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Abstract

Satisfiability Modulo Theories (SMT) constitutes one of the most outstand-
ing approaches in the field of satisfiability checking. SMT problems over the
real numbers are of special concern because of their importance in verification,
theorem proving and design of hybrid systems. The usual methods of solving
linear arithmetic are either based on Fourier-Motzkin elimination or the Simplex
algorithm. The model-constructing satisfiability calculus (MCSAT) is a novel de-
velopment in the context of SMT solving. Whereas the CAD method is already
implemented as explanation generation in the MCSAT approach for non-linear
arithmetic, a MCSAT approach for linear real arithmetic is not available. Since
the Simplex method is not well-suited for explanation generation, a quantifier
elimination method is needed.

Although the Fourier-Motzkin variable elimination method can be quite ex-
pensive in practice, the aim of this paper is presenting a MCSAT approach for
linear real arithmetic using the Fourier Motzkin variable elimination as expla-
nation generation. This implementation is integrated as a theory solver into the
MCSAT framework of the SMT solver SMT-RAT. As conclusion, the efficiency
of the approach is analyzed.
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Chapter 1

Introduction

Over the last decades, the increasingly technological development is exerting pro-
foundly changes on the way people live and work. It is impacting all disciplines,
economies and industries, and consciously or unconsciously, technical systems lever-
age almost every aspect of our everyday lives. We are talking about breakthroughs
in key areas such as artificial intelligence, robotics, self-driving cars, autonomously
acting missiles, 3D printing, nanotechnology, biotechnology... All of the last examples
show us until which level our society trusts in technology. However, both complexity
and potential risk of the specified tasks are being increased to such an extent that en-
suring an accurate performance of the software is critical. The latest is done in terms
of software verification, that is, the process of checking whether a software system
meets specifications and fulfills its intended purpose.

During the process of software verification, the program is commonly transformed
into a mathematical model, and the properties to be proven are formalized on the
basis of this model. That is how we come to the term of satisfiability checking, which
aims to develop algorithms and tools for checking the satisfiability of logical formulas.
In the late ’90s, an impressive progress in this area was made in terms of propositional
logic, resulting in powerful SAT solvers. Driven by this success, propositional SAT
solving starting to be enriched with solver modules for different theories, coming up
with SMT solvers.

The common way to solve a SMT problem is employing a SAT solver to enumerate
the assignments of the Boolean abstraction of the input formula. Then a decision
procedure, dedicated to reasoning about conjunctions of theory-specific constraints, is
used to either confirm or refute the candidate Boolean assignment. This extension of
the DPLL algorithm to incorporate reasoning about a theory T is called DPLL(T).

In the last few years, the idea of direct model construction complemented with conflict
resolution has been successfully generalized to fragments of SMT dealing with theo-
ries including linear real/integer arithmetic, nonlinear arithmetic and floating-point.
Although all these procedures are quite effective in their corresponding first-order
domains, they are not completely accepted since their limitations in purely reasoning
and incompatibility with DPLL(T). The model-constructing satisfiability calculus or
MCSAT [DMJ13] is a recent development in SMT solving, which includes all the
previous mentioned decision procedures while resolving the previous mentioned limi-
tations.
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In 2012, the research group Theory of Hybrid Systems at the RWTH Aachen, lead by
Prof. Dr. Erika Ábrahám, started the development of SMT-RAT [CLJÁ12], its own
SMT solving engine. SMT-RAT is built on C++, and its main goals are extensibility,
modularity and flexibility; moreover, it is provided as free software. At the beginning,
the main focus of SMT-RAT was solving problems based on theories considering non-
linear real and integer arithmetics. Nonetheless, the project has as ambition extending
its capabilities towards other theories. Currently, there are two strategies of SMT-
RAT, namely SMT-RAT and SMT-RAT-MCSAT.

The simplex methods can be used to check sets of linear real arithmetic constraints for
satisfiability, whereas the cylindrical algebraic decomposition (CAD) can be used for
non-linear real arithmetic. There is also another procedure that could be considered
for linear real arithmetic, namely Fourier-Motzkin variable elimination.

There already exists an MCSAT approach for non-linear arithmetic using the cylin-
drical algebraic decomposition for explanation generator, which was implemented in
Z3, Yices2 and SMT-RAT, but there is no MCSAT approach available for linear real
arithmetic. The simplex method has as disadvantage that it is not well-suited for
explanation, since for this task we need a quantifier elimination method.

1.1 Thesis overview
In this thesis, an adaptation of the Fourier-Motzkin elimination as theory solver for
explanation generator within the SMT-RAT MCSAT framework was implemented.

This work begins with the presentation of some technical background information in
Chapter 2 necessary for a better understanding of the thesis. Also, the basics of LRA
are presented. In Chapter 3 we give a brief explanation about satisfiability solving,
and we go through the concepts of SAT and SMT solving. After that, we present
the quantifier elimination methods and give a brief introduction about the MCSAT
approach. We finish the chapter by particularizing on the SMT-RAT solver. The
basic principles of the Fourier-Motzkin elimination are described in Chapter 4. It is
followed in Chapter 5 by the description of the algorithm used for the integration
of the approach described in the previous chapter as a theory solver in the SMT-
RAT-MCSAT framework. The experimental results of evaluating the performance of
the new algorithm are discussed in Chapter 6. Finally, in Chapter 7 we give a
summary of this thesis and a short outline of possible future work.

The main contributions of this work are as follows:

• Implementation of the Fourier-Motzkin variable elimination in order to be able
to explain why all extensions of a given partial theory assignment are inconsis-
tent with a set of theory constraints.

• Integration of the former implementation as theory solver into the MCSAT
framework of the SMT solver SMT-RAT.

• Analysis of the efficiency of the approach by comparing running times of stan-
dard SMT solvers for linear real arithmetic with running times of the SMT-RAT
MCSAT approach with our implementation.



Chapter 2

Preliminaries

2.1 Technical background
As usual, we denote the ring of integers with Z, the field of rational numbers with
Q, and the field of real numbers as R. In all that follows, we assume a finite set
of variables X ranging over R. Variables in X are denoted by x1, x2, ..., xn and
coefficients in Z by a, b, c, d.

All (linear) polynomials p, q, r, s over X with coefficients in Z are assumed to be a
sum of monomials in the form a1x1 + ... + anxn + c. In all what follows, these
polynomials have its variables ranging over the field of Q instead of R.

E is used to denote equalities anxn + ... + a1x1 + c = 0, J is used to denote
inequalities anxn + ... + a1x1 + c ≤ 0.

α(x) refers to the current assignment of a variable x ∈ R. Φ and Ψ denote a set of
formulas, and φ and ψ denote single formulas.

With dom(x) we refer to the domain of the variable x.

Definition 2.1.1. (Polynomial). A term of the form

p =

m∑
k=1

Mk

with Mk referring to monomials, is called a polynomial.

2.2 Linear real arithmetic
The theory of linear arithmetic is a logic that allows inequalities and equations over
real numbers.

Definition 2.2.1. (Theory of Real Arithmetic).

• Domain: R

• Function symbols: {+,− , ·}

• Comparison predicates: 1 ∈ {< , > , ≤ , ≥ , 6= , =}
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Considering a polynomial as the sum of monomials, a polynomial (see Definition
2.1.2) p over the reals consists of coefficients in R, variables and the function symbols
”+” and ”·”. In all what follows, we only consider linear polynomials by only allowing
multiplication with a constant. In this context, atoms are defined as polynomial
constraints.

