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Non-linear real arithmetic

We consider input formulae ¢ from the theory of quantifier-free nonlinear
real arithmetic (QFNRA):

p =const|x|(p+p)|(p—p)|(p-p) polynomials
c =p<0|p=0 (polynomial) constraints
o =c|(eAp)]| ¢ QFNRA formulas

where constants const and variables x take real values from R.
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Connection to SMT
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Interval constraint propagation

Subtropical satisfiability

Virtual substitution

Cylindrical algebraic decomposition
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Interval constraint propagation
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Interval constraint propagation (ICP)

m Incomplete but cheap method.

m Basic idea:
Start with a list containing a single initial box (value domain).
Use the input constraints to contract a non-empty box from the list.
If no contraction possible, split a non-empty box.

m Termination: all boxes are empty (UNSAT) or there is a sufficiently
small non-empty box (possibly SAT).
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Interval constraint propagation (ICP)

m Incomplete but cheap method.

m Basic idea:
Start with a list containing a single initial box (value domain).
Use the input constraints to contract a non-empty box from the list.
If no contraction possible, split a non-empty box.

m Termination: all boxes are empty (UNSAT) or there is a sufficiently
small non-empty box (possibly SAT).

First contraction approach: Interval arithmetic

Second contraction approach: Interval Newton method
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Contraction |: Preprocessing

m Set C':= C and C :=0.
m Repeat as long as C’ is not empty:

m Take a constraint e ~ e, ~€ {<, <, =,>,>}, from C’.

m Bring e; ~ e to the normal form r; - my + ...+ ri - mg ~ 0, where
r; € R and m; are monomials (either 1 or a product of variables) for
eachi=1,...,k.

m Replace each non-linear monomial m; inrp -my+...+rc-me ~0bya
fresh variable h; and add the result to C.

m For each newly added variable h; replacing m; in the previous step, add
an equation h; — m; = 0 to C, and initialize the bounds of h; to the
interval we get when we substitute the variable bounds in m; and
evaluate the result using interval arithmetic (note: the result will always
be a single interval because there is no division or square root in m;).
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Contraction |: Interval arithmetic

m Step 1: Partially extend real arithmetic operations to R U {—o0, +o0}.

m Step 2: Extend real arithmetic operations to intervals (interval
arithmetic).

Definition (Interval arithmetic)
Assume real intervals A = [A, A] and B = [B, B].

A+B=[A+B;A+B
A—B=[A-B;A-B]

A-B = [min(A-B,A-B,A-B,A-B);max(A-B,A-B,A-B,A-B)]
A2 = (A-A)NI0;+)

A+B=A %= A-[%; L] if 0 & B (extended interval division if 0 € B)
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Contraction |: Method

Choose a constraint ¢ € C and a variable x appearing in c.
We call such a pair (c, x) a contraction candidate (CC).

Bring ¢ to a form x ~ e, ~€ {<,<,=,>,>}, where e does not contain x.
(Note: due to preprocessing, if ¢ is non-linear then it is of the form
h — m =0 with h a variable and m a monomial.)

Replace all variables in e by their current bounds.

Apply interval arithmetic to evaluate the right-hand-side (e with the
variables substituted by their bounds) to a union of intervals.

Make a case distinction for each interval B in that union.

For each case, derive from the current bound A for x and the computed
bound B for e a new bound on x, depending on the type of ~, as follows:

x<e ifA> B then() else [A min{A B}]

x<e [A, min{A, B}] o
X =€ [max{A, B}7Tin{A7 B}]
xX>e [maX{A’ 5}7’4]

x>e ifA<B then() else [max{A, B}, A]
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Contraction |l: Preprocessing

m This second method is called the interval Newton method.

m Also this second propagation method needs some lightweight preprocessing:

m Transform each constraint e; ~ e> in C to e; — e ~ 0.

m For each inequation p ~ 0 with ~€ {<,<;> >} in C, replace p by a
fresh variable h, add an equation h — p = 0 to C, and initialize the
bounds of h to the interval we get when we substitute the variable
bounds in p and evaluate the result using interval arithmetic (note: the
result will always be a single interval because there is no division or
square root in p).

