Satisfiability Checking Summary III

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 19/20

Non-linear real arithmetic

We consider input formulae φ from the theory of quantifier-free nonlinear real arithmetic (QFNRA):

$$\begin{array}{ll} p & := const \mid x \mid (p+p) \mid (p-p) \mid (p \cdot p) & \text{polynomials} \\ c & := p < 0 \mid p = 0 & \text{(polynomial) constraints} \\ \varphi & := c \mid (\varphi \wedge \varphi) \mid \neg \varphi & \text{QFNRA formulas} \end{array}$$

where constants const and variables x take real values from \mathbb{R} .

Connection to SMT

1 Interval constraint propagation

2 Subtropical satisfiability

3 Virtual substitution

4 Cylindrical algebraic decomposition

Interval constraint propagation

4 Cylindrical algebraic decomposition

Interval constraint propagation (ICP)

- Incomplete but cheap method.
- Basic idea:
 Start with a list containing a single initial box (value domain).
 Use the input constraints to contract a non-empty box from the list.
 If no contraction possible, split a non-empty box.
- Termination: all boxes are empty (UNSAT) or there is a sufficiently small non-empty box (possibly SAT).

Interval constraint propagation (ICP)

- Incomplete but cheap method.
- Basic idea:
 Start with a list containing a single initial box (value domain).
 Use the input constraints to contract a non-empty box from the list.
 If no contraction possible, split a non-empty box.
- Termination: all boxes are empty (UNSAT) or there is a sufficiently small non-empty box (possibly SAT).

First contraction approach: Interval arithmetic

Second contraction approach: Interval Newton method

Algorithm overview

Contraction I: Preprocessing

- Set C' := C and $C := \emptyset$.
- \blacksquare Repeat as long as C' is not empty:
 - Take a constraint $e_1 \sim e_2$, $\sim \in \{<, \leq, =, \geq, >\}$, from C'.
 - Bring $e_1 \sim e_2$ to the normal form $r_1 \cdot m_1 + \ldots + r_k \cdot m_k \sim 0$, where $r_i \in \mathbb{R}$ and m_i are monomials (either 1 or a product of variables) for each $i = 1, \ldots, k$.
 - Replace each non-linear monomial m_i in $r_1 \cdot m_1 + \ldots + r_k \cdot m_k \sim 0$ by a fresh variable h_i and add the result to C.
 - For each newly added variable h_i replacing m_i in the previous step, add an equation $h_i m_i = 0$ to C, and initialize the bounds of h_i to the interval we get when we substitute the variable bounds in m_i and evaluate the result using interval arithmetic (note: the result will always be a single interval because there is no division or square root in m_i).

Contraction I: Interval arithmetic

- Step 1: Partially extend real arithmetic operations to $\mathbb{R} \cup \{-\infty, +\infty\}$.
- Step 2: Extend real arithmetic operations to intervals (interval arithmetic).

Definition (Interval arithmetic)

Assume real intervals A = [A, A] and B = [B, B].

$$A + B = [\underline{A} + \underline{B}; \overline{A} + B]$$

 $A - B = [A - \overline{B}; \overline{A} - B]$

$$A - B = [\underline{A} - B; A - \underline{B}]$$

$$A \cdot B = [\min(\underline{A} \cdot \underline{B}, \underline{A} \cdot \overline{B}, \overline{A} \cdot \underline{B}, \overline{A} \cdot \overline{B}); \max(\underline{A} \cdot \underline{B}, \underline{A} \cdot \overline{B}, \overline{A} \cdot \underline{B}, \overline{A} \cdot \overline{B})]$$

$$A^2 = (A \cdot A) \cap [0; +\infty)$$

$$A \div B = A \cdot \frac{1}{B} = A \cdot [\frac{1}{B}; \frac{1}{B}]$$
 if $0 \notin B$ (extended interval division if $0 \in B$)

