Satisfiability Checking

Overview

Prof. Dr. Erika Abraham

RWTH Aachen University
Informatik 2
LuFG Theory of Hybrid Systems

WS 19/20

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Literature and organizational

Daniel Kroening and Ofer Strichman.

Decision Procedures: An Algorithmic Point of View.
Springer-Verlag, Berlin, 2008.

Slides

Selected papers

Materials in moodle

Language: English or German

Lecture (V3): Monday 8:30-10:00 and Tuesday 8:30-9:15, room AH llI
Exercise (U1): Tuesday, 9:15-10:00, room AH I, after the lecture
Exam: written

Mandatory online tests and programming exercise. Exercise solutions
are no entrance requirement, but they are strongly recommended.
Assistants:

Gereon Kremer gereon.kremer@cs.rwth-aachen.de

Rebecca Haehn haehn@cs.rwth-aachen.de

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 2/ 42

What is this lecture about?

Quantifier-free
logical
formula

Solver

Satisfiability of the
input formula

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

What is this lecture about?

Quantifier-free
logical
formula

Solver

Satisfiability of the
input formula

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

What is this lecture about?

e N

Quantifier-free
logical
formula

07—

Solver

Satisfiability of the
input formula

[daa

,
\

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 3/ 42

The Boolean satisfiability problem...

Satisfiability problem for propositional logic

Given a formula combining some atomic propositions

using the Boolean operators “and” (A), “or” (V) and “not” (—),
decide whether we can substitute truth values for the propositions
such that the formula evaluates to true.

Example

Formula: (av-b)A(—-aVbVc)
Satisfying assignment: a = true, b = false, ¢ = true

It is the perhaps most well-known NP-complete problem [Cook, 1971]
[Levin, 1973].

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 4/ 42

...and its extension to theories

Satisfiability modulo theories problem (informal)

Given a Boolean combination of constraints from some theories, decide
whether we can substitute (type-correct) values for the (theory) variables
such that the formula evaluates to true.

A non-linear real arithmetic example
Formula: (x—2y>0Vx2—2=0)Ax*y +2x>—4>0
Satisfying assignment: x =+/2, y =2

Hard problems... non-linear integer arithmetic is even undecidable.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 5/ 42

What is formal logic?

m A (formal) logic

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g.,

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g., philosophy, mathematics, computer science.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g., philosophy, mathematics, computer science.
m A logical system defines

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.
m Studied in, e.g., philosophy, mathematics, computer science.
m A logical system defines
m the form of logical formulas (syntax) and

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g., philosophy, mathematics, computer science.

m A logical system defines

m the form of logical formulas (syntax) and
m a set of axioms and inference rules.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g., philosophy, mathematics, computer science.

m A logical system defines

m the form of logical formulas (syntax) and
m a set of axioms and inference rules.

m What is the value of a logical formula?

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.
m Studied in, e.g., philosophy, mathematics, computer science.
m A logical system defines
m the form of logical formulas (syntax) and
m a set of axioms and inference rules.
m What is the value of a logical formula?
m A structure for a logical system gives meaning (semantics) to the
formulas.
m The logical system allows to derive the meaning of formulas.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g., philosophy, mathematics, computer science.

m A logical system defines

m the form of logical formulas (syntax) and
m a set of axioms and inference rules.

m What is the value of a logical formula?

m A structure for a logical system gives meaning (semantics) to the
formulas.
m The logical system allows to derive the meaning of formulas.

m Important properties of logical systems:

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

What is formal logic?

m A (formal) logic defines a framework for inference and correct
reasoning.

m Studied in, e.g., philosophy, mathematics, computer science.
m A logical system defines

m the form of logical formulas (syntax) and

m a set of axioms and inference rules.
m What is the value of a logical formula?

m A structure for a logical system gives meaning (semantics) to the

formulas.

m The logical system allows to derive the meaning of formulas.
m Important properties of logical systems:

m consistency

m soundness

m completeness

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 6 /42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to

formal logic (formal language arguments)

