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Abstract

Symbolic Simulation is an exact, synchronous railway simulation that takes
in macroscopic inputs. It models primary delays as discrete probability distribu-
tions, and in one single run, computes all possible executions under all possible
scenarios while also accounting for all stochastic dependencies. The output of
Symbolic Simulation consists of final arrival times, each associated with a train
and an exact probability.

This thesis extends upon Symbolic Simulation by finding explanations and
improvements for secondary delays. The first approach involves computing first-
order secondary delays that a train causes on another; that is, it records the ex-
pected amount of time that one train occupies an infrastructure element which
another train needs to move into. The second approach experiments with smaller
and faster pruned versions of the base simulation of some dataset, and deter-
mines cases in which increasing primary delays of one train decreases the overall
amount of delays of the pruned simulation. The latter approach has shown to
be promising, and in addition to determining explanations for secondary delays,
also provides possible solutions.
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Chapter 1

Introduction

In 2020, the European Commission approved of the European Green Deal with the
goal of reaching a carbon neutral economy in the EU by 2050 [9]. The transport
sector is currently the second highest emitter of greenhouse gases, particularly due to
the growth of emissions from road transportation [9]. On the other hand, railways
produce fewer emissions, have lower external costs, decrease congestion on roads, and
contribute to better air quality [9]. In Germany alone, the usage of passenger trains
has grown steadily since 2001, and despite a drop in 2020, the Federal Ministry for
Digital and Transport forecasts 3.129 billion passengers in 2024, the highest value
since 2001 [10, 4]. Similarly, for freight trains, the amount of goods transported has
also had a general upward trend since 2001 [10, 4].

Due to increased demand and the necessity of greener transport, improving the
performance of railway systems is important, especially when higher traffic leads to
more delays [7]. With more traffic, a single train delay can cause further delays in other
trains. Therefore, it is crucial to improve railway systems by reducing propagated
delays, also known as “secondary delays,” and to create better timetables that are
more resilient to such delays. Simulation allows us to inexpensively model trains
and their movement in many scenarios, and can provide opportunities to improve
timetables without requiring expensive changes in infrastructure [7].

All railway simulation systems take in input that is simplified to a certain extent,
and then make further assumptions on train movement during the execution. To
the best of our knowledge, all other railway simulations do some form of estimation
of secondary delays, such as through Monte Carlo simulation in which only a small
fraction of all possible combination of initial delays are considered. The approach
worked with in this thesis, called Symbolic Simulation, is a novel system described
in the paper, “Symbolic Simulation of Railway Timetables under Consideration of
Stochastic Dependencies” [7]. It computes exact probabilistic descriptions of trains
at any time point, given the input primary delays with distributions [7]. This approach
even accounts for all stochastic dependencies, and therefore accurately accounts for
all secondary delays under all possible scenarios [7].

While the invariant of accounting for all stochastic dependencies is maintained,
Symbolic Simulation does not yet output explanations for secondary delays, suggest
trains that have a tendency to cause more secondary delays on other trains, or even
find cases in which further delaying one train decreases the total amount of delays of
other trains. While we cannot avoid the inevitable “primary delay” such as a signal
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fault or a large number of passengers, Symbolic Simulation’s strength in accounting for
stochastic dependencies exactly makes it a good system for analyzing and potentially
reducing secondary delays.

In this thesis, we explore two approaches in providing explanations and suggestions
for secondary delays. First, we describe a scoring approach that is updated in each
time step in an attempt to determine how much direct negative influence a train has
on another. Unlike with primary delays, computing the amount of secondary delay
that one train causes on another is difficult to determine due to the large number
of stochastically dependent events that occur during a simulation, akin to trying to
find the butterfly (realistically, multiple butterflies) that cause a major event in some
“Butterfly Effect” situation. Nonetheless, this first approach tries an approach to
storing direct effects between an instance of a train and another train in general.
The second approach is a pruning approach that selects one instance of a train with
a high expected delay, and then “prunes” the simulation to only include simulation
input relevant to the selected train instance. Under a pruned simulation, we determine
cases in which further delaying a different train by a particular number of minutes
decreases the total delay of the selected train, and even the total amount of delay
over all trains.

We begin this thesis by discussing a few other railway systems in the beginning
of Chapter 2, and furthermore describe Symbolic Simulation in detail, based on the
work in [7]. Chapter 3 discusses two attempts at computing scores for train instances
and suggestions for further work and improvement. Chapter 4 describes the second
approach on pruning and analyzes preliminary results. Finally, Chapter 5 summarizes
our work and outlines further work.



Chapter 2

Preliminaries

In this section, we will describe some basics of railway simulation and give an overview
of a subset of railway simulations. We also describe with moderate detail how our
Symbolic Simulation works and provide an example to help with understanding.

2.1 Overview of Railway Simulation Systems

2.1.1 Delays

Since delays play a central role in our work, it is important to classify them into two
main groups. The first is primary delays, which are delays that are not caused by
other delays [7]. These delays could occur as a result of direct real-world events such
as a large number of passengers, or technical issues such as signal or brake faults [6].
We define secondary delays of a train as delays that occur when the train needs to
wait to move to its next infrastructure element, which is currently at full capacity.
Possible reasons for such secondary delays could include other late trains occupying
its next infrastructure element, or the train itself is running late.

In other literature, secondary delays are also referred to as “knock-on delays” or
“propagation of delays” [14, 13].

2.1.2 Classification of Existing Simulation Systems

Various existing railway simulation systems can be classified. One way is based on the
level of detail of their inputs. Microscropic models represent the infrastructure in great
detail, while macroscopic models describe the infrastructure on a higher level. Next,
we can classify railway systems as either synchronous or asynchronous. Synchronous
models simulate all trains at once, in a similar vein to real-world operations. On the
other hand, asynchronous models simulate each train run, one at a time. The highest
priority train is simulated and its schedule is “locked-in”, then the next highest priority
train run is simulated around the first train, and so on. Therefore, in asynchronous
simulations, a lower priority train run does not impact a higher priority train run [8].

Many systems employ a Monte Carlo simulation, where many runs are made, with
each run containing randomly selected discrete primary delays. After many runs, the
system runs statistical analysis on all of them as a whole. Nonetheless, even with
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many runs, such systems usually encompass only a fraction of all simulations that are
possible under the input set of primary delays.

Many systems also employ some form of analytical estimation of secondary delays,
with or without Monte Carlo simulation. A notable example of analytical estimation
is the STRELE formula, created by Schwanhäußer in 1974, which has been used in
many railway tools in Germany [14, 15]. This formula is based off of a queueing
system [14].

2.1.3 A Subset of Existing Railway Simulations
Below, we discuss existing railway simulations that specifically work with timetable
robustness and delays. Due to the propriety nature of them, information is limited.

Open Track is a system developed by the Swiss Federal Institute of Technology
and was used by the Swiss National Railroad along with many other customers [1]. It
takes in microscropic models as inputs and computes Monte Carlo–style synchronous
simulations [1, 8].

RailSys is a system developed by the Institute of Transport, Railway Construc-
tion and Operation at the University of Hannover in the early 2000s. Like Open
Track, it also uses microscopic inputs and computes Monte Carlo–style synchronous
simulations [11].

MOSES/WiZug is a system for simulating freight trains for the Deutsche Bahn
and was developed by a number of various institutes in Germany, including the In-
stitute of Transport Science at RWTH Aachen University. Unlike the previously
mentioned systems, it uses macroscropic models and asynchronous simulation [12].
Moreover, it also employs Monte Carlo simulation [7]. A “newer approach” described
in the paper discusses using Queue Theory for more precise calculations of secondary
delays [12].

LUKS is a system developed by VIA Consulting & Development in Germany. It
uses microscropic models as input, and utilizes both a synchronous and asynchronous
approach [2, 7]. In addition, it uses Monte Carlo simulation [5].

OnTime is a system developed specifically for assessing the quality of timetables
and is in use in Switzerland and Belgium [5]. It can take in either microscopic or
macroscopic input data. Moreover, OnTime models primary delays as cumulative
distribution functions, and uses analytical simulation instead of Monte Carlo simula-
tion [3, 5].

2.2 Symbolic Simulation
While other railway simulation systems typically use Monte Carlo simulation, Sym-
bolic Simulation differs by being an exact symbolic simulation. It takes in macroscopic
inputs and is also synchronous. Only one run is computed in the simulation, since a
single run computes all possible executions at once, given the primary delays. At the
end of the simulation, for each train, we can compute all of its possible arrival times
at its target with their respective exact probabilities.

The definitions and algorithms in this section have been copied or adapted from [7].