Contraction I: Method

- Choose a constraint $c \in C$ and a variable x appearing in c. We call such a pair (c,x) a contraction candidate (CC).
- Bring c to a form $x \sim e$, $\sim \in \{<, \le, =, \ge, >\}$, where e does not contain x. (Note: due to preprocessing, if c is non-linear then it is of the form h m = 0 with h a variable and m a monomial.)
- Replace all variables in *e* by their current bounds.
- Apply interval arithmetic to evaluate the right-hand-side (e with the variables substituted by their bounds) to a union of intervals.
- Make a case distinction for each interval B in that union.
- For each case, derive from the current bound A for x and the computed bound B for e a new bound on x, depending on the type of \sim , as follows:

$$\begin{array}{lll} x < e & \text{if } \underline{A} \geq \overline{B} \text{ then } \emptyset \text{ else} & [\underline{A}, \min\{\overline{A}, \overline{B}\}] \\ x \leq e & [\underline{A}, \min\{\overline{A}, \overline{B}\}] \\ x = e & [\max\{\underline{A}, \underline{B}\}, \min\{\overline{A}, \overline{B}\}] \\ x \geq e & [\max\{\underline{A}, \underline{B}\}, \overline{A}] \\ x > e & \text{if } \overline{A} \leq B \text{ then } \emptyset \text{ else} & [\max\{A, B\}, \overline{A}] \end{array}$$

Contraction II: Preprocessing

- This second method is called the interval Newton method.
- Also this second propagation method needs some lightweight preprocessing:
 - Transform each constraint $e_1 \sim e_2$ in C to $e_1 e_2 \sim 0$.
 - For each inequation $p \sim 0$ with $\infty \in \{<, \le, \ge, >\}$ in C, replace p by a fresh variable h, add an equation h p = 0 to C, and initialize the bounds of h to the interval we get when we substitute the variable bounds in p and evaluate the result using interval arithmetic (note: the result will always be a single interval because there is no division or square root in p).
- After this preprocessing, the constraint set contains equations p=0 stating that a polynomial equals to zero, and inequations of the form $x \sim 0$ with x a variable and $\infty \in \{<, \le, \ge, >\}$.
- Assume in the following a constraint $c \in C$ and a variable x in c as a contraction candidate.

Contraction II: Method

If the constraint c is an inequation then it has the form $x \sim 0$ (where x is a variable). Contraction (assuming that the current interval for x is x):

$$\begin{array}{lll} x < 0 & \textit{if } \underline{A} \geq 0 \textit{ then } \emptyset \textit{ else } & [\underline{A}, \min\{\overline{A}, 0\}] \\ x \leq 0 & [\underline{A}, \min\{\overline{A}, 0\}] \\ x \geq 0 & [\max\{\underline{A}, 0\}, \overline{A}] \\ x > 0 & \textit{if } \overline{A} \leq 0 \textit{ then } \emptyset \textit{ else } & [\max\{\underline{A}, 0\}, \overline{A}] \end{array}$$

Contraction II: Method

Assume now that the constraint c is an equation f(x) = 0 (with f being a polynomial).

Interval Newton method for the univariate case:

- Input:
 - interval A
 - univariate polynomial constraint f(x) = 0
 - sample point $s \in A$
- Output: contracted interval $A = s \frac{f(s)}{f'(A)}$ (where f'(x) is the first derivative of f(x))

Contraction II: Componentwise multivariate interval Newton

Componentwise multivariate interval Newton:

- Input:
 - interval $A = A_1 \times ... A_n$
 - multivariate polynomial constraint $f(x_1, ..., x_n) = 0$
 - sample point $s = (s_1, \ldots, s_n) \in A$
 - \blacksquare variable x_j
- Output: contracted interval $A = s \frac{f(A_1,...,A_{j-1},s_j,A_{j+1},...,A_n)}{\frac{\partial f}{\partial x_j}(A_1,...,A_n)}$

Heuristics to choose CCs

Relative contraction

$$gain_{rel} = rac{D_{old} - D_{new}}{D_{old}} = 1 - rac{D_{new}}{D_{old}}$$

is in general not predictable.