m After this preprocessing, the constraint set contains equations p = 0 stating
that a polynomial equals to zero, and inequations of the form x ~ 0 with x a
variable and ~€ {<, <, >, >}

m Assume in the following a constraint ¢ € C and a variable x in ¢ as a
contraction candidate.
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Contraction IlI: Method

If the constraint c is an inequation then it has the form x ~ 0 (where x is a
variable). Contraction (assuming that the current interval for x is A):

x <0 ifA>0 then( else [A min{A 0}]
x<0 [A, min{A, 0}]
x>0 [max{A,0}, A]
x>0 ifA<O0 then() else [max{A,0},A]
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Contraction IlI: Method

Assume now that the constraint ¢ is an equation f(x) = 0 (with f being a
polynomial).

Interval Newton method for the univariate case:
m Input:
m interval A

m univariate polynomial constraint f(x) =0
m sample point s € A

m Output: contracted interval A =s — ff,((:)) (where f'(x) is the first derivative
of f(x))

s=0.1 £~0.38
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Contraction II: Componentwise multivariate interval Newton

Componentwise multivariate interval Newton:

m Input:
m interval A= A; x ... A,
m multivariate polynomial constraint f(xi,...,x,) =0
m sample point s = (s1,...,5,) € A
m variable x;

f(A1,-Ai—1,5,Ai41,--,An)

m Output: contracted interval A=s — LAy
@( I RTEES) n)
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Heuristics to choose CCs

m Relative contraction

gain | = Dold - Dnew —1- Dnew
b Dord Dord
is in general not predictable.
m Heuristics:
m assign a weight W?) € [0;1] to each CC

select the next contraction candidate with the highest weight
CCs with a weight less than some threshold & are not considered for
cont{a)ctlon

let r,}; € [0;1] be the achieved relative contraction
update weight:

ngi)l = W( e a(rlg’-Ji-)l W;EU))
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Assure termination

When the weight of all CCs is below the threshold we do not make progress

— split the box.

/
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Handling linear constraints

ICP is not well-suited for linear problems (slow convergence).

Make use of linear solvers (e.g. simplex) for linear constraints:
m Pre-process to separate linear and nonlinear constraints
m Use nonlinear constraints for contraction
m Validate resulting boxes against linear feasible region

m Box infeasible — add violated linear constraint for contraction
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Incrementality and Explanations

We store the search history in a tree-
. Contraction: ¢;

structure. Each node stores informa-

tion about one loop iteration:

m the box chosen and

By

.
m the constraint used for

contraction if any.

Contraction: ¢ Contraction: ¢3

(B=0)) ((B=1) (=0

LContraction:J LContraction:J LContraction :J
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Interval constraint propagation

Subtropical satisfiability

Virtual substitution

Cylindrical algebraic decomposition
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—100 |

f(x,y)=y+ 2xy3 — 3x%y? — x3 — 4x*y*
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Hyperplanes separating vertices of the Newton polytope

Y, H

n=(-2,3)

!
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Virtual substitution
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Virtual substitution

m Virtual substitution method: quantifier elimination procedure for real
arithmetic formulas

m Here: only existential quantification, no free variables
dxy. ... X0 = 33Xy .. X101

m Restriction: applicable only to variables that appear at most quadratic
in the formula

m Basic idea: use solution equation to construct a finite set T C R of
test candidates for x,, and use virtual substitution to check whether
one of the test candidates satisfies the formula:

Ixg. . Ixneon = Ixge o Ixe—1 Vo@alt) xnl]
teT
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Construction of the set of test candidates T

Given: A constraint p~ 0, p=ax?+bx+c, ~€{= < > < > 4
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Construction of the set of test candidates T

Given: A constraint p~ 0, p=ax?+bx+c, ~€{= < > < > 4
Possible zeros of p (in x) are:
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Construction of the set of test candidates T