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 7/ 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)
m Philosophical logic
m 500 BC to 19th century
Symbolic logic
m Mid to late 19th century

Mathematical logic
m Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to

formal logic (formal language arguments)

Philosophical logic

m 500 BC to 19th century
Symbolic logic

m Mid to late 19th century
Mathematical logic

m Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Philosophical logic

m 500 B.C - 19th century

m Logic dealing with sentences in the natural language used by humans.
m Example

m All men are mortal.
m Socrates is a man.
m Therefore, Socrates is mortal.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 9/ 42

Philosophical logic

m Natural languages are very ambiguous.

m Aristotle (384 BC — 322 BC) identified
13 types of fallacies in his Sophistical
Refutations.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 10 / 42

Fallacies

The fallacy of composition arises when one infers that something is true of
the whole from the fact that it is true of some part of the whole.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 11 / 42

Fallacies

The fallacy of composition arises when one infers that something is true of
the whole from the fact that it is true of some part of the whole.

Human cells are invisible to the naked eye.

Humans are made up of human cells.

Therefore, humans are invisible to the naked eye.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Fallacies

A fallacy of division occurs when one reasons logically that something true
of a thing must also be true of all or some of its parts.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 12 / 42

Fallacies

A fallacy of division occurs when one reasons logically that something true
of a thing must also be true of all or some of its parts.

Famously and controversially, in the Greek philosophy it was assumed
that the atoms constituting a substance must themselves have the
properties of that substance: so atoms of water would be wet, atoms
of iron would be hard, atoms of wool would be soft, etc.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Fallacies

A figure of speech is the use of a word or words diverging from its usual
meaning.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 13 / 42

Fallacies

A figure of speech is the use of a word or words diverging from its usual
meaning.

| had butterflies in my stomach. I

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20 13 / 42

Fallacies

Affirming the consequent is a formal fallacy, committed by reasoning in the
form:

If P, then Q.
Q.
Therefore, P.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 14 / 42

Fallacies

Affirming the consequent is a formal fallacy, committed by reasoning in the
form:

If P, then Q.
Q.
Therefore, P.

If | have the flu, then | have a sore throat.

| have a sore throat.
Therefore, | have the flu.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 14 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar's paradox)'

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar's paradox)'

— inconsistency

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar's paradox)'

— inconsistency

Rules for connecting language constructs are not working the expected
way:

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar's paradox)'

— inconsistency

Rules for connecting language constructs are not working the expected
way:

This sectence has five words. '

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar's paradox)'

— inconsistency

Rules for connecting language constructs are not working the expected
way:

This sectence has five words. '
This sentence has five words and this sectence has five words. '

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar's paradox)'

— inconsistency

Rules for connecting language constructs are not working the expected
way:

This sectence has five words. '
This sentence has five words and this sectence has five words. '

— The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 15 / 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)
m Philosophical logic
m 500 BC to 19th century
Symbolic logic
m Mid to late 19th century
m Mathematical logic
m Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Symbolic and mathematical logic

m 1854: George Boole introduced symbolic logic and the principles of
what is now known as Boolean logic.

m 1879: Gottlob Frege created with his Begriffsschrift the basis of
modern logic with the invention of quantifier notation.

m 1910-1913: Alfred Whitehead and Bertrand Russell published Principia
Mathematica on the foundations of mathematics, attempting to derive
mathematical truths from axioms and inference rules in symbolic logic.

m 1931: Goédel's and Turing's undecidability results
(we will deal with them later).

George Boole Gottlob Frege
(1815-1864) (1848-1925)

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Symbolic and mathematical logic

m 1854: George Boole introduced symbolic logic and the principles of
what is now known as Boolean logic.

m 1879: Gottlob Frege created with his Begriffsschrift the basis of
modern logic with the invention of quantifier notation.

m 1910-1913: Alfred Whitehead and Bertrand Russell published Principia
Mathematica on the foundations of mathematics, attempting to derive
mathematical truths from axioms and inference rules in symbolic logic.

m 1931: Gédel's and Turing's undecidability results
(we will deal with them later).