- Heuristics:
 - lacksquare assign a weight $W_k^{(ij)} \in [0;1]$ to each CC
 - select the next contraction candidate with the highest weight
 - \blacksquare CCs with a weight less than some threshold ε are not considered for contraction
 - let $r_{k+1}^{(ij)} \in [0;1]$ be the achieved relative contraction
 - update weight:

$$W_{k+1}^{(ij)} = W_k^{(ij)} + \alpha (r_{k+1}^{(ij)} - W_k^{(ij)})$$

Assure termination

When the weight of all CCs is below the threshold we do not make progress \rightarrow split the box.

Handling linear constraints

ICP is not well-suited for linear problems (slow convergence).

Make use of linear solvers (e.g. simplex) for linear constraints:

- Pre-process to separate linear and nonlinear constraints
- Use nonlinear constraints for contraction
- Validate resulting boxes against linear feasible region
- $lue{}$ Box infeasible ightarrow add violated linear constraint for contraction

We store the search history in a treestructure. Each node stores information about one loop iteration:

- the box chosen and
- the constraint used for contraction if any.

We store the search history in a treestructure. Each node stores information about one loop iteration:

- the box chosen and
- the constraint used for contraction if any.

Incrementality: Extend the tree.

We store the search history in a treestructure. Each node stores information about one loop iteration:

- the box chosen and
- the constraint used for contraction if any.

Incrementality: Extend the tree.

Explanation: collect all constraints mentioned in the tree.

We store the search history in a treestructure. Each node stores information about one loop iteration:

- the box chosen and
- the constraint used for contraction if any.

Incrementality: Extend the tree.

Explanation: collect all constraints mentioned in the tree.

1 Interval constraint propagation

2 Subtropical satisfiability

3 Virtual substitution

4 Cylindrical algebraic decomposition

Intuition

$$f(x,y) = y + 2xy^3 - 3x^2y^2 - x^3 - 4x^4y^4$$

Hyperplanes separating vertices of the Newton polytope

1 Interval constraint propagation

2 Subtropical satisfiability

3 Virtual substitution

4 Cylindrical algebraic decomposition

Virtual substitution

- Virtual substitution method: quantifier elimination procedure for real arithmetic formulas
- Here: only existential quantification, no free variables

$$\exists x_1....\exists x_n.\varphi_n \equiv \exists x_1....\exists x_{n-1}.\varphi_{n-1}$$

- Restriction: applicable only to variables that appear at most quadratic in the formula
- Basic idea: use solution equation to construct a finite set $T \subset \mathbb{R}$ of test candidates for x_n , and use virtual substitution to check whether one of the test candidates satisfies the formula:

$$\exists x_1, \dots \exists x_n, \varphi_n \equiv \exists x_1, \dots \exists x_{n-1}, \bigvee_{t \in T} \varphi_n[t/\!\!/ x_n].$$

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \leq, \geq, \neq\}$.

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \leq, \geq, \neq\}$. Possible zeros of p (in x) are:

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \le, \ge, \ne\}$. Possible zeros of p (in x) are:

Linear in
$$x$$
: $x_0 = -\frac{c}{b}$, if $a = 0 \land b \neq 0$
Quadratic in x : $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac \geq 0$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac > 0$

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \le, \ge, \ne\}$. Possible zeros of p (in x) are:

Linear in
$$x$$
: $x_0 = -\frac{c}{b}$, if $a = 0 \land b \neq 0$
Quadratic in x : $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac \geq 0$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac > 0$

The finite endpoints of possible solution intervals of $p \sim 0$ are

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \le, \ge, \ne\}$. Possible zeros of p (in x) are:

Linear in
$$x$$
: $x_0 = -\frac{c}{b}$, if $a = 0 \land b \neq 0$
Quadratic in x : $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac \geq 0$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac > 0$

The finite endpoints of possible solution intervals of $p \sim 0$ are the zeros of p (as the sign of p is invariant between its zeros).