In this context, an example of atom will be:

x+ y + 2z − 13 ≤ 0

and an example of formula:

x ≥ 0 ∧ (x+ y ≤ 2 ∨ x− y ≥ 6) ∧ (x+ y ≥ 1 ∨ x− y ≥ 4).

By deg(p) := max1 ≤ j ≤ k

∑n
i=1 ei,j we denote the degree of p. The set of all polyno-

mials with coefficients in R and variables x1,...,xn is denoted as R[x1,...,xn]. We define
univariate polynomials as those polynomials in R[xi] for some variable xi. A polyno-
mial p of d variables and deg(p) = n1,...,nd in R[x1,...,xn], which can be interpreted
as a univariant polynomial in R[x1,...,xn−1][xn], is called multivariant polynomial.
These multivariant polynomials are then used to define the so called quantifier-free
linear arithmetic constraints, being each of those constraints a polynomial compared
to 0.

Definition 2.2.2. (Polynomial constraint). An expression of the form

p 1 0,

with p ∈ R[x1,...,xn] and 1 ∈ {< , > , ≤ , ≥ , 6= , =} is called a polynomial
constraint.

In order to have a formal fundament for the LRA expressions in concerned, we intro-
duce the quantifier-free linear real arithmetic (QFLRA) formulas.

In all that follows, we consider the satisfiability problem for the quantifier-free frag-
ment QFLRA, or equivalently, the existential fragment. This means that there are
no universal quantifiers and also, no negation of expressions containing existential
quantifiers.

Definition 2.2.3. (QFLRA formulas).

QFLRA formulas are Boolean combinations of linear polynomial constraints.

The syntax of a QFLRA formula φ is shown in Table 2.1.

t ::= 0 1 x t+ t

c ::= t t < t

φ ::= c ¬φ φ ∧ φ ∃x.φ

Table 2.1: Syntax of a QFLRA formula
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Example 2.2.1. The following formula φ is a QFLRA formula with dom(x) and
dom(y) being R.

φ := ∃x. ∃y. x+ 2y > 10 ∧ x ≥ y ∧ (x < 0 ∨ 2y > x)

A variable is lower-bounded (see Definition 2.2.5) by a constraint if its coefficient
is positive, and upper-bounded if it is negative. An interval (see Definition 2.2.4) is
a connected subset of the rational line Q.

Definition 2.2.4. (Intervals). An interval I ∈ R is a connected subset of reals. For
a,b ∈ R, we have two basic types of intervals:

(a,b) = {x ∈ R|a < x < b}
[a,b] = {x ∈ R|a ≤ x ≤ b}.

a and b are the lower and upper bounds of the open (a,b) and closed [a,b] interval.

An interval I = [a,b] with a = b is called a point interval.

Definition 2.2.5. (Bounds). A constraint of the form x + a 1 0, with a ∈ R,
1∈ {<,>,≤,≥,=} and a variable x is called a bound.

It is important to note that for the purpose of this thesis, the inputs are restricted
for the fragment of the rational numbers Q, that is, Q = R.



Chapter 3

Satisfiability checking

Problems in different areas like theorem proving, model checking, verification, syn-
thesis, just to mention a few well-known examples, are effectively modeled in terms
of logic. First of all, these problems need to be formalized. Then, it is necessary to
check the validity and satisfiability of the formulas, and in case they are satisfiable,
to identify satisfying solutions. The algorithms used through this process are known
as decision procedures.

In this context, satisfiability checking is a line of research which aims in checking the
satisfiability of existentially quantified logical formulas. There are different approaches
which involve tools to check whether or not certain formulas are satisfiable, that is,
to decide whether such a formula is satisfiable; these tools are known as solvers.

If we focus the problem of satisfiability checking on boolean propositional logic, we
come to the concept of SAT solvers, which are powerful engines able to solve an
impressively large set of propositional logic problems.

Due to the success of the SAT solvers, the SAT-modulo-theories (SMT) solvers started
to being developed by the satisfiability checking community with the purpose of
enriching the propositional SAT solvers with solver modules for different theories.
Nowadays, these solvers are available for a wide range of theories like equalities and
uninterpreted functions, bit-vector arithmetic, floating-point arithmetic, array theory,
difference logic, (quantifier-free) linear real/integer/mixed arithmetic, and (quantifier-
free) non-linear real/integer/mixed arithmetic.

3.1 Satisfiability (SAT) solvers

The boolean satisfiability problem, abbreviated as SAT, refers to the problem of deter-
mining whether there exists an assignment that satisfies a given propositional formula.

Definition 3.1.1. (SAT).

Given a (closed) logical formula φ in a decidable background theory τ , which con-
straints the interpretation of the symbols used in φ, SAT is the problem of deciding
whether there exists a satisfying assignment to the free variables in φ, that is, answer-
ing the question of whether is a model of τ that makes φ true.
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Example 3.1.1.

a = True, b = True, c = False

is a satisfying assignment for

(a ∨ c) ∧ (b ∨ c) ∧ (¬ a ∨ ¬ c)

Definition 3.1.2. (Propositional formula).

A propositional formula ψ is built from a set of Boolean variables, the logical constants
true and false, the logical connectives conjunction (∨) , disjunction (∧), implication
(⊂), bi-implication(↔) and negation (6=), and parenthesis.

Despite the NP-completness of SAT problems for propositional logic, which means
that probably there is no algorithm able to solve it in polynomial-time, there are in
practice some algorithms that perform well on many SAT instances even with this
bad worst-case complexity. One of them is the DPLL-style algorithm (illustrated
in Figure 3.1), which is implemented today in most state-of-the-art SAT solver
technologies. It was introduced by Davis, Putman, Logemann and Loveland [DLL62]
[DP60] and its basic principle is performing a case split on the truth values of variables
by a "backtracking depth-first search". Whenever the solver encounters a variable
assignment in which one of the clauses of the formula evaluates to false, it backtracks
and changes the most recent assignment until all assignments have been explored.
Before this algorithm can be applied, the SAT instance needs to be transformed into
Conjunctive Normal Form (CNF). Every propositional formula φ can be transformed
into an equisatisfiable formula φ

′
in CNF with only a linear growth in size using

Tseitin’s transformation [Tse83].

Definition 3.1.3. (CNF). A formula φ of the form

φ = ∧ni=1∨mj=1pij

with literals pij, where a literal is either a proposition or its negation, is in CNF.
The disjunctions of literals are called clauses.

Figure 3.1: The DPLL framework.

There are also many further optimizations proposed after the DPLL algorithm, which
led to major improvements, such as the Conflict-Driven Clause Learning (CDCL) in
real-world problem domains.
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3.2 Satisfiability-modulo-theories (SMT) solvers
The generalization of the SAT problem into first-order domain is called Satisfiability
Modulo Theories (SMT). SMT solvers extend SAT solvers with theories. While SAT
checks formulas from the propositional logic for satisfiability, SMT combines a SAT
solver with a theory solver to decide formulas from the existential fragment of first-
order logic over some theory. In first-order logic, a model assigns values from a
domain to variables and interpretations over the domain to the function and predicate
symbols.