PRINCIPIA
MATHEMATICA

Bertrand Russell Alfred Whitehead
(1872-1970) (1861-1947)

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Prinzipia Mathematica

#6443, F:ia Bel.Dianf=A.=.avfe2

Dem.
F.#5d26.dFa=tz.8=1ty.d1avBe2.=.24y.
[#51-231) = tfant'y=A,
[%13-12] =.anf=A (1)

Fo(l).#11:11-835.2
Frige,y).a=t'z. B=1'y.D:avfBeZ.=.anf8=A (2)
F.(2).#%11'54.#521.2F. Prop

From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1=2,

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 18 / 42

Symbolic and mathematical logic

m 1854: George Boole introduced symbolic logic and the principles of
what is now known as Boolean logic.

m 1879: Gottlob Frege created with his Begriffsschrift the basis of
modern logic with the invention of quantifier notation.

m 1910-1913: Alfred Whitehead and Bertrand Russell published Principia
Mathematica on the foundations of mathematics, attempting to derive
mathematical truths from axioms and inference rules in symbolic logic.

m 1931: Goédel's and Turing's undecidability results
(we will deal with them later).

. 3]

Kurt Godel Alan Turing
(1906-1978) (1912-1954)

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)
m Philosophical logic
m 500 BC to 19th century
Symbolic logic
m Mid to late 19th century

Mathematical logic
m Late 19th to mid 20th century

m Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Logic in computer science

Logic has a profound impact on computer science. Some examples:

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 21 / 42

Logic in computer science

Logic has a profound impact on computer science. Some examples:
m Propositional logic - the foundation of computers and circuits

Databases - Query languages

Programming languages (e.g. Prolog)

Specification and verification

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Logic in computer science

Propositional logic
First order logic
Higher order logic

Temporal logic

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 22 / 42

Satisfiability checking: Some miles

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

1940 Computer architecture development
CA SAT SMT
(Symbolic Computation) (propositional logic) (SAT modulo theories)

Enumeration
1960 Computer algebra systems (CAS) DP (resolution)

DPLL (propagation)
Decision procedures

1070 Grobner bases NP-completeness for combined theories
C/\M:g I algebraic d
cylindrical algebraic decomposition . . .
1980 & & i b Conflict-directed backjumping
FGLM algorithm
Partial CAD
Comprehensive Grébner bases
CDCL
) o . DPLL(T)
2000 Virtual substitution Watched literals Equalities
Clause learning/forgetting Uninterpreted functions
Variable ordering heuristics Bit-vectors
2010 Restarts Array theory

Arithmetic theories

2015 Truth table invariant CAD

Satisfiability Checki Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 23 / 42

~—
(O]
>
(73]) .
= , Qum
g S 2o %
- Vs ,ﬁm& &vx\
S gy, % o
._I._) /N& No.w& e} umnx T m %A@A A@MM(
nnV Lay, & KN), Y otk m&%ﬂ m@o%%»@
Zog, Qow/ » 2y, & 53 \A(MM%Q o&ownﬂ.wzww@a
+— ow@ < Ve, @y 2 6.%@@ o o@%aoo @a«o%o ’
n 0. QNA.\\ 2, w Ofwoow A@AVA\ mw@a@&v«
O e 25 S P %3&% 8%%,»& e
A.m : : V&v | Vﬁﬁo“w@a AWoo.w @mozxA
m 2y 5, 7%, 4 S %@o.co)h F »
S W L & oo A
o om\\x <, ,Ncwo » VV&@@«Q&VQ@&V
b w o.wN _ b ~ce® OAO @vav&
(0] ° 29, g, 2 5% Rts < m,mv@a P
> EC R Uy m\ o 2&&0@. a é@a&@% s>
I% s%%@ ¥ 2%, éw&.ﬁ,ww ° <P oowe@@mﬂ%@ -
4 © .
- & 1z 2 p &wQ 2, 4 I nzﬁvﬁwv £ @O&VA —
Aw " - ogw 2
(@) oomweQ IS Ly, w&%.m% O@V&M@ﬁ mzo .m
_nlU 2, o2 vy, s 0&%&7& mv%\o 2
" : G " /?vﬁm £
. v 2 Sp, =}
_U..o) 5 | ° 2
5. 0 E c
= 3 | a
~ 3 A
opr ¥ H
O % om, |
2 3 m
a =
O L2 ®ag, @s g m
> Oy N | una
.t : mx\ | m
— : |
5 " a
2, o .m
oy S |
o 3 .
ol q | |
: QwVU%YV mmx W Y
3 o |
< "y P
2 v,u.w.
18 5
2 % ;
>
wn