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \le, \ge, \ne\}$. Possible zeros of p (in x) are:

Linear in
$$x$$
: $x_0 = -\frac{c}{b}$, if $a = 0 \land b \neq 0$
Quadratic in x : $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac \geq 0$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac > 0$

The finite endpoints of possible solution intervals of $p \sim 0$ are the zeros of p (as the sign of p is invariant between its zeros).

Note: If p has no zeros then the possible solution interval is

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \le, \ge, \ne\}$. Possible zeros of p (in x) are:

Linear in
$$x$$
: $x_0 = -\frac{c}{b}$, if $a = 0 \land b \neq 0$
Quadratic in x : $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac \geq 0$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac > 0$

The finite endpoints of possible solution intervals of $p \sim 0$ are the zeros of p (as the sign of p is invariant between its zeros).

Note: If p has no zeros then the possible solution interval is $(-\infty, \infty)$.

Given: A constraint $p \sim 0$, $p = ax^2 + bx + c$, $\sim \in \{=, <, >, \le, \ge, \ne\}$. Possible zeros of p (in x) are:

Linear in
$$x$$
: $x_0 = -\frac{c}{b}$, if $a = 0 \land b \neq 0$
Quadratic in x : $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac \geq 0$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, if $a \neq 0 \land b^2 - 4ac > 0$

The finite endpoints of possible solution intervals of $p \sim 0$ are the zeros of p (as the sign of p is invariant between its zeros).

Note: If p has no zeros then the possible solution interval is $(-\infty, \infty)$.

Thus the possible solution intervals for x in $p \sim 0$ are:

constraints			possible solution intervals $(0 \le i, j \le 2, i \ne j)$			
p = 0			$[x_i, \ \rangle$	κ _i]		$(-\infty, \infty)$
p < 0	p > 0	$p \neq 0$	$(-\infty, x_i)$	(x_i, x_j)	(x_i, ∞)	$(-\infty, \infty)$
$p \leq 0$	$p \ge 0$		$(-\infty, x_i]$	$[x_i, x_j]$	$[x_i, \infty)$	$(-\infty, \infty)$

constraints	possible solution intervals $(0 \le i, j \le 2, i \ne j)$		
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$	
$p < 0$ $p > 0$ $p \neq 0$	$\left \begin{array}{ccc} (-\infty, x_i) & (x_i, x_j) \end{array} \right $	$(-\infty, \infty) (-\infty, \infty)$	
$p \le 0$ $p \ge 0$	$\left[(-\infty, x_i] \right] \left[x_i, x_j \right] \left[x_i \right]$	$(i, \infty) (-\infty, \infty)$	

constraints	possible solution intervals ($0 \le i$	$j \leq 2, i \neq j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0 p > 0 p \neq 0$	$(-\infty, x_i)$ (x_i, x_j) $(x_i,$	∞) $(-\infty, \infty)$
$p \le 0$ $p \ge 0$	$\left[(-\infty, x_i) \right] \left[x_i, x_j \right] \left[x_i, \right]$	∞) $(-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

constraints	possible solution intervals (0 <	$\leq i, j \leq 2, i \neq j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0$ $p > 0$ $p \neq 0$	$(-\infty, x_i)$ (x_i, x_j) (x_i, x_j)	$(-\infty, \infty)$
$p \le 0$ $p \ge 0$	$(-\infty, x_i]$ $[x_i, x_j]$ $[x_i, x_j]$	$(-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

As test candidates we take

constraints	possible solution intervals ($0 \le i$	$j \leq 2, i \neq j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0 p > 0 p \neq 0$	$(-\infty, x_i)$ (x_i, x_j) $(x_i,$	∞) $(-\infty, \infty)$
$p \le 0$ $p \ge 0$	$\left[(-\infty, x_i) \right] \left[x_i, x_j \right] \left[x_i, \right]$	∞) $(-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

