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What is this talk about?

Satisfiability problem

The satisfiability problem is the problem of deciding whether a logical
formula is satisfiable.

We focus on the automated solution of the satisfiability problem for
first-order logic over arithmetic theories, especially using SAT and SMT
solving.
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Decision procedures for first-order logic over arithmetic theories
in mathematical logic

Computer architecture development
CAS SAT SMT

(propositional logic) (SAT modulo theories)
Enumeration

|
Computer algebra DP (resolution)

systems
v DPLL (propagation) -
Decision procedures
ST NP-completeness for combined theories
Conflict-directed
backjumping
Partial CAD
V|rtu§I . CDCL . DPLL(T)
substitution Watched literals Equalities and uninterpreted
Clause learning/forgetting functions
Variable ordering heuristics Bit-vectors
Restarts Array theory
Arithmetic
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“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).”
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“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).”

>

“ The efficiency of our programs allowed us to solve over one hundred

open quasigroup problems in design theory.”
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Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.
m Frequently used in different research areas for, e.g., analysis,
synthesis and optimisation.
m Also massively used in industry for, e.g., digital circuit design and
verification.
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Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m Frequently used in different research areas for, e.g., analysis,
synthesis and optimisation.

m Also massively used in industry for, e.g., digital circuit design and
verification.

Community support:
m Standardised input language, lots of benchmarks available.
m Competitions since 2002.
2014 SAT Competition: 3 categories, 79 participants with 137 solvers.

SAT Live! forum as community platform, dedicated conferences,
journals, etc.
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Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.
m Logics:
quantifier-free fragments of first-order logic over various theories.
m Our focus: SAT-modulo-theories (SMT) solving.
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Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.
m Logics:
quantifier-free fragments of first-order logic over various theories.
m Our focus: SAT-modulo-theories (SMT) solving.
m SMT-LIB as standard input language since 2004.
m Competitions since 2005.
m SMT-COMP 2014 competition:
32 logical categories, 20 solvers.
Linear real arithmetic (since 2005): 6 solvers.

[ ]
m Non-linear real arithmetic (since 2010): 4 solvers.
m 67426 benchmark instances.

MU Erika Aoraham - SAT and SMT solving



Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.
m Logics:
quantifier-free fragments of first-order logic over various theories.
m Our focus: SAT-modulo-theories (SMT) solving.
m SMT-LIB as standard input language since 2004.

m Competitions since 2005.
m SMT-COMP 2014 competition:
m 32 logical categories, 20 solvers.
m Linear real arithmetic (since 2005): 6 solvers.
m Non-linear real arithmetic (since 2010): 4 solvers.
m 67426 benchmark instances.
SMT applications: verification (model checking, static analysis, termination
analysis); test case generation; controller synthesis; predicate abstraction;
equivalence checking; scheduling; planning; product design automation
and optimisation, . ..
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SMT-LIB theories

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a=cAb=d) — f(a,b) =f(c,d)

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free bit-vector arithmetic
(alb) < (a&b)

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free array theory
i =j — read(write(a,i,v),j) =v

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

x_yNO! ~E {<’<5=92’>}

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer linear arithmetic
3x+7y =28

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer non-linear arithmetic
2 +2y+y* 20

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Combined theories
2f(x) +5y >0

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

Eager vs. lazy SMT solving

m We focus on lazy SMT solving.

m Alternative eager approach: transform problems into propositional
logic and use SAT solving for satisfiability checking.

m Condition: Logic is not more expressive than propositional logic.
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(Full/less) lazy SMT solving
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(Full/less) lazy SMT solving
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(Full/less) lazy SMT solving

("2
Boolean abstraction l
Tseitin’s transformation

’
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(Full/less) lazy SMT solving

("2
Boolean abstraction l

Tseitin’s transformation

’

@ SAT or UNSAT

SAT
theory constraints or  +lemmas
UNSAT

Theory solver(s)
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Some theory solver candidates for arithmetic theories

Linear real arithmetic: Linear integer arithmetic:
m Simplex m Cutting planes, Gomory cuts
m Ellipsoid method m Branch-and-bound
m Fourier-Motzkin variable elimination m Bit-blasting

m Interval constraint propagation
m Interval constraint propagation

SMT solvers: Alt-Ergo, CVC4, iSAT3, MathSATS5, OpenSMT2, SMT-RAT,
veriT, Yices2, Z3
Non-linear real arithmetic: Non-linear integer arithmetic:
m Cylindrical algebraic decomposition m Generalised branch-and-bound

m Grébner bases
m Bit-blasting

m Virtual substitution
m Interval constraint propagation

SMT solvers: Alt-Ergo, AProVE, iSAT3, MiniSmt, SMT-RAT, Z3
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Some corresponding implementations in CAS

Grobner bases

B CoCoA, F4, Maple, Mathematica, Maxima, Singular, Reduce, ...