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.
m Frequently used in different research areas for, e.g., analysis, synthesis
and optimisation.
m Also massively used in industry for, e.g., digital circuit design and
verification.

25 / 42

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.
m Frequently used in different research areas for, e.g., analysis, synthesis
and optimisation.
m Also massively used in industry for, e.g., digital circuit design and
verification.
Community support:
m Standardised input language, lots of benchmarks available.
m Competitions since 2002.
2016 SAT Competition: 6 tracks, 29 solvers in the main track.
SAT Live! forum as community platform, dedicated conferences,
journals, etc.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 25 / 42

An impression of the SAT solver development

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 . . T - | T T oo
+ Limmat (2002) = - v 0@
Zchaff (2002) N o] - a v o', @ &
* Berkmin (2002) - - © ©
O Forklift (2003) . y
® Siege (2003) + " L ¥ v & N
1000 |- Zehaff (2004) + * . AV e £ o A1
SatELite (2005) = o - v rd
Minisat 2 (2006) x 5? - M S &
A Picosat (2007) 5 Wwee 8
v Rsat(2007) © F ° &
v Minisat 2.1 (2008) * 0] -t Vo " o
800 |- Precosat (2000) o . o wid &2 7
_ Glucose (2009) -] oy o
2 Clasp (2009) + Ly o ° &
g *® Cryptominisat (2010) m L] & ',‘. o 0
3 © Lingeling (2010) . P
= © Minisat 2.2 (2010) S om 4 oS
S 600F © Glucose? 011 £ o & o b
H ® Glueminisat (2011)) v He
[© Contrasat (2011) * @D v M
2 + X %
c 3 ¥ j
400 v B
5
200 .
o L : L
0 20 0 60 80 100 120 140 160 180

Number of problems solved

Source: Jarvisalo, Le Berre, Roussel, Simon. The International SAT Solver
Competitions. Al Magazine, 2012.

Satisfiability Checki Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Satisfiability modulo theories solving

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.

m Logics:
quantifier-free fragments of first-order logic over various theories.

m Our focus: SAT-modulo-theories (SMT) solving.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 27 / 42

Satisfiability modulo theories solving

Propositional logic is sometimes too weak for modelling.

We need more expressive logics and decision procedures for them.

Logics:

quantifier-free fragments of first-order logic over various theories.
Our focus: SAT-modulo-theories (SMT) solving.

SMT-LIB as standard input language since 2004.

Competitions since 2005.

SMT-COMP 2016 competition:

4 tracks, 41 logical categories.

QF linear real arithmetic: 7 4+ 2 solvers, 1626 benchmarks.

QF linear integer arithmetic: 6 + 2 solvers, 5839 benchmarks.

QF non-linear real arithmetic: 5+ 1 solvers, 10245 benchmarks.
QF non-linear integer arithmetic: 7 + 1 solvers, 8593 benchmarks.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 27 / 42

SMT-LIB theories

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a=cAb=d) — f(a,b) = f(c,d)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free bit-vector arithmetic
a+b>0A (ab)<(a&b)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free array theory
i =j — read(write(a,i,v),j) =v

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

x—y>0Vx—z<0

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer linear arithmetic
Ax +7y =8N (y=0Vx>y)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer non-linear arithmetic
X2 +2xy +y?> >0V (x> 1Axz+yz?> =0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Combined theories
2f(x) 4+ 5y >0A~(f(x) =y Vx+2y =0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