constraints	possible solution intervals ($0 \le i$	$j \leq 2, i \neq j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0 p > 0 p \neq 0$	$(-\infty, x_i)$ (x_i, x_j) $(x_i,$	∞) $(-\infty, \infty)$
$p \le 0$ $p \ge 0$	$\left[(-\infty, x_i) \right] \left[x_i, x_j \right] \left[x_i, \right]$	∞) $(-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

$$p = 0, p \le 0, p \ge 0$$

constraints	possible solution intervals (0	$\leq i, j \leq 2, i \neq j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0$ $p > 0$ $p \neq 0$	$(-\infty, x_i)$ (x_i, x_j)	(x_i, ∞) $(-\infty, \infty)$
$p \le 0$ $p \ge 0$	$(-\infty, x_i]$ $[x_i, x_j]$	$[x_i, \infty) (-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

- $p = 0, p \le 0, p \ge 0$
 - \blacksquare Zeros of the polynomial p
 - 2∞ (:= sufficiently small value)

constraints	possible solution intervals (0	$\leq i, j \leq 2, i \neq j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0$ $p > 0$ $p \neq 0$	$(-\infty, x_i)$ (x_i, x_j)	(x_i, ∞) $(-\infty, \infty)$
$p \le 0$ $p \ge 0$	$(-\infty, x_i]$ $[x_i, x_j]$	$[x_i, \infty) (-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

- $p = 0, p \le 0, p \ge 0$
 - \blacksquare Zeros of the polynomial p
 - 2∞ (:= sufficiently small value)
- $p < 0, p > 0, p \neq 0$

constraints	possible solution intervals (0	$0 \le i, \ j \le 2, \ i \ne j$
p = 0	$[x_i, x_i]$	$(-\infty, \infty)$
$p < 0$ $p > 0$ $p \neq 0$	$(-\infty, x_i)$ (x_i, x_j)	$(x_i, \infty) (-\infty, \infty)$
$p \le 0$ $p \ge 0$	$(-\infty, x_i]$ $[x_i, x_j]$	$[x_i, \infty) (-\infty, \infty)$

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x_i are not constants but might contain other variables. Especially, it implies that they cannot be ordered by their values.

- $p = 0, p \le 0, p \ge 0$
 - \blacksquare Zeros of the polynomial p
 - 2∞ (:= sufficiently small value)
- $p < 0, p > 0, p \neq 0$
 - 1 Zeros of the polynomial p plus an infinitesimal ϵ
 - $-\infty$

Example:
$$\exists y\exists x: (y=0 \ \lor \ y^2+1<0) \ \land \ x-3\leq 0 \ \land \ xy+1<0$$

eliminate × ≡

Example:
$$\exists y \exists x: (y = 0 \lor y^2 + 1 < 0) \land x - 3 \le 0 \land xy + 1 < 0$$

eliminate x $\exists y: \qquad ((y = 0 \lor y^2 + 1 < 0) \land x - 3 \le 0 \land xy + 1 < 0)[-\infty/x]^{1}$ $\lor \qquad ((y = 0 \lor y^2 + 1 < 0) \land x - 3 \le 0 \land xy + 1 < 0)[3/x]^{1})$ $\lor (y \neq 0 \land ((y = 0 \lor y^2 + 1 < 0) \land x - 3 \le 0 \land xy + 1 < 0)[-\frac{1}{y} + \epsilon/x])$ Side condition

Test candidates

Example:
$$\exists y \exists x : (y = 0 \lor y^2 + 1 < 0) \land x - 3 \le 0 \land xy + 1 < 0$$

Virtual substitution of a variable by a test candidate

Example:
$$(g(x) = 0)\left[\frac{q+r\sqrt{t}}{s}/x\right]$$

- 1 Substitute $\frac{q+r\sqrt{t}}{s}$ for x in g(x)=0 in the common way.
- 2 Transform the result to $\frac{\hat{q}+\hat{r}\sqrt{t}}{\hat{s}}=0$ where $\hat{q},\ \hat{r},\$ and \hat{s} are polynomials.

