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Abstract

The technical systems in our lifes is increasing by every year. Most of
them needs to be checked for production. An electronic thermostat is
one them. Checking if it will be working in all conditions is important.
This thermostat could be used in factories and production lines and
a thermostat which does not work in all conditions could damage the
factories, business and most likely the people that use the product,
which is made by using the thermostat. As the thermostat exhibits
both continuous and discrete properties it can be modelled as a hy-
brid automata. Meaning that this thermostat can be verified for all
conditions using a flowpipe-construction-based reachability analysis.
However, representing the state-set of a hybrid system is not trivial.
Choosing a state-set representation is always a trade-off between the
speed and the precision of the computation. In the rest of this thesis
we will look at the recently popularized state-set representation star
sets. We will analyze the precision and speed of the star sets and also
explain how to compute the operations applied on the star set.
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Chapter 1

Introduction

A cyberphysical system is a computer system in which the behaviour and
the mechanism is controlled by the computer. Cyberphysical systems are
also used in many industries such as health, robotics and aerospace. As
they effect our lives heavily, the safety of them should be checked before
they are used. Cyberphysical systems are most faithfully modelled as hy-
brid systems, because a cyberphysical system exhibits both discrete and
continuous properties. After modelling the system as hybrid automaton,
one must represent the state space of variables. Then, through reach-
ability analysis we can verify the safety properties of a hybrid system.
However, in general the exact computation of reachable states is undecid-
able [ACH"95]. Though, using some techniques provides us a good esti-
mation. One them is overapproximating the reachable sets as flowpipes,
which consists of several convex segments. This convex segments can
be geometrically represented in many different ways: boxes, H-polytopes,
support functions and also as star sets, which is the main topic of this
work.

In [BD17al, [BD17bll, [DV16] a new technique to verify safety proper-
ties of linear systems has been introduced. One of the core ideas behind
this technique is the state set representation known as star sets. In this
thesis we will further elaborate this state set representation, as it exhibits
some interesting properties. The star set representation will also be im-
plemented in the library HyPro and we will check the efficiency of this
representation in flowpipe-construction-based reachability analysis com-
pared to other state set representations.
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Chapter 2

Preliminaries

In this chapter some preliminaries and notation will be presented, which
are necessary for the rest of this work. The notation, that we are going
to use throughout the thesis, the definition of the hybrid automaton and
basic concepts of the reachability analysis will be introduced. Then, in the
following some of the other state set representations will be explained, so
that we can acquire a better intuition about the reachability analysis and
they will be also necessary while explaining the star set representation.

2.1 Notation

We are going to introduce the notation that will be used in the rest of thesis
as we are going to use concepts from many mathematical topics. Let R
the set of the real numbers and N the set of natural numbers excluding
zero. Until stated otherwise the lowercase letters such as a.,b,c,d,... will
represent the vectors in R”*! with n € R. The upper case letters such
as A,B,C,D,... will represent matrices in R™*"™ where m € N and n € N.
The letter m represents the number of rows and the letter n represents
the number of columns in the matrix. The letter I will be representing
the identity matrix for the given dimension. We will also use the block
matrices frequently. The block matrices will be introduced here with an
example. Let A € R™*™ and B € RP*? be matrices with m,n,p,q € R. Let C

be a matrix with:
A 0
= (4 )

Then C € R®+TmM)x(@+n)  Also here the number 0 denotes a matrix filled
with zeros with the appropriate dimension.
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2.2 Hybrid Automata

Before we get into the star set representation and methods of computa-
tion for cases such as intersection and affine transformation, the notion of
hybrid systems will be introduced. A hybrid system, as it is also can be
seen from the word "hybrid", is a system with both discrete and contin-
uous behavior which unifies both notions in one system[SFA19]. One of
the most popular examples in hybrid systems is the bouncing ball example
[CSMT15]. As this is not a very complicated and easy to understand ex-
ample, it will be used throughout this thesis for better understanding. The
example consist of a ball which is dropped from a certain height hy and is
in a free fall state. The horizontal movement of the ball will not be taken
into account. The velocity of the ball and the vertical distance from the
ground (height) with respect to time will be examined. As the ball begins
to fall the distance from the ground h begins to decrease while the speed v
of the ball begins to increase as it is affected from the gravitational pull of
the earth. The acceleration of the ball is equal to g =9.81 %*. As seen this
is a continuous change of the position h and velocity v which is represents
the continuous part of the hybrid system. The discrete change happens as
the ball touches the ground. When the ball touches the ground the veloc-
ity is inverted and also dampened by some factor 0 < ¢ < 1 [SFA19]. This
immediate change of the velocity represents the discrete behaviour in the
hybrid system. After that it begins to increase in height and decrease in
velocity until the velocity reaches the point v = 0. Then the process is re-
peated like it is explained before. To be able to define a hybrid system, one
must first be able to represent it as a mathematical model. With the fol-
lowing definition of syntax, it will be possible to represent a hybrid system
with an automaton. We will use the definition from [Abr15], [ACH'95].

Definition 2.2.1: Hybrid Automata

A hybrid automaton is a tuple
H = (Loc,Var, Lab, Edge, Flow, Inv, Init)
which consists of the following parts:

e Loc is a finite set of locations( also called modes).

* Var a set with finitely many variables. a A valuation v : Var —
R, where V is the set of all valuations.

e Lab, is the finite set of edge labels.

e Fdge is a set of finitely many transitions with Edge C Loc x
Lab x 2V* x Loc.
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 Flow is a function defined as Flow : Loc — (Rt — V). This
maps time-invariant functions to each location. When f(t) €
Flow(l) = f(t+t) € Flow(l) for all *RY, then f(t) is a time-
invariant function.

e Inwv is a function with Inv : Loc — V.

» Init is aset of initial states. A state is a tuple (I,v) € Loc x V.
Initial sets are a subset of set of all states >. Init C .

Inherently, a hybrid automata is a finite state machine. With a set of vari-
ables xg,...,x,_1 € Var whose values change with continuous dynamics
named the flow. flow is modelled by time-invariant functions f(zo,..,xn—1)
in each location. The flow is usually denoted by ordinary differential equa-
tions (ODEs). With these ODEs the state variables evolve continuously ac-
cording to a function with the form &; = f(xo,..,z,—1). While the variables
are changing their values according to the flow, only one location can
be active. Also each location have their invariants Inv, which are logical
constraints over the variables in Var. These invariants must be satisfied
while the location is active. As there can be many locations, there can also
be transitions between different locations. Via these transitions, from the
transition set Edge, the hybrid automaton can change its active location to
another location itself included(loop). However, these transitions(jumps)
are only available if certain constraints, called the guards, are satisfied.
This discrete jump between locations can trigger reset function, which
causes an immediate change in variable valuations. The reset function
must satisfy the invariant of the target location.

The definition given before defines the syntax of the hybrid automata.
However, it does not define its semantics. The time evolution of a vari-
able according to the flow, satisfying a guard and location invariant are
not covered with this definition of syntax. Because of that we are going to
expand our definition of hybrid automata with operational semantics.