2.2.1 Railway System Model
We begin by defining how our macroscropic model is represented in our simulation.
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Definition 2.2.1. An infrastructure network is a tuple I = (V,E,c,B,b) with a finite
set V of vertices, a set E ⊆ V × V of (directed) edges, a capacity function c :
(V ∪ E) → N>0, a bidirectional edge set B ⊆ E and a coupling function b : B → B
such that for all e ∈ B and b(e) = e′ we have b(e′) = e and c(e) = c(e′).

Definition 2.2.2. An infrastructure element x ∈ V ∪ E is either a vertex or an
edge.

Throughout this work, we will refer to a generalization of vertices and edges as
infrastructure elements as defined in Definition 2.2.2.

We define a capacity function c, to determine the number of concurrent trains
allowed on an infrastructure element at any time point. If the infrastructure element
is a vertex, the capacity refers to the number of trains allowed at a station at the same
time. If it is an edge, the capacity refers to the number of parallel tracks available.

Bidirectional tracks exist in our model, and we represent a single bidirectional
edge as two unidirectional edges, with b as a coupling function to record such pairing.
We also ensure in our implementation that at any given time point, only one direction
is used. To simplify our examples in this thesis, we neglect discussing bidirectional
edges, although they are accounted for in our implementation.

In our implementation, we also added a source node to V and connected every
other v ∈ V to the source node with an edge of unlimited capacity. This is to model
the possibility that a train may not be able to start on time because its initial vertex is
already fully occupied. In addition, we added a target node and connected each v ∈ V
with an edge with unlimited capacity, to model a train leaving the infrastructure or
starting a new train ride. Doing this prevents finished trains from occupying their
final nodes beyond what was intended in our simulation or in the real world.

Definition 2.2.3. A time window T = [tmin, tmax] ⊆ R with tmin,tmax ∈ N, tmin <
tmax, represents the time interval considered in our simulation.

Definition 2.2.4. A timed path is a finite sequence π = (v1(a1 7→ d1), . . . ,vk(ak 7→
dk)) such that for all i,i′ ∈ [1..k] and j ∈ [1..k−1]: (i) vi ∈ V and (vj , vj+1) ∈ E,
(ii) ai ≤ di and dj ≤ aj+1 for arrival and departure times ai,di ∈ T, and (iii) i 6= i′

implies vi 6= vi
′
(loop-free).

Definition 2.2.4 from [7] ensures that all vertices in π indeed exist in V , all edges
formed by two consecutively listed vertices within a sequence also exist in E, arrival
and departure times are ordered properly, and there are no loops in the path.

Definition 2.2.5. A train (ride) z = (type,π) specifies a train type (e.g. freight train)
from a finite ordered domain and a timed path π.

Definition 2.2.6. A railway timetable T = {z1, . . . , zn} is a finite ordered set of
trains. We call i the identity of train zi,and recall that zi = (typei,πi) and πi =
(v1

i (a1
i 7→ d1

i ), . . . ,vki
i (aki

i 7→ dki
i )) for i ∈ [1..n].

Definition 2.2.7. The safety distance δ ∈ N is the number of time units each in-
frastructure element is blocked for safety reasons after a train has left it.

Definition 2.2.8. A timetable T = {z1, . . . , zn} with δ in consideration, is exe-
cutable over T if it does not exceed the available capacities in the absence of delay.
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Additional formal statements for verifying whether a timetable is even executable
without delays are detailed further in [7].

In the following, we define primary delays for each train and infrastructure pair
exactly as in [7].

Definition 2.2.9. For each i ∈ [1..n], j ∈ [1..ki] and j′ ∈ [1..ki−1], we define

stochastically independent discrete random variables pvji and p(vj′
i ,vj′+1

i )
i with sample

space N. Let P be the set of all these random variables. For each pxi ∈ P we denote the
probability that pxi has the value ∆ ∈ N as P(pxi = ∆) ∈ [0,1] and its finite support
as D(pxi ) = {∆ ∈ N|P(pxi = ∆) > 0}. It holds that

∑
∆∈D(px

i ) P(pxi = ∆) = 1 for each
pxi ∈ P .

For some infrastructure element x and train zi, pxi outputs an integer delay value
representing the additional delay zi has in its departure from x. These random vari-
ables are also assumed to be stochastically independent from each other as explained
in [7]. D(pxi ) is the set of all possible delay values for zi at x that have nonzero
probability.

The implementation also uses random variables representing a special type of
primary delay known as an initial delay, pentryi to represent the delay in a train’s
arrival at its first vertex off its route.

Definition 2.2.10. A random inclusion s for pxi ∈P has the form pxi / D for some
D ⊆ D(pxi ), D 6= ∅; we define P(s) =

∑
∆∈D P(pxi = ∆). As shorthand, we also

denote a random inclusion pxi / {∆} with cardinality of one as pxi = ∆.

Definition 2.2.11. A scenario S is a set that contains exactly one random inclusion
for each random variable. Let S be the set of all scenarios. For S ∈ S and (pxi /D) ∈ S
we define S(pxi ) = D, and set P(S) = Πs∈SP(s).

To make our written scenarios appear more concise, we typically leave out trivial
random inclusions pxi / D(pxi ). We also denote the maximal scenario, where each
random variable’s random inclusion contains all probable delay values, as ∅.

Example 2.2.1. Let us consider a simple infrastructure with two nodes, v0 and v1

with a unidirectional edge in between e = (v0, v1).
Let us also add a source node s and target node t. In the implementation, we

would normally connect s to both v0 and v1 but for simplicity, we only depict an edge
between s and v0, as our example will not contain a path starting at v1. Likewise, we
only depict an edge between v0 and t for visual simplicity, as no path in our example
will end on v0.

v0 v1s t

Suppose there are two trains that traverse these nodes with the names z0 and z1.
We define the set of (relevant) random variables in our example as

P = {pentry0 , pv10 , p
v2
0 , p

e
0, p

entry
1 , pv11 , p

v2
1 , p

e
1}.

Let us define the respective finite support for each random variable as follows:



2.2. Symbolic Simulation 15

D(pentry0 ) = {0, 1, 2}
D(pv10 ) = {0}
D(pv20 ) = {0}
D(pe0) = {0}

D(pentry1 ) = {0, 1, 2}
D(pv11 ) = {0}
D(pv21 ) = {0}
D(pe1) = {0}

The only random inclusions here that contain nonzero delay values are of those that
represent initial delays for trains at the very start of their respective rides. This is
done to simplify our example. In the implementation of Symbolic Simulation, we also
work with just initial delays for now to minimize runtimes [7].

The scenario {pentry0 = 1} is equivalent to {pentry0 /{1}}, which is also equivalent to
the verbose representation including the trivial random inclusions which we typically
exclude in our notation:

{pentry0 = 1, pv10 = 0, pv20 = 0, pe0 = 0, pentry1 / {0, 1, 2}, pv11 = 0, pv21 = 0, pe1 = 0}.

A nonexample of a scenario is {pv11 /∅}, since a train must have a positive or zero
delay at v1.

Definition 2.2.12. We call S complete iff |S(pxi )| = 1 for each pxi ∈ P .

Example 2.2.2. Using the infrastructure and finite support from the previous exam-
ple, an example of a valid complete scenario is:

{pentry0 = 0, pentry1 = 1}.

Examples of incomplete scenarios are:

{pentry0 = 0, pentry1 / {0, 1}}

{pentry0 = 1} = {pentry0 = 1, pentry1 / {0, 1, 2}}

Definition 2.2.13. We say that S ∈ S refines S′ ∈ S (written S � S′) iff S(pxi ) ⊆
S′(pxi ) for all pxi ∈ P ; we also say that S′ contains S.

Example 2.2.3. Using the setup from the previous examples, scenario {pentry0 = 0}
contains the scenarios {pentry0 = 0, pentry1 = 0}, {pentry0 = 0, pentry1 = 1}, and
{pentry0 = 0, pentry1 = 2}. Equivalently we can say, for example, that {pentry0 =
0, pentry1 = 0} refines {pentry0 = 0}.

Definition 2.2.14. We call S and S′ compatible iff S(pxi ) ∩ S′(pxi ) 6= ∅ for all
pxi ∈ P . For two compatible scenarios S and S′ we define S

a
S′ as the scenario

{pxi / (S(pxi ) ∩ S′(pxi )) | pxi ∈ P}.
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Example 2.2.4. Consider two scenarios related to our example:

S = {pentry0 / {0, 1}, pentry1 / {1,2}}
S′ = {pentry0 / {0, 2}, pentry1 / {0,1}}

S and S′ are compatible and S
a
S′ = {pentry0 = 0, pentry1 = 1}.