$$\begin{array}{lll} & \frac{\hat{q}+\hat{r}\sqrt{t}}{\hat{s}}=0 & \Leftrightarrow & \hat{q}+\hat{r}\sqrt{t}=0 \\ & \Leftrightarrow & \hat{q}\hat{r}\leq 0 \ \land \ \|\hat{q}\|=\|\hat{r}\sqrt{t}\| & \Leftrightarrow & \hat{q}\hat{r}\leq 0 \land \hat{q}^2-\hat{r}^2t=0 \end{array}$$

Result:
$$(g(x) = 0)[\frac{q + r\sqrt{t}}{s} / x] = (\hat{q}\hat{r} \le 0 \land \hat{q}^2 - \hat{r}^2 t = 0)$$

Virtual substitution of a variable by a test candidate

Example:
$$(g(x) < 0)[e + \epsilon /\!\!/ x]$$

Result:

$$\underbrace{g[\textit{e}/\!\!/x] < 0}_{\text{Case 1}} \vee \underbrace{g[\textit{e}/\!\!/x] = 0 \land g'[\textit{e}/\!\!/x] < 0}_{\text{Case 2}} \vee \underbrace{g[\textit{e}/\!\!/x] = 0 \land g'[\textit{e}/\!\!/x] = 0 \land g''[\textit{e}/\!\!/x] < 0}_{\text{Case 3}}$$

1 Interval constraint propagation

2 Subtropical satisfiability

3 Virtual substitution

4 Cylindrical algebraic decomposition

Cylindrical algebraic decomposition: Idea

- Assume a set P of polynomials in n variables together with a sign condition for each polynomial in P.
- The cylindrical algebraic decomposition (CAD) method produces a decomposition of \mathbb{R}^n into a finite number of P-sign-invariant regions (CAD cells).
- Take an arbitrary element (sample point) from each of the CAD cells.
- If all sign conditions are satisfied for at least one sample point then the problem is satisfiable.
- Otherwise the problem is unsatisfiable.

Delineability

Let $R \subseteq \mathbb{R}^{n-1}$ be a region and $P = \{p_1, \dots, p_m\} \subset \mathbb{Z}[x_1, \dots, x_n]$, where $m \ge 1$ and $n \ge 2$.

Intuition: If P is delineable on R then the real roots of P vary continuously over R, while maintaining their number and order.

Definition

P is delineable on R if for $1 \le i, j \le m$ with $i \ne j$ and for all $a \in R$:

- 1 the number of roots of $p_i(a)$ is constant,
- 2 the number of different roots of $p_i(a)$ is constant,
- 3 the number of common roots of $p_i(a)$ and $p_j(a)$ is constant.

Cylindrical algebraic decomposition

Let $P=(p_1,\ldots,p_m)\in \mathbb{Z}[x_1,\ldots,x_n]^m$ and $\mathcal{C}\subseteq 2^{\mathbb{R}^n}$ finite with $m,n\geq 1$.

Definition

 \mathcal{C} is called cylindrical algebraic decomposition (CAD) of \mathbb{R}^n for P if the following holds:

- 1 $\bigcup \mathcal{C} = \mathbb{R}^n$,
- 2 $C \cap C' = \emptyset$ for all $C, C' \in C$ with $C \neq C'$,
- **3** If n = 1, then every $C \in C$ is a P-sign invariant region.
- 4 If n > 1 then there exists a CAD \mathcal{C}' of \mathbb{R}^{n-1} such that for every $C \in \mathcal{C}$ there is a $C' \in \mathcal{C}'$ such that the projection of C to the first n-1 dimensions is C'.

An element $C \in \mathcal{C}$ is called a cell.

Cylindrical algebraic decomposition

Let $P=(p_1,\ldots,p_m)\in \mathbb{Z}[x_1,\ldots,x_n]^m$ and $\mathcal{C}\subseteq 2^{\mathbb{R}^n}$ finite with $m,n\geq 1$.