Definition 2.2.2: Hybrid Automata: Operational Semantics

The behaviour of a hybrid automata
H = (Loc,Var, Lab, Edge, Flow, Inv, Init)
is defined by the following rules:

* Discrete Rule or Rule;ymp :
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(l,a,u,l") € Edge (v') ep v e Inv(l')
(L) = ')

¢ Time Rule or Rulepjy:

feFlow)AfO)=vAf(t)=1 t>0AY0>t >t: f(t) el

[nou(l)

(Lv) 5 (1,0)

The discrete rule is describes when a transition can be taken. A transition
from location [ to I’ can only be taken when there is an edge between two
locations and when v and ¢’ is a valid pair of valuations. Meaning that the
set {v|(v,v') € u} needs to satisfied in order to take the transition. This
is called a guard. The reset is a mapping of each valuation v satisfying
the guard to a set of possible valuations {v'|(v,v’) € u} after taking the
transition. Also it is further stated that valuation v’ should also satisfy the
invariant at the location /’.

The time rule handles the continuous changes in the hybrid automata.
Meaning that where no transition is taken. Because of that the location is
not changed. However, the valuation changes with respect to time t. We
assume that f is an activity (ODE) and v,v’ denote the start and end valu-
ation according to f. The time rule states that all points at time ¢/, which
is between 0 and ¢, should also satisfy f(¢') € Inv(l). From these rules
we can define the reachability of a state. Taking a step with either rule is
defined as an execution step —. A sequence of states oy — o1 — ... with
taking either rule, while oy = (lp,v9) € Init and vy € Inv(lp), is defined
as a run. If there exists a run that goes through a state then the state is
defined as reachable. For simplicity we can write for a state o/, which is
reachable in finitely many execution steps, o —* o’.

Example: Bouncing Ball

Here an example with graphical representation of a hybrid automata will
be introduced as it is more intuitive.
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z € [10,102]A r=0Av<0
v=>0 vi= —C+V

Figure 2.1: An example of a hybrid automata for bouncing ball system

As introduced before the bouncing ball system represents a ball falling
from a certain height. In our case the value of the height is given as be-
tween [10,10.2]. The reason that the height is given as a range of numbers
is that ball is not a point but a physical object which takes up space. The
initial velocity of the ball is 0. With time the ball starts to fall, the height
and velocity of the ball changes with respect to the equations: ¢ = v, v = g.
When it touches the ground = = 0 it takes a discrete transition (here a
loop). Because of that a reset function is applied to the velocity v := —cw.
Notice that it is necessary to take the transition, when the ball touches the
ground because the ball can not go through the ground z > 0. Normally
if both the invariant of the active location and the rules for the discrete
jump are satisfied, choosing an option is non-deterministic.

2.3 Reachability Analysis

In this section, after defining semantics and syntax of the hybrid automa-
ton we will introduce its formal verification properties. Meaning that we
are going to check, if it is possible to reach a given bad state with the
initial inputs. As the bouncing ball system is already introduced, we are
going to explain the intuition of reachability analysis through that exam-
ple. For example is it possible for the ball to reach a velocity higher than
100 3? If we would like to verify that the ball does not reach a velocity
higher than 100 7, we can use hybrid systems verification. While this is an
easy question to solve using simple physics, most of the problems that are
going to be examined will have higher dimensionality and therefore, they
might not be so easy to solve using traditional approaches. The verifica-
tion problem for hybrid systems could be formulated like:

Given:

* A hybrid automata H,
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¢ Set of initial set Init,
¢ Set of bad states Bad C %,

Does the hybrid automata reach the bad states in time 7T? To be able
to verify this we will define forward reachability, and introduce the for-
ward reachability algorithm according to [Abr15], [SFA19]. We are going
to focus on iterative forward reachability problem (flowpipe-construction-
based) in this work. This approach will be introduced more in detail after
the general forward reachability algorithm is introduced.

Definition 2.3.1: Forward Reachability Problem

Let H be a hybrid automata, In:t be the initial set. The forward
reachability is defined as computing the set of all states that are
reachable from the initial set Init.

Reach(Init)™ = {0’ € ¥|30 € Init: 0 —* o'}

Definition 2.3.2: Forward Reachability Analysis

Let H be a hybrid automata, Init be the initial set and Bad C ¥ be
the set of bad states. The forward reachability analysis states that a
hybrid system is safe for the given set of bad states Bad with:

Reach(Init)™ N Bad = 0

Before we get into the algorithm some intuition will be given on how this
algorithm works. The general algorithm begins with the initial sets Init
to check and computes new states that is reachable from this the initial
set Init. As long as a new state is reached, this process continues from
the new computed states. When a new state can not be found, the process
terminates with returning the reached states.

Algorithm 1: General Forward Reachability Algorithm
Input: Set of initial states Init C X
Output: Set of reachable states R

1 R:= Init

2 Ryew = R

3 while R, # () do

4 Ryey :=Reach(R,,c)\R

5 L R:= RURyew

6 return R




2.3. Reachability Analysis 17

2.3.1 Flowpipe Construction

The flowpipe construction algorithms use overapproximation to compute
the reachable states [CK98]. It divides the computation into time seg-
ments. Let the time bound be 7" € R and time step be 6 = 7//N where
N € N is the number of time steps. So that we have created N time
segments in the form [0,6],[0,20],...,[(V — 1)4,T]. After dividing the compu-
tation to time segments, the reachable states in a time segment will be
computed and overapproximation can be used. In particular, we will ex-
amine the affine hybrid automaton where the type of Flow functions are
restricted to the affine functions. Meaning that: The flow of every variable
x; must be in the form of #; = f(zo,...,x4—1) where f(zg,...,x4—1) is an affine
function and d is the dimension. The definition of reachable states while
using flowpipe construction is in the following:

Definition 2.3.3: Reachable States [Abrl5], [CK98]

Let Xy C X be the initial states. The set of reachable state R[t,t’],
which are reachable from X at the time interval [¢,t'] is defined as:

Ritp1(Xo) = {zs|3m0 € Xo A3t < s <t' Axs = 2(5,20)}

As seen from the definition that set of reachable states in time interval
[t,t'] is the all valuations x5, which are reachable from a initial state x.
Analogously, the set of all reachable states is Rp7)(Xo), where T is the
time bound.

We also can overapproximate Ry 7 (Xo). The overapproximation can be
done to speed up the computation and as the state set representations
can not represent every shape [SFA19]. The over approximation will be
done by overapproximating every segment R;_1)s,s] (Xo) i € [1,..,N]. The
union of all of the overapproximated segments gives the whole flowpipe
approximation.

2.3.2 First Segment Computation

Given the initial set Xy, to compute the first segment following operations
are needed: X, will transformed with the corresponding flow. As the flow
of an affine is an affine vector field where every variable x; follows the
linear differential equation & = f(xo,...,xtg4 — 1). The linear ODE can be
approximated for the next valuation vector z; ;, ., via the matrix exponen-
tiation [[Tse20], [CK98]:
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Ad)F
T(tTinit) = € Tinit = Y peg %

With generalizing to the state sets:

X5 = e™ X

The computation of convex hull of Xy and X; excludes possible nonlin-
ear trajectories. Because of that we will bloat X5 with a box B using
Minkowski sum. Then the first segment within time interval [0,d] will be
given as:

]%[075} = conv(Xo(e®Xo @ B))

In the given equation above R[Oﬂ depicts the overapproximation of R g),
the symbol & means the Minkowski sum and the word conv depicts the
convex hull.

