead to a timeDecrease < 100% (Table A.11).
Next I analyze the modi�ed reachability analysis in detail. The average computation
time of �ve executions for the single �owpipes of the original reachability analysis and
the modi�cation is presented in Table 4.2.

46 Chapter 4. Experimental Results

Table 4.2: Second result of experiment 4.4

Flowpipe timeorig/ms timet=5/ms timet=6/ms timet=9/ms timet=fS/2/ms

1 239 (2415) (2474) (4422) 2215 (2405)
2 730 (3487) (3056) (6802) 5456 (3026)
3 440 (4317) (4375) (8102) 3686 (2756)
4 511 (2977) (3856) (6083) 3066 (3156)
5 448 (2707) (2275) (5882) 3266 (2705)

The execution time presented as ms for every �owpipe. The number next to each
time-entry is the number of dropped half-spaces drop.

This result shows that a small drop has barely any positive or even a negative e�ect
on the reachability analysis result, because the calculation requires more time than
the o�ered time advantage. Therefore I added the modi�cation that t is computed
dynamically because a �xed t can be a good choice for one example but bad for an-
other. Imagine t is 19 and the average fS for the �rst example is 20 and for a second
example 100. The value drop of the �rst example is 20− 19 = 1, while for the second
example the number of left half-spaces is 81.
I propose the modi�cation: t = dfS/2e if dfS/2e > dimension otherwise I do not
perform any reduction. The new version of the reachability analysis returns the best
result for the bouncing ball model. For the direction generation with v∗ the time
improvement timeDecrease is 62%. Moreover every reduction causes a size decrease
too. In the worst case sizeDecrease is approx 100%. This happens if t is too big.
After removing redundant half-spaces the number of new half-spaces correspond to
the number of original half-spaces. If t is too small the over-approximation is not
precise anymore and Rred violates the condition as for t = 5 for this example.

One serious problem is the numerical instability of this method. Some modi�ed reach-
ability analysis setups compute distorted polytopes, thus an intersection of �owpipes
and a wrong result. Furthermore the computation can stop completely. The reason
has to be the di�erent versions of reductions in�uenced by the generation of direc-
tions. For a quantitative experiment the method is su�cient but such an insecurity
requires additional investigation on parameters.

Chapter 5

Conclusion

�Finally Alice's idea worked. The responsible person was not angry anymore and the
construction of the house was ok. Time passed and Alice became a promising archi-
tect. One day she went back to Engoloc from a site in Nehcaa and got a phone call.
A house she built had collapsed. Alice �gured out that her plans had been too general.
She has to develop a better speci�cation of walls, roofs and �oors such that no future
house will collapse.�

The general approach of reduction for polytopes works but depends strongly on the
parameters. The simple and extended strategies of S are not easily embeddable into
greater algorithms. However, the usage of directedTemplate where the unknown pa-
rameters are mostly known in advance is e�ective and yields an e�cient memory
consumption of results of reachability analysis. Moreover the size of the result can be
in�uenced during runtime and I showed the amelioration of the execution time of the
an implementation of reachability analysis of hybrid systems on a single example. In
order to make a general statement further investigation is required.

5.1 Summary

First I presented the background for this work and the developed strategies along with
a heuristic on how to use them. The evaluation of these strategies showed following
results: Most strategies are not usable in context of algorithms such as reachability
analysis. For any strategy with unknown parameters these have to be set beforehand.
This requires an examination of the polytope regarding the volume of facets and the
scalar products between all pairs of half-spaces in my case. The execution time of the
heuristic was excessive for high dimensions and a high number of half-spaces. There-
fore I focused on the use of the strategy directedTemplate[d,t] which depends only on
one input parameter t, because the assignment of d is explicit. In my experiments, in
order to in�uence the result of the reachability analysis or the reachability analysis
itself, I used a combination of a convexHull-algorithm and the strategy directedTem-
plate. The required parameters are the number of clustered segments and the input
parameter for the applied reduction strategy. Extended evaluation of di�erent param-
eter con�guration showed the general applicability of this approach. It is possible to
store a result of the reachability analysis of the bouncing ball model occupying only
5% of its original size while preserving the original characteristics. Furthermore the

48 Chapter 5. Conclusion

size decrease can be achieved also by manipulating the reachability analysis directly.
I replace each single segment by the reduced convex hull of a cluster of segments.
During the later evaluation I focused on decreasing the execution time of the algo-
rithm. A dynamic reduction showed the best result by the strategy directedTemplate
which o�ered a time decrease of 62% for the bouncing ball model.