Definition 3.2.1. (Theory). A theory is a set of formulas Φ closed under logical
consequence, i.e. such that for any formula φ we have Φ |= φ iff φ ∈ Φ.

In comparison to SAT solving, the Boolean atoms represent now constraints over
individual variables ranging over integers, reals, bit-vectors, datatypes, and arrays;
and the constraints can involve theory operations, equality and inequality.

We can distinguish between "less-lazy" and "full-lazy" SMT solving. The former
uses a SAT solver to find solutions of the Boolean skeleton of a SMT formula and
invokes dedicated theory solvers to check the consistency in the underlying theory;
the latter searches for a complete Boolean solution before invoking theory solvers. In
this thesis only SMT solvers constructed according to the so-called "less-lazy" SMT
solving approach, outlined in Figure 3.2, are considered.

Figure 3.2: Typical SMT solver structure.

Less-lazy SMT solvers combine a SAT solver tightly integrated with a T-solver.
Thereby the SAT solver handles the logical structure of the input formula and is
responsible for finding solutions for the Boolean skeleton of such a formula. In or-
der to being able to check the consistency of theory atoms, the SAT solver needs to
communicate with the theory solvers, which are in charged of implementing decision
procedures for the underlying theory. As mentioned in the previous section, the may-
ority of the SAT solvers uses the DPPL algorithm. The extension of the previous
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algorithm to incorporate reasoning about an specific theory, which can be extended
to combined theories, is called DPLL(T).

The approach has several variants, differing in the sophistication of the interaction
between the SAT engine and the theory solvers. Examples or solvers based on the
"less-lazy approach" are CVC4, MathSAT, Z3 or SMT-RAT, which is described in a
later section.

3.3 Quantifier Elimination Methods
Given a quantifier formula φ, quantifier elimination is the process of finding an equiv-
alent, quantifier-free formula φ

′
. The possibility of applying a QE method in theory

and practice in general depends on the considered formal system and the underlying
theory.

Definition 3.3.1. (Quantifier elimination). A theory T admits quantifier elimination
if there is an algorithm that given an arbitrary T-formula ϕ, produces T-formula φ
s.t.:

• φ is quantifier-free

• ϕ⇔ φ

So if T admits quantifier elimination and the satisfiability problem of quantifier-free
theory of T is decidable, then T is decidable.

We focus on input formulas found in the SMT setting with only existential quantifiers
and no free variables; these formulas are called quantifier-free formulas.

3.3.1 Motivation of QE methods in SMT solving
One critical feature in the context of SMT solvers is to be able, from an unsatisfiable
set of constraints, to extract a small conflict set. Without this ability, the SMT solver
would enumerate an exponential number of slightly different assignments. All these
assignments would be rejected by the solver, but they would essentially be unsatisfi-
able for the same reason. Hence we focus on the computation of small conflict sets
from unsatisfiable sets of constraints. That is the reason we aim to use quantifier
elimination methods. For non-linear arithmetic constraints, cylindrical algebraic de-
composition (CAD) and virtual substitution are two commonly used real QE methods.
Fourier-Motzkin elimination is one of the most well-know QE methods for linear real
arithmetic.
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3.4 A model-constructing satisfiability calculus
A compelling recent development in SMT solving is the model-constructing satisfia-
bility calculus (MCSAT), an extension of the DPLL(T) implemented in most of the
current SMT solvers. The main difference between the previous frameworks is that
MCSAT is not restricted to Boolean decisions. Alternatively, the model which the
theory is trying to construct is involved in the search and in explaining the conflicts.

The way in which the satisfaction of the Boolean structure is assured is similar to
how it is done in DPLL(T); however, in contrast to the standard SMT approach,
the search for a propositional satisfying assignment is extended with a search for an
assignment of values to the theory variables, that is, such an assignment is constructed
simultaneously by "guessing" values for the theory variables. In case of conflicting
assignment, the theory solver needs to explain the conflict of a set of constraints under
a given partial assignment to the theory variables.

In comparison to the DPLL(T) framework, the input is a partial assignment in ad-
dition to the set of constraints whose consistency needs to be checked. The states in
the transition system are pairs of the from 〈M,C〉, where M is a sequence or trail of
trail elements, and C is a set of clauses. Each trail element is either a decided literal,
a propagated literal, or a model assignment. Both decided literals and model assign-
ments are referred as decisions. While a decided literal is a literal that is assumed to
be true, a propagated literal (C → L) marks a literal L that is implied to be true in
the current state by the clause C (the explanation). A model assignment x 7→ α is
an assignment of a first-order uninterpreted symbol x to a value α.

3.4.1 Theory specific rules
Considering the clausal rules of abstract DPLL, now in MCSAT we have theory spe-
cific rules (see Tables 3.1 and 3.2), which extend DPLL rules to enable theory-
specific reasoning, allowing deductions in the style of DPLL(T), but more flexible,
and allowing for assignments of variables to particular concrete values.
As in DPLL(T), the basic requirement for a theory decision procedure is to provide
an explain function, able to explain theory-specific propagations and infeasible states;
though, such a explain function in MCSAT is more flexible. Given a literal L and a
consistent trail M which implies L to be true, explain(L,M) must return a valid theory
lemma E = L1 ∨ ... Lk L (in DPLL(T) the theory explanations were theory lemmas
in form of clauses that only contain negations of literals asserted so far). The literals
of E must be from the finite basis B, ensuring by this way the termination of the
procedure; and all literals Li must evaluate to false in M. By allowing explanations
to contain more that just the literals of the trail allow for more expressive lemmas,
which is crucial for model-based decision procedures.
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RESOLVE
〈JM,D → LK, C〉 ` C −→ 〈M, C〉 ` R if ¬L ∈ C,

R =resolve(C,D,L)
CONSUME
〈JM,D → LK, C〉 ` C −→ 〈M, C〉 ` C if ¬L /∈ C,
〈JM,LK, C〉 ` C −→ 〈M, C〉 ` C if ¬L /∈ C,
BACKJUMP
〈JM,NK, C〉 ` C −→ 〈JM,C → LK,C 〉 if C = L1 ∧ ... ∧ Lm ∧ L

∀ : value(Li,M) = false
value(L,M) = undef
N starts with a decision

UNSAT
〈M, C〉 ` false → unsat
LEARN
〈M, C〉 ` C −→ 〈M,C ∪ {C}〉 ` C if C /∈ C

Table 3.1: Clausal conflict analysis rules.

T-PROPAGATE
L ∈ B, value(L,M) = undef

〈M, C〉 −→ 〈JM,E → LK, C〉 if infeasible(JM,¬LK)
E = explain(JM,¬LK)

T-DECIDE
x ∈ varsT (C)

〈M, C〉 −→ 〈JM,x 7→ αK, C if v[M ](x) = undef
consistent(JM,x 7→ αK)

T-CONFLICT
〈M, C〉 −→ 〈M, C〉 ` E if infeasible(M)

E = explain(false, M)
T-CONSUME
〈JM,x 7→ αK, C〉 ` C −→ 〈M, C〉 ` C if value(C,M) = false
T-BACKJUMP-DECIDE

C = L1 ∧ ... ∧ Lm ∧ L
〈JM,x 7→ α,NK, C〉 ` C −→ 〈JM,LK, CK if ∃i : value(Li,M) = undef

value(L,M) = undef

Table 3.2: Theory search and conflict rules.
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3.4.2 Producing Explanations
Assuming that the procedure has already assigned the variables x1,...,xn ∈ V ars to
real values from R (α : {x1,...,xn} → R) and that it cannot find a theory value for
a variable y that is consistent with a set D of constraints. Then D is called a set of
conflicting constraints under the assignment α. Hence, given such a infeasible trail
M, consisting of D and the assignment α, the framework must be able to produce a
valid theory lemma, inconsistent with M, by using only literals from the finite basis.