In the following a pseudo code algorithm will be given from the work
[SFA19], which is used for the flowpipe construction based reachability
analysis.

Algorithm 2: Bounded flowpipe-construction-based reachability
analysis [SFA19]
Input: Hybrid automaton H = (Loc,Var,Lab,Flow,Inv,Edge,Init)
Output: Overapproximated set of reachable states in H
Q = Init
R:=10
while Q # () do
while not timeBoundReached() do
Q:=QnNInv(l)
R:=QnInv(l)
if not jumpBoundReached() then
for (I,g,r,l') € Edge do
L L addElement(Q,r(Q2N g) N Inv(l"))

© & N O U ke W N =

10 Q := letTimePass(?)

11 return R

State set representations. States can be described by convex geometric
objects. The choice of state set representation affects the the outcome of a
given hybrid system. As we have mentioned before the state set represen-
tations are in a trade-off between precision and speed. Because of that all
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of them come with their advantages and disadvantages. Star sets are also
a state set representation and it is the main topic of this thesis. However,
before starting to introduce the star sets, the definition of the polytopes
will be given. Since they will be needed for star sets and they will be used
frequently in this work.

2.3.3 Polytopes

As we are going to use the H-polytope and V-polytope many times in our
explanation of the methods for the star sets, which will be used for the
reachability analysis, the definition of them are given below.

Definition 2.3.4: 7{-polytope and V-polytopelSFA19|

A d-dimensional convex polytope Py in H-representation is a pair
(N,c) with N € R™*? and ¢ € R™, which defines a convex set:

Py =N b

as the intersection of finitely many half-spaces {hg,...,h,, — 1} with
hi = {z € Rin; *x < ¢;} (n; refers to the i-th rows of N)

The same polytope can also be represented as the convex hull of a
finite set P, = {vg,...,v,,, 1} of vertices v; € R%(V-Representation):

Py={z|lz =" Nxui AT i = 1A\ €[0,1]}
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Chapter 3

Star Sets and
Implementation

Although computing the reachable set of a hybrid automaton is possible by
using other representations such as #-Polytope or V-Polytope approach, it
is not as computationally efficient and not scalable as star sets in some
aspects[TCD"19]]. The star sets are very efficient in affine mapping oper-
ations and it outperforms the polytope based representations because it
is able to do both affine mapping and intersection with half-spaces opera-
tions efficiently in reachability analysis .

Before jumping directly to the formal definition of star set some intuition
will be given in the following. A set S in R" is called a star set if there
exists a point ¢ in S where all points = in S can be reached with a line
segment which is also in S starting from c. Intuitively, this means that if
we think set S as a region with boundaries, we can select a center point
c and we can reach all points in S with a straight line without leaving the
region S. As seen from the name star sets this allows us to define all con-
vex shapes and also some non-convex shapes. The definition of a star set
and its essential properties are given in the following.

Definition 3.0.1: Star Sets[BD17Dh]

A star set (A generalized star set or simply star) © is a tuple (¢, V,P)
where ¢ € R” is called the center, V = {vj,v9,...,u,} is a set of m
vectors in R"™ called the basis vectors, and P : R™ — {T,1} is a
predicate.

The set of states represented by the star set is given as:

[0] = {z]3a = [a1,...,qm]T such that x = c+ > 1%, yv; and P(&) = T}
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Notation and Restrictions

In this work we will restrict the predicates to be a conjunction of linear
constraints, P(a) £ Aa < d where for p linear constraints, A € RP*™ , o
is the vector of m-variables i.e., a = [y, ..., |7, and d € RP*!, The linear
constraints can also be interpreted as a H-Polytope. While implement-
ing and explaining the algorithms, we will use a H-Polytope to represent
the linear constraints to speed up the implementation and to avoid redun-
dancy in the explanation.

This definition of star sets is also more general than the existing work
[BD17a], [DV16] where a star set was restricted of having no more than
n basis vectors. When computing the input effects as a star set, this gen-
eralization is crucial. This important generalization will be used when
computing the Minkowski sum and union of two star sets. Furthermore,
in the following chapter many comparisons between H-polytopes and star
sets will be shown, as the star set could be interpreted as a H-polytope
which also has a center and a basis. Any set given as a conjunction of
linear constraints in the standard basis, can be instantly translated to the
star representation by taking the center as the origin, the n basis vectors
as the standard orthonormal basis vectors and the original conjunction lin-
ear condition with each x; replaced by «;. Because of that it possible to
interpret a H-polytope as a star set with basis being the standard basis and
center being the origin with respect to the dimension of the H-polytope.
So that it is reasonable to assume that the set of initial states © is given
as a star set.

Also it will be assumed that the initial star set before all transformations
is bounded and sometimes it is going to be referred to both the tuple ©
and the set of states [O] as ©. Also the letter V' is going to be used for
both generator matrix and set of basis vectors. The generator matrix is
the matrix where the basis vectors are the columns. For example when V'
is referred as a set of standard basis vectors in R?:

v=i)0)

When V' is referred as the generator matrix of the set of standard basis

vectors in R?:
1 0
v=(5 1)

An Example Star Set

For the star set © = (¢, V,P):
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2
Take V = {<0> , <g)} the scaled unit vectors and ¢ = (3,3)

1 0
-1 0
0 1
0 -1

Consider P(a) = Aa < d where A =

The star set © = (¢, V,P) then defines the rectangular set:

O] ={(zy))l <z <5A1<y<5}

45 1

3.5 F 4

25 b

15 b

1 15 2 25 3 35 4 45 5

Figure 3.1: The example given corresponds to this figure given. Even if
the predicates represent a box with side length 2 positioned at the origin.
The center and basis of the star set affects the position and size of the star
set so that the box has side length 4 and centered at (3,3)

Clarifications about algorithms and implementation

To write a cleaner and more understandable algorithm some basic meth-
ods will be introduced. To represent the properties such as center, predi-
cates, etc. the following notation will be used:

¢ generator() returns the generator matrix V'
¢ constraints() returns the constraint matrix A from the predicate P

¢ limits() returns d as a vector from the predicate P

center() returns the center ¢ coordinates as a vector
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» predicates() returns a H-polytope constructed from star sets con-
straints and limits

* starset(c,V,A,d) refers to a star set with center ¢, the generator V
and predicates with P(a) £ Aa < d.

3.1 Affine Transformation

The affine transformation demonstrates the usefulness of star sets by com-
putationally outperforming most of the other state set representations in
this aspect. The affine transformation can be thought as a linear transfor-
mation followed by a translation.