Given: A constraint p~ 0, p=ax?+bx+c, ~€{= < > < > 4
Possible zeros of p (in x) are:

Linear in x : Xo=—% ,if a=0Ab#0
Quadratic in x : x; = —btvbi—dac \,21;2—431: Jif a#ZO0Ab?>—4ac>0
xp = =b=vlEodacif 3£ 0 A b2 —dac >0
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Construction of the set of test candidates T

Given: A constraint p ~ 0,

p=ax’+bx +c,
Possible zeros of p (in x) are:

/\JE {:7 <5 >7 S', 27 #}'

Linear in x : X = —<%

-5 Jif a=0Ab#0
Quadratic in x : x; = —b+Vbi—dac

Jif a#ZO0Ab?>—4ac>0
Jif aZO0Ab> —4ac>0
The finite endpoints of possible solution intervals of p ~ 0 are

2a
_ —b—+v/b2—4ac
X2 = 2a
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Construction of the set of test candidates T

Given: A constraint p~ 0, p=ax?+bx+c, ~€{= < > < > 4
Possible zeros of p (in x) are:

Linear in x : Xo=—% ,if a=0Ab#0
Quadratic in x : x; = —btvbi—dac Vzlf_“ac Jif a#ZO0Ab?>—4ac>0
xp = =b=vlEodacif 3£ 0 A b2 —dac >0

The finite endpoints of possible solution intervals of p ~ 0 are the zeros of p (as
the sign of p is invariant between its zeros).
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Construction of the set of test candidates T

Given: A constraint p~ 0, p=ax?+bx+c, ~€{= < > < > 4
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Construction of the set of test candidates T

Given: A constraint p~ 0, p=ax?+bx+c, ~€{= < > < > 4
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Linear in x : Xo=—% ,if a=0Ab#0
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The finite endpoints of possible solution intervals of p ~ 0 are the zeros of p (as
the sign of p is invariant between its zeros).

Note: If p has no zeros then the possible solution interval is (—o0, c0).
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Construction of the set of test candidates T

Given: A constraint p~0, p=ax?+bx+c, ~€{=< > < > #}
Possible zeros of p (in x) are:

Linear in x : Xo=—% ,if a=0Ab#0
Quadratic in x : x; = —btvbi—dac V2’f_4a° Jif a#ZO0Ab?>—4ac>0
xp = =h=iAacif 5 L O A b2

—4ac >0

The finite endpoints of possible solution intervals of p ~ 0 are the zeros of p (as
the sign of p is invariant between its zeros).

Note: If p has no zeros then the possible solution interval is (—o0, c0).

Thus the possible solution intervals for x in p ~ 0 are:

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] ( 00, 00)
p<0 p>0 p#0| (—o0, x;) (xi, ) (xi, 00) (=00, 00)
p < 0 1% > 0 (700, Xi] [Xi, XJ] [Xl'v OO) ( o0, OO)
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] (=00, 00)
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
p<0 p>0 (=00, x; [xi, x;]  [xi, 00) (—00, 00)
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i#j
p= 0 [Xi7 Xi] (_OO, )
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
1% S 0 1% Z 0 (—OO, Xi] [X/7 X_/] [Xia OO) (—OO, )

We need to pick one test candidate from each of those intervals.

Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i#j
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p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
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Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] (=00, 00)
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
p<0 p>0 (=00, xi] [xi, x;]  [xi, 00) (—00, 00)

We need to pick one test candidate from each of those intervals.
Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.

As test candidates we take the smallest value from each of those possible solution

intervals:

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20

25 / 41



Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] (=00, 00)
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
p<0 p>0 (=00, xi] [xi, x;]  [xi, 00) (—00, 00)

We need to pick one test candidate from each of those intervals.
Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.

As test candidates we take the smallest value from each of those possible solution
intervals:

mp=0p<0, p=>0
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] (=00, 00)
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
p<0 p>0 (=00, xi] [xi, x;]  [xi, 00) (—00, 00)

We need to pick one test candidate from each of those intervals.
Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.

