
Satisfiability Checking
Overview

Prof. Dr. Erika Ábrahám

RWTH Aachen University
Informatik 2

LuFG Theory of Hybrid Systems

WS 19/20

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 1 / 42

Literature and organizational

Daniel Kroening and Ofer Strichman.
Decision Procedures: An Algorithmic Point of View.
Springer-Verlag, Berlin, 2008.
Slides
Selected papers
Materials in moodle

Language: English or German
Lecture (V3): Monday 8:30-10:00 and Tuesday 8:30-9:15, room AH III
Exercise (Ü1): Tuesday, 9:15-10:00, room AH III, after the lecture
Exam: written
Mandatory online tests and programming exercise. Exercise solutions
are no entrance requirement, but they are strongly recommended.
Assistants:
Gereon Kremer gereon.kremer@cs.rwth-aachen.de
Rebecca Haehn haehn@cs.rwth-aachen.de

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 2 / 42

What is this lecture about?

Quantifier-free
logical
formula

Solver

Satisfiability of the
input formula

???

???

???

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 3 / 42

What is this lecture about?

Quantifier-free
logical
formula

Solver

Satisfiability of the
input formula

???

???

???

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 3 / 42

What is this lecture about?

Quantifier-free
logical
formula

Solver

Satisfiability of the
input formula

???

???

???

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 3 / 42

The Boolean satisfiability problem...

Satisfiability problem for propositional logic

Given a formula combining some atomic propositions
using the Boolean operators “and” (∧), “or” (∨) and “not” (¬),
decide whether we can substitute truth values for the propositions
such that the formula evaluates to true.

Example
Formula: (a ∨ ¬b) ∧ (¬a ∨ b ∨ c)
Satisfying assignment: a = true, b = false, c = true

It is the perhaps most well-known NP-complete problem [Cook, 1971]
[Levin, 1973].

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 4 / 42

...and its extension to theories

Satisfiability modulo theories problem (informal)

Given a Boolean combination of constraints from some theories, decide
whether we can substitute (type-correct) values for the (theory) variables
such that the formula evaluates to true.

A non-linear real arithmetic example
Formula: (x − 2y > 0 ∨ x2 − 2 = 0) ∧ x4y + 2x2 − 4 > 0
Satisfying assignment: x =

√
2, y = 2

Hard problems... non-linear integer arithmetic is even undecidable.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 5 / 42

What is formal logic?

A (formal) logic

defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.

Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g.,

philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.

A logical system defines
the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and

a set of axioms and inference rules.
What is the value of a logical formula?

A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?

A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:

consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

What is formal logic?

A (formal) logic defines a framework for inference and correct
reasoning.
Studied in, e.g., philosophy, mathematics, computer science.
A logical system defines

the form of logical formulas (syntax) and
a set of axioms and inference rules.

What is the value of a logical formula?
A structure for a logical system gives meaning (semantics) to the
formulas.
The logical system allows to derive the meaning of formulas.

Important properties of logical systems:
consistency
soundness
completeness

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 6 / 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)

Philosophical logic
500 BC to 19th century

Symbolic logic
Mid to late 19th century

Mathematical logic
Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 7 / 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)

Philosophical logic
500 BC to 19th century

Symbolic logic
Mid to late 19th century

Mathematical logic
Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 7 / 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)

Philosophical logic
500 BC to 19th century

Symbolic logic
Mid to late 19th century

Mathematical logic
Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 8 / 42

Philosophical logic

500 B.C - 19th century
Logic dealing with sentences in the natural language used by humans.
Example

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 9 / 42

Philosophical logic

Natural languages are very ambiguous.
Aristotle (384 BC – 322 BC) identified
13 types of fallacies in his Sophistical
Refutations.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 10 / 42

Fallacies

The fallacy of composition arises when one infers that something is true of
the whole from the fact that it is true of some part of the whole.

1 Human cells are invisible to the naked eye.
2 Humans are made up of human cells.
3 Therefore, humans are invisible to the naked eye.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 11 / 42

Fallacies

The fallacy of composition arises when one infers that something is true of
the whole from the fact that it is true of some part of the whole.

1 Human cells are invisible to the naked eye.
2 Humans are made up of human cells.
3 Therefore, humans are invisible to the naked eye.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 11 / 42

Fallacies

A fallacy of division occurs when one reasons logically that something true
of a thing must also be true of all or some of its parts.