To apply a linear transformation on the given star set, one must multi-
ply the linear transformation matrix with the generator matrix and the
center of the star set. After the multiplication the basis and center of the
star set will change according to the linear transformation matrix. The
predicates do not need to change. After that transformation the transla-
tion vector (i.e. offset vector) must be added to the center to achieve the
desired translation. More formally:

Let the star Set © = (¢,V,P) with V,, = {v1,v9,...,v,} being a set of n vec-
tors in R™ called the basis vectors, c,z € R" and g € R, n € N with P being
arbitrary linear constraints. An affine mapping of the star set © with the
affine mapping matrix W and offset vector b is defined by another star set
with the following characteristics.[TCD™19]
O = (¢,V,P),c=Wec+bV = {Wuv,Wuvg,... Wv,}

[O] ={Wz+b|zecO}

Algorithm 3: Affine Transformation
Input: Star set ©, Linear Transformation Matrix W, Offset vector b
Output: Star set

1 O.generator() «+ W - ©.generator();

2 O.center()<— W - ©.center() +b;

3 return ©;

As the affine transformation only consists of two matrix multiplications and
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one addition of vectors, it is more computationally scalable and more effi-
cient than H-polytopes while having linear constraints like the #-polytopes.

An Example Affine Transformation on Star set

Let the star set © = (¢, V, P) same as the first example given in the section

before with:
1

0
-1 0
0 1
0 -1

V= {@ , (g) Ve = (33), P(a) = Aa < d where A — and

The star set © = (¢, V,P) then defines the rectangular set:

—_ = =

O] ={(zy)l <z <5A1<y<5}

cos(45°) —5in(450)> and

Also let the linear transformation matrix W = <sin(45°) cos(45°)

the offset vector b = (é) . Let ® = LO + b. The resulting ©’ is defined as:

O = (We+ b, WV,P)

3.2 Intersection with Half-space

In this part it going to be explained how to compute and calculate the in-
tersection between a star set and a half-space. The traditional approach
of intersection between a half-space h and a H-polytope Ay is only adding
the half-space h as a constraint to Ay, following the definition of the H-
polytope, which is defined as the conjunction of half-spaces[SFA19]. How-
ever, as the star set also has a basis and a center unlike an H-polytope this
approach is not possible without transforming the half-space. The half-
space will be rewritten using the basis and center of the star set. After
this transformation it will be possible to just use the traditional approach
of intersection between linear constraints and half-space. In the following
a proposition [TCD™19] about how to compute the intersection between a
star set and a half-space will be introduced. Then the proof of the propo-
sition will be given after.
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Proposition 3.2.1: Star Set and Half-space Intersection

Intersection of a half-space H = {z|hTz < g} and a star © = (c,V,P):

0= @mH:<é,V > —cV V,P=PAP
P'(a) 2 (nTV,)a < hfec,V, = {v1,v9,...,00,}

Proof of the proposition

Let half-space H be defined as H = {z|nT2z < g} and the star set © =
(c¢,V,P) with V,,, = {v1,v9,...,u,} being a set of m vectors in R™ called the
basis vectors, c,xz,h € R"?, g € R and n € N. As seen from the proposition
above we are trying add a constraint to our predicate P to represent the
intersection between the star set and the half-space. To achieve that, the
equation h’z < ¢ will be rewritten using the basis and the center of the
star set. = from the half-space can be written as x = ¢+ Z?:l a;v; with a;
being the coefficients, ¢ being the center of the star set and v; being the
basis vectors of the star set:

e <g
R (c+ 30 av) < g
hTe + hT(E —1 OézUz) <g
hT(Zz 1 00;) < g — h'e

For convenience we are going to write Y ;" ; o;v; as Vo with V' e R™*"
being the generator matrix, where the basis vectors are the columns and
a being the coefficient vector. To show that 2?21 a;v; is equal to Va:

o1 Qaiv1l + vl + ..o+ QpUn
| | | a9 Q112 + V22 + ...+ QpUn2

Va=1 vy v ... v, . = .
Qn a1V n + Q2V2p + ... + Qplnp

n
= a1v1 + aovg + ... + apU, = E ;05
i=1

So that: " ; a;v; = Va and because of the associativity property of ma-
trices in multiplication it can be written as:

(RTV)a < g—hTe
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With this proposition we are adding the constraint (h”V) to the end of
the rows of our constraint matrix A and (g — h”¢c) to the end of d. The
half-space intersection adds only one constraint to the our star set.

We can see that, a star set does not change its predicate over affine map-
ping operations, and it preserves the center and basis vectors in the inter-
section with a half-space.

Example
Let half-space H be defined as:
H= {z|h’z < g} withz € R?, h = (1) and g =2

For the star set take:

V= (0’5 0 > be the generator matrix and ¢ = <§>

0 05
1 1 0

. 1 _ _ -1 0
Consider d = ) and P(@) = Aa < d where A = 0 1
1 0 -1

The star set: © = (¢, V,P)

Intersection of Star Set and Half-space:
Using the proposition only some constraints and limits are going to be
added our predicate P. The new predicate is given as:

Consider from the proposition (k7 - V) = (0,5 0,5) and
g— KT c=—4

1 0 1
-1 0 1
= Pla@)=Aa<dwhere A=| 0 1 |andd= | 1
0 -1 1
05 05 4

The new star set becomes: © = (¢, V, P)
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Implementation

Algorithm 4: Half-space Intersection

Input: Star set O, half-space H

Output: Star set

/) x=g—hTe
1 Number x < H .offset()-(H.normal().transpose())- (©.center())
2 y<(H .normal().transpose()-V) // y=hr" xV

3 A ()
Yy

4d’%<d)
n

5 return starset(c,V,A’,d’)

3.3 Conversions

In this part conversion to other set representations will be introduced. It
will be assumed that the star set has before all transformations a standard
basis and is also bounded. Also as the affine transformation is in already
implemented in HyPro for other state set representations, we are going
to use it in our conversion. The details for affine transformation on H-
polyopes can be found in the preliminaries section.

It will be also assumed that the basis vectors of the star set are not all
zero vectors, meaning that at least one entry in one of the basis vectors
has a value other than zero. If this assumption does not hold, it means
that the center of the star set is the only point that the star set contains.
Because of that this conversion, which will be introduced in the following,
will not be necessary as it is a more expensive operation than just creating
a set representation with the only one vertex, which is equal to the center
of the star set.

From the definition of H-polytope it is clear that the star set that has linear
constraints only has a generator matrix and a center different than a H-
polytope. The idea behind converting the star set to other representations
will be interpreting the basis and center, as a storage for all affine and
linear transformations applied before. The conversions will be explained
through the conversion to a H-polytope because a star set is essentially a
‘H-polytope with a basis and center. If a star set could be converted to a
‘H-polytope then it can also be converted to other representations as it is
explained in [SFA19].
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The conversion to a H-polytope is done as follows: Let L; € R"*" Vi €¢ N
be the linear transformation matrices, b; € R™" Vi € N the offset vectors
and © = (¢, V,P) be a star set with m € R standard basis vectors where
the dimension of the basis vectors is n € R and the center ¢ € R” is the
origin. When an affine transformation is applied on the star set the gen-
erator matrix is changed to V/ = L; « V and the center to ¢ = L; * ¢ + b;.
Meaning that we can create a new H-polytope with the same predicate
and then an affine transformation can be used on the #-polytope to obtain
a H-polytope which covers the same area as the star set. Because all of the
linear transformations are used on the standard basis(generator matrix),
the generator matrix can be used as the only linear transformation matrix
which needs to be used on the H-polytope. The center ¢’ will also be used
as the offset vector. We can generalize this approach where more than one
affine transformation was applied on the star set. Meaning that our star
set becomes ©' = (¢’, V" P) after multiple affine transformations where
V" = L,-Lp_1-...-L1-V and d' = L,- (Ln—l SRR (L1 . C+b1) + ... +bn—1) + by,
for arbitrary L, € R™"™ b, € R", Vi € N. From the affine transformed
star set a H-polytope can be constructed with the same predicate P and
then an affine transformation can be applied to the #H-polytope with the
affine transformation matrix being V" and offset vector being ¢’ on the
‘H-polytope.