As test candidates we take the smallest value from each of those possible solution
intervals:

mp=0p<0, p=>0

Zeros of the polynomial p
—oo  (:= sufficiently small value)
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] (=00, 00)
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
p<0 p>0 (=00, xi] [xi, x;]  [xi, 00) (—00, 00)

We need to pick one test candidate from each of those intervals.
Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.

As test candidates we take the smallest value from each of those possible solution
intervals:

mp=0p<0, p=>0
Zeros of the polynomial p

—oo  (:= sufficiently small value)

mp<0,p>0 p#0
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Construction of the set of test candidates T

constraints possible solution intervals (0 </, j <2, i # j)
p=0 [xi, xi] (=00, 00)
p<0 p>0 p#0|(—00, xi) (xi, %) (xi, 00) (=00, 00)
p<0 p>0 (=00, xi] [xi, x;]  [xi, 00) (—00, 00)

We need to pick one test candidate from each of those intervals.
Note: In general, the zeros x; are not constants but might contain other variables.
Especially, it implies that they cannot be ordered by their values.

As test candidates we take the smallest value from each of those possible solution
intervals:

mp=0p<0, p=>0

Zeros of the polynomial p

—oo  (:= sufficiently small value)
mp<0,p>0 p#0

Zeros of the polynomial p plus an infinitesimal ¢

H —x
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Construction of the set of test candidates T

Example: Jy3Ix: (y=0V y2+1<0) A x—3<0 A xy+1<0

eliminate x
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Construction of the set of test candidates T

Example: Jy3Ix: (y=0V y2+1<0) A x—3<0 A xy+1<0

Test candidates

eliminate x 1
\

Jy: ((y:OVy2+1<O)/\Xf3§0/\xy+1<0)[700//x]/\l

v (y=0V y2+1<0) A x—3<0 A xy+1<0)3/

V(y#0 A ((y=0V y?+1<0) A x=3<0 A xy+1<0)[~y +¢/x]

Side condition

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 26 / 41
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Virtual substitution of a variable by a test candidate

Example:  (g(x) = 0)[ ¢ /x]

; gtrv't ; —0;
B Substitute = for x in g(x) = 0 in the common way.
q+r\[ = 0 where §, 7, and § are polynomials.

+P/t=0

GFP<ONG®—FPt=0

Transform the result to

Q>

G+AVE
=0 &
& Gr<o A gl =IrVel =

Result:  (g(x) = 0)[“2YE /x] = (47 < 0 A 2 — P2t = 0)
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Virtual substitution of a variable by a test candidate

Example:  (g(x) < 0)[e + €//x]

g(x) x) g(x)
¢ 7 < J/g\ X
Case 1 Case 2 Case 3

Result:

gle/x] <0vgle/x] =0ng'[efx] <OVgle/x] =0Ag'[efx] =0Ag"[efx] <O
—_——

Case 1 Case 2 Case 3
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Cylindrical algebraic decomposition
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Cylindrical algebraic decomposition: Idea

m Assume a set P of polynomials in n variables together with a sign
condition for each polynomial in P.

m The cylindrical algebraic decomposition (CAD) method produces a
decomposition of R" into a finite number of P-sign-invariant regions
(CAD cells).

m Take an arbitrary element (sample point) from each of the CAD cells.

m If all sign conditions are satisfied for at least one sample point then
the problem is satisfiable.

m Otherwise the problem is unsatisfiable.
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Delineability

Let R C R"! be a region and P = {p1,...,pm} C Z[x1, ..., Xa], where
m>1and n> 2.

Intuition: If P is delineable on R then the real roots of P vary continuously
over R, while maintaining their number and order.

Definition

P is delineable on R if for 1 < i,j < m with i # j and for all a € R:
the number of roots of p;(a) is constant,
the number of different roots of p;(a) is constant,

the number of common roots of p;(a) and pj(a) is constant.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 31 /41



Cylindrical algebraic decomposition

Let P = (p1,...,pm) € Z[x1,...,xn)™ and C C 2R" finite with m,n > 1.