An example of two incompatible scenarios would be:

S = {pentry0 = 1, pentry1 / {1,2}}
S′ = {pentry0 / {0, 2}, pentry1 / {0,1}}

A complete scenario fixes exactly one delay value for each pxi . If we were to imagine
a real-life-like example where we observed each train ride within some T, and recorded
each delay for each train ride at each infrastructure element, we would end up with
data synonymous to a complete scenario. However, executing our simulation with
only complete scenarios is very computationally expensive, so we therefore start our
simulation working with incomplete and therefore more generalized scenarios in which
each would cover more possible delay values per pix.

2.2.2 Symbolic Simulation Algorithm
Our Symbolic Simulation uses such global-like scenarios defined in Section 2.2.1 that
characterize all of the considered random inclusions for each random variable repre-
senting a train and infrastructure element pair. Now we need to run the simulation
by moving train instances through our actual infrastructure itself. One train could
be in different places depending on whether how much it gets delayed at each stop,
as well as how much other trains get delayed and whether the desired infrastructure
element is fully occupied for whatever set of reasons. Thus, we have a motivation
to consider an instance of a train ride with a specific scenario. This allows us to do
define different “parallel universes” for one specific train itself using scenarios.

Definition 2.2.15. A train instance is a tuple (i, s, t), where i is the train identity,
s is the scenario, and t is the time point of the train z′is next planned movement.

A train instance containing an incomplete scenario and residing at some infras-
tructure element x represents the notion that this train can exist at x under a set of
different parallel universes.

Initial Inputs

We initialize our algorithm with the following input as defined in [7]:

• I = (V,E,c): infrastructure network;

• δ ∈ N: safety distance;

• T = {z1, . . . , zn}: timetable for the time window T = [tmin, tmax];

• P ⊆ {pxi | i ∈ [1..n], x ∈ V ∪E}: set of random variables according to Def. 2.2.9
which also implicitly carry their probability distributions.

As global variables, we use the following sets:
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• times: an ordered sequence of the time points t ∈ T in ascending order at
which some trains want to change infrastructure element. For each time point,
we maintain the invariant that no train can change its infrastructure element
before the earliest point in times. times is also modified and updated during
the simulation to keep this invariant true.

• for each infrastructure element x ∈ V ∪ E:

• occupy[x]: set of train instances occupying x at the current time point;

• block[x]: set of train instances that left x but are still blocking it at the
current time point due to the safety distance. The the time point t encodes
the end time of blocking;

• req[x]: set of train instances that want to move to x at the current time
point;

• cap[x]: set of scenario–int pairs, where the integer describes the number
of trains occupying or blocking x in its respective scenario at the current
time point.

Algorithm

Algorithm 1 Initialization

1: procedure Initialize( )
2: V ← V ∪ {source, target}; c(source)←∞; c(target)←∞; times← ∅;
3: for each v ∈ V do
4: E ← E ∪ {(source, v), (v, target)}; c((source, v)) ← ∞; c((v, target)) ←
∞;

5: for each x ∈ (V ∪E) do occupy[x]← ∅; block[x]← ∅; req[x]← ∅; cap[x]← ∅;

6: for each i ∈ {1, . . . ,n} do
7: times← times ∪ {a1

i };
8: for each t ∈ D(pentryi ) do
9: times← times ∪ {a1

i + t};
10: occupy[(source,v1

i )]← occupy[(source,v1
i )] ∪ {(i,{pentryi = t},a1

i + t)};

The main method Simulate is presented in Algorithm 2. First, it calls Initialize
as described in Algorithm 1. Initialize adds source and target nodes with unlimited
capacity in line 2 and in line 4 connects each of them to all other vertices in V . Each
of the aforementioned edges are also assigned unlimited capacities. All sets in line 5
are initialized as empty. In line 7, we add all arrival times of all of the trains in
ascending order. In line 10, for each zi and entry delay value, we create one train
instance, with its scenario and adjusted next movement time, and place it on the edge
between the source and its first vertex. We also update times in line 9.

After initializing everything, Simulate iterates over t in times in ascending order
in line 4. We only need to consider t ∈ times because those are the only points in time
in which any status change could occur in our simulation. Within each time point,
we iterate over all vertices and then edges in line 5. It is important to process vertices
before edges because some trains may plan to pass a vertex such that the arrival and
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Algorithm 2 Symbolic simulation

1: procedure Simulate( )
2: Initialize(); let time point t← tmin;
3: while t ≤ tmax ∧ times 6= ∅ do
4: t← times.getSmallest(); times← times \ {t};
5: for each x ∈ V ∪ E do // first vertices then edges
6: Requests(t, x); // update req[x]
7: Occupation(t, x); // update cap[x]
8: while req[x] 6= ∅ do // requests have to be sorted (highest priority

first)
9: r ← req[x].pop(); Update(t, x, r); // update occupy and block

Algorithm 3 Collecting requests

1: procedure Requests(t ∈ T, x ∈ V ∪ E)
2: req[x]← ∅;
3: for each y ∈ pre(x) do // either incoming edges or source vertex of x
4: for each (i,S,t′) ∈ occupy[y] do
5: if t′ ≤ t then req[x]← req[x] ∪ {(i,S,t′)};

departure times are the same. Processing vertices first will allow the train to move
from edge into the vertex (in which the train has the same arrival and departure
time), and move on to the following edge in the same time point.

Within each point in time and for each infrastructure element x, we gather all train
instances that want to move to x in line 6 using Algorithm 3. Note that it is often the
case to have two separate train instances wanting to enter x that refer to the same
train (say z2) but have different and incompatible scenarios which denote different
“universes.” In line 7, we use Algorithm 4 to update the capacity of x under different
scenarios. Line 8 has us looping over the list of requests req[x] sorted by priority; for
example, the ICE trains have priority over freight trains. Further detailing can be
found in [7]. Finally within the while loop in line 9, we pop train instances in order
of priority from our requests and use Algorithm 5 to move trains while updating
occupy[x] and block[x]. When all of the infrastructure elements and time points have
been looped through, our algorithm terminates.

Algorithm 3, Requests receives a single time point t and infrastructure element x,
and initially sets global req[x] to be empty. Then in line 3, it looks at each predecessor,
either an incoming edge or source vertex. For each predecessor in line 4, it looks at
each train instance currently at it, and if the time of its next planned movement, t′,
is already less than or equal to our current time, then we add this train instance to
req[x].

Algorithm 4, Occupation does two main things. First, in line 2, it removes
all blocking train instances whose blocking times are now in the past. Secondly,
it computes cap[x], which itself is a set of pairs. Line 3 in Occupation allows us
to consider all train instances that either are blocking or occupying x and are thus
relevant to computing cap[x]. In line 4, we use a recursive helper function called
Split to store the number of trains at x for each scenario. Split starts out with the
maximal scenario ∅ and recursively splits it into many incompatible scenarios, each
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Algorithm 4 Computing the occupation of an infrastructure element

1: procedure Occupation(t ∈ T, x ∈ V ∪ E)
2: block[x]← {(·, ·, t′) ∈ block[x] | t′ ≥ t};
3: trains← occupy[x] ∪ block[x];
4: cap[x]← Split(∅, 0, trains, x);

Algorithm 5 Updating a train instance’s position

1: procedure Update(t ∈ T, x ∈ V ∪ E, r = (i, S,t∗) ∈ [1..n]× S× T)
2: let set S ← ∅;
3: if c(x) =∞∨|{j|(j, · ,·) ∈ occupy[x]∪ block[x]∪ req[x]}| < c(x) then S ← {S}
4: else S ← Available(x,r);
5: for each S′ ∈ S do
6: for each t′ ∈ D(pxi ) do
7: occupy[x]← occupy[x] ∪ {(i, S′

a
{pxi = t′}, t+ t′ + t′′)};

8: times← times ∪ {t+ t′ + t′′}; // t′′ is waiting/driving time
9: block[pre(i,x)]← block[pre(i,x)] ∪ {(i, S′, t+ δ)}; times← times ∪ {t+ δ};

10: occupy[pre(i,x)]← occupy[pre(i,x)] \ {(i, S, t∗)};
11: for each S′ ∈ ScenarioDiff(S,S) do
12: occupy[pre(i,x)]← occupy[pre(i,x)] ∪ {(i, S′, t∗)};

with an integer capacity value to count how many train instances are at x for some
scenario. After Split terminates, it holds that for each scenario S in cap[x], each of
its cases (e.g. a complete sub-scenario contained by S) has the same exact set of train
instances occupying x. Further details on Split are elaborated upon in [7].

Algorithm 5, Update takes in a time point t, infrastructure element x, and a
specific train instance r representing a train instance that wants to move to x. S is
the set of all scenarios in which train instance r (paired with its own scenario) can
move to x. Line 3 considers two simple cases, either the capacity of x is infinite, or
when the sum of train instances blocking, occupying, and requesting for x is below
the maximum capacity of x, even when we include train instances with scenarios that
are not even compatible with our train instance’s S. Essentially, there is just so much
room that all of the requests, including r can move to x.