In principle, for any theory that admits quantifier elimination, constructing an ex-
planation function explain that satisfies the finite basis requirement is possible. The
basic idea is to eliminate all unassigned variables and produce an implied formula
that is also inconsistent with the assigned variables in the infeasible trail.

Being A the conjunction of the conflicting constraints

A ≡
∧
l∈D

l

and B the literals under the assignment α, we use a quantifier elimination procedure
to generate a CNF formula F of the form C1 ∧ ... Ck that is equivalent to (∃y : A),
and therefore also inconsistent with B while only using the assigned variables (in this
case, x). Hence, each explanation T needs to be valid and needs to exclude the current
assignment; that is, it must hold that A ∧ T →

∨
i=1,...,n xi 6= B. Furthermore, all

these constraints in the explanation must be from B.

Definition 3.4.1. (Explanation.) Assuming a set D of conflicting constraints con-
taining variables x1,...,xn, y and an assignment α : x1,...,xn → R so that for each
extension α

′
of α for y, α

′
is conflicting with A ≡

∧
l∈D l. Then explain(A,α) is a

theory lemma T so that

• |= T ,

• T is of the form A→ φ for some formula φ where α 2 φ and

• l ∈ B for all constraints l in T

3.4.3 Linear arithmetic
When we are solving a set of LRA C, the Fourier-Motzkin elimination is sufficient to
define the explain function, as shown in [MKS09], [KTV09]. FME gives a finite basis
B with respect to C, and the basis can be obtained by closing C under the application
of FME step. Clearly, the closure is a finite set, since we always produce constraints
with one variable less.

As we mentioned in the Introduction, there already exists an MCSAT approach for
NLRA, but there is no one available for LRA. Since the Simplex method is not suitable
for explanation, we appeal to the Fourier-Motzkin method as explanation generator.
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Example 3.4.1. (MCSAT explanation performance for unsatisfiability).

Considering the set of LRA unit clauses:

C = {z ≥ 1, z ≤ x, x < 1, x < y}

We start the deduction from the initial state 〈JK, C〉 and apply the rules from the
MCSAT system shown in Tables 3.1 and 3.2. For simplicity, whenever the literal L
is implied by the unit clause L, we use the denotation ↪→ L instead of L→ L.

〈JK, C〉

↓ PROPAGATE × 4 (all the unit clauses are propagated)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, C〉

↓ T-DECIDE (the current trail is consistent with the model assignment x 7→ 0)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, x 7→ 0, C〉

↓ T-DECIDE (peek a value for y, keeping the consistency; y s.t x < y)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, x 7→ 0, y 7→ 1, C〉

↓ T-CONFLICT (z ≥ 1 and z ≤ x implies 1 ≤ x)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, x 7→ 0, y 7→ 1, C〉 ` C

The conflict was detected by recognizing that we cannot pick a value for z, because the
trail contains z ≥ 1, z ≤ x and x 7→ 0. Hence, the explain function generates the
explain clause

C ≡ ¬ (z ≥ 1) ∨ ¬ (z ≤ x) ∨ 1 ≤ x

by eliminating z using the Fourier-Motzkin Elimination. The former clause evaluates
to false in the current trail.

The deduction is continued by analyzing the conflict.

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, x 7→ 0, y 7→ 1, C〉 ` C

↓ T-CONSUME (the conflict does not depend on y)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, x 7→ 0, C〉 ` C

↓ BACKJUMP (after backtracking x 7→ 0, the clause C implies 1 ≤ x)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, C → 1 ≤ x, C〉

After the application of the backjump rule, the lately asserted literal 1 ≤ x is imme-
diately in conflict with the literal x < 1 and we enter again in conflict resolution by
Fourier-Motzkin Elimination.

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, C → 1 ≤ x, C〉

↓ T-CONFLICT (1 ≤ x and x < 1 implies false)

〈↪→ z ≥ 1, ↪→ z ≤ x, ↪→ x < 1, ↪→ x < y, C → 1 ≤ x, C〉 `
¬ (1 ≤ x) ∨ ¬ (x < 1)

↓ RESOLVE × 3, CONSUME, RESOLVE, UNSAT
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3.5 SMT-RAT
SMT-RAT means "Satisfiability-Modulo-Theories Real Arithmetic Toolbox". It is an
open-source C++ toolbox for strategic and parallel SMT solving consisting of SMT
compliant implementations of methods for solving quantifier-free first-order formulas;
these methods are referred as modules. The former modules can be combined either
to an SMT solver or a theory solver in order to extend the supported logics of an
existing SMT solver by the supported logics of SMT-RAT.

SMT-RAT focuses on non-linear real and integer arithmetic, but it also supports
theories as linear real and integer arithmetic, difference logic, bit-vectors and pseudo-
Boolean constraints.

In comparison to other theory solvers, as mentioned in [CLJÁ12] the main advantages
of this toolbox are:

1. A complete SMT-compliant decision procedure.

2. The possibility to combine theory solvers according to user-defined strategy.

3. A modular and extendable open-source implementation.

There are two strategies of SMT-RAT: SMT-RAT and SMT-RAT-MCSAT. For the
purpose of this thesis, we are interested in the second one.

3.5.1 SMT-RAT-MCSAT
SMT-RAT-MCSAT uses a preliminary implementation of the MCSAT framework
proposed by D. Jovanović and L. de Moura [DMJ13], equipped with an NLSAT-style
CAD-based explanation function, complemented with a simpler explanation function
based on the Fourier-Motzkin variable elimination. The general MCSAT framework
is integrated in an adapted minisat solver [ES03]; thought, it is not optimized yet.



Chapter 4

The Fourier-Motzkin
Elimination

The Fourier-Motzkin Elimination (FME) was the earliest method for solving linear
inequality systems. It was discovered in 1826 by Joseph Fourier, and re-discovered
in 1936 by Theodore Samuel Motzkin. In the context of satisfiability checking, the
Fourier-Motzkin Elimination can be used to decide whether a given system of con-
straints over the reals is satisfiable.

Gauss’ recursive method (GE) of successively eliminating variables using linear com-
bination of rows accomplishes the task of determining whether or not a system of
equalities has a solution. This latter task is reminiscent of determining the same
thing for a system of inequalities, and it is done by the Fourier-Motzkin Elimination.
Nonetheless, FME differs from GE in that each step in the elimination can greatly
increase the number of inequalities in the remaining variables.

We consider we have a given linear system of inequalities in the form

Ax ≤ b

where A ∈ Rm,n and b ∈ Rm.

That is, if we write the system S in component form, we have

a11x1 + a12x2 + ... + a1nxn ≤ b1

a21x1 + a22x2 + ... + a1nxn ≤ b2

...
am1x1 + am2x2 + ... + amnxn ≤ bm.