An important thing to recognize is that, we use affine transformation even
if only linear transformations are used on the star sets. Because if the star
set is created with a center being a point other than the origin, then it
means that we already have an offset vector.

It also needs to mentioned that while converting to other representations
such as boxes, it is more efficient to construct the box from the predi-
cates of the star set and then apply the affine transformation as explained
before. The reason for this better efficiency is that constructing an H-
polytope from the predicates then applying affine transformation and then
converting to box results in two transformations. Also if the basis of the
star set is not invertable, the constructed H-polytope must be converted
to a V-polytope to apply the affine transformation. The number of conver-
sions to convert to the box-representation could result in 3 conversions,
if this is not taken into consideration. Also the affine transformation for
boxes is more efficient than the one for H-polytope.[SFA19]
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Implementation

Algorithm 5: Conversion to H-polytope
Input: Star set ©
Output: Polytope representation of the star set ©

// Creating a H-polytope from the star set predicates
1 H-polytope poly < H-polytope(©.constraints(),0.limits())
// Affine transformation of H-polytope with the basis of star
set
2 return poly.affineTransformation(©.generator(),©.center())

3.3.1 From 7{-polytope

As seen above the conversion to H-polytope from a star set is already
handled and in this part it will be explained how a H-polytope can be
converted into a star set. A H-polytope can be thought as a star set where
the basis the standard basis and center is the origin. It means that it is
only needed to create a star set with the same predicates and assign the
center as origin and the basis as the standard basis with respect to its
dimension. So that the conversion is straightforward.

Implementation

Algorithm 6: From #-polytope to star set
Input: H-polytope H
Output: Star set ©

// Create vector filled with zeros, which has the same

dimension as H
1 vector c<Zero(H .dimension)
// Use standard basis for the star set basis
2 matrix V¢« Standard basis with same dimension as H-polytope H
3 return starset(c,H.constraints(), H .limits(),V)

3.3.2 Contains Point

Checking if a point lies in the star set depends on the basis of the star
set. A naive idea would be to check if the coordinates of a point satisfy
the predicates of star set. However, the predicates are dependent on the
basis of the star set and only checking if the constraints would return the
wrong result. Another naive idea would also be converting the star set to
a H-polytope and then checking if the point lies in the H-polytope. As this
method involves conversion it is not really efficient. However, if the an
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affine transformation would be used on the point with linear transforma-
tion matrix being the generator and offset vector being the center, then it
can be checked directly if the point lies in the star set. The affine transfor-
mation for points are explained in the preliminaries section. As mentioned
many times the predicates will be interpreted as a H-polytope. After the
application of the affine transformation on the point as explained above, it
will be checked if the point satisfies the predicates(#-polytope) of the star
set.
Algorithm 7: Contains point
Input: Star set ©, Point p
Output: Boolean
1 vector p’=p.affineTransformation(©.generator(),©.center())
2 return ©.predicates().contains(p’)

3.3.3 Check for Emptiness

So far we have mentioned that the predicate of a star set could be seen as
a ‘H-polytope. If the basis is constructed from only empty vectors (meaning
only containing the number 0), it will be directly assumed that the star set
consists of only one point, the center of the star set. Other than the case
explained here, where the basis vectors are empty, the basis and center
of a star set has no effect on the emptiness of the star set. The center of
the star set shows where the star set lies and therefore it has no effect on
the emptiness. When it comes to the basis it has no effect on the empti-
ness either other than the edge case which is already mentioned. Because
of that the basis and center will not be taken into consideration, while
checking the emptiness of the star set. Only the satisfiability of the linear
constraints needs to be checked to determine if star set is empty. Testing
whether predicate is satisfiable can be done via linear programming (LP).
More formally:

Let the star set be © = (¢, V,P) where P(a) £ Aa < d and A € RPX™ |, o
is the vector of m-variables i.e., a = [, ..., a,]T, and d € RP*!. Checking
whether there exists an alpha such that {Aa < d|a € RP} = () holds can be
done using an LP- or SMT-solver like GLPK [Mak08]], SMT-RAT [[CK] " 15],
SOPLEX [Wun96] or Z3 [DMBO08].[SFA19]

3.3.4 Vertices

In this part how to find the vertices of a star set will be explained. A
naive idea would be to convert the star set to an H-polytope and then
finding the vertices by conversion to an V-polytope. The problem with this
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approach is that by affine transformation while converting to a H-polytope,
a conversion to V-polytope could happen if the basis is not invertable. As
we converted to the V-polytope representation it will again be converted to
‘H-polytope in HyPro. After that to find out the vertices it will be converted
again to V-polytope. This means that 3 conversions could take place if it
is done naively.

The more efficient way to find out the vertices of a star set is by converting
the star set to a V-polytope. First, the predicate will be converted to a V-
polytope and then affine transformation will be used by taking basis as the
linear transformation matrix and center as the offset vector. Because the
V-representation is based on the vertices of the polytope the vertices can
be found easily.

3.4 Intersection of two Starsets

Let ©1 = (c1,V1,P1) and ©2 = (cg, V2,P») be appropriate star sets which
have the same dimension and are defined according the definition that
is given at the beginning. A naive idea to compute their intersection
would be to take their predicates and join them to construct a new star
set. Meaning that a new star set is constructed with ©" = (c1, V1,P; A Ps).
There are at least two problems that arises from this idea.

First the basis of both star sets can be different. Meaning that the pred-
icates are not dependent on the same basis as both star sets can have a
different basis. Even if the constraints would be the same, if the basis of
two star sets are different they cover a different area. The second one
is that star sets can have different centers. Because of that the easy and
reliable choice would be to convert both star sets in to H-polytopes, as
proposed before and then compute the intersection. After that the inter-
section can be converted to back to a star set.

However, if the star sets share the same basis and center, there would
be no need to convert them to H-polytopes. We can just use the intersec-
tion of the linear constraints from both star sets as our linear constraints
for our new star set which represents the intersection of the given two
star sets.

3.5 Minkowski Sum

Before talking about Minkowski sum with star sets, some intuition and the
general definition of Minkowski sum will be given. Then computation of



3.5. Minkowski Sum 33

Minkowski sum for star sets will be introduced.

Definition 3.5.1: Minkowski sum[SFA19]

The Minkowski sum A @ B of two sets A,B C R? is defined as the set
{a+blac ANbe B}

and represent the set-theoretic equivalent to addition.

As seen from the definition convex sets are closed under the Minkowski
sum. However, computation of Minkowski sum is normally exponential for
‘H-polytopes. Repeated computation of the Minkowski sum has a strong
influence on the complexity of the resulting output.[SFA19] In the follow-
ing a definition of Minkowski sum with star sets will be given.