Otherwise, we call the helper function Available in line 4 to return the set of
scenarios in which r can move to x, which is detailed in [7]. Lines 5-9 detail a
great amount of bookkeeping. For each scenario and for each additional delay value
associated with pxi , we update occupy[x] with a modified train instance, as well as
update times accordingly. In line 9, we add our current train instance to the blocking
times of the previous infrastructure element. Similarly, line 9 allows us to remove
our train instance from the the occupy list of the previous infrastructure element. It
is important to note that r is a train instance likely associated with an incomplete
scenario. That means that there are subscenarios of S where it is not possible for zi
to move to x. Lines 11-14 addresses this by placing train instances of zi back to the
previous infrastructure element in subscenarios where moving zi to x is impossible.
ScenarioDiff used in line 11 is a helper function also described in [7] and works
similarly to a set difference function.
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Example 2.2.5. Recall example 2.2.1, with two trains z1 and z2 with their respective
finite support and the following infrastructure:

v0 v1s t

As in example 2.2.1, we defined the finite support of each random variable as
D(pentry0 ) = {0, 1, 2}, D(pentry1 ) = {0, 1, 2}, and D(pxi ) = 0 for all other random
variables. Let us define the capacities of v1, e = (v1, v2), v2 as 1, and infinite for the
other infrastructure elements.

Consider a timetable T = {z0, z1} with z0 = (Default, π0) and z1 = (Default, π1).
Let us define the paths with associated arrival and departure times in minutes as such:

π0 = (v0(1 7→ 2), v1(3 7→ 4))

π1 = (v0(4 7→ 5), v1(6 7→ 7))

For this example, we assume all blocking times of relevant infrastructure elements
to be one minute. We also assume in this example that the train does not go faster
on edge or spend less time at a vertex when it is behind schedule. The implementation
however implements these considerations.

To illustrate what a simulation looks like in essence, we will step through the
simulation from t = 0 to t = 5 and illustrate the movement and splitting of train
instances.

At time t = 0, we are just starting and therefore have six train instances, and not
two because of the different initial primary delays. We begin with all train instances
on the virtual edge (s, v1).

t = 0

v0 v1s t

(0, {pentry0 = 0}, 1)

(0, {pentry0 = 1}, 2)

(0, {pentry0 = 2}, 3)

(1, {pentry1 = 0}, 4)

(1, {pentry1 = 1}, 5)

(1, {pentry1 = 2}, 6)

At t = 1, only one train instance has an earliest possible departure time earlier
or at t = 1 and its completed movement with an updated earliest departure time is
depicted in red, as shown below. We do not include blocking train instances on virtual
edge (s, v0) as it has an infinite capacity.
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t = 1

v0 v1s t

(0, {pentry0 = 1}, 2)

(0, {pentry0 = 2}, 3)

(1, {pentry1 = 0}, 4)

(1, {pentry1 = 1}, 5)

(1, {pentry1 = 2}, 6)

(0, {pentry0 = 0}, 2)

At t = 2, we first look for train instances that need to move into vertices as
described earlier. (0, {pentry0 = 1}, 2) is able to move to v0 because the train instance
(0, {pentry0 = 0}, 2) (which has not yet been moved to an edge) has a scenario which
is incompatible with {pentry0 = 1}. Therefore, there are no capacity issues at v0

for this moving train instance. Afterwards, we move possible train instances into
edges and include blocking train instances, depicted in gray. In this example, we
move (0, {pentry0 = 0}, 2) onto the edge and update its next planned movement, and
additionally the corresponding train instance (0, {pentry0 = 0}, 3) blocks v0 up to and
including t = 3.

t = 2

v0 v1s t

(0, {pentry0 = 2}, 3)

(1, {pentry1 = 0}, 4)

(1, {pentry1 = 1}, 5)

(1, {pentry1 = 2}, 6)

(0, {pentry0 = 1}, 3)

(0, {pentry0 = 0}, 3)

(0, {pentry0 = 0}, 3)

For t = 3, we continue to move train instances as shown. First, we consider
all train instances that want to move to vertices. They are (0, {pentry0 = 2}, 3) and
(0, {pentry0 = 0}, 3). These train instances successfully move to their respective vertices
without capacity issues and their instances are updated appropriately as shown below.
Next, we consider all train instances that want to move to edges. (0, {pentry0 = 1}, 3)
successfully moves to the edge. All completed train instance updates and blockers are
shown below:

t = 3

v0 v1s t

(1, {pentry1 = 0}, 4)

(1, {pentry1 = 1}, 5)

(1, {pentry1 = 2}, 6)

(0, {pentry0 = 2}, 4)

(0, {pentry0 = 0}, 3)

(0, {pentry0 = 1}, 4)

(0, {pentry0 = 1}, 4)

(0, {pentry0 = 0}, 4)

(0, {pentry0 = 0}, 4)
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In our simulation, it is important to note that we only clear blocking train in-
stances when the block until time is strictly less than the current time t. Therefore,
(0, {pentry0 = 0}, 3) is still blocking v0 until the next time point, t = 4, which makes the
effective blocking time moreso two minutes instead of the originally prescribed one.
This happens because this example works with integers for simplicity. In more realistic
simulations with edge speedups, the actual blocking times are close to the user–defined
one, as the simulation works with smaller time steps.

At t = 4, we erase all blockers with times that are (strictly) earlier than the
current time. We move all possible train instances to vertices, then edges, splitting
train instances when needed, and additionally add blockers.

For this time point, let us focus on the train instance (1, {pentry1 = 0}, 4), which
wants to move into v0 during the vertices phase. This train instance is compatible
with the train instance (0, {pentry0 = 2}, 4) and blocking train instance (0, {pentry0 =
1}, 4), both at v0. Only certain scenarios within {pentry1 = 0} can move into v0.
Therefore, we split our train instance into two train instances such that one instance
that successfully moves into v0 only contains scenarios that are incompatible with
the respective scenarios of either of the occupying or blocking train instances at v0.
We also make sure to leave the other split train instance “behind” at (s, v0) with a
complement scenario as shown below.

t = 4

v0 v1s t

(1, {pentry1 = 1}, 5)

(1, {pentry1 = 2}, 6)(
1,

{
{pentry0 / {1,2}
pentry1 = 0

}
, 4

)

(
1,

{
pentry0 = 0

pentry1 = 0

}
, 5

)
(0, {pentry0 = 1}, 4)

(0, {pentry0 = 2}, 5)

(0, {pentry0 = 2}, 5)

(0, {pentry0 = 0}, 4)

(0, {pentry0 = 1}, 5)

(0, {pentry0 = 1}, 5)

(0, {pentry0 = 0}, 5)

(0, {pentry0 = 0}, 4)

At t = 5, we continue moving train instances and splitting them when needed. In
particular, one train instance which was previously “held back” at (s, v0) is split again
into two instances. One of them becomes (1, {pentry0 = 1, pentry1 = 0}, 6), which has a
complete scenario that allows it to move to v0, while the other becomes (1, {pentry0 =
2, pentry1 = 0}, 4), which stays behind due to the blocker (0, {pentry0 = 2}, 5) at v0.

In addition, the train instance (1, {pentry1 = 1}, 5) gets split into multiple train
instances also due to the blocker (0, {pentry0 = 2}, 5).
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t = 5

v0 v1s t

(1, {pentry1 = 2}, 6)(
1,

{
pentry0 = 2

pentry1 = 1

}
, 5

)
(

1,

{
pentry0 = 2

pentry1 = 0

}
, 4

)

(
1,

{
pentry0 = 0

pentry1 = 1

}
, 6

)
(

1,

{
pentry0 = 1

pentry1 = 1

}
, 6

)
(

1,

{
pentry0 = 1

pentry1 = 0

}
, 6

)
(0,
{
pentry0 = 2

}
, 5)(

1,

{
pentry0 = 0

pentry1 = 0

}
, 6

)

(
1,

{
pentry0 = 0

pentry1 = 0

}
, 6

)
(0, {pentry0 = 1}, 5)

(0, {pentry0 = 2}, 6)

(0, {pentry0 = 2}, 6)

(0, {pentry0 = 0}, 5)

(0, {pentry0 = 1}, 6)

(0, {pentry0 = 0}, 5)
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Chapter 3

Scorekeeping

3.1 Problem Definition

Our simulation computes when each train will arrive at its target with some proba-
bility, given the primary delays. This occurs because each train instance comes with
a scenario from which we can compute such probability. However, it does not provide
a formal explanation for any of the propagated secondary delays. Furthermore, our
simulation assumes that the given timetable is executable in absence of delay, so if zi
cannot move to some infrastructure element, then some train, itself or otherwise, was
delayed at some point and its delay is causing capacity issues.

