SAT and SMT Solving in a Nutshell

M Erika Aoraham - SAT and SMT solving

Erika Abraham

RWTH Aachen University, Germany
LuFG Theory of Hybrid Systems

February 27, 2020

What is this talk about?

Satisfiability problem

The satisfiability problem is the problem of deciding whether a logical
formula is satisfiable.

We focus on the automated solution of the satisfiability problem for
first-order logic over arithmetic theories, especially using SAT and SMT
solving.

MU Erika Aoraham - SAT and SMT solving

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

1940 Computer architecture development

1960

1970

1980

2000

2010

M Erika Aoraham - SAT and SMT solving

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

1940 Computer architecture development
CAS

Computer algebra

1960
systems
1970
CAD
1980
Partial CAD
Virtual

2000 substitution

2010

M Erika Aoraham - SAT and SMT solving

1940

1960

1970

1980

2000

2010

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

Computer architecture development
CAS SAT

(propositional logic)
Enumeration

|
Computer algebra DP (resolution)

systems

y DPLL (propagation)
NP-completeness

@l Conflict-directed
backjumping

Partial CAD

Virtual CDCL

substitution Watched literals

Clause learning/forgetting
Variable ordering heuristics
Restarts

M Erika Aoraham - SAT and SMT solving

1940

1960

1970

1980

2000

2010

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

Computer architecture development
CAS SAT SMT

(propositional logic) (SAT modulo theories)
Enumeration

|
Computer algebra DP (resolution)

systems
v DPLL (propagation) -
Decision procedures
ST NP-completeness for combined theories
Conflict-directed
backjumping
Partial CAD
V|rtu§I . CDCL . DPLL(T)
substitution Watched literals Equalities and uninterpreted
Clause learning/forgetting functions
Variable ordering heuristics Bit-vectors
Restarts Array theory
Arithmetic

M Erika Aoraham - SAT and SMT solving

t
=
[}
S
o3

o
[}
>
)

©

8

T

2020

2010

2000

1990

1980

1970

1960

o
<
£
]
a
.
=
()

t
=
[}
S
o3

o
[}
>
)

©

8

T

2020
&

2010

1990

1980

1970

1960

SAT

o
<
£
]
a
.
=
()

2k

2010

I
T
1990

1980

=)
c
£
o
2}
=
=
(2]
°
=
<
=3
2]

I
T
1970

(s}
%
“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).”

SAT

I
T
1960

-—
=
)
S
Q

L)
o
>
()

©

8

=

-—
=
)
S
Q

L)
o
>
()

©

8

=

2010

1990

1980

1970

“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).”

>

“ The efficiency of our programs allowed us to solve over one hundred

open quasigroup problems in design theory.”

1960

SAT

=)
c
£
o
2}
=
=
(2]
°
=
<
=3
2]

t
=
[}
S
o3

o
[}
>
)

©

8

T

2020
&

2010

1990

1980

1970

1960

SAT

o
<
£
]
a
.
=
()

c
o)
5
o
2
)
2
8
T

g
o
m@mf mv» wofww w@m&w
m@w\fv% m.ﬁ ,\UA«G%, 09\%0 %A
(woowz\»\éo o&omv% ,\u&»\v?&oow
Oz\ooomm Qﬁao&w?wva n\.o¢o(%,
. éw?m%(Aoﬁ)\» ooﬁzno@
] Z&oméﬁ oagn.mﬂ m&d@fa nvwon,o
oo{hnow Awoowﬂ% woo%
1 V»\A\@A&o @ow,_oa
A«o@w «c &@ﬁx«uv% 7@8)2& &
)Zo@ww@a A,m@a w\va?f
8 @voo«opwn 2&«% .wwv.w
2 Afzwmv» &onﬁ?b \voovww m?@@@
o@% oo@ww @owv\/
?%wv» =0
°
{3
o
Q
=3
o
o
~
o
=
9]
=
n

1960

o

=
=

3
=
(2]

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.
m Frequently used in different research areas for, e.g., analysis,
synthesis and optimisation.
m Also massively used in industry for, e.g., digital circuit design and
verification.

M Erika Aoraham - SAT and SMT solving

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m Frequently used in different research areas for, e.g., analysis,
synthesis and optimisation.

m Also massively used in industry for, e.g., digital circuit design and
verification.

