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1. Introduction

Since the adoption of the Paris Agreement on Climate Change in 2015 and its accep-
tance by 195 states, the containment of increasing temperature and consequently the
reduction of carbon-dioxide emissions have become a global goal [1]. It is without doubt
that the generation of power from renewable sources (renewable energy) plays a cru-
cial role in this aspiration. In 2018 the overall share of renewable energy in the global
power generating capacity amounts to 33%. A key technology in this development is
solar power generation which showed the most absolute growth in the recent years [2,
3, 4]. This technology is divided into two types: Photovoltaics (PV) and Concentrated
Solar Power (CSP) generation. In PV the incoming sunlight is directly converted into
electricity using solar cell arrays mostly made from silicon [5]. In contrast, CSP uses
reflective devices like mirrors to concentrate sunlight for heat production. This heat is
then converted to electricity via a power block (see Figure 1) [6].

While each technology comes with its own advantages and disadvantages, both ap-
proaches have one thing in common: the performance capability depends on the avail-
ability and predictability of sunlight. On one hand there are deterministic shortcomings
of sunlight caused by the natural day and night cycle. Energy producers and distri-
bution grid operators can easily plan countermeasures for this type of event based
on accurate solar position prediction. On the other hand there are less deterministic,
intra-day weather events which affect a plants power output. This intermittency is
a challenge for conventional distribution grids as energy supply and demand must be
balanced. But energy balance is not the only concern when it comes to solar power
generation at changing weather conditions. In CSP generation, a constant supply of
heat is important to keep the production up. Sudden changes in the exposure of the
collector system therefore require countermeasures like mirror re-adjustment or tapping
of heat storages. Mirror adjustment is in need for spatially comprehensive forecasting
while heat storages require a certain ramp up time making them unsuitable for short
occlusion periods. The ability to predict solar irradiance with high spatial and tempo-
ral resolution is therefore an important factor for maintaining a stable power supply
at low additional economic costs [7, 8].

Solar power forecasting can be grouped into three types. Long-term forecasting es-
timates the monthly or annual available resources on a low spatial resolution. This
data usually supports commercial negotiations and is of less interest in operations. In
contrast, short-term forecasting estimates hourly solar power from 6 hours up to 7 days
ahead in global to meso-scale (> 1km2) spatial resolution. This type allows for load
forecasting, transmission scheduling and day ahead price calculations. The underlying
models often origin from the domains of numerical weather prediction (NWP), satellite
imagery or stochastics. The last type is nowcasting with a forecast lead time between
1 minute to 2 hours and up to intra-minute temporal and micro-scale (< 1km2) spa-
tial resolution. This forecast horizon has the most impact on operations as it enables
prediction of e.g. energy ramping events due to passing clouds. Models in this group
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often build on stochastics, satellite imagery or total sky imagery (TSI) systems [9].

Accurate solar power nowcasting is becoming a feature with increasing importance for
grid operators as the portion of volatile renewable energy source in the grid continues
to rise [7, 10]. Although, state-of-the-art approaches for nowcasting solar irradiance
deliver viable performance, the authors often identify similar pitfalls and potentials
to improve [11, 12, 13]. Moreover, these image-based models have many fundamen-
tal methods in common like color channel thresholding for cloud pixel identification.
Shortcomings of such basic operations have a huge impact on performance due to error
propagation which opens up the question for different methodologies. A promising
candidate are neural networks (NNs) in computer vision. The increasing capabilities
of NNs have also been identified by the community and recent work fosters the use
of fully connected NNs and/or convolutional neural networks (CNN) in their models.
However, up to now these models are only capable of nowcasting either irradiance at
a single spot or aggregated power output of an entire power plant.

The aim of this thesis is to close the gap of spatially comprehensive nowcasting based
on state-of-the-art computer vision techniques. This work proposes and evaluates a
end-to-end neural network model which is capable of predicting the current shadow oc-
clusion state with high spatial resolution (< 100m2) within a defined area (2km×2km).
The model utilizes the visual input of a single fish-eye camera to nowcast up to 10 min-
utes ahead. A monocular system has the advantage of self-containment and reduced
complexity while also allowing for discussions of general design choices and extensions.
Training and evaluation is based on simulated images.

The document is organized as follow. Section 2 presents preliminary knowledge and ter-
minologies used in this thesis. In Section 3 the current state of research in image-based
irradiance nowcasting and computer vision is reviewed. Section 4 is dedicated to the
model proposal while Section 5 evaluates the design. Section 6 discusses improvements
for future research while Section 7 concludes the whole work.
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2. Preliminaries

2.1. Solar Irradiance

(a) (b)

(c)

Figure 1: (a) Parabolic CSP plant in California, United States [14]. (b) PS10 power
tower CSP plant in Spain [15]. (c) Dual axis tracking PV plant in Portugal
[16].

