
Practical Course: SMT Solving ST 2019

— Sprint 5 —
Deadline: 19th of June

We have just completed a major refactoring of WolVeriNe. During this work our new DeepLearning
framework has identified some interesting patterns that our encoders produce that might be of
interest to you. Our guess is that you could pretty easily make your solver much faster on these
particular examples.

Diamonds

One of our encoders commonly produces what we call a diamond structure. The formulas roughly
look like this:

ϕa,b = ((a1 = a2) ∧ (a2 = b1)) ∨ ((a1 = a3) ∧ (a3 = b1))

ϕ = ϕa,b ∧ ϕb,c ∧ ϕc,d ∧ (a1 6= d1)

Our intern came up with this visual representation (where the dashed line is a disequality):

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

Obviously these are always unsatisfiable, but as the engineer responsible for this particular encoder
is on a long vacation right now, we’d like you to take care of it. Apparently the SAT solver tries
all possible ways to get from a1 to d1 (via a2, b2, c2, a2, b2, c3, a2, b3, c2, a2, b3, c3, ...) which are
exponentially many (at least our intern claims that). Maybe you can teach the SAT solver to do
it with a single theory call?

Hidden equalities

Another encoder generates a somewhat similar, but way more confusing pattern. We essentially
observe that two variables must be equal but there is no direct equality and it can also not be
derived right from the start. This is somewhat complicated to explain (in particular as I do not
properly understand it myself). The examples all look somewhat like this:

ϕ =
∨
k

ϕk with ϕk ⇒ a = b for all k

Essentially we have a big disjunction, but every disjunct by itself somehow implies that a = b. We
are still investigating why we build these formulas in the first place, but we have no idea yet. If
we could simply add a = b right from the start, we might be a lot faster...

Dynamic lemma generation

One of our engineers had an interesting snapchat (or tinder?) conversation about SMT solving
recently. He was told that modern solvers employ a technique they call lemma generation. Essen-
tially the theory solver tries to find helpful information – that is not directly related to the current
theory call – and provides this information to the SAT solver.

1



Practical Course: SMT Solving ST 2019

In your case, you could try to add information about constraints that the SAT solver has not yet
decided upon. If you consider the formula

ϕ = (a = b) ∧ (b = c) ∧ ((a 6= c) ∨ (b = d))

and your theory solver is called with {a = b, b = c}, maybe you can detect that a = c and tell the
SAT solver that ((a = b) ∧ (b = c)) ⇒ (a = c)? We already talked to the SMT-RAT guys, and
apparently there is a method addLemma() to do such stuff.

Flattening

When calling your solver, we noticed the command-line option --disable-uf-flattening. One
of our applications yields formulas with nested function calls, but we never noticed because the
SMT-RAT parser simply removed them using a technique called flattening. It basically replaced
f(f(a)) = b by f(x) = b ∧ b = f(a) (with a fresh variable b).

Can you do any better if you disable flattening?

2