5.2 Discussion

It is possible to improve the reachability analysis by reducing the segments of �ow-
pipes. However the experiments demonstrate at the same time, that the best use
of these modi�cations depends on the careful choice of unknown parameters. These
decisions in�uence the result of the analysis. The reachability analysis can require
a long execution time. Or the size decrease of the segments of �owpipes leads to
a size increase instead. But due to numerical instability while using �oating point
arithmetic the analysis can return wrong results, or even not terminate such that the
execution has to be aborted. This behavior makes a general use of this modi�cation
in a reachability analysis of hybrid systems impossible.
Moreover I detected, that the bottleneck of the heuristic Heu is the calculation of
volumes of facets. In order to address this, a faster and therefore less precise algo-
rithm can be used to calculate or approximate the volume of facets or the heuristic
has to rely on other information. Nevertheless I assume that the volume of facets is
a major condition for heuristics which consider the volume increase of polytopes.

5.3 Future work

As discussed in the prior passage the crucial part which requires further investigation
is the numerical stability and the assignment of parameters of the reachability analysis
modi�ed by the reduction of polytopes. Only if this problem is solved can a faster
analysis, or a less memory consuming analysis, be developed at all. I present di�erent
promising approaches:

1. A fast heuristic which focuses on a small volume increase of polytopes can
be used as an alternative to the directedTemplate strategy. Moreover such an
algorithm can be applied in other areas where complex polytopes are generated
and need to be simpli�ed.

2. The resulting �owpipes of �owpipe-based reachability analysis can be reduced
by an algorithm which I showed in Section 4.2 and 4.3. However the reduction
depends on parameters which have an in�nite number of assignments. A gen-
eralization of the algorithm requires an automated generation of parameters.
Moreover, a consequent reduction with directedTemplate enables the renounce-
ment of normal -vectors of each segment due to the �nite number of possible
directions of half-spaces.

3. The reachability analysis can be speed up by the reduction of the �rst segment
of each �owpipe. The number of half-spaces of the modi�ed �rst segment has
to be de�ned carefully. The removing of too many half-spaces might cause the
safety veri�cation to declare a system as insecure. On the other hand if we leave
too many half-spaces the time advantage disappears due to reduction time.

Bibliography

[AB95] D. Avis and D. Bremner. How good are convex hull algorithms? In Pro-
ceedings of the Eleventh Annual Symposium on Computational Geometry,
SCG '95, pages 20�28. ACM, 1995.

[CB96] H. Huhdanpaa C. Barber, D. Dobkin. The Quickhull Algorithm for Convex
Hulls. ACM Transactions on Mathematical Software, 22(4):469�483, 1996.
ACM.

[D. 92] D. Avis, K. Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete & Computaitional
Geometry, 8(3):295�313, 1992. Springer New York.

[Dev16] ValgrindTM Developers. 9. Massif: a heap pro�ler, 2016. http:
//valgrind.org/docs/manual/ms-manual.html, last checked:
27.1.2016.

[E. 15] E. Ábrahám, X. Chen. Lectures on Modeling and Analysis of Hybrid
Systems, 2015. https://ths.rwth-aachen.de/wp-content/
uploads/sites/4/teaching/vorlesung_hybride_systeme/
handout.pdf, last checked: 27.1.2016.

[E. 16a] E. Ábrahám, X. Chen, S. Kowalewski, I. B. Makhlouf, S. Schupp, S.
Sankaranarayanan. A Toolbox for the Reachability Analysis of Hybrid
Systems using Geometric Approximations (HyPro), 2016. https://
ths.rwth-aachen.de/research/projects/hypro/, last checked:
27.1.2016.