Famously and controversially, in the Greek philosophy it was assumed
that the atoms constituting a substance must themselves have the
properties of that substance: so atoms of water would be wet, atoms
of iron would be hard, atoms of wool would be soft, etc.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 12 / 42

Fallacies

A fallacy of division occurs when one reasons logically that something true
of a thing must also be true of all or some of its parts.

Famously and controversially, in the Greek philosophy it was assumed
that the atoms constituting a substance must themselves have the
properties of that substance: so atoms of water would be wet, atoms
of iron would be hard, atoms of wool would be soft, etc.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 12 / 42

Fallacies

A figure of speech is the use of a word or words diverging from its usual
meaning.

I had butterflies in my stomach.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 13 / 42

Fallacies

A figure of speech is the use of a word or words diverging from its usual
meaning.

I had butterflies in my stomach.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 13 / 42

Fallacies

Affirming the consequent is a formal fallacy, committed by reasoning in the
form:

1 If P, then Q.
2 Q.
3 Therefore, P.

1 If I have the flu, then I have a sore throat.
2 I have a sore throat.
3 Therefore, I have the flu.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 14 / 42

Fallacies

Affirming the consequent is a formal fallacy, committed by reasoning in the
form:

1 If P, then Q.
2 Q.
3 Therefore, P.

1 If I have the flu, then I have a sore throat.
2 I have a sore throat.
3 Therefore, I have the flu.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 14 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:
This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:
This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:
This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:

This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:
This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:
This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Other natural language issues

Besides such fallacies, natural languages allow to argue about the language
itself.

This sentence is a lie. (The liar’s paradox)

→ inconsistency

Rules for connecting language constructs are not working the expected
way:
This sectence has five words.

This sentence has five words and this sectence has five words.

→ The conjunction of two true sentences is not always true.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 15 / 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)

Philosophical logic
500 BC to 19th century

Symbolic logic
Mid to late 19th century

Mathematical logic
Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 16 / 42

Symbolic and mathematical logic

1854: George Boole introduced symbolic logic and the principles of
what is now known as Boolean logic.
1879: Gottlob Frege created with his Begriffsschrift the basis of
modern logic with the invention of quantifier notation.
1910-1913: Alfred Whitehead and Bertrand Russell published Principia
Mathematica on the foundations of mathematics, attempting to derive
mathematical truths from axioms and inference rules in symbolic logic.
1931: Gödel’s and Turing’s undecidability results
(we will deal with them later).

George Boole Gottlob Frege
(1815-1864) (1848-1925)

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 17 / 42

Symbolic and mathematical logic

1854: George Boole introduced symbolic logic and the principles of
what is now known as Boolean logic.
1879: Gottlob Frege created with his Begriffsschrift the basis of
modern logic with the invention of quantifier notation.
1910-1913: Alfred Whitehead and Bertrand Russell published Principia
Mathematica on the foundations of mathematics, attempting to derive
mathematical truths from axioms and inference rules in symbolic logic.
1931: Gödel’s and Turing’s undecidability results
(we will deal with them later).

Bertrand Russell Alfred Whitehead
(1872-1970) (1861-1947)

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 17 / 42

Prinzipia Mathematica

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 18 / 42

Symbolic and mathematical logic

1854: George Boole introduced symbolic logic and the principles of
what is now known as Boolean logic.
1879: Gottlob Frege created with his Begriffsschrift the basis of
modern logic with the invention of quantifier notation.
1910-1913: Alfred Whitehead and Bertrand Russell published Principia
Mathematica on the foundations of mathematics, attempting to derive
mathematical truths from axioms and inference rules in symbolic logic.
1931: Gödel’s and Turing’s undecidability results
(we will deal with them later).

Kurt Gödel Alan Turing
(1906-1978) (1912-1954)

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 19 / 42

Historical view on logic

Historical development goes from
informal logic (natural language arguments) to
formal logic (formal language arguments)

Philosophical logic
500 BC to 19th century

Symbolic logic
Mid to late 19th century

Mathematical logic
Late 19th to mid 20th century

Logic in computer science

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 20 / 42

Logic in computer science

Logic has a profound impact on computer science. Some examples:

Propositional logic - the foundation of computers and circuits
Databases - Query languages
Programming languages (e.g. Prolog)
Specification and verification
...