The FME performs successive variable eliminations in a breadth-first manner gener-
ating additional constraints with fewer variables. First, the equality constraints are
eliminated in the same way they are eliminated in a system of linear equations (GE).
Then the inequalities are eliminated by using Projection.
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We look for "(∃x) : Ax ≤ b” based on eliminating the first unknown variable x1
and then proceeding recursively with the rest of the variables. The solution set of the
system Ax ≤ b is a polyhedron which we denoted by P, i.e.:

P = {x ∈ Rn : Ax ≤ b}.

Say we start eliminating from x1, which gives an equivalent system S
′
. Hence x1 lies

in a certain interval which is determined by x2, x3,...,xn. The polyhedron defined by
S

′
is the projection of P along the x1 − axis, that is, into the space of the variables

x2, x3,...,xn. Then we may proceed similarly and eliminate x2, x3 etc. Eventually, a
system l ≤ xn ≤ u might be obtained, where l is defined as lower bound and u is
defined as upper bound.

For a better understanding we show in Figure 4.1 a possible representation of the
polyhedron which constitutes the solution set of the system Ax ≤ b. In the following
schema, we can consider that any constraint with a positive coefficient for ik is a lower
bound, and any constraint with a negative coefficient for ik is an upper bound.

Figure 4.1: Polyhedron of the FM projection.

If l > u, it can be concluded that Ax ≤ b has no solution; otherwise, we may first
choose a variable xn ∈ [l,u], and then choose xn−1 in an interval which depends on
xn, and so on. This back substitution procedure produces a solution x = (x1, x2,...,xn)
to Ax ≤ b, and every solution of Ax ≤ b may be produced in the same way. It is
important to notice that if the system is inconsistent, this might possibly be discovered
at an early stage and hence, the algorithm terminates.

Example 4.0.1. (FM projection).
Considering we have the set of constraints:

2x + y ≤ 4 (4.1)
x + y ≥ 1 (4.2)

y ≤ 4 (4.3)

If we eliminate y, by combining the constraint 4.1 with 4.2 and 4.3, the projection of
Figure 4.2 is obtained.
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Figure 4.2: Example projection.

4.1 Algorithm description
The basic idea of the variable elimination procedure can be described in the two
following steps:

1. Pick a variable and eliminate it, yielding an equisatisfiable formula that does
not refer to the eliminated variable any more.

2. Continue until all the variables are eliminated.

The previous procedure is done by collecting the requirements for the lower and
upper bounds on the variable we want to eliminate. Considering we have a formula
φ(x1, . . . ,xn) containing only inequalities, a variable xi is chosen to be eliminated
and it is classified according to if it is an upper bound, a lower bound or it is not
a bound. Once this is done, xi is eliminated, forming φ

′
(x1, . . . , xi−1, xi+1, . . . , xn)

s.t. the original formula φ(. . .) is satisfiable if and only if φ
′
(. . .) is satisfiable. The

previous steps might be repeated until all the variables are not bounded anymore.

More in detail, the algorithm can be described as follows:

1. Choose to eliminate x1 from φ(x1,...,xn) :

a1x1 + β1 ≤ 0

...
amx1 + βm ≤ 0

where β1 = a1,2x2 + . . .+ a1,nxn − b1 (equivalently for all xn).

2. Rearrange the requirements:

aix1 ≤ βi for 1 ≤ i ≤ L

βj ≤ ajx1 for L < j ≤ U

βk ≤ 0 for U < k ≤ R
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where ai,aj > 0, and L refers to lower bounds, U to upper bounds and R to
no bounds.

3. Combine each pair:

aix1 ≤ βi for 1 ≤ i ≤ L

βj ≤ ajx1 for L < j ≤ U

as aiβj ≤ aiajx1 ≤ ajβi which is satisfiable iff aiβj ≤ ajβi is satisfiable.

After the elimination we have:

φ
′
(x2,...,xn) :

∧
1 ≤ i ≤ L
L < j ≤ U

aiβj ≤ ajβi
∧

U < k ≤ R

βk ≤ 0

Hence, the algorithm removes the variables that are not bounded in both ways (and
all the constraints that use them). We can conclude that for each pair of lower bound
βl and upper bound βu, we have:

βl ≤ xn ≤ βu

And for each such pair, we add the constraint:

βl ≤ βu

The problem is trivial when there is no variable. For instance:

. . . ∧ 4 < 3 ∧ . . .⇒ φ0 is unsatisfiable.

Definition 4.1.1. (Classification of the variable bounds).

For a variable xn, we can partition the constraints according to the coefficients of xn:

• ain = 0 : the constraint i puts no bound on xn.

• ain > 0 : the constraint i puts an upper bound on xn.

• ain < 0 : the constraint i puts a lower bound on xn.

n∑
j=1

aij · xj ≤ bi

=> ain · xn ≤ bi −
n∑

j=1

aij · xj

(A)→ xn ≤
bi
ain
−

n∑
j=1

aij
ain
· xj => UPPER BOUND

(B)→ xn ≥
bi
ain
−

n∑
j=1

aij
ain
· xj => LOWER BOUND
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Example 4.1.1. (Bounds classification).

Considering we eliminate from x1, hence we look for the category of x1:

• x1 − x2 + 2x3 ≤ 0 : x1 is an upper bound.

• −x1 + x3 ≤ 0 : x1 is a lower bound.

• −x3 + x2 ≥ −2 : x1 is not a bound.

Example 4.1.2. (FME for satisfiability checking). Given the formula:

φ(x,y,z) : y < 1 ∧ z > 1 ∧ −3x+ y > 2 ∧ x = z − y

we perform the FME for satisfiability checking as follows:

1. Eliminate equations: We substitute ”x+ y” for z in φ(x,y,z):

x = z − y → z = x+ y

Which leads to: φ
′
(x,y,z) : y < 1 ∧ x+ y > 1 ∧ −3x+ y > 2

φ
′
(x,y,z) is satisfiable iff φ(x,y,z) is satisfiable.

2. First, we choose to eliminate from x:

3x < y − 2 (4.4)
−y + 1 < x (4.5)
y − 1 < 0 (4.6)

We can categorize the variable x : it puts an upper bound on the variable y in
(4.2), a lower bound in (4.3) and no bound in (4.4).

Now, we collect the condictions for upper and lower bounds:

−3y+ 3 < 3x < y− 2 is satisfiable iff −3y+ 3 < 3x < y− 2 is satisfiable. That
is, iff the constraint −4y < −5 is satisfiable.

The last leads to: φ
′′
(x,y,z) : −4y < −5 ∧ y < 1

φ
′′
(x,y,z) is satisfiable iff φ

′
(x,y,z) is satisfiable.

3. We choose to eliminate from y. We can see that it is not possible to categorize
the variable since it is already not bounded, so this might be the last step in the
elmination:

5 < 4y (4.7)
y < 1 (4.8)

5 < 4y < 4 is satisfiable iff the constraint 5 < 4 is satisfiable.

This leads to: φ
′′′

(x,y,z) : 5 < 4

φ
′′′

(x,y,z) is satisfiable iff φ
′′
(x,y,z) is satisfiable.

φ
′′′

(x,y,z) is a contradiction. Hence, the formula φ(x,y,z) is unsatisfiable.
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4.1.1 Special cases
We need to consider two special cases: one in which we only have upper bounds, and
another one in which we only have lower bounds.