[E. 16b] E. Ábrahám, X. Chen, S. Kowalewski, I. B. Makhlouf, S. Schupp, S.
Sankaranarayanan. Benchmarks of continuous and hybrid systems,
2016. https://ths.rwth-aachen.de/research/projects/
hypro/benchmarks-of-continuous-and-hybrid-systems/,
last checked: 27.1.2016.

[Fre08] Goran Frehse. PHAVer: Algorithmic Veri�cation of Hybrid Systems past
HyTech. International Journal on Software Tools for Technology Transfer,
10(3):263�279, 2008. Springer-Verlag.

[Gue09] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics. PhD thesis, Université de Grenoble, 2009.

http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_hybride_systeme/handout.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_hybride_systeme/handout.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_hybride_systeme/handout.pdf
https://ths.rwth-aachen.de/research/projects/hypro/
https://ths.rwth-aachen.de/research/projects/hypro/
https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/

50 Bibliography

[HKPV95] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable
about hybrid automata? In Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing, STOC '95, pages 373�382.
ACM, 1995.

[X. 15] X. Chen, S. Schupp, I.B. Makhlouf, E. Ábrahám, G. Frehse, S. Kowal-
wski. A benchmark suite for hybrid systems reachability analysis. Lecture
Notes in Computer Science, 9058:408�414, 2015. Springer International
Publishing.

[Zie95] G. M. Ziegler. Lectures on Polytopes. Springer New York, 1995.

Appendix A

Polytopes and Results of

Experiments

In this part of my work I present the complete results of my experiments and additional
information about the H-polytopes which I used.

A.1 H-Polytopes

In this section I de�ne every polytope used in this work, using the matrix represen-
tation (see De�nition 2.3).

Punite :=

x ∈ Rd


−1 0
1 1
1 1
1 0
0 −1

 · x ≤


1
2
2
1
1




PuniteExtended :=

x ∈ Rd


−1 0
0 1
1 0
0 −1

 · x ≤


10
1
10
1




PdropBest :=

x ∈ Rd


−1 0
0 1
1 1
1 0
0 −1

 · x ≤


1
1

1.9
1
1




P3d :=

x ∈ Rd


0 0 −1
1 0 0.1
−1 −1 0.1
0 1 0.1
0 0 1

 · x ≤


0
3
3
3
2




52 Appendix A. Polytopes and Results of Experiments

PdCube := a polytope representing a unit cube in the dimensions 2,3,4 and 5.

The polytope P2Cube is called PuniteBest
PT[d,t]

:= a polytope created by the algorithm described in Section 3.1.9

with input parameters d, t and v = (1,0)T

A.2 Results of Experiment 4.1

These are the additional results of the experiment in Section 4.1. I reduced the
resulting �owpipes of a forward �owpipe-based reachability analysis in order of size
decrease.

Table A.1: Reduction of Punite, PuniteExtended, PdropBest and PT[d=2,t=10]

Punite PuniteExtended
strategy V /% i time/ms V /% i time/ms

drop 20 1 0.07 × × 0.07

dropSmooth 35 1 0.29 262 1 0.22
unite 20 (2,1) 0.28 507 (1,0) 0.20

uniteSmooth 20 (2,1) 0.29 507 (1,0) 0.23
uniteVertices 20 (2,1) 0.35 100 (1,0) 0.27
uniteWeight 20 (2,1) 0.31 100 (1,0) 0.23

Heu 20 unite(2,1) 0.33+0.31 262 dropSmooth 1 0.22+0.24

PdropBest PT[d=2,t=10]

drop 0.2 2 0.07 2.5 0 0.1

dropSmooth 46 2 0.28 4 0 0.99
unite 23 (2,1) 0.28 3 (1,0) 1.1

uniteSmooth 17 (2,1) 0.29 3 (1,0) 1.0
uniteVertices 2.5 (2,1) 0.35 3 (1,0) 1.25
uniteWeight 2.5 (2,1) 0.30 3 (1,0) 1.39

Heu 0.2 drop 2 0.33+0.11 3 unite(9,0) 1.5+0.94

V is the relative volume increase approximated with the resolution r = 400, the
column i determines the input parameters and time represents the execution time of
the reduction. For H the time is de�ned as timeheuristic + timereduction. A "×"

means that for all i the reduction is unbounded.