One way to determine why a train is late is to come up with some systematic way
of keeping track of which train instances are causing secondary delays for other train
instances while the simulation is running. When a train instance is unable to proceed
to its next infrastructure element at its planned time, we consider placing “blame”
on this train itself or on other trains occupying or blocking the next infrastructure
element. Such blame would be stored within a train instance as an integer or real
value.

3.2 First Attempt: Blaming Late Trains

Suppose for some fixed scenario, a train instance ri wants to move to some infras-
tructure element x, but x is currently full and occupied by other trains. If ri itself is
already late, we increment its “score” to signify the idea that it was unable to proceed
further because it already is at “fault” for being late in the first place. The reasoning
is, if the train was not late in the first place, perhaps it would have had the chance
to move to its next infrastructure element.

The initial attempt expands our definition of a train instance as follows.

Definition 3.2.1. A scored train instance is a tuple r = (i, s, t, α), where i is the
train identity, s is the scenario, t is the time point of the train z′is next planned
movement, and α ∈ N is a score representing its level of “blame” for being unable to
proceed while also being behind schedule.
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Algorithm 6 Updating a train instance’s position and blaming late trains

1: procedure Late Train Update(t ∈ T, x ∈ V ∪E, r = (i, S,t∗, α) ∈ [1..n]×S×
T×N)

2: let set S ← ∅;
3: if c(x) =∞∨|{j|(j, · ,·) ∈ occupy[x]∪ block[x]∪ req[x]}| < c(x) then S ← {S}
4: else S ← Available(x,r);
5: for each S′ ∈ S do
6: for each t′ ∈ D(pxi ) do
7: occupy[x]← occupy[x] ∪ {(i, S′

a
{pxi = t′}, t+ t′ + t′′)};

8: times← times ∪ {t+ t′ + t′′}; // t′′ is waiting/driving time
9: block[pre(i,x)]← block[pre(i,x)] ∪ {(i, S′, t+ δ)}; times← times ∪ {t+ δ};

10: occupy[pre(i,x)]← occupy[pre(i,x)] \ {(i, S, t∗)};
11: for each S′ ∈ ScenarioDiff(S,S) do
12: occupy[pre(i,x)]← occupy[pre(i,x)] ∪ {(i, S′, t∗, α+ 1)};

Algorithm Modifications:

In Algorithms 2, 3, and 4 described in Section 2.2.2 as well as other subroutines
mentioned in [7], we modify all train instances of the original format r = (i, S, t′) to
r = (i,S, t′, α) where α is its current score. The modification of the train instance
in Algorithm 1 is also quite simple, where we initialize the first train instances in
Line 10 as (i,{pentryi = t}, a1

i + t, 0) to start off with a zero score. Where most of the
score changes happen in this approach is shown in Algorithm 6. The scoring happens
whenever “our” train r under certain scenarios is unable to move to x and its planned
arrival into x is at or before the current time. Algorithm 6 is only called when t∗ ≤ t,
and it also holds that zi’s planned arrival time at x, aki for some k must be at or earlier
than t∗, because we never move trains ahead of schedule. Therefore, we can conclude
that all of the train instances held back in line 12 of Algorithm 6 have become late
train instances.

Problems with this approach:

This approach comes with multiple issues which could be fixed or adapted in the
future. First, this scoring is inaccurate when values in times are not just integers,
which is almost always the case. times does not contain time points in equal intervals,
making a train instance’s score not proportional to how late our train actually is. This
issue can be solved by updating α by the next time interval and increasing α by a
value equivalent to the time interval passed. We later used this idea in the following
approach. Another main issue of this approach is that the amount of “blame” a train
picks up appears to be dependent on how much longer the train still needs to travel.
For example, a train that is late in the beginning of a very long ride may have been
delayed by another train at the very beginning. Then, assuming that speedups on
edges and shortened wait times on vertices are negligible, our train tends to pick up
more blame simply for having a lot of traveling left and the other train does not get
any blame for causing the problem. Furthermore, a third issue with this approach
is that we do not really store interactions on trains being in the way of other trains,
as we only blame the late train every time. The added value of this approach is also
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lacking as there should not be a difference between this scoring scheme’s expected
score over all train instances of some zi versus simply calculating the expected delay
of zi at the end of the simulation. Nonetheless, this approach provided ideas which
will be described next.

3.3 Expected First-Order Secondary Delay

After a first attempt, we decided to modify the scored train instance such that it stored
all direct “interactions” it had with other trains. Our goal here is to examine the first
level of causes of secondary delays, that is, when one train instance is occupying or
blocking the infrastructure element that another train wants to move to.

3.3.1 Definitions

Definition 3.3.1. For some time interval [tk, tk+1] ∈ T (tk, tk+1 ∈ times), we define
the expected first-order delay rj has on all train instances of zi as

βx
rj→i,tk

:=
∑

(i,S′,·,·)∈remain(x,i)

P(S
i
S′)(tk+1 − tk). (3.1)

We define remain(x,i) as the set of all train instances of zi that were unable to move
to x at time tk (see Algorithm 5, line 14) until some later determined tk+1 and rj has
occupied or blocked x at time tk.

Note that times gets updated regularly as changes in other train instances occur
in Algorithm 5, and therefore, at tk for some k, we compute βx

rj→i,tk
before finding

out what the following tk+1 is. It is also important to make note that rj is one train
instance of zj , not zj itself. Considering only the intersection, S

a
S′ allows us to

accurately only blame the relevant subscenarios of rj that do indeed prevent any train
instances of zi from proceeding.

Definition 3.3.2. For the entire duration of the simulation in, T, we define the
expected first order delay rj has on all train instances of zi as

βx
rj→i :=

|times|−1∑
k=0

βx
rj→i,tk

. (3.2)

At the end of the simulation, βx
rj→i indicates the expected amount of time (typ-

ically in minutes) in which rj directly prevents all train instances of zi from moving
to x under a specific scenario associated with rj .

Using the aforementioned definitions, we update this expanded definition of a train
instance as follows:

Definition 3.3.3. A scored train instance is a tuple rj = (j, S, t′,B), where j is
the train identity, s is the scenario, t′ is the time point of the train z′js next planned
movement, and B tracks a set of scores of when rj occupies some infrastructure
element x which is currently at full capacity, and prevents some train instance of zi
from moving to x, for all i, j ∈ [1 . . . n].

We define B as
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B = {(βx
rj→i,t, β

x
rj→i) ∈ (R≥0 × R≥0) | i ∈ [1..n], x ∈ (V ∪ E), t ∈ times}

where t ∈ times is the current time.
We define the set of all possible set of score combinations as B.

In the implementation, we store B inside the scenario datastructure of the respon-
sible train.

3.3.2 Algorithm Modifications

As in Section 3.2, we made simple modifications to all train instances but from r =
(j, S, t′) to r = (j,S, t′,B) instead. For each j ∈ [1 . . . n], we also initialize all pairs
(βx

rj→i,tk
, βx

rj→i) in B as (0,0), for all i ∈ [1 . . . n].
The major change is with Algorithm 2 and Algorithm 5, and we also created an

additional helper algorithm to update our scorekeeping.
For each time point, tk and for each train instance, we update the first-order ex-

pected delay value of all responsible train instances that were occupying or blocking
some x in line 12. This leads us to Algorithm 9. Lines 2-4 update parts of the momen-
tarily incomplete scores of occupiers that are in the way of movement, in accordance
to Definition 3.3.1. In lines 6-9, we do something similar with the blockers with an
extra step. Because the implementation stores blockers and occupiers differently (al-
though they are both train instances symbolically), it means that a blocker at x could
correspond to more than one occupier at other infrastructure elements. This occurs
with one occupier with scenario S corresponding to a blocker with the same S ends
up splitting into more refined scenarios. Therefore, we collect all of such occupiers in
line 7 and update scores accordingly.

Finally, we update the total first-order delay of each train instance collected so far
in Algorithm 7. First, we complete the calculation of βx

rj→i,tk
for interval [tk, tk+1]

now that we know what tk+1 is in lines 8 and 9. Then, we update βx
rj→i in accordance

with Definition 3.3.2 and then reset βx
rj→i,t to zero in line 10. In some following time

interval [tk+1, tk+2] for a particular train instance, we will again calculate βx
rj→i,t for

t = tk+1 and so on.

