
Practical Course: SMT Solving ST 2019

— Sprint 1 —
Deadline: 24th of April

Preparation 1 - Module

Clone the git repository of your group. Create a new module in this repository using the script
writeModule.py, whose only argument is the new modules name. You can execute this script with
the following command in the SMT-RAT root directory:

python writeModules.py <name>

Now you should find a new folder named <name>Module in the folder src/smtrat-modules/.

Within this module, you will work for the rest of the practical course. Information about the
members of a module, the interfaces to implement and auxiliary functions are available in the
SMT-RAT Wiki 1.

Preparation 2 - Strategy

Next you need a new strategy to actually use your module. Therefore you create a new file
in the folder src/smtrat-strategies/strategies/, you may copy one of the existing files e.g.
RatOne.h. Change the filename to the desired name for your strategy.

Now you have to modify the content of your strategy file. The class (and constructor) have to
be named identical to the filename. Also change the includes to smtrat-solver/Manager.h and
your module from smtrat-modules/<name>Module/<name>Module.h. Last you have to adapt the
actual strategy to only use your module.

To change the used strategy to yours, execute

ccmake ../

and change the option SMTRAT Strategy to the name of your strategy. If you compile SMT-RAT
now, the current version of your module will be used so you can check whether it compiles.

Main task

We are the technology leader for VaaS2 with our revolutionary WolVeriNe3 service. In a nutshell,
we employ a SCAM4 architecture to execute verification tasks on USER5 computers and collect
the results in a private stateless blockchain. For the verification task itself we heavily rely on a
diverse set of solving backends.

We hired you to implement an SMT solver arguing about uninterpreted domains that we want to
integrate into WolVeriNe. Starting with a few basic tasks, we’ll figure out possible applications for
this tool along the way.

To get started we’d like you to solve the set of toy examples provided at https://ths.rwth-aachen.
de/teaching/ss19/swp-smt/task1.zip

They all consist of a collection of variables – their meaning is not relevant for you and we have
anonymized their names – and some equalities and disequalities. Just figure out whether the
resulting problem is satisfiable. And if there is a solution, just tell us which variables are equal.

1https://github.com/smtrat/smtrat/wiki/4---Implementing-Further-Modules
2Verification-as-a-Service
3Worldwide Verification Network
4Serverless Computing and Allocation Model
5Unaware Self-sacrificial External Resource

1