Community support:
m Standardised input language, lots of benchmarks available.
m Competitions since 2002.
2014 SAT Competition: 3 categories, 79 participants with 137 solvers.

SAT Live! forum as community platform, dedicated conferences,
journals, etc.

M Erika Aoraham - SAT and SMT solving

Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.
m Logics:
quantifier-free fragments of first-order logic over various theories.
m Our focus: SAT-modulo-theories (SMT) solving.

M Erika Aoraham - SAT and SMT solving

Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.
m Logics:
quantifier-free fragments of first-order logic over various theories.
m Our focus: SAT-modulo-theories (SMT) solving.
m SMT-LIB as standard input language since 2004.
m Competitions since 2005.
m SMT-COMP 2014 competition:
32 logical categories, 20 solvers.
Linear real arithmetic (since 2005): 6 solvers.

[]
m Non-linear real arithmetic (since 2010): 4 solvers.
m 67426 benchmark instances.

MU Erika Aoraham - SAT and SMT solving

Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.
m Logics:
quantifier-free fragments of first-order logic over various theories.
m Our focus: SAT-modulo-theories (SMT) solving.
m SMT-LIB as standard input language since 2004.

m Competitions since 2005.
m SMT-COMP 2014 competition:
m 32 logical categories, 20 solvers.
m Linear real arithmetic (since 2005): 6 solvers.
m Non-linear real arithmetic (since 2010): 4 solvers.
m 67426 benchmark instances.
SMT applications: verification (model checking, static analysis, termination
analysis); test case generation; controller synthesis; predicate abstraction;
equivalence checking; scheduling; planning; product design automation
and optimisation, . ..

MU Erika Aoraham - SAT and SMT solving

SMT-LIB theories

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a=cAb=d) — f(a,b) =f(c,d)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free bit-vector arithmetic
(alb) < (a&b)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free array theory
i =j — read(write(a,i,v),j) =v

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

x_yNO! ~E {<’<5=92’>}

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer linear arithmetic
3x+7y =28

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer non-linear arithmetic
2 +2y+y* 20

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Combined theories
2f(x) +5y >0

Source: http://smtlib.cs.uiowa.edu/logics.shtml

M Erika Aoraham - SAT and SMT solving

http://smtlib.cs.uiowa.edu/logics.shtml

Eager vs. lazy SMT solving

m We focus on lazy SMT solving.

m Alternative eager approach: transform problems into propositional
logic and use SAT solving for satisfiability checking.

m Condition: Logic is not more expressive than propositional logic.

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

("2
Boolean abstraction l
Tseitin’s transformation

’

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

("2
Boolean abstraction l
Tseitin’s transformation

’

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

("2
Boolean abstraction l

Tseitin’s transformation

’

theory constraints

Theory solver(s)

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

("2
Boolean abstraction l

Tseitin’s transformation

’

SAT

theory constraints or +lemmas
UNSAT

Theory solver(s)

M Erika Aoraham - SAT and SMT solving

(Full/less) lazy SMT solving

("2
Boolean abstraction l

Tseitin’s transformation

’

@ SAT or UNSAT

SAT
theory constraints or +lemmas
UNSAT

Theory solver(s)

M Erika Aoraham - SAT and SMT solving

Some theory solver candidates for arithmetic theories

Linear real arithmetic: Linear integer arithmetic:
m Simplex m Cutting planes, Gomory cuts
m Ellipsoid method m Branch-and-bound
m Fourier-Motzkin variable elimination m Bit-blasting

m Interval constraint propagation
m Interval constraint propagation

SMT solvers: Alt-Ergo, CVC4, iSAT3, MathSATS5, OpenSMT2, SMT-RAT,
veriT, Yices2, Z3
Non-linear real arithmetic: Non-linear integer arithmetic:
m Cylindrical algebraic decomposition m Generalised branch-and-bound

m Grébner bases
m Bit-blasting

m Virtual substitution
m Interval constraint propagation

SMT solvers: Alt-Ergo, AProVE, iSAT3, MiniSmt, SMT-RAT, Z3

M Erika Aoraham - SAT and SMT solving

Some corresponding implementations in CAS

Grobner bases

B CoCoA, F4, Maple, Mathematica, Maxima, Singular, Reduce, ...

Cylindrical algebraic decomposition (CAD)

m Mathematica, QEPCAD, Reduce, ...

