Practical Course: SMT Solving
Introductory Meeting

Erika Ábrahám, Florian Corzilius, Gereon Kremer

Summer term 2015
Problem definition: SAT

Given a logical formula \(\varphi(x_1, \ldots, x_n) \) over boolean variables, is there an assignment for \(x_1, \ldots, x_n \) such that \(\varphi(x_1, \ldots, x_n) \) holds?
Problem definition: SAT

Given a logical formula $\varphi(x_1, ..., x_n)$ over boolean variables, is there an assignment for $x_1, ..., x_n$ such that $\varphi(x_1, ..., x_n)$ holds?

SAT is NP-complete, but can often be solved quickly.
Problem definition: SAT

Given a logical formula $\varphi(x_1, \ldots, x_n)$ over boolean variables, is there an assignment for x_1, \ldots, x_n such that $\varphi(x_1, \ldots, x_n)$ holds?

SAT is NP-complete, but can often be solved quickly.

Ideas of DPLL SAT-solving

Decide an assignment for some variable
Propagate this assignment (check for deductions)
If conflict undo the assignments, decide differently
Problem definition: SAT

Given a logical formula $\varphi(x_1, \ldots, x_n)$ over boolean variables, is there an assignment for x_1, \ldots, x_n such that $\varphi(x_1, \ldots, x_n)$ holds?

SAT is NP-complete, but can often be solved quickly.

Ideas of DPLL SAT-solving

Decide an assignment for some variable
Propagate this assignment (check for deductions)
If conflict undo the assignments, decide differently

Example

$\varphi(x, y, z) := x \lor ((y \land \neg z) \rightarrow x)$
Problem definition: Satisfiability Modulo Theories

Given a logical formula $\varphi(x_1, ..., x_n)$ over variables of some domain, is there an assignment for $x_1, ..., x_n$ such that $\varphi(x_1, ..., x_n)$ holds?
Problem definition: Satisfiability Modulo Theories

Given a logical formula \(\varphi(x_1, \ldots, x_n) \) over variables of some domain, is there an assignment for \(x_1, \ldots, x_n \) such that \(\varphi(x_1, \ldots, x_n) \) holds?

The logical formula may contain atoms from some theory:

- Equalities over real or integer variables
- Equalities over Bitvector variables
- Equalities over uninterpreted domains
Problem definition: Satisfiability Modulo Theories

Given a logical formula $\varphi(x_1, \ldots, x_n)$ over variables of some domain, is there an assignment for x_1, \ldots, x_n such that $\varphi(x_1, \ldots, x_n)$ holds?

The logical formula may contain atoms from some theory:

- Equalities over real or integer variables
- Equalities over Bitvector variables
- Equalities over uninterpreted domains

Examples

$\varphi(b, x, y, z) := (b \rightarrow x \cdot y \geq z) \land (\neg b \rightarrow y + x + z \leq 0), b \in \mathbb{B}, x, y, z \in \mathbb{R}$

$\varphi(a, b, c, d) := a = b \land b = c \land c = d \land a \neq d, a, b, c, d \in D$
Theory solver

SAT solver

Set of constraints

Boolean skeleton

SAT/UNSAT

Explanation
Theory solver

Gets a set of constraints
Decides whether the constraints are consistent
Returns SAT or UNSAT with an explanation
Goals of this practical course

- Understanding of SMT solving
- Understanding of theories: QF_UF, QF_NRA, QF_UFNRA, ...
- Understanding of different decision procedures for equality logic and uninterpreted functions
Goals of this practical course

- Understanding of SMT solving
- Understanding of theories: QF_UF, QF_NRA, QF_UFNRA, ...
- Understanding of different decision procedures for equality logic and uninterpreted functions
- Implementation of these procedures as theory modules in SMT-RAT
- Implementation in clean and modern C++
- Debugging, evaluation and documentation of theory modules
- Presentation of results
Setup

We have multiple teams \(X \in \{a, b, \ldots\} \)

- A mailinglist smt-X@ths.informatik.rwth-aachen.de
- Read access to CArL and SMT-RAT repositories
- A git repository containing a clone of SMT-RAT:

 https://srv-i2.informatik.rwth-aachen.de:8443/git/smt-X.git
Setup

We have multiple teams ($X \in \{a, b, \ldots\}$)

- A mailinglist smt-X@ths.informatik.rwth-aachen.de
- Read access to CArL and SMT-RAT repositories
- A git repository containing a clone of SMT-RAT:
 https://srv-i2.informatik.rwth-aachen.de:8443/git/smt-X.git
- Anything else? Trac? Wiki?
Setup

We have multiple teams ($X \in \{a, b, \ldots\}$)

- A mailinglist smt-X@ths.informatik.rwth-aachen.de
- Read access to CArL and SMT-RAT repositories
- A git repository containing a clone of SMT-RAT:
 https://srv-i2.informatik.rwth-aachen.de:8443/git/smt-X.git
- Anything else? Trac? Wiki?
- You need: Linux or MacOS with the following software:
 git, cmake, ccmake, cln, gmp, eigen3, g++ (≥ 4.8) or clang (≥ 3.4), boost, doxygen, gtest
Setup

We have multiple teams ($X \in \{a, b, \ldots\}$)

- A mailinglist smt-X@ths.informatik.rwth-aachen.de
- Read access to CArL and SMT-RAT repositories
- A git repository containing a clone of SMT-RAT:
 https://srv-i2.informatik.rwth-aachen.de:8443/git/smt-X.git
- Anything else? Trac? Wiki?
- You need: Linux or MacOS with the following software:
 git, cmake, ccmake, cln, gmp, eigen3, g++ (\(\geq 4.8\)) or clang (\(\geq 3.4\)), boost, doxygen, gtest

Changes to CArL or the core of SMT-RAT will be committed by us and available to both teams
Roadmap

- Design an algorithm for equality logic and uninterpreted functions
- Design datastructures supporting this algorithm
- Presentation of design: April / May
- Implementation as a theory module
- Compare different heuristics and optimizations
- Test on standard benchmarks
- Presentation of results: July
Building groups
Meetings

Weekly:

- Meeting in the seminar room
- Not mandatory, but encouraged
- You can discuss, ask for help, work/implement, ...
Meetings

Weekly:
- Meeting in the seminar room
- Not mandatory, but encouraged
- You can discuss, ask for help, work/implement, ...

Monthly (roughly every fourth meeting):
- Mandatory
- Discussion of results
- Presentation of new tasks
URLs

- Homepage:
 http://ths.rwth-aachen.de/teaching/ss15/swp-smt-solving/

- Supervisors:
 smt-orga@ths.informatik.rwth-aachen.de

- Everyone:
 smt@ths.informatik.rwth-aachen.de

- Your team:
 smt-X@ths.informatik.rwth-aachen.de

- CArL:
 https://<user>@srv-i2.informatik.rwth-aachen.de:8443/git/carl.git

- SMT-RAT:
 https://<user>@srv-i2.informatik.rwth-aachen.de:8443/git/smtrat.git

- Your git:
 https://<user>@srv-i2.informatik.rwth-aachen.de:8443/git/smtss15/smt-X.git

- Documentation for CArL (includes introduction to our build process):
 https://ths.informatik.rwth-aachen.de/doxygen/carl/html/
Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Alessandro Santuari, and Roberto Sebastiani.
To Ackermann-ize or not to Ackermann-ize? On Efficiently Handling Uninterpreted Function Symbols in SMT (EUF ∪ T).

Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Ábrahám.
SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox.

Daniel Kroening and Ofer Strichman.
That’s it...

Questions?