A.2. Results of Experiment 4.1 53

Table A.2: Reduction of PT[d=2,t=32]
, P3d, PT[d=3,t=5]

, PT[d=3,t=12]
, PT[d=4,t=8]

and
PT[d=5,t=3]

PT[d=2,t=32]
P3d

strategy V /% i time/ms V /% i time/ms

drop 0.2 0 0.14 455 4 0.07

dropSmooth 0.2 0 8.7 130 4 0.37
unite 0.2 (1,0) 8.7 130 (4,2) 0.35

uniteSmooth 0.2 (1,0) 8.8 120 (4,2) 0.38
uniteVertices 0.2 (1,0) 9.2 165 (4,2) 0.47
uniteWeight 0.2 (1,0) 8.8 150 (4,3) 0.54

Heu 0.2 drop 31 25+0.21 130 unite(4,3) 0.86+0.37

PT[d=3,t=5]
PT[d=3,t=12]

drop 2 0 0.09 0.5 0 0.15

dropSmooth 17 0 8.6 3 0 101
unite 5 (1,0) 9.3 1 (1,0) 101

uniteSmooth 5 (1,0) 8.6 1 (1,0) 102
uniteVertices 5 (1,0) 9.0 1 (1,0) 105
uniteWeight 5 (1,0) 9.6 1 (1,0) 112

Heu 14 unite (11,1) 15+8.5 9 dropSmooth 18 156+158

PT[d=4,t=8]
PT[d=5,t=3]

drop 5 0 0.07 15 5 0.16

dropSmooth 15 0 1197 190 6 1742
unite 10 (1,0) 1195 15 (4,0) 1740

uniteSmooth 5 (1,0) 1196 15 (4,0) 1737
uniteVertices 5 (1,0) 1257 20 (3,0) 55 s
uniteWeight 5 (1,0) 1257 20 (3,0) 48 min

Heu 50 dropSmooth 21 3149+1189

V is the relative volume increase approximated with the resolution r = 400 for
PT[d=2,t=32]

, r = 25 for PT[d=4,t=8]
, r = 12 for PT[d=5,t=3]

and otherwise r = 100, the
column i determines the input parameters and time represents the execution time of
the reduction. For H the time is de�ned as timeheuristic + timereduction. A "×"
means that for all i the reduction is unbounded. The results of PT[d=5,t=3]

do not
represent the best results due to excessive computations (timebound was 1 h).

Table A.3: Reduction of PT[d=5,t=6]

strategy drop dropSmooth unite uniteSmooth uniteVertices uniteWeight Heu

time/ms 0.57 78 s 77 s 77 s 189 s 182 s ≥ 3 h

54 Appendix A. Polytopes and Results of Experiments

A.3 Results of Experiment 4.2

These are the computational results of the experiment in Section 4.2. The variable
c stands for the number of clustered segments. The variable t represents the input
parameter for the reduction with the template polytope T[d=2,t]. The entries contain
the percental decrease. If a × is added to the entry that means this combination
causes an intersection. Not every combination was examined. Therefore some entries
in the table are empty.

Table A.4: Data (1) of experiment 4.2

c 1 2 3 4 5 6 7 8 9 10
sizeDecrease/% 100 38.7 31.2 26.7 23.7 21.6 20 18.8 17.7 16.9

c 15 20 25 30 35 40 45 50 55 58
sizeDecrease/% 14.4 13.1 12.3 11.7 11.4 11 10.8 10.5 10.3 10.3

Values of sizeDecrease/% of the convex hull computation without any reduction.