Virtual substitution (VS)

® Reduce, ...

Strength: Efficient for conjunctions of real constraints.

M Erika Aoraham - SAT and SMT solving

http://cocoa.dima.unige.it/
http://maxima.sourceforge.net/
http://www.singular.uni-kl.de/
http://www.reduce-algebra.com/
http://www.reduce-algebra.com/

Some corresponding implementations in CAS

Grobner bases

B CoCoA, F4, Maple, Mathematica, Maxima, Singular, Reduce, ...

Cylindrical algebraic decomposition (CAD)

m Mathematica, QEPCAD, Reduce, ...

Virtual substitution (VS)

® Reduce, ...

Strength: Efficient for conjunctions of real constraints.

So why don’t we just plug in an algebraic decision procedure as theory
solver into an SMT solver?

M Erika Aoraham - SAT and SMT solving

http://cocoa.dima.unige.it/
http://maxima.sourceforge.net/
http://www.singular.uni-kl.de/
http://www.reduce-algebra.com/
http://www.reduce-algebra.com/

Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

M Erika Aoraham - SAT and SMT solving

Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

m Originally, the mentioned methods
are not SMT-compliant,
they are seldomly available as libraries, and
are usually not thread-safe.

M Erika Aoraham - SAT and SMT solving

Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

m Originally, the mentioned methods
are not SMT-compliant,
they are seldomly available as libraries, and
are usually not thread-safe.

m Usually, SMT-adaptations are tricky.

M Erika Aoraham - SAT and SMT solving

Our SMT-RAT library

We have developed the SMT-RAT library of theory modules.

https://github.com/smtrat/smtrat/wiki

SMT

Real
Arithmetic
Toolbox

M Erika Aoraham - SAT and SMT solving

https://github.com/smtrat/smtrat/wiki

Some experimental results

We compare:
m Z3 (SMT solver, Microsoft)
m redlog (reference implementation of virtual substitution in Reduce)
m SMT-RAT with two strategies.

raty: CNF » Preproc » SAT — ICP — VirtualSub — CAD

rats: CNF > Preproc ~ SAT — ICP — VirtualSub — CAD
2- -

> SAT -» Simplex » VirtualSub — CAD

MU Erika Aoraham - SAT and SMT solving

Some experimental results

Benchmark z3 redlog rat; rat,
(#examples) # time # time # time # time
Hona (20) 40.0% 5.6 | 30.0% 3.7 | 100.0% <1 100.0% <1
- sat 0 0 0 0 0 0 0 0
- unsat 8 3.7 6 5.6 20 <1 20 <1
KissiNg (45) 68.9% 1248.7 | 13.3% 33 35.6% 375.9 28.9% 54.4
- sat 31 1248.7 6 33 16 375.9 13 54.4
- unsat 0 0 0 0 0 0 0 0
METi-Tarski (7713) 99.9% 405.6 | 96.6% 11617.9 92.8% 4658.3 95.6% 3109.4
- sat 5025 140.8 4859 7128.7 4740 2952.1 4815 22904
- unsat 2681 264.8 2590 4489.2 2418 1706.2 2560 819
ZANKL (166) 53.0% 267.6 | 22.3% 178.0 25.9% 217.4 25.9% 101.3
- sat 61 266.3 27 156.0 27 216.8 26 80.4
- unsat 27 1.3 10 22.0 16 <1 17 20.9
KeyMAERA (421) 99.8% 11.8 | 99.5% 209.3 96.9% 17 98.1% 25.3
- sat 0 0 0 0 0 0 0 0
- unsat 420 11.8 419 209.3 408 17 413 253
WiTness (99) 21.2% 153.5 5.1% 62.1 64.6% 332.2 75.8% 937.9
- sat 4 106 5 62.1 47 331.9 58 937.6
- unsat 17 47.5 0 0 17 <1 17 <1

M Erika Aoraham - SAT and SMT solving

Upcoming research directions in SMT solving

Improve usability:

m User-friendly models

m Dedicated SMT solvers
Increase scalability:

m Performance optimisation (better lemmas, heuristics, cache
behaviour, ...)

m Novel combination of decision procedures
m Parallelisation
Extend functionality:
m Unsatisfiable cores, proofs, interpolants
m Quantified arithmetic formulas
m Linear and non-linear (global) optimisation

M Erika Aoraham - SAT and SMT solving