Definition

 \mathcal{C} is called cylindrical algebraic decomposition (CAD) of \mathbb{R}^n for P if the following holds:

- 1 $\bigcup \mathcal{C} = \mathbb{R}^n$,
- 2 $C \cap C' = \emptyset$ for all $C, C' \in C$ with $C \neq C'$,
- **3** If n = 1, then every $C \in C$ is a P-sign invariant region.
- 4 If n > 1 then there exists a CAD \mathcal{C}' of \mathbb{R}^{n-1} such that for every $C \in \mathcal{C}$ there is a $C' \in \mathcal{C}'$ such that the projection of C to the first n-1 dimensions is C'.

An element $C \in \mathcal{C}$ is called a cell.

Remark

One sample point per cell is sufficient in order to represent a CAD.

CAD for \mathbb{R}^n

A CAD for a set of polynomials from $\mathbb{Z}[x_1,\ldots,x_n]$ splits \mathbb{R}^n into sign-invariant regions.

CAD projection

Let $P = \{p_1, \dots, p_m\} \in \mathbb{Z}[x_1, \dots, x_n]$ where $n \ge 2$ and $m \ge 1$.

Definition

A mapping

$$\operatorname{proj}: 2^{\mathbb{Z}[x_1, \dots, x_n]} \longrightarrow 2^{\mathbb{Z}[x_1, \dots, x_{n-1}]}$$

is called a CAD-Projection, if any region $R \subseteq \mathbb{R}^{n-1}$ is $\operatorname{proj}(P)$ -sign invariant *iff* R is P-delineable.

Remark

■ Usually, $|\text{proj}(P)| = |P|^2$. Thus, projecting recursively up to the univariate case is in $\mathcal{O}(|P|^{2^{n-1}})$.

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

$$proj(P) = \begin{cases} x^2 - 4x + 3, \\ -4x + x^2 + \frac{7}{2}, \\ x^4 - 8x^3 + 30x^2 - 56x + 49, \\ x^2 - 4x + 7, \\ x \end{cases}$$

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

$$\operatorname{proj}(P) = \begin{cases} x^2 - 4x + 3, & \{1, 3\} \\ -4x + x^2 + \frac{7}{2}, & \{2 - \frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2}\} \\ x^4 - 8x^3 + 30x^2 - 56x + 49, & \{\} \\ x^2 - 4x + 7, & \{\} \\ x\} & \{0\} \end{cases}$$

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

$$\operatorname{proj}(P) = \begin{cases} x^2 - 4x + 3, \\ -4x + x^2 + \frac{7}{2}, \\ x^4 - 8x^3 + 30x^2 - 56x + 49, \\ x^2 - 4x + 7, \\ x \end{cases}$$

CAD for \mathbb{R}^n

A CAD for a set of polynomials from $\mathbb{Z}[x_1,\ldots,x_n]$ splits \mathbb{R}^n into sign-invariant regions.

Representing real roots (real algebraic numbers)

Interval representation

$$(\underbrace{p,}_{\in \mathbb{Z}[x]} \underbrace{(I, r)}_{\text{exactly one real root of } p \text{ in } (I, r)}$$

Example

Real root isolation in $\mathbb R$

Real root isolation in \mathbb{R}

- Assume a set $P = \{p_1 \sim_1 0, \dots, p_k \sim_k\}$ of univariate polynomial constraints with $p_i \in \mathbb{Z}[x]$ and $\sim_i \in \{<, \leq, =, \neq, \geq, >\}$.
- Cauchy bound \Rightarrow Interval (-C, C) containing all real roots of p_1, \dots, p_k .
- Sturm sequence \Rightarrow count the real roots of each p_i in an interval.
- Split C until each sub-interval I contains at most one real root.

Real root isolation in \mathbb{R}

- Assume a set $P = \{p_1 \sim_1 0, \dots, p_k \sim_k\}$ of univariate polynomial constraints with $p_i \in \mathbb{Z}[x]$ and $\sim_i \in \{<, \leq, =, \neq, \geq, >\}$.
- Cauchy bound \Rightarrow Interval (-C, C) containing all real roots of p_1, \dots, p_k .
- Sturm sequence \Rightarrow count the real roots of each p_i in an interval.
- Split *C* until each sub-interval *I* contains at most one real root.