Table A.5: Data (2.1) of experiment 4.2

c
t

3 4 5 6 7 8 9 10 15 20 25

1 ×46.5 ×55.2 ×63.9 ×72.6 81.3
2 25.4 26.5
3 19.1 19.9 21.5 21.7 26.3 26 29
4 ×15.3 15.9 17.3 17.5 21.1
5 13.3 14.4 14.6 17.7
6 11.5 12.4 ×12.6
7 ×10 ×10.9
12 8.3
13 7.7 7.7
14 7.1 7.1
15 6.8 6.8
16 6.4 ×6.4
17 ×6.2
22 5.4
23 5.1
24 4.9
25 4.9
26 4.6
27 ×4.5

Values of sizeDecrease/% with (1) removing redundant planes

A.3. Results of Experiment 4.2 55

Table A.6: Data (2.2) of experiment 4.2

c
t

30 40 50 75 100 150 200 300 400 500

3 28 30 30.6
4 27.4
5 23.2
10 13.5
15 10.1
20 10
25 4.7
26 4.5
27 4.4
28 4.4
29 ×4.1
30 4.4 9.5
31 4.3
32 4.1
33 4.1
34 4.1
35 4.0
36 ×3.8
40 3.5 10
41 3.5
42 3.5
43 3.2

44 ×3.2
45 3.7 4.4
46 3.6 4.5
47 3.6 4.2
48 3.5 4.1
49 ×3.4 4.1
50 4.2 4.3 5.9 7.5 9.2 10.8
51 4.1 4.3 5.8 7.5 9.1 10.5
52 ×4 4.1 5.7 7.4 9.1 10.1
53 4.1 5.7 7.5 8.3 10.2
54 ×4 ×5.5 6.7 8.7 9.6
55 7.1 8.5 10.1
56 7.1 8.7 10.3
57 ×7.2 8.9 ×10.5
58 ×9.4

Values of sizeDecrease/% with (1) removing redundant planes

56 Appendix A. Polytopes and Results of Experiments

Table A.7: Data (3.1) of experiment 4.2

c
t

3 4 5 6 7 8 9 10 15 20 25

1 ×46.5 ×55.2 ×63.9 ×72.6 81.3
2 27.1 30
3 20.4 22.5 24.7 26.9 37.8 48.7 59.6
4 ×16.4 18.1 19.9 21.6
5 15.1 16.6 18
6 13.1 14.3 ×15.6
7 ×11.4 ×12.5
12 15.4
13 11.1 14.3
14 10.3 13.2
15 9.7 12.5
16 9.2 ×11.9
17 ×8.9
22 11
23 10.4
24 9.9
25 9.9
26 9.3
27 ×9.1

Values of sizeDecrease/% without (2) removing redundant planes

A.3. Results of Experiment 4.2 57

Table A.8: Data (3.2) of experiment 4.2

c
t

30 40 50 75 100 150 200 300 400 500

3 70.4 92.2 114
4 135.2
5 112.8
10 81.8
15 85.2
20 86.9
25 11.7
26 11
27 10.7
28 10.7
29 ×9.7
30 12.7 90.6
31 12.3
32 11.9
33 11.9
34 11.5
35 11.5
36 ×10.6
40 12.1 92.5
41 12.1
42 12.1
43 11
44 ×11
45 16.3 21.5
46 16.3 21.5
47 15.5 20.5
48 14.7 19.5
49 ×14.7 19.5
50 19.5 29 38.4 57.4 76.4 95.4
51 19.5 29 38.4 57.4 76.4 95.4
52 ×18.4 27.4 36.5 54.4 72.4 90.3
53 27.4 36.4 54.4 72.4 90.3
54 ×25.9 ×34.4 51.4 68.4 85.3
55 51.4 68.4 85.3
56 51.4 68.4 85.3
57 ×51.4 68.4 ×85.3
58 ×68.4

Values of sizeDecrease/% without (2) removing redundant planes

58 Appendix A. Polytopes and Results of Experiments

A.4 Results of Experiment 4.3

These are the computational results of the experiment in Section 4.3. The variable
cGood and cBad stand for the number of clustered segments. The variable t represents
the input parameter for the reduction with the template polytope T[d=2,t]. If a * is
added, the uniform generated directions are computed with the vector v∗ = (1,1)T .
The entries of sizeDecGood and sizeDecBad indicate the relative size decrease. The en-
tries of timeIncGood and timeIncBad indicate the relative time increase. The good side
of t ∈ {3,4,5,6} are empty because such an imprecise reduction causes an intersection
of �owpipes even without clustering. Moreover, the row with t = 8 is missing due to
numerical problems.