Definition
C is called cylindrical algebraic decomposition (CAD) of R” for P if the
following holds:

UC = Rny
CNC' =0forall C,C" eC with C # C',
If n =1, then every C € C is a P-sign invariant region.

If n > 1 then there exists a CAD C’ of R"~! such that for every C € C
there is a C' € C’ such that the projection of C to the first n — 1

dimensions is C'.
An element C € C is called a cell.
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Cylindrical algebraic decomposition

Let P = (p1,...,pm) € Z[x1,...,xn)™ and C C 2R" finite with m,n > 1.

Definition
C is called cylindrical algebraic decomposition (CAD) of R” for P if the
following holds:

Uc =R~

CNnC' =0forall C,C" e C with C # (',

If n =1, then every C € C is a P-sign invariant region.

If n > 1 then there exists a CAD C’ of R"~! such that for every C € C
there is a C' € C’ such that the projection of C to the first n — 1
dimensions is C’.

An element C € C is called a cell.

One sample point per cell is sufficient in order to represent a CAD.
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CAD for R”

A CAD for a set of polynomials from Z[xq, ..., xs]
splits R" into sign-invariant regions.

Projection phase Construction phase

Polynomiafs over Z[xi, . .., xn] CAD for R"

f

CAD for R"}

f

e Xoe1]

olynomials over Z[x] >
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CAD projection

Let P={p1,...,Pm} € Z[x1,...,Xxn] Wwhere n >2 and m > 1.

Definition

A mapping
proj ; 22Xl __y 92Xt 0]

is called a CAD-Projection, if any region R C R"~! is proj(P)-sign
invariant iff R is P-delineable.

Remark

m Usually, [proj(P)| = |P|2. Thus, projecting recursively up to the
univariate case is in O(|P[2"").
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Example: CAD projection

y
(x —2)*+
p_|(r—27-1 2
X—=Yy
t x
2
proj(P) = {x®>—4x+3,
—4x + x? + %,
x* — 8x3 4+ 30x% — 56x + 49,
x2 —4x +7,

x)
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Example: CAD projection

y
(x —2)2+
p_|(r—27-1 2
X—=y
A 5 X
proj(P) = {x®>—4x+3, {1, 3}
—4x +x* + 1, (2-¥2 242}
x* — 8x3 4+ 30x% — 56x + 49, {
x2 —4x +7, {}

x} {0}
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Example: CAD projection

y
(x — 2)2+ % <
p_|(r—27-1 2 )
X—y >
; X
2
proj(P) = {x®>—4x+3, {1, 3}
—4x +x* + 1, (2-¥2 242}
x* — 8x3 4+ 30x% — 56x + 49, {
x2 —4x +7, {}
x} {0}

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 35 /41



CAD for R”

A CAD for a set of polynomials from Z[xq, ..., xs]
splits R" into sign-invariant regions.

Projection phase Construction phase

Polynomiafs over Z[xi, . .., xn] CAD for R"

f

CAD for R"}

f

e Xoe1]

olynomials over Z[x] >
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Representing real roots (real algebraic numbers)

Interval representation

( (L or))

~~ ——

€ Z[x] exactly one real root of pin (/,r)

— 2 B
—V?2 V2
Il [

If T T i T T 1 R
-3 -2 -1 0 1 2 3
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Real root isolation in R
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Real root isolation in R

m Assume aset P = {p; ~1 0,..., px ~x} of univariate polynomial
constraints with p; € Z[x] and ~;€ {<,<,=,#,>, >}

m Cauchy bound = Interval (—C, C) containing all real roots of
P15 Pk-

m Sturm sequence = count the real roots of each p; in an interval.

m Split C until each sub-interval / contains at most one real root.