Real root isolation in $\mathbb R$

- Assume a set $P = \{p_1 \sim_1 0, \dots, p_k \sim_k\}$ of univariate polynomial constraints with $p_i \in \mathbb{Z}[x]$ and $\sim_i \in \{<, \leq, =, \neq, \geq, >\}$.
- Cauchy bound \Rightarrow Interval (-C, C) containing all real roots of p_1, \dots, p_k .
- Sturm sequence \Rightarrow count the real roots of each p_i in an interval.
- Split *C* until each sub-interval *I* contains at most one real root.

Real root isolation in $\mathbb R$

- Assume a set $P = \{p_1 \sim_1 0, \dots, p_k \sim_k\}$ of univariate polynomial constraints with $p_i \in \mathbb{Z}[x]$ and $\sim_i \in \{<, \leq, =, \neq, \geq, >\}$.
- Cauchy bound \Rightarrow Interval (-C, C) containing all real roots of p_1, \dots, p_k .
- Sturm sequence \Rightarrow count the real roots of each p_i in an interval.
- Split *C* until each sub-interval *I* contains at most one real root.

Real root isolation in \mathbb{R}

- Assume a set $P = \{p_1 \sim_1 0, \dots, p_k \sim_k\}$ of univariate polynomial constraints with $p_i \in \mathbb{Z}[x]$ and $\sim_i \in \{<, \leq, =, \neq, \geq, >\}$.
- Cauchy bound \Rightarrow Interval (-C, C) containing all real roots of p_1, \dots, p_k .
- Sturm sequence \Rightarrow count the real roots of each p_i in an interval.
- Split *C* until each sub-interval *I* contains at most one real root.

CAD for \mathbb{R} with respect to p_1, \ldots, p_k : $[(p_i, l_j), (p_i, l_j)]$ for each l_j containing a real root of a p_i and open intervals between them.

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

$$\operatorname{proj}(P) = \begin{cases} x^2 - 4x + 3, \\ -4x + x^2 + \frac{7}{2}, \\ x^4 - 8x^3 + 30x^2 - 56x + 49, \\ x^2 - 4x + 7, \\ x \end{cases}$$

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

$$\operatorname{proj}(P) = \{x^{2} - 4x + 3, \\ -4x + x^{2} + \frac{7}{2}, \\ x^{4} - 8x^{3} + 30x^{2} - 56x + 49, \\ x^{2} - 4x + 7, \\ x\}$$

$$\{2 - \frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2}\}$$

$$\{3 - \frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2}\}$$

$$\{3 - \frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2}\}$$

1-dimensional CAD (dimension x):

$$\underbrace{(-\infty,1),\{1\},(1,2-\frac{\sqrt{2}}{2}),\{2-\frac{\sqrt{2}}{2}\},(2-\frac{\sqrt{2}}{2},2+\frac{\sqrt{2}}{2}),\{2+\frac{\sqrt{2}}{2}\},(2+\frac{\sqrt{2}}{2},3),\{3\},(3,\infty)}_{}$$

 $samples \rightarrow Z_1$

The CAD sample construction in a nutshell

The CAD sample construction in a nutshell

Example: CAD sample construction

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

Samples for proj(P):

$$\begin{cases} 0, 1, 2 - \frac{\sqrt{2}}{2}, \ 2 + \frac{\sqrt{2}}{2}, \ 3 \\ \{ -0.5, \ 0.5, \ 1.135, \\ 2, \ 2.835, \ 3.5 \} \end{cases}$$

Example: CAD sample construction

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

Samples for proj(P):

Example sample constructions

- $(2-2)^2 + (y-2)^2 1$ has zeros 1 and 3.
- 2 y has zero 2.
- Two-dimensional samples are (2, s), one s taken from the each of $(-\infty, 1), \{1\}, (1, 2), \{2\}, (2, 3), \{3\}, (3, \infty)$.