)
(]
=
o
(]
<
o
)
=}
Ne)
o
S
_l
<
L
—
L
<
O
el
(T
(O]
(V0]
—
B
o
=
O
)]
Y
a0
o
o
O

5000

4000

3000

2000

1000

§10C
¥10C
€10¢
¢10¢C
T10¢
0T0C
600C
800¢
200¢
900¢
§00¢
¥00C
€00¢C
¢00¢
T00¢
000¢
6661
8661
1661
9661
G661
661
€661
661
1661
0661
6861
8861
1861
9861
G861

>
E=
]
4
o
3
=
=
=
9]
4=
[v]
3]
<
o5
S
x
-
£
@
=
©
<
g
<
4]
X
T
w
o
o
Y
o
2
o
b0
e
=
o]
9]
£=
(9]
>
=
3
©
8
1]
B
©
(%]

SAT/SMT embedding structure

Environment

|

Software

engine
(__Problem }———

Solution

Logical
problem
specification

WS 19/20 30 / 42

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

SAT/SMT embedding structure

Environment

|

Software

engine
(__Problem }————

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

Solution

Logical
problem
specification

WS 19/20 30 / 42

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

SAT/SMT embedding structure

Environment

|

Software

engine
(__Problem }————

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input language — free solver choice

Solution

Logical
problem
specification

WS 19/20 30 / 42

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

Application example: Hardware verification

Problem 1: Given two circuits, are they equivalent?

Problem 2: Given a circuit and a property specification, does the
circuit fulfill the specification?

Problem 3: Given a partially specified circuit with a black-box com-
ponent (at early design stage) and a property specification, is the
partial circuit realisable, i.e., is there an implementation of the black
box such that the circuit fulfills the property?

Many hardware producers develop and use own SAT solvers for these tasks.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 31/ 42

Application example: Symbolic execution

Program 1.2.1 A recursion-free program with bounded loops and an SSA
unfolding.

int Main(int x, int vy .
n ain(int x, int y) int Main(int x0. int y0)

{ {
if (x <v) int x1:
X =x+ ¥ i . .
for (int i = 0; i < 3: ++i) { if ('}f“ <;f‘l”i o
vy = x + Next{y): clsz =X ys
} xl = x0:

return x + y: int vl = x1 + v0 + 1:

} int v2 = x1 + v1 + 1:
int v3 = x1 + v2 + 1;

int Next(int x) { return x1 + y3;

return x + 1:
) t

(ro <yo = xp=xp+) A (D(eg <yo) = o1 =x9) A
ey Yy ys [Vi=x1+tyt+l Aye=rr b+l A ya=ap g F1LA
result = 1 + i3

Source: Nikolaj Bjgrner and Leonardo de Moura. Applications of SMT solvers to Program Verification.

Rough notes for SSFT 2014.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 32/ 42

Application example: Bounded model checking

Problem: Given a program (automaton, circuit, term rewrite system,
etc.), find an execution path of length at most k which leads to a
state with a certain property (used for detecting, e.g., division by
zero, violating functional requirements, etc.).

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Application example: Bounded model che

Carnegie Mellon

Ml Bounded Model Checking .
Fomend for Software /

About CBMC

CBMC is a Bounded Model Checker for C and C++ programs. It
supports €89, €99, most of C11 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, windows and MacOS X. You should also read the CBMC license.

CBMC comes with a built-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checki

Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20

34 / 42

http://www.cprover.org/cbmc/

Application example: Bounded model checking for C/C++

Carnegie Mellon
Ml Bounded Model Checking .
romena for Software T /

SRR cBmc Logical encoding of finite unsafe paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports €89, €99, most of C11 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, windows and MacOS X. You should also read the CBMC license.

CBMC comes with a built-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checki Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 7]

http://www.cprover.org/cbmc/

Application example: Bounded model checking for C/C++

Carnegie Mellon

® Bounded Model Checking .
Homena for Software T /

SRR cBmc Logical encoding of finite unsafe paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports €89, €99, most of C11 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java

A Trans(sk 1,5x) A Bad(sp, - . .