We start with the first case. When we have no lower bounds, we must proceed as
follows:

aix1 ≤ βi for 1 ≤ i ≤ Lβk ≤ 0 for L < k ≤ R

Then,
φ

′
(x2,...,xn) :

∧
m′′<k≤m

βk ≤ 0

and φ(x1,...,xn) is satisfiable iff φ
′
(x2,...,xn) is satisfiable, because x1 can be chosen

arbitrarly small.

The opposite case, when we have no upper bounds, is analogous. The only difference
is that now x1 can be chosen arbitrarly large.

4.1.2 Strict inequalities
The approach works also if we have both non-strict and strict inequalities. What we
need to change is the following:

1. We distinguish between strict and non-strict lower and upper bounds, defined
respectively by non-strcit inequalities.

2. For each pair of lower and upper bounds, if any of them is strict then we add
the constraint βl < βu instead of βl ≤ βu.

4.1.3 Complexity of the algorithm
Each elimination step in the procedure above introduces in the worst case a quadratic
number of new constraints, making the procedure double exponential. For this reason,
the Fourier-Motzkin elimination is usually not practical for large set of constraints.
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Using Fourier-Motzkin
Elimination for explanations in
MCSAT

We aim to integrate the Fourier-Motzkin Elimination (FME) into the MCSAT frame-
work of the solver SMT-RAT. To such purpose, we need an explanation function
according to Definition 3.4.1.

As input we have a conjunction of conflicting constraints A and a partial model M
which refers to a partial assignment α. It is known that ∃y. A is conflicting with α.
Hence, we look for a reason to explain the unsatisfiability, together with the partial
model, where the explanation is only formulated in the assigned variables. Such
conflicting constraints are LRA polynomial multivariant constraints (see Definition
2.2.2 ) of the form:

A :=
n∑

i=1

a1,ixi 11 0

...
n∑

j=1

am,jxj 1m 0

where x1,...xn are variables, am,n are the coefficients of those variables, and 1 ∈ {<
, > , ≤ , ≥ , 6= , =}; that is, we have a system of conjoined linear inequalities with m
constraints and m variables in R.

Equalities and inequalities are special cases. In our implementation of FME, we han-
dle inequalities, but we do not consider equalities. If unless one inequality in the input
set is found, we use the already implemented explanation function of the SMT-RAT-
MCSAT; that is, an NLSAT-style CAD-based explanation function, complemented
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with a simpler explanation function based on the Fourier-Motzkin variable elimina-
tion. FME could actually deal with equalities, but it looks more reasonable to handle
these equalities in a Gauss-like fashion. This is the reason for ignoring the equalities
for now, but we defer it to possible future work.

The procedure (shown inAlgorithm 1) can be sketched as follows: We might perform
the FME in the set of conflicting constraints evaluated in the partial model. The
elimination may be done from a pre-assigned variable. In this sense, if, for example,
we are eliminating from the variable x, but the current variable we are evaluating is
y, such a variable will be ignored, and consequently, also the constraint in which it
appears. The elimination is done in terms of a classification of bounds as explained
in Chapter 5. Thence, we look for a set of upper and lower bounds for the variable
we are eliminating from in the form:

l1 ≤| | ≤ u1
· | | ·
· |x| ·
· | | ·

lk1 ≤| | ≤ uk2

Once we have obtained the previous set, we make intervals by combining the lower and
upper bounds, but considering inequalities as well, if it is the case; though, we only
consider those intervals which are in conflict. Then we select one of the conflicting
intervals and build from it the formula that is going to be returned as explanation for
the unsatisfiability.

Algorithm 1 Algorithm for the explanation function

1: function getExplanation(A, Variable var, Model M)
2: for all ci ∈ S do
3: Evaluate ci in M
4: if V arevaluated 6= var then
5: Ignore variable
6: end if
7: end for
8: Divide S into Supper(x), Slower(x), Sineq(s) and SnoBound

9: for all upper ∈ Supper(x) do
10: for all lower ∈ Supper(x) do
11: Create intervals for all combinations of upper and lower
12: end for
13: end for
14: Choose the best conflict
15: Build formula from conflict
16: return Explanation
17: end function
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5.1 Elimination of bounded variables

As defined in the previous chapter, in order to perform the elimination, we need to
classify the constraints according to the coefficients of the variable xi chosen to make
the elimination from. Since we have a partial model, the classification of bounds only
needs to be performed once.

There are three possible classifications for making the partitioning, namely, upper
bound, lower bound and no bound (see Definition 5.1.1). Though, we are only
interested on the first two.

Before making the classification, we need to take into account that there different types
of input constraints, depending on what the relation symbol 1 refers to. According to
which type such constraints are, the way in which we keep record of them may differ.

1. 1 is ” > ” or ” ≥ ” :

Depending on the sign of the variable coefficient ai in the constraint ci:

if ci > 0 then the constraint ci puts an upper bound on the variable xn; other-
wise, it puts a lower bound.

2. 1 is ” < ” or ” ≤ ” :

Depending on the sign of the variable coefficient ai in the constraint ci:

if ci > 0 then the constraint ci puts a lower bound on the variable xn; otherwise,
it puts an upper bound.

3. 1 is ” = ” :

As we mentioned before, these constraints will be ignored because we are not
considering in our implementation of the Fourier Motzkin elimination.

4. 1 is ” 6= ” :

This is a special case; we do not classify the bound at this point, but we keep
it in a different subset. It needs to be considered apart because it may restrict
the form of the explanation returned.

If any of those cases occur, then we consider that the constraint makes no bound on
the variable in concerned.

Example 5.1.1. (Classification of bounds).

• 1 ≤ x : Lower bound

• x ≤ 0 : Upper bound

• x 6= 0 : Inequality

• x = 0 : Equality (not considered)
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5.2 Intervals generation and conflict determination
Given a set of lower bounds Sl, a set of upper bounds Su and a set of inequalities Si,
we want our framework to return an explanation for the unsatisfiability built from
the "best" pair of upper and lower bounds. For this reason, we need a structure for
keeping all the possible combinations of conflicting bounds. With this aim, we use
a representation of bounds based on intervals (see Definition 2.2.3). In addition,
we need to consider the set of inequalities obtained in the previous step in order to
determinate whether there is a conflict or not.

Since in the end the resulting explanation will be built from the original constraints
that originated the selected bounds, we cannot lose such constraints associated to their
respective bounds. The library of C++ provides tuples, objects that pack elements
of -possibly- different types together in a single object. Therefore, we create a list
of tuples, each of one saving the two original constraints referring to their respective
lower or upper bound, as same as the corresponding interval. In addition, if there
is an inequality which influenced in the conflict generation, it is also recorded in the
C++ structure, since we will need as well to consider it when we reach the step of
building the formula from the conflict to be returned as explanation.