3.3.3 Verification

Because Symbolic Simulation is a novel approach to railway simulation, verification is
considerably difficult. For this approach, even a very small dataset with two vertices,
two trains, a short blocking time, and a small number of initial delays already yields
a large output detailing all of the train instances, not to mention the many train
instances during each time step. At the moment, the only way to verify approaches is
to print out the intermediate and final train instances and manually check them. On
a very small self-created dataset, we found our scoring to be accurate. However, we
overlooked one thing because Symbolic Simulation applied on this particular dataset
did not split a train instance after its relevant scores were updated to be nonzero.
More concretely, if some train instance rj is expected to have a first-order delay on
some zi with some nonzero βx

rj→i, then if it splits in Algorithm 4 due to a primary
delay or being held back at another train, the scenarios split, but the scores are
duplicated. Furthermore, the expected first-order delay value does not store which
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Algorithm 7 Modified Symbolic Simulation

1: procedure Scored Simulate( )
2: Initialize(); let time point t← tmin;
3: while t ≤ tmax ∧ times 6= ∅ do
4: t← times.getSmallest(); times← times \ {t};
5: for each x ∈ V ∪ E do
6: for each (·, ·, ·,B) ∈ occupy[x] do
7: for each (βx

rj→i,t, β
x
rj→i) ∈ B do

8: tk+1 = t;
9: βx

rj→i ← βx
rj→i + (tk+1 − tk)βx

rj→i,t;
10: βx

rj→i,t ← 0;

11: for each x ∈ V ∪ E do // first vertices then edges
12: Requests(t, x); // update req[x]
13: Occupation(t, x); // update cap[x]
14: while req[x] 6= ∅ do // requests have to be sorted (highest priority

first)
15: r ← req[x].pop(); Scored Update(t, x, r); // update occupy and

block

specific delays in the scenario of rj are responsible so we cannot proportion the scores
between the scenarios as well.

A solution to this is to globally store scores pertaining to expected first-order delay
of zj on zi instead. Expanding the train instance is no longer necessary and storage
is much more efficient. The original reason for calculating rj on zi was in hopes of a
more granular analysis that may aid in computing delay propagation chains. Another
possible solution that was tried previously was to split every blamed train instance
in Algorithm 9. However, this approach creates many additional train instances and
slows down the simulation even on small datasets.

3.3.4 Discussion
An interesting question that should also be discussed is, “why score all occupying and
blocking train instances that are present at x when we should only score those that
are running late?” This was considered, but also placing blame on trains that are
on-time would allow us to consider problems with the set timetable in which a train
that itself is on time happens to get in the way of other trains when some other delays
propagate. Perhaps delaying an on time train will be better if it could overall reduce
secondary delays of more trains overall (weighted probabilistically of course).

If the aforementioned issues are fixed, the calculated first-order secondary delays
are still stochastically dependent on each other. If we implemented proposed modified
approach of computing expected first-order delay between two trains in general, we
can also miss genuine root causes of secondary delays. This situation easily occurs if
zk’s path on the infrastructure only intersects the paths of zj and zi at infrastructure
element x, and zi follows zj on similar paths. If zk holds back zj for a relatively brief
amount of time at x, then zj will later impede zi frequently and pick up higher scores,
even if zk is the actual root cause of such secondary delays. Because of these issues,
we proceeded to try a different approach instead of working on this approach further.
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Algorithm 8 Updating a train instance’s position with scoring

1: procedure Scored Update(t ∈ T, x ∈ V ∪E, r = (i, S,t∗,B) ∈ [1..n]×S×T×B)
2: let set S ← ∅;
3: if c(x) =∞∨|{k′|(k′,·,·) ∈ occupy[x]∪block[x]∪req[x]}| < c(x) then S ← {S}
4: else S ← Available(x,r);
5: for each S′ ∈ S do
6: for each t′ ∈ D(pxi ) do
7: occupy[x]← occupy[x] ∪ {(i, S′

a
{pxi = t′}, t+ t′ + t′′)};

8: times← times ∪ {t+ t′ + t′′}; // t′′ is waiting/driving time
9: block[pre(i,x)]← block[pre(i,x)] ∪ {(i, S′, t+ δ)}; times← times ∪ {t+ δ};

10: occupy[pre(i,x)]← occupy[pre(i,x)] \ {(i, S, t∗)};
11: for each S′ ∈ ScenarioDiff(S,S) do
12: BlameOcc(t, S′, i, x ∈ V ∪ E);
13: occupy[pre(i,x)]← occupy[pre(i,x)] ∪ {(i, S′, t∗)};

Algorithm 9 Updating the relevant scores in occupiers and blockers.

1: procedure BlameOcc(tk ∈ T, S′ ∈ S, i ∈ [1..n], x ∈ V ∪ E)
2: for each (j, Sj , tk,Bj) ∈ occupy[x] do
3: if Sj and S′ are compatible then
4: (tk+1 − tk)βx

rj→i,t ← (tk+1 − tk)(βx
rj→i,t + P(Sj

a
S′)) | βx

rj→i,t ∈ Bj ;//
tk+1 is not determined until the next time step

5: for each (j, S′, tk,Bj) ∈ block[x] do
6: if Sj and S′ are compatible then
7: occs← {(j, S′′, ·,B′j) ∈ occupy[x′] | S′′ � S′,∀x′ ∈ V ∪ E};
8: for each (j, S′′, ·,B′j) ∈ occs do
9: (tk+1−tk)βx

rj→i,t ← (tk+1−tk)(βx
rj→i,t+P(Sj

a
S′)) | βx

rj→i,t ∈ B′j ;
// tk+1 is not determined until the next time step
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Pruning

A main goal is to find explanations for why trains are late. Previously, we tried scoring
techniques on the entire input of the simulation. Because of the discussed issues with
the stochastically dependent nature of the scoring, along with the runtine, our next
approach focuses on selecting one late train instance, rerunning faster pruned simu-
lations using only delay values relevant to the selected late train instance, and then
experimenting with delaying other relevant trains under modified pruned simulations.

4.1 Examining Late Train Instances

When Symbolic Simulation is completed, we end up with a list of train instances at
the target vertex. Now we want a ranked list of train instances, with the topmost train
instance being the latest. For each train instance, we have information of the train’s
actual departure from its final vertex and can compare this value to its expected
departure from its final vertex. The difference of these is intuitively the lateness
of a train. Each train instance also contains a scenario and therefore a probability.
Multiplying the lateness of a train by its probability is therefore the expected lateness
of a train. That is, a very late train instance but with very low probability should
probably be ranked lower and therefore examined with less priority than a reasonably
late train instance with significantly higher probability.

More concretely, we define a expected lateness of a train instance ri = (i, S, t) as

delri := P(S)(t− dend)

where t is the actual time ri arrived at its target, and dend is the time zi is planned
to depart from its last vertex.

Similarly, we can define a general expected lateness for zi over all of its train
instances as

deli :=
∑

r=(i,S,t)∈occupy[target]

P(S)(t− dend)

4.2 Pruning to One Train Instance

After selecting a train instance, say, ri with a high level of expected lateness as
described in Section 4.1, we examine this train instance and all relevant train instances
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that directly or indirectly interact with it, “pruning” away all train instances with
unnecessary random inclusions. This allows us to save computation time on delays
for certain trains if we already know those trains do not interact with our train zi
(and therefore ri as well) directly or indirectly. To figure out which trains do this, we
have to first modify the first simulation that runs all scenarios with all their random
inclusions.

4.2.1 Bitstrings

To obtain high-level information of how trains interact with other trains, we use
bitstrings. We globally store bitstrings bi for each zi and update them during our
first run of our simulation.

Definition 4.2.1. For each i ∈ [1 . . . n], we define a bitstring, bi ∈ {0,1}n. For
j ∈ [1 . . . n], let bi[j] represent the jth digit of bi, counting from the right-hand side.
bi[j] = 1 either when j = i, or for j 6= i, zj directly or indirectly blocks zi from
moving to its desired infrastructure element at any point in the simulation. Otherwise,
bi[j] = 0.

bi tracks all delaying interactions that zi has with all other trains, over all scenarios.
During the simulation, when some train instance of zi is affected by a train instance
of zj , we update bi by doing a bitwise OR with bj . bi[i] needs to be initialized to 1 in
order to allow bitwise OR operations to update.

Example 4.2.1. Consider a timetable T = {z0, z1, z2} with three trains. Before
simulation, the respective bitstrings are respectively initialized to b0 = 001, b1 = 010,
and b2 = 100.

Suppose one train instance of z0 is currently occupying infrastructure element x,
which is at full capaicty, at the same time a train instance of z1 wants to move to x,
in some mutual scenario S. Therefore we update just b1 as shown:

b1 = b1|b0 = 010|001 = 011

As we can see, initializing b0[0] = 1 allows us to update b1.
Later, in some mutual scenario S, a train instance of z1 occupies some infrastruc-

ture element y, y is at full capacity, and a train instance z2 wants to move to y. We
update the bitstrings again as follows:

b2 = b2|b1 = 100|011 = 111

b2 = 111 has meaning to us. b2[2] = 1 is simply there to update other bitstrings
when needed. In this particular example, b2[1] = 1 means that z1 directly blocked z2

and b2[0] = 1 is an example of z0 indirectly blocking z2.