Encoding idea: Init(sp) A Trans(so, s1) A .

TToTe,
C++ for consistency with other languages, such as Verilog. The g
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, windows and MacOS X. You should also read the CBMC license.

CBMC comes with a built-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checki Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 7]

http://www.cprover.org/cbmc/

Application example: Bounded model checking for C/C++

Carnegie Mellon

® Bounded Model Checking .
Homena for Software T /

SRR cBmc Logical encoding of finite unsafe paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports €89, €99, most of C11 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java

A Trans(sk 1,5x) A Bad(sp, - . .

7Sk)

Encoding idea: /nlt(so) A Trans(so, s1)A.

C++ for e a
verification|
passingth| Application examples
whie Cor Error localisation and explanation focarion
using ma . .

_ Equivalence checking
CBMC is a edora),

Solaris 11, Test case generation
CBMC co Worst-case execution time

alternative;

As an
3. The
solvers we-rccormreraare g o prartcararoraeTy o arma=z3. Note
that these solvers need to be installed separately and have d\ﬂeren[Mcensmg conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 7]

http://www.cprover.org/cbmc/

Application example: BMC for graph transformation systems

error
nz
flws

(a) Initial graph S) Forbidden pattern

Fig. 1. Part of the car platooning GTS [

Rule 1 L R

nq n2 nq a n2

Fig. 2. Rule 1 of the car platooning GTS [1]

Source: T. Isenberg, D. Steenken, and H. Wehrheim.

Bounded Model Checking of Graph Transformation Systems via SMT Solving.
In Proc. FMOODS/FORTE'13.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

Application example: BMC for graph transformation systems

error
./‘nz
flws
Encode initial and forbidden

(a) Initial graph S) Forbidden pattern state graphs and
the graph transformation rules
in first-order logic.

Fig. 1. Part of the car platooning GTS [

Rule 1 L IR
® Qle_« ™
Apply
Fig. 2. Rule 1 of the car platooning GTS [1] bounded model checklng

Source: T. Isenberg, D. Steenken, and H. Wehrheim.

Bounded Model Checking of Graph Transformation Systems via SMT Solving.
In Proc. FMOODS/FORTE'13.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20

35 / 42

Application example: Termination analysis for programs

APROVE

Automated Program Verification Envir

Termination

Symbolic
Execution
Graph

Front-End Back-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).
In Proc. TACAS'15.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20 36 / 42

Application example: Termination analysis for programs

Am Term rewrite system

Automated Program Verification Envir l

Termination

Symbolic
Execution
Graph

Front-End Back-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).
In Proc. TACAS'15.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20 36 / 42

Application example: Termination analysis for programs

A@@@V]E Term rewrite system
Automated Program Verification Envir

Complexity

Symbolic
Execution
Graph

Non Termination
Front-End Back-End
Term rewrite system minus(z,0) M) d0.sw) -0 @
minus(0,s(y)) — 0 (2) div(s(z),s(y)) — s(div(minus(z, y),s(y))) (5)
l minus(s(x). s(y)) — minus(z,y) (3)

Dependency pairs MINUS (s(z),5(y)) — MINUS(z,5) (6) DIV(()s(y)PMINUSu v) ™
DIV(s(z), s(y)) — DIV(minus(x. y),5(y)) (8)

l O O
. ‘DIV(s(n).s(y))aDIV(minus(.vr,).s(y)) (x)\ lMINUS(s(::,),s(y))aMINUS(.’z:,y) (6) \

Chains

—
DIV(s(x), 5(y)) — MINUS(z,) (7
Logical encoding for well-founded orders.

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).
In Proc. TACAS'15.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 36 / 42

Application example: jUnitgy for runtime verification of

multi-threaded, object-oriented systems

Properties: linear temporal logics enriched with first-order theories
Method: SMT solving + classical monitoring

]

l @Ium (‘IJ l-‘(SD

Synthesis

System v

—

Monitor

Ohservation

Fig. 1 Schematic overview of the monitoring approach

Source: N. Decker, M. Leucker, D. Thoma.