Algorithm 2 Algorithm for the intervals generation and conflict determination

1: function generatePairs(Sl, Su, Si, Scomb)
2: for all ui ∈ Su do
3: for all li ∈ Sl do
4: Normalize bounds
5: Create intervali
6: if intervali is a point interval then
7: for all ineqi ∈ Si do
8: if Some ineq ∈ Si excludes the point interval then
9: intervali is a conflict

10: Add li, ui, ineqi and intervali to Scomb

11: else
12: intervali is not a conflict
13: end if
14: end for
15: else
16: if intervali is empty then
17: Add li, ui and ineqi to Scomb

18: else
19: intervali is is not a conflict
20: end if
21: end if
22: end for
23: end for
24: end function
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We consider that there is a conflict when the interval generated by the pair of lower
and upper bounds is empty. This may occur due to two possible reasons:

1. The interval generated is directly empty.

2. The interval generated is a point interval and some inequality excludes such a
single point, converting the point interval into an empty interval.

The entire before described process is illustrated in the Algorithm 2.

5.3 Selection of the "best" conflict
Once we have generated all the conflicting intervals, we need to order them via some
criterion which allows us selecting one of them, since we can only return an explanation
built from one of these conflicts.

We talked in the previous section about the "selection of the best pair of upper and
lower bounds." Since there is no known optimal criterion to determine which conflict-
ing interval is better to be used for building the explanation, we start with a trial
criterion, consisting of ordering the intervals according to its diameter. In addition, we
leave as further optimization, ordering the intervals following other criterions, which
might improve the performance of the method.

Let’s explain how the ordering of the intervals is made. We have implemented a
method that sorts the vector of "tuples" created in the previous step according to
the diameter of the intervals saved in each tuple. In order to do that, we use a
lambda function, which is a well-known function used compare two elements within
the sorting algorithm; hence, this lambda function is invoked inside the body of our
sorting method. Theoretically, the lambda function should return true if and only if
the first argument should come before the second argument; in our case, our lambda
function should return true when the diameter of the first comparing interval is smaller
than the one of the second comparing interval, making it coming first inside the vector
of tuples.

Once all the vector of tuples is ordered, we consider as the "best" conflict of our
ordered vector, the first element of such a vector; thus, it will be the tuple whose
interval has the smallest diameter. We will use that selected interval to build the
formula which is going to be returned as explanation.

5.4 Explanation generation
Being SsB the conflict selected in the previous step, we need now to build the formula
from such a conflict that is going to be used for explaining a reason for the unsat-
isfiability. The Algorithm 3 shows how the formula for making the explanation is
built.

In the following sketched algorithm it can be seen that the constraint C2 is built
using the upper bound and the inequality. However, the former is equal to building
the constraint from

lower − ineq 6= 0
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The reason for this is that the interval we are considering is a point interval, and
thence, upper and lower have the same value.

Algorithm 3 Algorithm for the building of the conflicting formula

1: function buildFormula(SsB , Variable var, Inequality ineq)
2: Take upper and lower bounds from SsB

3: Normalize upper and lower
4: if inequality then
5: Normalize ineq
6: Make constraint C1 = upper − lower < 0
7: Make constraint C2 = upper − ineq 6= 0
8: return res = (¬lower OR ¬upper OR ¬ineq OR C1 OR C2)
9: end if

10: Determine whether the resulting constraint is strict
11: if Strict then
12: resultingConstraint C = upper − lower < 0
13: else
14: resultingConstraint C = upper − lower ≤ 0
15: end if
16: return (res = ¬lower OR ¬upper OR C)
17: end function

As we said in Chapter 4, after each elimination we have an expression of the form:

φ
′
(x2,...,xn) :

∧
1 ≤ i ≤ L
L < j ≤ U

aiβj ≤ ajβi
∧

U < k ≤ R

βk ≤ 0

In the previous formula, the variable x1 has been already eliminated. Since the
elimination is only performed once, the formula F from which we make the explanation
is built now. Depending on the constraints that constitute the conflicting set, we can
distinguish two cases.

• Case 1: Without inequalities: the conflict found comes from the case in
which the interval formed by the lower and upper bounds in concerned is empty.

The formula is built from the constraint

βl 1 βu

where βl and βu are the respectively lower and upper bound of the variable in
concerned and 1 can be either ≤ or <; and the tautology of the upper and lower
bounds. That is:

F ≡ (¬ βl) ∨ (¬ βu) ∨ (βl − βu 1 0)
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Example 5.4.1. (Algorithm performance without inequalities).

A := {y ≥ 2, y ≤ x, x < 2}

Hence, we have two variables {x,y}. Considering we are performing the elimi-
nation from the variable y, and our partial model is M := x = 1, the explanation
generation by our FME implementation can be seen as follows:

1. Considering the constraints:

– y ≥ 2 → Evaluated in M: y ≥ 2 → It defines a lower bound.
– y ≤ x → Evaluated in M: y ≤ 1 → It defines an upper bound.
– x < 2 → Evaluated in M: 0 = 0 → It does not define any bound.

2. The following sets [(orginal constraint), (evaluated constraint)] have been
found:

– Su := [(y ≤ x), (y ≤ 1)]

– Sl := [(y ≥ 2), (y ≥ 2)]

3. The interval (0,0) is obtained from the combination of

[(y ≤ x), (y ≤ 1)] and [(y ≥ 2), (y ≥ 2)]

Here the interval obtained is the empty interval because the upper bound
has a value of 1 and the lower a value of 2; that is, we have an overlapping
of bounds, and consequently, a conflict.

4. In this example the step corresponding to the ordering of the conflits and
the selection of the best of them does not need to be done since we only
have one element in each set of constraint.

5. The formula for the explanation is built from

(y ≥ 2) and (y ≤ 0)

6. The final explanation for the unsatisfiability is

(y − 2 < 0) ∨ (−y + x < 0) ∨ (−x + 2 ≤ 0)

• Case 2: With inequalities: the conflict is generated because the interval
was a point interval, and an inequality which excludes that single point was
found, making an empty interval.

The formula construction differs in:

– We have βl ≤ xn ≤ βu and ineqn 6= xn

– Then in the partial model we have βl = βu = ineqn

Hence the formula is now built from:

F ≡ (¬ βl) ∨ (¬ βu) ∨ (¬ ineqn) ∨ (βl − βu < 0) ∨ (βl 6= ineqn)
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Example 5.4.2. (Algorithm performance with inequalities).

A := {(y ≥ x), (y ≤ x) , (y 6= x)}

Hence, we have two variables {x,y}. Considering we are performing the elimi-
nation from the variable y, and our partial model is M := x = 0, the explanation
generation by our FME implementation can be seen as follows:

1. Considering the constraints:

– y ≥ x → Evaluated in M: y ≥ 0 → It defines a lower bound.
– y ≤ x → Evaluated in M: y ≤ 0 → It defines an upper bound.
– y 6= x → Evaluated in M: y 6= 0 → It is an inequality.

2. The following sets [(orginal constraint), (evaluated constraint)] have been
found:

– Su := [(y ≤ x), (y ≤ 0)]

– Sl := [(y ≥ x), (y ≥ 0)]

– Sineq := [(y 6= x),(y 6= 0)]

3. The interval [0,0] is obtained from the combination of [(y ≤ x), (y ≤ 0)]
and [(y ≥ x), (y ≥ 0)] .

The interval is a point interval, and there in an inequality that excludes
the point. Hence, an special conflict taking into account the inequality is
built.

4. As in the previous example, the step corresponding to the ordering of the
conflits and the selection of the best of them does not need to be done since
we only have one element in each set of constraint.