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 21 / 42

Logic in computer science

Logic has a profound impact on computer science. Some examples:
Propositional logic - the foundation of computers and circuits
Databases - Query languages
Programming languages (e.g. Prolog)
Specification and verification
...

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 21 / 42

Logic in computer science

Propositional logic
First order logic
Higher order logic
Temporal logic
...

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 22 / 42

Satisfiability checking: Some milestones

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

1940

1960

1970

1980

2000

2010

2015

Computer architecture development
CAS

(Symbolic Computation)

Computer algebra systems (CAS)

Gröbner bases
CAD
(cylindrical algebraic decomposition)

FGLM algorithm

Comprehensive Gröbner bases
Partial CAD

Virtual substitution

Truth table invariant CAD

SAT
(propositional logic)

Enumeration

DP (resolution)
DPLL (propagation)

NP-completeness

Conflict-directed backjumping

CDCL
Watched literals
Clause learning/forgetting
Variable ordering heuristics
Restarts

SMT
(SAT modulo theories)

Decision procedures
for combined theories

DPLL(T)
Equalities
Uninterpreted functions
Bit-vectors
Array theory
Arithmetic theories

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 23 / 42

Satisfiability checking: Tool development (not exhaustive)

1960 1970 1980 1990 2000 2010 2020

CAS

SAT

SMT

Sc
ho
on
sc
hi
p

MA
TH
LA
B

Re
du
ce

Al
tr
an

Sc
ra
tc
hp
ad
/A
xi
om

Ma
cs
ym
a

SM
P

mu
MA
TH

Ma
pl
e

Ma
th
ca
d
SA
C
GA
P

Co
Co
A
Ma
th
Ha
nd
bo
ok

Ma
th
om
at
ic

Ma
th
em
at
ic
a
De
ri
ve

FO
RM

KA
SH
/K
AN
T
PA
RI
/G
P

Ma
gm
a
Fe
rm
at

Er
ab
le

Ma
ca
ul
ay
2

Si
ng
ul
ar

Sy
mb
ol
ic
C+
+

Ma
xi
ma

Xc
as
/G
ia
c

Ya
ca
s

SA
GE

SM
at
h
St
ud
io

Ca
da
br
a
Sy
mP
y
Op
en
Ax
io
m

MA
TL
AB

Mu
PA
D

Wo
lf
ra
m
Al
ph
a
TI
-N
sp
ir
e
CA
S

Ma
th
ic
s
Sy
mb
ol
is
m
Fx
So
lv
er

Ca
lc
in
at
or

Sy
MA
T
Ma
th
em
ag
ix

WalkSAT
SATO

Simplify
SVC

GRASP
Chaff

BCSAT

MiniSAT
Berkmin

zChaff
Siege

ICS
Uclid

MathSAT
Barcelogic

HyperSat
RSat

Sat4j

Yices
CVC

HySAT/iSAT
DPT

Z3
Alt-Ergo

Beaver
ABsolver

Boolector
PicoSAT

Spear

MiniSmt
veriT

OpenCog

ArgoSat
OpenSMT

SatEEn
SWORD

Glucose
CryptoMiniSat

SONOLAR

Lingeling
UBCSAT

SMTInterpol

SMT-RAT
STP

SMCHR
UCLID

Clasp

Fast
SAT

Solver
raSAT

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 24 / 42

Satisfiability checking for propositional logic

Success story: SAT-solving
Practical problems with millions of variables are solvable.
Frequently used in different research areas for, e.g., analysis, synthesis
and optimisation.
Also massively used in industry for, e.g., digital circuit design and
verification.

Community support:
Standardised input language, lots of benchmarks available.
Competitions since 2002.
2016 SAT Competition: 6 tracks, 29 solvers in the main track.
SAT Live! forum as community platform, dedicated conferences,
journals, etc.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 25 / 42

Satisfiability checking for propositional logic

Success story: SAT-solving
Practical problems with millions of variables are solvable.
Frequently used in different research areas for, e.g., analysis, synthesis
and optimisation.
Also massively used in industry for, e.g., digital circuit design and
verification.