Cylindrical algebraic decomposition (CAD)

m Mathematica, QEPCAD, Reduce, ...

Virtual substitution (VS)

® Reduce, ...

Strength: Efficient for conjunctions of real constraints.
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http://cocoa.dima.unige.it/
http://maxima.sourceforge.net/
http://www.singular.uni-kl.de/
http://www.reduce-algebra.com/
http://www.reduce-algebra.com/

Some corresponding implementations in CAS

Grobner bases

B CoCoA, F4, Maple, Mathematica, Maxima, Singular, Reduce, ...

Cylindrical algebraic decomposition (CAD)

m Mathematica, QEPCAD, Reduce, ...

Virtual substitution (VS)

® Reduce, ...

Strength: Efficient for conjunctions of real constraints.

So why don’t we just plug in an algebraic decision procedure as theory
solver into an SMT solver?
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http://cocoa.dima.unige.it/
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http://www.singular.uni-kl.de/
http://www.reduce-algebra.com/
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Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.
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Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

m Originally, the mentioned methods
are not SMT-compliant,
they are seldomly available as libraries, and
are usually not thread-safe.
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Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

m Originally, the mentioned methods
are not SMT-compliant,
they are seldomly available as libraries, and
are usually not thread-safe.

m Usually, SMT-adaptations are tricky.
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Our SMT-RAT library

We have developed the SMT-RAT library of theory modules.

https://github.com/smtrat/smtrat/wiki

SMT

Real
Arithmetic
Toolbox
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https://github.com/smtrat/smtrat/wiki

Some experimental results

We compare:
m Z3 (SMT solver, Microsoft)
m redlog (reference implementation of virtual substitution in Reduce)
m SMT-RAT with two strategies.

raty: CNF » Preproc » SAT — ICP — VirtualSub — CAD

rats: CNF > Preproc ~ SAT — ICP — VirtualSub — CAD
2- -

> SAT -» Simplex » VirtualSub — CAD
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Some experimental results

Benchmark z3 redlog rat; rat,
(#examples) # time # time # time # time
Hona (20) 40.0% 5.6 | 30.0% 3.7 | 100.0% <1 100.0% <1
- sat 0 0 0 0 0 0 0 0
- unsat 8 3.7 6 5.6 20 <1 20 <1
KissiNg (45) 68.9%  1248.7 | 13.3% 33 35.6% 375.9 28.9% 54.4
- sat 31 1248.7 6 33 16 375.9 13 54.4
- unsat 0 0 0 0 0 0 0 0
METi-Tarski (7713) 99.9% 405.6 | 96.6% 11617.9 92.8%  4658.3 95.6%  3109.4
- sat 5025 140.8 4859 7128.7 4740  2952.1 4815 22904
- unsat 2681 264.8 2590 4489.2 2418  1706.2 2560 819
ZANKL (166) 53.0% 267.6 | 22.3% 178.0 25.9% 217.4 25.9% 101.3
- sat 61 266.3 27 156.0 27 216.8 26 80.4
- unsat 27 1.3 10 22.0 16 <1 17 20.9
KeyMAERA (421) 99.8% 11.8 | 99.5% 209.3 96.9% 17 98.1% 25.3
- sat 0 0 0 0 0 0 0 0
- unsat 420 11.8 419 209.3 408 17 413 253
WiTness (99) 21.2% 153.5 5.1% 62.1 64.6% 332.2 75.8% 937.9
- sat 4 106 5 62.1 47 331.9 58 937.6
- unsat 17 47.5 0 0 17 <1 17 <1
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Upcoming research directions in SMT solving

Improve usability:

m User-friendly models

m Dedicated SMT solvers
Increase scalability:

m Performance optimisation (better lemmas, heuristics, cache
behaviour, ...)

m Novel combination of decision procedures
m Parallelisation
Extend functionality:
m Unsatisfiable cores, proofs, interpolants
m Quantified arithmetic formulas
m Linear and non-linear (global) optimisation
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