5. The formula from the explanation is built from

(y ≥ x), (y ≤ x) and (y 6= x)

6. The final explanation for the unsatisfiability is

(y + x < 0) ∨ ∨ (−y − x < 0) ∨ (y + x = 0)
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Experimental results

In order to analyze the efficiency of the approach presented in Chapter 5 we com-
pare the performance on benchmarks of the SMT-RAT-MCSAT framework with the
Fourier-Motzkin elimination and the NLSAT-style as explanation functions with:

• The preliminary implementation of the MCSAT framework in SMT-RAT-MCSAT,
which uses an NLSAT-style CAD-based explanation function.

• The regular SMT-RAT solver with CAD.

• The regular SMT-RAT solver with Simplex.

• The standard z3 solver.

As input problems we use the set of QFLRA benchmarks provided by the SMT-LIB,
and we establish a time limit of 30 seconds. After executing the benchmarks, different
outputs can be obtained:

• SAT or UNSAT. The problem was correctly solved and is either satisfiable or
unsatisfiable.

• Resource exhaustion: timeout, memout or segfault. The solver exceeds the time
limit or the available memory before finding a solution. A segfault is an error
which causes the program to crash due to an incorrectly accessing memory.

• Wrong. The solver computed a result, but it was not the current solution.

6.1 General performance

We start comparing the different outputs obtained after executing the benchmarks
on the different satisfiability checking approaches. First of all, it is important to say
that no wrongs occur in any of the approaches.

We focus on the relation between the number of solved tests and the number of test
which did not finish as a consequence of a resource exhaustion, that is, a solution for
the problem was not found by the solver before exceeding the 30 seconds time limit
or the memory available.
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We show in the Table 6.1 the different benchmark results focusing on the ones
referring to SAT or UNSAT, a resource exhaustion and segfaults. Then, in Figure
6.1 we show the relation between the number of correctly solved tests, that is, those
whose result is SAT or UNSAT, and the number of tests that did not finish due to a
resource exhaustion or a segfault.

SAT UNSAT TIMEOUT MEMOUT or SEGFAULT

MCSAT+FM+CAD 376 283 988 2
MCSAT+CAD 370 278 998 3

Regular SMT + CAD 346 238 1064 1
Regular SMT + Simplex 455 356 835 3

z3 655 473 521 0

Table 6.1: Results on 1649 QFLRA benchmarks.

Figure 6.1: Graph bar comparing the relation between the number of correctly solved
tests and the number of unfinished tests.
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Ordering from highest to lower, we can say that the number of solved tests is

z3 > SMTRAT + Simplex > MCSAT + FM + CAD > MCSAT + CAD >

SMTRAT + CAD

and the number of tests which ended because of a resource exhaustion is

SMTRAT + CAD > MCSAT + CAD > SMTRAT + FM + CAD >

SMTRAT + Simplex > z3

Hence, our implementation has a better performance than the previous SMT-RAT-
MCSAT using only CAD explanations and the regular SMT-RAT solver with CAD.
It solves more instances and has less timeouts.

6.2 Running time performance on individual instances
To get a visual impression of how the solvers perform on individual instances, we
include the Figures 6.3 and 6.4. We have already shown that SMT-RAT with
Simplex and z3 are faster than any of the MCSAT approaches and SMT-RAT with
CAD. Hence, we show the comparison of the running times of MCSAT-SMTRAT
with FME and CAD explanations to the preliminary implementation of MCSAT-
SMT-RAT with only CAD explanations in Figure 6.3, and to the SMT-RAT with
CAD approach in Figure 6.4, on the benchmark sets.

On the plots, each point represents an instance of the benchmark set, its x coordinate
represents the running time of our implementation and the coordinate y the running
time of one of the other solvers. Hence, our approach with the FME is faster in all
the instances that reside above the diagonal line.

We are not interested on the single points in the top right corner, because they
correspond to instances where both solvers produce a timeout. The instances in
which both solvers are fast create an opaque cloud close to the origin.
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Figure 6.2: Comparison of running times between MCSAT-SMT-RAT with FME and
CAD and MCSAT-SMT-RAT with CAD.
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Figure 6.3: Comparison of running times between MCSAT-SMT-RAT with FME and
CAD and SMT-RAT with CAD.

We can see in both plots that the new approach is faster than both the previous
implementation of MCSAT-SMTRAT and the SMT-RAT with CAD explanations
approach. Furthermore, we expect MCSAT with FME to be even better when equal-
ities are considered.

6.3 Final analysis
In conclusion, in terms of the time needed to find a solution, we can say that our
implementation of the Fourier-Motzkin elimination as explanation generator in the
SMT-RAT-MCSAT framework has a better performance than the previously imple-
mented approach for MCSAT in the SMT-RAT solver with an NLSAT-style and a
CAD-based explanation function. However, our implementation does not perform
better than the regular SMT-RAT approaches with Simplex and z3.

In terms of the impossibility to solve a test due to a resource exhaustion, our im-
plementation performs a little better than the original implementation of the SMT-
RAT-MCSAT, since it has less timeouts and more solved tests. We perform much
more better than the regular SMTRAT with CAD explanations. However, the regular
SMRAT with Simplex and z3 still perform better .
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Conclusion

7.1 Summary

This thesis started with an introduction to the concept of satisfiability checking, pre-
senting both SAT and SMT solvers. We presented the SMT-RAT solver, since it
was in its framework where the implementation of the Fourier-Motzkin elimination
as explanation generator of the MCSAT approach was implemented. We came out
as well with the basis of the MCSAT approach and the Fourier-Motzkin elimination
algorithm.

In the following we focused in the main aim of this thesis, that is, how the FME was
implemented in the SMT-RAT-MCSAT framework. We continued making an analysis
of the performance of our implementation, by comparing it with other four techniques
in terms of the time needed to find a satisfiable or unsatisfiable solution, and based
on the relationship between the number of correctly solved tests and the number of
tests which did not finished due to a resource exhaustion.

It turned out that we improve the performance of the original SMT-RAT-MCSAT and
regular SMT-RAT with CAD explanations approaches in what refers to the number
of correclty solved tests and in terms of the running time. In none of the cases we
perform better than the regular SMT-RAT with the Simplex algorithm and z3.

7.2 Future work

There are some options to continue this work, most of them already mentioned in
previous chapters.

Using Gauss elimination algorithm to deal with equalities. The original
Fourier-Motzkin algorithm, as we presented in Chapter 5 deals with equalities: the
first step to be done in order to perform the algorithm is "eliminating the equal-
ity constraints in the same way they are eliminated in a system of linear equations
with the Gauss elimination algorithm". However, in our original implementation we
did not deal with equalities, since it can not be done by projection as we do with
inequalities. When a problem with equalities is presented as input, we call the orig-
inal implementation of the SMT-RAT-MCSAT framework. Hence, one improvement
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to our approach would be dealing with equalities by handling them in a Gauss-like
fashion.

Extension to Non-Linear Arithmetic. In some cases, to prove the satisfiability
of polynomial problems, Linear Arithmetic reasoning is used as well. Hence, one
approach to our work is expand our theory solver so it can expand polynomials and
consider all monomial as independent variables.

Choosing a different criterion to order the conflicts. As we mentioned in the
previous chapter, we do not have a specific criterion to choose the "best" conflict once
all of them have been encountered. Hence, one possible extension is trying different
criterions of selecting such conflict, and analyzing and comparing the performance of
each of them.
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