Table A.9: Data (1) of experiment 4.3

t cGood sizeDecGood/% timeIncGood/% cBad sizeDecBad/% timeIncBad/%

3* 1 47.9 140
4* 1 56.4 155
5 1 64.6 166
6* 1 73.5 178
7* 2 40.9 232 3 27.7 204
9* 10 10.2 180 11 9.4 170
10* 10 10.7 196 11 9.8 180
15 12 9.8 172 14 8.9 173
20 15 8.6 183 16 8.7 193
25 25 6.1 190 26 6.3 199
30 28 6 198 29 5.6 193
40 34 5.5 210 36 5.3 216
50 36 5.1 228 37 4.9 211
75 47 5 257 48 4.8 236
100 50 5.1 250 51 5.2 263
150 53 5.2 308 54 5.1 319
200 55 6.3 377 57 6.6 488
300 55 8 670 56 8.1 657
400 56 9.7 1029 57 9.6 1094
500 56 11.5 1684 57 14.7 1940

A.4. Results of Experiment 4.3 59

Table A.10: Data (2) of experiment 4.3

t cGood sizeDecGood/% timeIncGood/% cBad sizeDecBad/% timeIncBad/%

3* 1 47.9 137
4* 1 56.4 153
5 1 64.6 166
6* 1 73.5 173
7* 2 41.8 226 3 28.4 197
9* 8 13.9 188 9 12.7 194
10* 10 12.2 176 11 11.2 175
15 12 14.2 167 14 12.5 167
20 15 14.5 177 16 13.9 190
25 25 11.2 183 26 11.2 190
30 28 12.1 199 29 11.7 184
40 34 13.3 198 36 12.8 208
50 36 15.5 201 37 14.4 196
75 47 17.6 226 48 16.8 219
100 50 20.7 221 51 20.7 240
150 53 28.7 242 54 28.7 253
200 55 35.7 260 57 35.7 351
300 55 52.7 323 56 52.7 325
400 56 69.6 382 57 69.6 445
500 56 86.7 506 57 86.7 566

60 Appendix A. Polytopes and Results of Experiments

A.5 Results of Experiment 4.4

These are the computational results of the experiment in Section 4.4.

Table A.11: First result of experiment 4.4

t sizeDecrease/% timeDecrease/%

5 66.9− (61.7) 68− (68)
6 71 (69.7) 78.7 (67)
7 79.1 95
8 76.7 (73.7) 80 (77)
9 82.5(90) 97 (127)
10 81.1 (99.8) 92 (149)
11 93.2 (87.3) 125 (113)
12 88.2 (95.4) 95 (116)
13 95 132
14 94.8 132
15 106.7 164
16 85.5 (87.9) 101 (116)
17 102.8 157
18 100.6 138
19 108.2 179
20 100.9 137

fS/2 68.4 (62.5) 74 (62)

Dependent of t the result R has sizeDecrease and timeDecrease as percentages. For
t ∈ {3,4} no results are correct. For t = 5 with v the resulting �owpipes intersect.

The variable fS is the number of half-spaces of the �rst segment.

	Introduction
	Background
	Hybrid Systems
	Reachability Analysis of Hybrid Systems
	Representations of Polytopes
	Operations on Polytopes

	Reduction
	Strategies
	Comparisons
	Heuristic for Polytope Reduction

	Experimental Results
	Reduction for Polytopes
	Efficient Storing of a Set of H-Polytopes
	Improvement of Memory Consumption
	Improvement of Execution Time

	Conclusion
	Summary
	Discussion
	Future work

	Bibliography
	Polytopes and Results of Experiments
	H-Polytopes
	Results of Experiment 4.1
	Results of Experiment 4.2
	Results of Experiment 4.3
	Results of Experiment 4.4