Community support:
Standardised input language, lots of benchmarks available.
Competitions since 2002.
2016 SAT Competition: 6 tracks, 29 solvers in the main track.
SAT Live! forum as community platform, dedicated conferences,
journals, etc.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 25 / 42

An impression of the SAT solver development

Source: Jarvisalo, Le Berre, Roussel, Simon. The International SAT Solver
Competitions. AI Magazine, 2012.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 26 / 42

Satisfiability modulo theories solving

Propositional logic is sometimes too weak for modelling.
We need more expressive logics and decision procedures for them.
Logics:
quantifier-free fragments of first-order logic over various theories.
Our focus: SAT-modulo-theories (SMT) solving.

SMT-LIB as standard input language since 2004.
Competitions since 2005.
SMT-COMP 2016 competition:

4 tracks, 41 logical categories.
QF linear real arithmetic: 7+ 2 solvers, 1626 benchmarks.
QF linear integer arithmetic: 6+ 2 solvers, 5839 benchmarks.
QF non-linear real arithmetic: 5+ 1 solvers, 10245 benchmarks.
QF non-linear integer arithmetic: 7+ 1 solvers, 8593 benchmarks.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 27 / 42

Satisfiability modulo theories solving

Propositional logic is sometimes too weak for modelling.
We need more expressive logics and decision procedures for them.
Logics:
quantifier-free fragments of first-order logic over various theories.
Our focus: SAT-modulo-theories (SMT) solving.
SMT-LIB as standard input language since 2004.
Competitions since 2005.
SMT-COMP 2016 competition:

4 tracks, 41 logical categories.
QF linear real arithmetic: 7+ 2 solvers, 1626 benchmarks.
QF linear integer arithmetic: 6+ 2 solvers, 5839 benchmarks.
QF non-linear real arithmetic: 5+ 1 solvers, 10245 benchmarks.
QF non-linear integer arithmetic: 7+ 1 solvers, 8593 benchmarks.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 27 / 42

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)
Combined theories

2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)

Quantifier-free bit-vector arithmetic
a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)
Combined theories

2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)

Quantifier-free bit-vector arithmetic
a+ b ≥ 0 ∧ (a|b) ≤ (a&b)

Quantifier-free array theory
i = j → read(write(a, i , v), j) = v

Quantifier-free integer/rational difference logic
x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)

Quantifier-free array theory
i = j → read(write(a, i , v), j) = v

Quantifier-free integer/rational difference logic
x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v

Quantifier-free integer/rational difference logic
x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 28 / 42

http://smtlib.cs.uiowa.edu/logics.shtml

Google Scholar search for “SAT modulo theories”

1000

2000

3000

4000

5000

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 29 / 42

SAT/SMT embedding structure

Software
engine

Problem
Logical
problem

specification
SMT

Solution

Environment

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input language → free solver choice

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 30 / 42

SAT/SMT embedding structure

Software
engine

Problem
Logical
problem

specification
SMT

Solution

Environment

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input language → free solver choice

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 30 / 42

SAT/SMT embedding structure

Software
engine

Problem
Logical
problem

specification
SMT

Solution

Environment

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input language → free solver choice

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 30 / 42

Application example: Hardware verification

Problem 1: Given two circuits, are they equivalent?

Problem 2: Given a circuit and a property specification, does the
circuit fulfill the specification?

Problem 3: Given a partially specified circuit with a black-box com-
ponent (at early design stage) and a property specification, is the
partial circuit realisable, i.e., is there an implementation of the black
box such that the circuit fulfills the property?

Many hardware producers develop and use own SAT solvers for these tasks.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 31 / 42

Application example: Symbolic execution

Source: Nikolaj Bjørner and Leonardo de Moura. Applications of SMT solvers to Program Verification.

Rough notes for SSFT 2014.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 32 / 42

Application example: Bounded model checking

Problem: Given a program (automaton, circuit, term rewrite system,
etc.), find an execution path of length at most k which leads to a
state with a certain property (used for detecting, e.g., division by
zero, violating functional requirements, etc.).