(_C7 C)

AN
-
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Real root isolation in R

m Assume aset P = {p; ~1 0,..., px ~x} of univariate polynomial
constraints with p; € Z[x] and ~;€ {<,<,=,#,>, >}

m Cauchy bound = Interval (—C, C) containing all real roots of
P15 Pk-

m Sturm sequence = count the real roots of each p; in an interval.

m Split C until each sub-interval / contains at most one real root.

h A

AN
-
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Real root isolation in R

m Assume aset P = {p; ~1 0,..., px ~x} of univariate polynomial
constraints with p; € Z[x] and ~;€ {<,<,=,#,>, >}

m Cauchy bound = Interval (—C, C) containing all real roots of
P15 Pk-

m Sturm sequence = count the real roots of each p; in an interval.

m Split C until each sub-interval / contains at most one real root.

Iy le A
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Real root isolation in R

m Assume aset P = {p; ~1 0,..., px ~x} of univariate polynomial
constraints with p; € Z[x] and ~;€ {<,<,=,#,>, >}

m Cauchy bound = Interval (—C, C) containing all real roots of
P15 Pk-

m Sturm sequence = count the real roots of each p; in an interval.

m Split C until each sub-interval / contains at most one real root.

Iy le 2 lo
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Real root isolation in R

m Assume aset P = {p; ~1 0,..., px ~x} of univariate polynomial
constraints with p; € Z[x] and ~;€ {<,<,=,#,>, >}

m Cauchy bound = Interval (—C, C) containing all real roots of
P15 Pk-

m Sturm sequence = count the real roots of each p; in an interval.

m Split C until each sub-interval / contains at most one real root.

Iy le 2 lo

— t t

Is I le

A

CAD for R with respect to p1, ..., pk:
[(pi, 1;), (pi, I;)] for each I; containing a real root of a p; and
open intervals between them.
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Example: CAD projection

y
(x —2)%+ / <
p_|(r—27-1 21 )
X—y >
t x
2
prOJ(P) = {X2 - 4X+37 {L 3}
—4x +x* + 1, (22 24 Y2}
x* — 8x3 4+ 30x% — 56x + 49,

x? —4x+17,

x}
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Example: CAD projection

y
(x —2)%+ / <
P = (y - 2)2 - 1 2“ /
X—y >
t x
2
proj(P) = {x®—4x+3, {1, 3}
St (-2 24 )
x* —8x3 4 30x? — 56x + 49, st
x? —4x+17, {}
x} {0}

1-dimensional CAD (dimension x):

(o0 1), (1), (1.2 2), 2 1, -2 24 Y2), 202, 2 2.3

samples— Z4

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20 39 / 41



The CAD sample construction in a nutshell

— P, CZ[x1, ..., xn)

eliminate
Xn

Pn_1 C Zlx1, ..., Xn—1]

eliminate
Xpn—1

eliminate
X2

Py C Z[x1]
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The CAD sample construction in a nutshell

— P, CZ[x1, ..., xn) Zi X - xZ, CR"
eliminate roots of
X, p(2)lp € Pryz€ Zyx - xZp_1}

Pn_1 C Zlx1, ..., Xn—1]

eliminate roots of
Xn—1 {p(Z) | p€e€P3,ze Z; x ZQ}
Z1 x Zo C R?
eliminate roots of
X2 {p(z) | p€ Prze Z1}
P1 C Z[x1] Zi CR
roots of P;
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Example: CAD sample construction

(x —2)%+ Y

po|b-22-1. e
< 1
2--
Samples for proj(P)' > /
{0,1,2— 32 24 ¥2 3}
{-0.5, 0. 5. 1.135,
2, 2.835, 3.5} — . — X
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Example: CAD sample construction

(x —2)%+ Y

P — (v — 2)2 -1 /

1 A
Samples for proj(P)' > /
{0,1,2— 32 24 ¥2 3}

{-0.5, 0. 5 1.135,
2, 2.835, 3.5}

[ ]
X

N ¢

Example sample constructions

m (2-2)2+ (y —2)? — 1 has zeros 1 and 3.
m 2 — y has zero 2.

m Two-dimensional samples are (2, s), one s taken from the each of

(=00, 1), {1},(1,2), {2},(2,3), {3}, (3, 00).
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