Definition 3.5.2: Minkowski sum with star sets [BD17h]

Given two stars © = (¢, V,P) with m basis vectors and ©' = (¢, V', P’)
with m’ basis vectors their Minkowski is a new star © = (¢, V, P)
with m + m/ basis vectors and

De=c+,

(i) V is the list of m +m' vectors produces by joining the list of basis
vectors of © and ©’,

(iii) P(a) = P(am) A P'(ay,) Here oy, € R™ denotes variables in O,
Q€ R™ denotes variables for © and @ € R™ ™™ denotes variables
for ©(with appropriate variable renaming)

It is clear from the definition that both number of basis vectors and the
number of constraints in the star set grow with each Minkowski sum op-
eration. In an LP formulation of these constraints, this would mean that
both the number of columns and the number rows grows at each step in
the algorithm. At first glance this may seem like an inefficient way to com-
pute the Minkowski sum of star sets. However, this in increase in size of
the constraint matrix is not as bad as it first appears. Then the number of
non-zero entries grows at each step. Meaning that, LP solvers that use a
sparse matrix representation can compute the Minkowski sum of star sets
efficiently [BD17bl]. The algorithm of how to compute Minkowski sum of
two star sets is given below .
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Algorithm 8: Minkowski sum
Input: Star set ©, star set O,
Output: Star set ©’
// Setting new center (i)
1 vector ¢’ O;.center()+©5.center()
// Setting the generator matrix (ii)
2 matrix V'« (©;.generator() ©,.generator())

// 0 represents a matrix filled with zeros with appropriate

dimension
// setting new constraints matrix (iii)
O;.constraints() 0
0 @g.constraints()>
// Setting new limits vector (iii)
0, .limits()
92.limits()>
// Create a new star set with the new variables

5 return starset(c’,V',A’,d’)

3 matrix A’ <

4 vector d’«+ <

One of the things that needs to be mentioned is that, if the dimension of
the problem is not too big the star set could be always converted to a
‘H-polytope to compute the Minkowski sum. Empirically speaking in prob-
lems with in lower-dimensional state spaces such as bouncing ball (Ball)
test, using conversion method to compute Minkowski sum outperformed
the method that is mentioned above.

3.5.1 Satisfies Half-space

In this method it will be shown how to find if a star set lies in a half-space.
Meaning that all coordinates that satisfy the predicate of a star set should
lie in the half-space. More formally:

Let half-space H be defined as H = {z|n”2 < g} and the star Set © =
(¢,V,P) with V,, = {v1,v9,...,u,} being a set of n vectors in R" called the
basis vectors, c,z,n € R" and g € R. If a star set satisfies the half-space H
then:

ONH=0
Meaning that:

Vee O] =z€ H
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To check if the star set satisfies the half-space, the intersection with half-
space method, which is introduced before, will be used. First the inter-
section with star set will be computed and then it will be checked, if the
star set still covers the same area. As we have seen before the intersec-
tion with half-space method does not change the basis and the center of
the star set. If we think that the linear constraints as a H-polytope and
the basis, center as the affine transformation variables, it is clear that
we only need check if the linear constraints(#-polytope) of the star set
satisfies the half-space. Because of this phenomenon, in implementation a
‘H-polytope will be constructed from the linear constraints. Then the trans-
formed half-space will be computed. After that the program will check if
the H-polytope satisfies the half-space. How the satisfaction of half-space
is computed for H-polytopes is introduced in the preliminary section.

3.6 Union

In this section we are going to present, how to compute the union of two
star sets. Also the while explaining union method it must be mentioned
that the resulting star set will be the convex hull of the star sets where it
is the smallest possible closure of the union of the star sets. The union is
used less frequently during reachability analysis than other methods such
as affine transformation and intersection with half-space [SFA19]. The
union of two state sets is computed at the beginning of the first flowpipe
segment or after taking a discrete jump because of a guard in the hybrid
automaton. Therefore, the union method does not influence the running
time as much as the other methods. However, as it is used at the begining
of a flowpipe creation, it means that it is going to be used at least one time.
To avoid inefficiency, three options of computation for the union of two star
sets will be introduced. All of them have their positive and negative con-
sequences. While trying to find a efficient solution for the computation,
we took inspiration from the zonotopes [Gir05], H-polytopes [SFA19] and
implementation of [TCD"19]. The techniques used for these representa-
tions were used together to compute the union of two star sets. As we
introduced star sets, similarities between star sets and both of these rep-
resentations might not be apparent at first glance. The similarity between
zonotope and star sets is that they both have a basis and a center and
when it comes to the H-polytopes the linear constraints of the star sets
can be interpreted as a H-polytope. The options for computing the union
of two star sets will be explained in the following separately and after that
the advantages and disadvantages of the options will be discussed.
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Option 1

Conversion to H-polytope is always a viable option to compute the union
of two star sets. As it is already introduced, how to convert a star set to
a H-polytope, this option will be straight-forward. One can convert both
of the star sets to a #-polytope and then compute the union of these H-
polytopes as it is explained in [SFA19]. Then the resulting #-polytope can
be converted back to a star set. Therefore the resulting star set will be the
union of both of the star sets that were given as inputs.

Option 2

Before explaining how this option works, it needs to be said that this op-
tion will not always be viable. This option can be used only if one of the
star sets is the affine transformed version of the other star set. For sim-
plicity, we will name the first star set as S; and the affine transformed one
as Sy. Also the first star set S; has to have a standard basis while using
this option. The reason for this restriction is that, as both star sets are
given we do not know the linear transformation matrix that was applied
on the basis of S;. If this restricton holds, we can take the basis of the
star set Sy as the linear transformation matrix and center of the star set
Sy as the offset vector. It should be also noted that if we know the linear
transformation matrix and the offset vector applied on the star set .57 this
method can be used without these restrictions.

As seen there are many restrictions about where this option can be used.
However, while computing the reachability of a hybrid automaton, at first
a star set is created with a standard basis. Because of that this option
will be eligible to be used, at least one one time during the reachability
analysis. First, the introduction of the union for two H-polytopes will be
explained, as we are going to take at first a similar approach:

Let Ay and By two n- dimensional H-polytopes. From the definition of
convex closure of the union we obtain [SFA19]:

cd(AUB)={la+(1—-0b|le[0,l]]N\a€ Ay ANb€ By}

The same logic will be adapted to star sets. Let the star sets be: First star
set S; is defined as 51 = (c1, V1,P) and the second star set S, is defined as
Sy = {c2, Vo, P) with P(a) £ Aa < d, A € RP*", a = [ag, ..., a,]T, d € RPX],



3.6. Union 37

Vl,VQ € Rxn, Cc1,C2 € R™ and pn € R.

Here we assumed that S5 is a affine transformed version of S;. Therefore,
we also assumed that the predicates of both star sets are equal. Because
affine transformation for star sets does not change the predicates! Also
let the linear transformation matrix be: L € R"*"™ and the offset vector
b € R", which are used for affine transformation, which is applied on the
star set S; to compute S5. Also I € R™*" is the identity matrix.