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 33 / 42

Application example: Bounded model checking for C/C++

Logical encoding of finite unsafe paths

Encoding idea: Init(s0) ∧ Trans(s0, s1) ∧ . . . ∧ Trans(sk−1, sk) ∧ Bad(s0, . . . , sk)

Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 34 / 42

http://www.cprover.org/cbmc/

Application example: Bounded model checking for C/C++

Logical encoding of finite unsafe paths

Encoding idea: Init(s0) ∧ Trans(s0, s1) ∧ . . . ∧ Trans(sk−1, sk) ∧ Bad(s0, . . . , sk)

Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 34 / 42

http://www.cprover.org/cbmc/

Application example: Bounded model checking for C/C++

Logical encoding of finite unsafe paths

Encoding idea: Init(s0) ∧ Trans(s0, s1) ∧ . . . ∧ Trans(sk−1, sk) ∧ Bad(s0, . . . , sk)

Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 34 / 42

http://www.cprover.org/cbmc/

Application example: Bounded model checking for C/C++

Logical encoding of finite unsafe paths

Encoding idea: Init(s0) ∧ Trans(s0, s1) ∧ . . . ∧ Trans(sk−1, sk) ∧ Bad(s0, . . . , sk)

Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 34 / 42

http://www.cprover.org/cbmc/

Application example: BMC for graph transformation systems

Encode initial and forbidden
state graphs and
the graph transformation rules
in first-order logic.

↓

Apply
bounded model checking

Source: T. Isenberg, D. Steenken, and H. Wehrheim.

Bounded Model Checking of Graph Transformation Systems via SMT Solving.

In Proc. FMOODS/FORTE’13.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 35 / 42

Application example: BMC for graph transformation systems

Encode initial and forbidden
state graphs and
the graph transformation rules
in first-order logic.

↓

Apply
bounded model checking

Source: T. Isenberg, D. Steenken, and H. Wehrheim.

Bounded Model Checking of Graph Transformation Systems via SMT Solving.

In Proc. FMOODS/FORTE’13.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 35 / 42

Application example: Termination analysis for programs

Term rewrite system

Term rewrite system

Dependency pairs

Chains

Logical encoding for well-founded orders.

Source: T. Ströder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 36 / 42

Application example: Termination analysis for programs

Term rewrite system

Term rewrite system

Dependency pairs

Chains

Logical encoding for well-founded orders.

Source: T. Ströder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 36 / 42

Application example: Termination analysis for programs

Term rewrite system

Term rewrite system

Dependency pairs

Chains

Logical encoding for well-founded orders.

Source: T. Ströder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 36 / 42

Application example: jUnitRV for runtime verification of
multi-threaded, object-oriented systems

Properties: linear temporal logics enriched with first-order theories
Method: SMT solving + classical monitoring

Source: N. Decker, M. Leucker, D. Thoma.

Monitoring modulo theories.

International Journal on Software Tools for Technology Transfer, 18(2):205-225, April 2016.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 37 / 42

Application example: Planning

Source: E. Scala, M. Ramirez, P. Haslum, S. Thiebaux.

Numeric planning with disjunctive global constraints via SMT.

In Proc. of ICASP’16.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 38 / 42

Application example: Scheduling

Source: C. Ansótegui, M. Bofill, M. Palahí, J. Suy, M. Villaret.

Satisfiability modulo theories: An efficient approach for the resource-constrained project

scheduling problem.

Proc. of SARA’11.
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 39 / 42

Application example: Deployment optimisation on the cloud

Location (e.g, VMs, PCs, ...)Depoloyable Components

User Constraints

WordPress

MySQL

HTTP_Load_Balancer

HTTP_Load_Balancer_1

WordPress_3

MySQL_2

MySQL_1

WordPress_2

WordPress_1

Source: E. Ábrahám, F. Corzilius, E. Broch Johnsen, G. Kremer, J. Mauro.

Zephyrus2: On the fly deployment optimization using SMT and CP technologies.

Submitted to SETTA’16.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 40 / 42

Application example: Parameter synthesis for probabilistic
systems

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen,

E. Ábrahám.

PROPhESY: A probabilistic parameter synthesis tool.

In Proc. of CAV’15.

Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 41 / 42

Application example: Hybrid systems reachability analysis

Source: D. Bryce, J. Sun, P. Zuliani, Q. Wang, S. Gao, F. Shmarov, S. Kong, W. Chen, Z.

Tavares. dReach home page. http://dreal.github.io/dReach/
Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University) WS 19/20 42 / 42

http://dreal.github.io/dReach/