Monitoring modulo theories.

International Journal on Software Tools for Technology Transfer, 18(2):205-225, April 2016.
Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University)

WS 19/20 37 / 42

Application example: Planning

ol)7
take picture, recharge take soil gample x 2, recharge x 9

2 B

take picture, recharge x 7 recharge x 7

\ t]ll.‘ L —

[recharge x §
Start

Figure 1: A GEOMETRIC ROVERS example instance, showing the
starting and goal locations of the rover, areas where tasks can be
performed (blue) and obstacles (orange) and a plan solving the task
(green). The red box indicates the bounds of the environment.

Source: E. Scala, M. Ramirez, P. Haslum, S. Thiebaux.
Numeric planning with disjunctive global constraints via SMT.
In Proc. of ICASP’16.

— Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 38 / 42

Application example: Scheduling

Resource 1, availability = 3

= - -
s |3
24
Task time duration 7
1] 2] 6
13,2 : [—T— —T T time
Resource 2, availability = 3
I —_ - [
|_3
2 A . 5 — —
0,0,0
14 4 7
2 6 R
0 T T T T T time
’ ' T Resource 3, availability = 2
Demand on each resource > o _
5 3
1! 2 ! [+ 6 !
0 T Tt T T time

Figure 1: An example of RCPSP (Liess and Michelon 2008)

Source: C. Ansétegui, M. Bofill, M. Palahi, J. Suy, M. Villaret.

Satisfiability modulo theories: An efficient approach for the resource-constrained project
scheduling problem.

Proc. of SARA'11.

Satisfiability Checki Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 39 / 42

Application example: Deployment optimisation on the cloud

Location (e.g, VMs, PCs, ...)

Depoloyable Components

/
/wp,frontend [1

-
wp_backend N\

:

L 4 < | User Constraints RAM: 3750] ©
\ HTTP_Load_Balancer s H \
mysal |

RAM 7600 \
\wp backend mysql >)
MySQL I /
Cost: 21
grdPress / ,
N - - —__ -
<3 large 1

wp_backend|

<3 _xlarge 1

wp_frontend| wp_backen [
© 23
HTTP_Load Balancer, 1

VordPress 3

Source: E. Abraham, F. Corzilius, E. Broch Johnsen, G. Kremer, J. Mauro.
Zephyrus2: On the fly deployment optimization using SMT and CP technologies.
Submitted to SETTA'16.

Satisfiability Checking — Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 40 / 42

Application example: Parameter synthesis for probabilistic
systems

40p? +20pq + 6p + 3¢
68p2 +34pq + 344> +34p + 17q

Fooss =

C/'fmf‘f\w_((Pamuomc))

—__Rational Function >

- Plot of Regions
- User-defined Regions

Lit of Safe/ T
SMT Solver ist of Safe/Un
safe Regions

pK

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen,
E. Abraham.

WS 19/20 41 / 42

Application example: Hybrid systems reachability analysis

DREAL DREACH BENCHMARKS PUBLICATION DOWNLOAD TRYONLINE PEOPLE

dReach is a tool for safety verfication of hybrid systems.

It answers questions of the type: Can a hybrid system run into an unsafe region of its state space? This question can be encoded to SMT formulas,
and answered by our SMT solver. dReach is able to handle general hyrbid systems with nonlinear differential equations and complex discrete
mode-changes.

dReach
Hybrid System Model
(.drh)
BMC SMT2
Module ™ Formula dReal SAT/UNSAT
Unrolloing bound k

Source: D. Bryce, J. Sun, P. Zuliani, Q. Wang, S. Gao, F. Shmarov, S. Kong, W. Chen, Z.
Tavares. dReach home page. http://dreal.github.io/dReach/

Satisfiability Checki Prof. Dr. Erika Abraham (RWTH Aachen University) WS 19/20 42 / 42

http://dreal.github.io/dReach/