The derivation of the convex closure of two star sets:

cd(S1US2) ={lz1 + (1 —1)za |1 €[0,1] Axy € S1 Axg € Sa}
={lx1+ (1 —=1)(Lzy +b) |l €[0,1] Az1 € 51}
= {lxy —Lxy — b+ Lz +b|l€[01] Az €51}
={l(xt1 —b—Lz1)+ Lz; +b|l€[0,1]] Az € S1}
={l({—L)x1 —b)+ Lx1 +b|l €[0,1]] ANx1 € 51}

This resulting set is the union of the star sets S; and S5. While implement-
ing, it is important to recognize that the part {Lz; + b | z; € S;} actually
represents the star set S3. From this point on we are going to refer to the
set {I{(({ — L)z1 —b) |1 €[0,1] Ax1 € S1} as S3 for simplicity.

It might not be clear, how we are going to handle variable [ as [ € [0,1]. To
show how we will handle the variable [, S3 will be further derived.

Sy ={I(I— L)z, —b) |1 €[0,1] Az € S}
= {I((I = L)ey + (I — L)aVy —b) |1 € [0,1]}
= {I(I - L)ey + (I — L)laVi —1b|1 € [0,1]}
= {I((I = L)ey —b) + (I — L)laVy) | L € [0,1]}

As (I — L)laV; = (I — L)aV;, when | = 1. We can discard [ in this case. As
[ can be thought as a scaling factor and when [ = 1, it is the same set as
(I — L)aV.

o Sy = {I(I — L)ey — b) + (I — L)aVi |1 € [0,1]}
= Cl(Sl U 52) = {l(([ — L)Cl — b) + (I — L)Oévl + Lxz1+0b | le [0,1] ANx1 € Sl}
={ca+I((I—-L)ey —b)+ (I — L)aVi +aVa |l € [0,1]}

Here we will think I((I — L)e; — b) as a star set. Let Sy = (cq, Vi, Py)
with ¢4 € R"™ being a vector filled with zeros. V; = (I — L)e; — b and
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-1
Py(o/) 2 < ) )o/ < <(1)> with o € R and V; € R"*!. The predicate is

chosen to represent the variable [. After this we will write the convex
closure of the union as:

= c(S1USy) ={ca+aVa+cy+'Vy+ (I —L)aVy}
={co+aVa+a'Vi+ (I — L)aVi}

From the definition of the star set we will create a new star set with the
same properties defined here. We choose as the center ¢y from S,. We
propose an approach which we concatenate a the basis vectors V5, V4 and
(I — L)V;. Also while concatenating we should also build the conjunction
of the corresponding linear constraints of them.

In the following algorithm L. = ©s.generator() is the linear transforma-
tion matrix, b = Oqy.center() is the translation vector and I is the identity
matrix with the appropriate dimension. Also it was previously assumed
that linear constraints of both star sets were equal.

Algorithm 9: Union with option 2
Input: Star set ©1, star set ©y = LO; + b
Output: Star set ©’
// Represents Si defined above
1 ©3 = (I — Os.generator())©; — O.center()
// Setting the new generator matrix
2 matrix V'« (61.generator() ©3.center() @g.generator())

// 0 represents a matrix filled with zeros with appropriate

dimension
// Setting new constraints matrix

©1.constraints() 0

3 matrix A+ 0 -1
0 1
A 0
4 matrix A"+
= ( 0 92.constraints())

// Setting new limits vector
©1.limits()
0
1
©5.limits()
// Create a new star set with the new variables

6 return starset(®,.center(),V’,A”,d’)

5 vector d’<
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Option 3

This option is the most general one and can be computed in every situ-
ation. In this method it will be explained how to compute the closure of
the union of two star sets. This method is inspired by the paper [GirO5]
on zonotopes. Also we will consider our constraints for star set as a H-
polytope, like it is mentioned before. It is advised to read the option 2
before this option. As both are using the same principles and it is ex-
plained more deeply in the option 2.

Let the star sets be:

/s
First star set O is defined as: :Se'cond star set O s defined
© = (c,V,P), '
P(a)2 Aa<d o' = (¢, V',P'),

>~ &, P/(O/) é A,O/ < dl
A RPXm -’

S ’ A e Rp'xm
a=lag,..an]T, o = [ '0/ ]T
dERle, ERn, , GR — /1,---7 ml
¢ p.m d eRVX, ¢ R, p'ym € R

So that with the definition of closure of the union of the star sets, it follows:

AdOue)={lz+(1-02"|le0,]] Nz €O AL €O}
={lz+2' -1l |le[0,l]AnzeONL €O}
={+dV' +ilc+1aV —Id —1d'V'|P(a) =T AP'(d) =T}
={+dV' +ilc— +aV —-d'V")|P(a) =T AP (d)=T}

As seen this set is the union of both sets. To compute this set we are going
to use a similar approach like the option 2. The algorithm is in the follow-
ing.
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Algorithm 10: Union with option 3
Input: Star set O, star set O,
Output: Star set ©’

// Setting the new generator matrix

1 matrix V'«

(@z.generator() O1.center()-O,.center() ©;.generator() @2.generator())

// 0 represents a matrix filled with zeros with appropriate
dimension
// Setting new constraints matrix

©9.constraints() 0

2 matrix A+ 0 -1
0 1
3 matrix A”«+ A 0
0 ©;.constraints()
A" 0
trix A"«
4 matrix ( 0 —@g.constraints()>

// Setting new limits vector
©5.limits()
0
5 vector d'« 1
©4.limits()
©5.limits()
// Create a new star set with the new variables
6 return starset(®,.center(),V’,A”’,d’)

Discussion

We presented three options of convex hull computation for star sets. In
this part we will be discussing their advantages and disadvantages.

The first option, which uses conversion, is the most precise way to com-
pute the convex hull of two star sets. H-polytopes are one of the most
precise representations [SFA19], however conversion to H-polytope can
be costly, while using models with high dimensions. However, this option
does not increase the number of basis vectors in the star set. For models
with many jumps, this is a great advantage. As after every jump union of
the star sets will be computed. The computation of the convex hull with
conversion does not increase the number of generators meaning that the
intersection with half-space and affine transformations can be computed
more efficiently. This approach, empirically speaking, worked well for the
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problem bouncing ball and also outperformed the other options explained
before. However, for higher dimesional problems this method is too ineffi-
cient as conversion takes too much time.

The second option is comparable in precision with the first option and
more precise than the last option. When using models with high dimen-
sions, this increase in precision can be very important. It also does not
increase the constraint matrix size as much as the last option. As the
first option is not viable for models with high dimensions, this option can
be used in those situations. However, this method can not be used every
time, we are computing the convex hull, as it needs the first star set to
have a standard basis and the second star set to be the affine transformed
version of the first star set. This option is particularly helpful, when using
models which are purely dynamical and has high dimensionality (build-
ing). In such systems the union method is only used once at the beginning
of the flow-pipe construction [SFA19], when the first star set has a stan-
dard basis and the second star set is the affine transformed version of the
first star set. This option increases the precision and the efficiency of the
computation in such situations.

Third option is the most general one. It can be used on every two star
sets, if the dimensions match. This option affects the efficiency of the
star sets heavily, as it increases the constraint matrix size, even if it is
not used often compared to the other methods such as affine transforma-
tion and intersection with half-spaces [SFA19]. The union method that is
explained, is not a computationally expensive operation but it influences
other methods by increasing the constraint matrix size by three times in
average. For a hybrid automaton that has multiple guards, it could affect
the run time drastically. That being so, the logical solution for problems
with low dimensions would be computing the convex hull of two star set
by converting them both in H-polytopes and then computing the convex
hull of them like it is explained in option 1.