Modifying the algorithms is also simple. We initialize each bitstring to be the
binary equivalent of 2i for some i in line 8 of Algorithm 10. This value is equivalent
to setting all the bits to zero except for bi[i]. We update the bitstrings in Algorithm 11,
at lines 12 and 13.
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Algorithm 10 Initialization

1: procedure Initialize( )
2: V ← V ∪ {source, target}; c(source)←∞; c(target)←∞; times← ∅;
3: for each v ∈ V do
4: E ← E ∪ {(source, v), (v, target)}; c((source, v)) ← ∞; c((v, target)) ←
∞;

5: for each x ∈ (V ∪E) do occupy[x]← ∅; block[x]← ∅; req[x]← ∅; cap[x]← ∅;

6: for each i ∈ {1, . . . ,n} do
7: times← times ∪ {a1

i };
8: bi[i]← 2i10; // bi[i] = 1, 0 for the rest of the bitstring
9: for each t ∈ D(pentryi ) do

10: times← times ∪ {a1
i + t};

11: occupy[(source,v1
i )]← occupy[(source,v1

i )] ∪ {(i,{pentryi = t},a1
i + t)};

Algorithm 11 Updating a train instance’s position

1: procedure Update(t ∈ T, x ∈ V ∪ E, r = (i, S,t∗) ∈ [1..n]× S× T)
2: let set S ← ∅;
3: if c(x) =∞∨|{j|(j, · ,·) ∈ occupy[x]∪ block[x]∪ req[x]}| < c(x) then S ← {S}
4: else S ← Available(x,r);
5: for each S′ ∈ S do
6: for each t′ ∈ D(pxi ) do
7: occupy[x]← occupy[x] ∪ {(i, S′

a
{pxi = t′}, t+ t′ + t′′)};

8: times← times ∪ {t+ t′ + t′′}; // t′′ is waiting/driving time
9: block[pre(i,x)]← block[pre(i,x)] ∪ {(i, S′, t+ δ)}; times← times ∪ {t+ δ};

10: occupy[pre(i,x)]← occupy[pre(i,x)] \ {(i, S, t∗)};
11: for each S′ ∈ ScenarioDiff(S,S) do
12: for each (j, Sj , tk,Bj) ∈ occupy[x] ∪ block[x] do
13: bi ← bi|bj ;
14: occupy[pre(i,x)]← occupy[pre(i,x)] ∪ {(i, S′, t∗)};

4.2.2 Rerunning the simulation on a smaller set

We let the set of all random variables P be the original set of random variables
with their support and probability distributions, and modify each p ∈ P so that its
support only includes values that are relevant to some selected late train instance ri.
For many random variables, we also need to modify their probability distributions
such that they each add up to 1. Algorithm 12 demonstrates how we prune random
variables after our first simulation. In lines 3 - 6, we reduce the finite support of all
random variables associated with trains which do not directly or indirectly affect our
late train instance r. Since they do not affect r, we can just choose one delay value
and set the probability of that delay to 1.

For lines 8 - 11, we consider all pxj for zj that affect r. In line 8, if the random
inclusion of pxj in r’s scenario is a strict subset of the original finite support D(pxj ), then
we update our finite support as so in line 11. In line 10, we update the probability of
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Algorithm 12 Modifying Finite Support and Probabilities

1: procedure Modify Support(r = (i, S,t) ∈ [1..n]× S× T)
2: for each pxj ∈ P do
3: if bi[j] = 0 then
4: choose ∆ ∈ D(pxj ) // Any value of ∆ allowed, but typically ∆ = 0.
5: D(pxj )← {∆};
6: P(pxj = ∆)← 1;
7: else
8: if S(pxj ) ⊂ D(pxj ) then
9: for each ∆ ∈ S(pxj ) do

10: P(pxj = ∆)← P(pxj = ∆)/P(pxj / S(pxj )); // Conditional
probability

11: D(pxj )← S(pxj ); // Update support to have only relevant values

each support value, using the conditional probability of P(pxj = ∆|pxj /S(pxj )). In some
cases where zj (indirectly) affects zi for i 6= j, the scenario of r does not explicitly
specify any refined random inclusion for pxj . Therefore, we must keep the original
support of pxj with its respective probabilities. Algorithm 11 does this implicitly by
not changing D(pxj ).

After pruning our random variables, we can make one run of our pruned simulation
by running Algorithm 2. This pruned simulation is unsurprisingly much faster than
our original simulation since fewer delay values are used, and therefore we compute
fewer train instances.

4.3 Evaluating Delay Changes
Now that we have run one pruned simulation and determined the relevant trains and
delay values, we can try to answer the following question: if we increase the delays
of another train, does it reduce the expected lateness of our late train? Furthermore,
how does the sum of expected lateness over all trains change? Does it increase greatly
or drop?

4.3.1 Statistics for Assessing Improvement
After completing one run of the pruned simulation, we must recompute delri under the
pruned simulation, to use as an updated statistical baseline of comparison when we
experiment with different slight modifications of the pruned simulation. Additionally,
we need to compute an overall baseline statistic over all trains. We define the total
expected lateness of all trains in the (pruned) simulation as total expected lateness, as

deltotal :=
∑

j∈[1...n]

delj

4.3.2 Experiments
We have six anonymized datasets based off of real-world data from the DB Netz AG.
Due to the currently limited scalability of Symbolic Simulation, running even the base
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simulation with only initial delays on a personal machine is only feasible with the two
smallest datasets. One of these two datasets is over a one hour time period from 0:00
to 1:00 and is a subset of the other, which is from 0:00 to 2:00. For our simulation, we
used the one hour dataset. The infrastructure of this dataset contains 2646 vertices
and 5622 edges, and there are 78 trains in the timetable. We ran experiments on a
computer with a 1.80 GHz × 8 Intel Core i7 CPU and 8 GB of RAM.

For primary delays, we only input entry delays with discrete distributions shown
in Table 4.1. We also used a uniform block time of 2 minutes.

We experimented with primary delay increases of other trains by running many
modified versions of our pruned simulation, with the only changes in each simula-
tion being the selected random variable with increased primary delay, and the value
in which this random variable’s support is increased by. In our test, we chose the
following set of increase values to experiment with: I = {1, 2, 3, 4, 5, 10, 15, 20}. We
selected many small values such as {1, 2, 3, 4, 5} to have a more granular analysis of
small changes, and only selected a smaller variety of larger delay values with the hy-
pothesis that too large of an increased delay would increase the total expected lateness
anyway.

More concretely, for each pruned simulation in which we wish to optimize delri ,
we select one pxj where bi[j] = 1, and increase all values of D(pxj ) by a certain amount,
and then run this one modified iteration of the pruned simulation. We then recompute
delri and deltotal in this single iteration and record it. This brute force experimentation
continues for all other values in I, and furthermore with all other random variables
that affect our chosen late train instance.

We repeated this process described above on other late train instances output in
the base simulation.

Train Type Support Respective Probabilities

FRz (0, 1, 4, 10) (0.5, 0.17, 0.18, 0.15)
NRz (0, 1, 4) (0.5, 0.32, 0.18)
FGz (0, 10, 30) (0.6, 0.2, 0.2)
NGz (0, 10, 30) (0.5, 0.25, 0.25)
Gz (0, 10, 30) (0.5, 0.25, 0.25)
S (0, 1, 4) (0.8, 0.16, 0.04)
Lz (0, 10, 30) (0.5, 0.25, 0.25)
GzG (0, 10, 30) (0.5, 0.25, 0.25)

Table 4.1: Input entry delays

4.3.3 Results

Table 4.2 shows the results of twenty-five experiments. After the base simulation, we
have a list of late train instances in descending order. For our results, we furthermore
remove late train instances that are late only due to its own primary delay. We do
this by removing all train instances of trains that do not interact with any other trains
(based on its bitstring). After removing these train instances from the list, we then
selected twenty-five train instances with the highest amount of expected lateness. For
each train instance ri, we ran a pruned simulation, and then proceeded to iteratively
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rerun the pruned simulation with different increases on different random variables that
have impact on ri. The classification of improvement in Table 4.2 is rather subjective
and is detailed as follows.

Most of our experiments did not find any improvement (“None”), that is, all possi-
ble input support value changes reduced neither the expected lateness of the late train
instance, nor the expected lateness of all train instances under the pruned simulations.