Example

In this part an example of the option 1 and option 2 for convex hull be-
tween star sets will be given.
For the star set © = (¢, V,P):

Take V = {(é) , <(1)>} the unit vectors and ¢ = (3,3)
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2 0 1

. _ _ 2 0 1
Consider P(a) = Aa < d where A = 0 1 and d = )
0 -1 1

The star set © = (¢, V,P) then defines the rectangular set:

cos(45°) —sin(45°)> and

Let the linear transformation matrix be L = <$m( 45°)  cos(45°)

the offset vector b = <§) Let second star set ©3 = LO + b. The results,

that our implementation in HyPro produces, are given in the following:

[0+ | | ¥ I | I -2 -1 o 1 2 3 4
05 0 05 1715 2 25 3 1—

1—

(a) Using conversion (b) Using option 2 (c) Using option 3

Figure 3.2: Given for comparison of over-approximation in both options

The reason for the over-approximation in all cases is that, when number
of constraints and the basis vectors increase it will be harder to compute
the united star set. Also to plot we will use conversion to V-polytopes.
Higher the number of generators and constraint matrix size harder it is to
be exact, while converting to a V-polytope.
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Experimental Results

Previously, the definition and how to compute the methods needed for
reachability analysis of a star set has been introduced. In this chapter we
would like to give a performance evaluation of our implementation. This
chapter will introduce at first the tests, that we are going to run. Then
the experimental setup and the benchmarks in the introduced tests will be
explained.

4.1 Setup

HyPro and HyDra. The methods introduced in the chapter before have
been implemented in the C++ library HyPro. This library offers reach-
ability analysis for affine hybrid automata. Also as many other state set
representations are already implemented in this library, it gives us the
opportunity to compare our results with these representations. We also
used GLPK as the LP solver library [MakO08]]. HyDra is the tool, which is
based on the library HyPro. It extends the usability with several concepts,
such as partial path refinement, subspace decomposition and parallezia-
tion [18].

Conditions

All tests were done on a Intel core i7-7500U CPU at 2.7GHz with 8 GB RAM
plus a 4 GB swap memory. Also for all tests with dimension smaller than
11, we used the option 1, for the union computation as explained before.
Timeout(TO) was set to 10 minutes. If a benchmark could not be verified
as safe —1 will be entered to the table, else the corresponding time that it
completed the benchmark will be entered to the table. While computing
the benchmarks, we did not use partial path refinement and subspace de-
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composition. Also all only one thread was used during all computations,
while GLPK being the LP Solver.

4.2 Benchmarks

Before we experimenting a short introduction for each benchmark will be
given.

Bouncing Ball [CSM™15] This example is already introduced in the
preliminaries section. To summarize the benchmark, it simulates a ball
which is dropped from an initial height.

Building [[TNJ16]. This benchmark is purely dynamical, meaning that
it has no transitions. This benchmark is not only chosen for its high dimen-
sionality but also to verify it high precision is needed.

Platoon30 [TN]J16]. This benchmark is about three autonomous ve-
hicles all driving in only one lane. It needs to be checked if any of the
vehicles collide with each other. This benchmark has been chosen for
its medium difficulty, as it needs it needs less precision than the building
benchmark and is also less dimensional with twelve variables. However,
as it has transitions it offers new challenges.

SRAQ01(Space Rendezvous) [TN]J16[]. This benchmark is chosen for
its need for precision. Because it has many invariants and bad state con-
straints. With this benchmark we want to evaluate if the star sets precision
and as this benchmark is in need for precision, checking if the it is satis-
fied normally takes a long time to complete.

ISS01, ISS02, Heat5 These benchmarks are presented in the com-
petition ARCH 2020. Because of that they are particularly difficult and
high dimensional. They all have no transitions and purely dynamical. We
would like to make a limit check for star sets, if it can solve these prob-
lems, as they are particularly difficult.

The following table presents the most important aspects of the bench-
marks we explained.

!'Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-
vo.org/group/ARCH
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Benchmark Dim Loc Trans Max Jumps ¢

BouncingBall 2 1 1 3 0.01
Building 50 1 0 20 0.05
Platoon30 12 2 2 1000 0.1
SRAO01 5 3 2 1000 1
ISS01 277 1 0 0 0.001
ISS02 277 1 0 0 0.001
Heatb 123 1 0 0 0.002

Figure 4.1: Benchmarks. Notation: Dim=Dimension, Loc=Number of lo-
cations, Trans=Number of Transitions, Max Jumps= Number of the jumps
the system is allowed to take, 0=Time step-

In the following table the run time evaluation of different representations
in comparison to the star sets will be introduced. Before continuing with
the run times some notation will be introduced. Timeouts will be marked
as "TO". We mark the cell with —1 where safety can not be proven. If the
memory of the device we are using is full and can not continue we will
mark it with "-2". All running times are given in seconds. It has to be
noted that in all benchmark scenarios, we skipped the plotting step. As to
plot a star set it needs to be converted to a H-polytope and this operation
in high dimensions is inefficent and causes timeouts.
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Benchmark Representation Run Time
Star set 0.968
BouncingBall Support function 0.170
Box 0.005
Star set 29.182
Building Support function 0.317
Box -1
Star set -1
Platoon30 Support function -1
Box -1
Star set 143.367
SRAO1 Support function -1
Box -1
Star set 180.078
ISS01 Support function 44.904
Box 0.832
Star set -1
ISS02 Support function -1
Box -1
Star set -2
Heatb Support function 8.908
Box -1

Figure 4.2: Running times.

As seen from the table above star sets are able solve most of the tests
given. However, as it uses a LP-solver to compute if a half-space is satisfied
sometimes it causes memory issues like in Heat5. Because of that the
precision of star sets is also dependent on the LP-solver used.
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Conclusion

Summary. First, we gave a short introduction about formal verification
of hybrid systems using flowpipe construction. In this work, we mainly ex-
amined one of the state-set representations named star set. Furthermore,
the operations that are needed for reachability analysis are introduced.
For methods that caused inefficiency, such as union, we tried to give other
options so that the computation could be faster. Some naive ideas that we
need to avoid were shown and the alternatives were explained. As seen
from the experimental results section, the star sets are a viable option for
most of the benchmarks. It is precise and efficient enough to verify tests
such as SRAO1. However, its efficiency is mainly dependent on the number
of constraints and LP-solvers. Star sets provide a precision near the likes
of H-polytopes with having an efficient affine transformation.

Future Work. In all of the work we interpreted the linear constraints
as H-polytopes. However, it would be interesting if our predicates would
be a box rather than linear constraints. This idea was advised while the
thesis was being written and also implemented in HyPro. However, we did
not examine this idea thoroughly. It is based upon the affine transforma-
tion, which is not applied on the predicates in star sets but on the basis
of the star sets. This would mean that the box shape would be rotated
without actually changing the predicates, thus no overapproximation will
be made for affine transformation on the boxes.
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Chapter 5. Conclusion
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