Two experiments found changes that create very “nominal” change. The exper-
iments on z5 and z6 at best did not find any decrease in their respective expected
lateness but respectively decreased the total expected lateness by about four and two
minutes overall.

Four experiments found arguably “significant” change in which the expected late-
ness of the late train instance was decreased, and the overall lateness was either
decreased (in the case of z1) or increased by no more than two minutes. What con-
stitutes as “significant” or “nominal” is arbitrary and also depends on how important
the late train instance is. If it is important enough, then reducing its expected late-
ness at the cost of overall expected lateness by a little bit is acceptable. On larger
datasets with more primary delays or larger time frames, we expect that we can find
more significant reductions that greatly reduce the expected lateness of both the train
instance and over all train instances.

Table 4.3 shows an example of how increasing the entry delay of z1 by 2 minutes
reduces the expected lateness of r1 by about one minute and reduces the total expected
lateness of the pruned simulation by about five minutes.

Table 4.4 shows an example of how increasing the entry delay of other trains by
any value in I neither significantly reduces the expected lateness of r49 nor the total
expected lateness of the pruned simulation.

Table 4.5 shows an example of how at best (using only the set I), increasing
the entry delay of pentry3 by two minutes does not noticeably decrease the expected
lateness of r5 but decreases the total expected lateness of the pruned simulation by
about four minutes. In this type of situation, it is up to the user to decide whether
to improve the timetable based on this result.
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zi S Original Improve-

delri ment
z49 {p49 = 30} 7.41 None
z37 {p37 = 30} 7.29 None
z53 {p53 = 30} 6.31 None
z70 {p70 = 30} 6.10 None
z5 {p5 = 30} 5.95 Nominal
z6 {p6 = 30} 5.95 Nominal
z46 {p46 = 30} 5.93 None
z73 {p73 = 30} 5.93 None
z4 {p4 = 30} 5.90 Significant
z36 {p36 = 30} 5.89 None
z40 {p40 = 30} 5.88 None
z2 {p2 = 30, p3 / {0, 30}} 4.75 Significant
z74 {p74 = 30, p75 / {0, 30}} 4.75 None
z1 {p1 = 30, p3 / {0, 10}} 4.75 Significant
z54 {p48 / {0, 30}, p54 = 30} 4.65 None
z43 {p32 = 0, p43 = 30} 4.02 None
z48 {p36 = 0, p48 = 30} 3.54 None
z48 {p36 / {10, 30}, p48 = 30} 3.54 None
z44 {p37 / {0, 10}, p44 = 30, p46 / {0, 30}} 3.49 Significant
z43 {p32 = /{0, 30}, p43 = 30} 2.28 None
z37 {p37 = 10} 2.28 None
z48 {p48 = 10} 2.10 None
z2 {p10 = 30} 1.92 None
z76 {p73 / {0, 10}, p74 / {10, 30}, p76 = 30} 1.90 None
z44 {p44 = 10} 1.83 None
z70 {p70 = 10} 1.71 None

Table 4.2: General results of experiments on twenty-five pruned simulations, each
based off of a train instance in the original simulation with high expected lateness.
All random variables listed above are assumed to be entry primary delays.
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Selected pentryj pentryj Increase New delri New deltotal

p3 / {0, 10} 20 1.13 82.82
p6 / {0, 10, 30} 2 3.78 60.34
p6 / {0, 10, 30} 3 3.79 63.27
p6 / {0, 10, 30} 4 3.81 64.41
p4 / {0, 10, 30} 10 3.81 70.47
p4 / {0, 10, 30} 15 4.57 80.04
p4 / {0, 10, 30} 5 4.67 71.19
p3 / {0, 10} 10 4.73 74.78
p2 / {0, 10, 30} 15 4.73 81.93
p2 / {0, 10, 30} 20 4.73 85.70
p3 / {0, 10} 3 4.73 68.77
p5 / {0, 10, 30} 20 4.73 84.61
p5 / {0, 10, 30} 15 4.73 79.55
p5 / {0, 10, 30} 10 4.73 76.35
p2 / {0, 10, 30} 2 4.73 67.84
p2 / {0, 10, 30} 5 4.73 70.77
p3 / {0, 10} 5 4.73 71.17
p3 / {0, 10} 1 4.73 66.59
p3 / {0, 10} 4 4.73 69.97
p6 / {0, 10, 30} 5 4.73 72.99
. . . . . . . . . . . .

Table 4.3: Example of a “significant” result in which there was a reduction of delay
found on r1 with S = {p1 = 30, p3/{0, 10}}, and overall, when introducing an increase
of primary delays for pentry6 by 2 minutes. Under the pruned simulation, r1 had an
expected delay of 4.73 minutes and the total expected delay was 65.43 minutes. All
random variables listed above are assumed to be entry primary delays.

Selected pentryj pentryj Increase New delri New deltotal

p48 / {0, 10, 30} 2 7.39 43.03
p48 / {0, 10, 30} 4 7.40 44.17
p48 / {0, 10, 30} 3 7.40 43.63
p48 / {0, 10, 30} 5 7.40 44.93
p48 / {0, 10, 30} 1 7.41 42.57
p48 / {0, 10, 30} 15 7.43 53.77
p48 / {0, 10, 30} 10 7.51 49.66
p48 / {0, 10, 30} 20 7.63 62.57

Table 4.4: Example of no significant reduction of delay on r49 and overall when
introducing any of the possible increases on the other primary delays. Under the
pruned simulation, r49 had an expected delay of 7.41 minutes and the total expected
delay was 40.47 minutes. All random variables listed above are assumed to be entry
primary delays.
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Selected pentryj pentryj Increase New delri New deltotal

p6 / {0, 10, 30} 20 5.95 90.81
p6 / {0, 10, 30} 10 5.95 80.39
p1 / {0, 10, 30} 5 5.95 76.14
p3 / {0, 10, 30} 15 5.95 84.86
p1 / {0, 10, 30} 4 5.95 74.50
p3 / {0, 10, 30} 5 5.95 74.15
p2 / {0, 10, 30} 15 5.96 85.89
p1 / {0, 10, 30} 10 5.96 81.70
p3 / {0, 10, 30} 10 5.96 80.10
p1 / {0, 10, 30} 1 5.96 72.00
p3 / {0, 10, 30} 4 5.96 72.65
p3 / {0, 10, 30} 3 5.96 72.90
p3 / {0, 10, 30} 2 5.96 67.14
. . . . . . . . . . . .

Table 4.5: Example of a “nominal” result in which there was no noticeable reduction
of delay on r5, but a small decrease in overall delay. Under the pruned simulation,
r5 originally had an expected delay of 5.96 minutes and the total expected delay was
71.27 minutes.
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Chapter 5

Conclusion

In this thesis, we explained the relevant notation and algorithms of Symbolic Simu-
lation based off the work of [7]. To aid with understanding, we provided examples,
including a walkthrough of a portion of a simplified simulation.

The first approach with scoring consisted of two sub-approaches. The first sub-
approach involved scoring or “blaming” late trains, and this approach had an intuitive
motivation, but tended to anthropomorphize trains too much by only blaming the
late ones, especially when an on-time train could frequently impede other trains at
a particular infrastructure element, late or not. Due to the lack of added value of
this sub-approach, we did not need to fix the other issues with scoring in relation to
the differences between time points. The second sub-approach stored for each train
instance, the expected first-order secondary delay it had on each of the other trains.
Towards the end of this implementation, we found that the algorithm is not correct
because it duplicates existing stored intermediate scores of a train instance when it
splits further. We suggested a solution to this by storing the first-order delays globally
between trains instead of between a train instance and a train. Because the first-order
secondary delays were still stochastically dependent on each other, we proceeded to
work on the pruning approach instead of further implementing this approach.

The second approach involved selecting a late train instance, pruning the sim-
ulation, and experimenting with increasing the delay values of one related random
variable to see if the expected lateness of one train or all trains in a pruned simu-
lation decreased. This approach appeared to correctly prune the necessary random
variables and demonstrated opportunities to improve not only the expected lateness
of the late train instance, but also the total expected lateness of all trains.

5.1 Future work
Our approach with pruning has the potential of being effective. Further work can
experiment with a larger set of primary delay increases and determine a methodical
way to minimize secondary delays. In addition, once we find a random variable in
which an increase in its primary delays decreases the expected lateness of the late
train instance, it is important to rerun this modification on the original simulation
(with the only change being the increases in delays for that one random variable).
This is necessary because adding a delay may improve the performance of a pruned
simulation, but could potentially introduce more interactions between trains in the
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unpruned simulation. Integrating this approach with a GUI would also make selecting
late train instances easier for the user and provide visuals. Another extension is to
experiment with modifying the timetable itself as opposed to only the support of
random variables.
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