Solar irradiance is the received power in form of electromagnetic radiation emitted by
the sun. It is measured in watts per unit area e.g. kW/m2. The amount reaching the
outer atmosphere is referred as total solar irradiance and represents the total available
solar energy budget. However, the accessible terrestrial power is influenced by solar
position and atmospheric conditions. In order to better quantify meteorological effects
on solar irradiance, there exist several types of irradiance. Direct Normal Irradiance
(DNI) is the amount of power reaching a surface perpendicular to the path of incom-
ing light minus atmospheric losses due to absorption and scattering. Because of the
planetary shape, this is only the case at midday in areas around the equator while
elsewhere the light comes in at an angle. Thus, this term is weighted by the cosine of
the solar zenith angle θsun. In addition to the direct form of solar irradiance, Diffuse
Horizontal Irradiance (DHI) accounts for power from incoming diffuse light scattered
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by the atmosphere. It is measured on a horizontal surface excluding the direct light
emission of the solar disk. The sum of the above types of irradiance yields the Global
Horizontal Irradiance (GHI) as described below [17, 18].

GHI = DHI +DNI × cos(θsun)

The effectiveness of solar-based power generation depends on the type of irradiance.
PV converts light into electricity by the photoelectric effect. The amount of electricity
is influenced by the availability of solar radiation of any type (direct or diffuse). In
contrast, thermal CSP mainly utilizes direct irradiance as it requires wavelengths in
the infra-red spectrum for generating heat [7].

2.2. Clouds

Although clouds appear in infinite varieties and evolving shapes, certain characteristics
can frequently be observed. Researchers use these features to group clouds into genera.
Overall there exist 10 different genera (see Figure 2) which descriptions are as follow
according to the World Meteorological Organization [19].

Figure 2: The 10 genera within their allocated levels [20].
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Cirrus (Ci) ”Detached clouds in the form of white, delicate filaments or white or
mostly white patches or narrow bands. These clouds have a fibrous (hair-like) appear-
ance, or a silky sheen, or both.”

Cirrocumulus (Cc) ”Thin, white patch, sheet or layer of cloud without shading,
composed of very small elements in the form of grains, ripples, etc., merged or separate,
and more or less regularly arranged; most of the elements have an apparent width of
less than 1◦.”

Cirrostratus (Cs) ”Transparent, whitish cloud veil of fibrous (hair-like) or smooth
appearance, totally or partly covering the sky, often producing halo phenomena.”

Altocumulus (Ac) ”White or grey, or both white and grey, patch, sheet or layer of
cloud, generally with shading, composed of laminae, rounded masses, rolls, etc., which
are sometimes partly fibrous or diffuse and which may or may not be merged; most of
the regularly arranged small elements usually have an apparent width between 1◦ and
5◦.”

Altostratus (As) ”Greyish or bluish cloud sheet or layer of striated, fibrous or uniform
appearance, totally or partly covering the sky, and having parts thin enough to reveal
the Sun at least vaguely, as through ground glass. Altostratus does not show halo
phenomena.”

Nimbostratus (Ns) ”Grey cloud layer, often dark, the appearance of which is ren-
dered diffuse by more or less continuously falling rain or snow, which, in most cases,
reaches the ground. It is thick enough throughout to blot out the Sun. Low, ragged
clouds frequently occur below the layer, with which they may or may not merge.”

Stratocumulus (Sc) ”Grey or whitish, or both grey and whitish, patch, sheet or
layer of cloud that almost always has dark parts, composed of tessellations, rounded
masses, rolls, etc., which are non-fibrous (except for virga) and which may or may not
be merged; most of the regularly arranged small elements have an apparent width of
more than 5◦.”

Stratus (St) ”Generally grey cloud layer with a fairly uniform base, which may give
drizzle, snow or snow grains. When the Sun is visible through the cloud, its outline is
clearly discernible. Stratus does not produce halo phenomena except, possibly, at very
low temperatures. Sometimes Stratus appears in the form of ragged patches.”

Cumulus (Cu) ”Detached clouds, generally dense and with sharp outlines, developing
vertically in the form of rising mounds, domes or towers, of which the bulging upper
part often resembles a cauliflower. The sunlit parts of these clouds are mostly brilliant
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white; their base is relatively dark and nearly horizontal. Sometimes, Cumulus is
ragged.”

Cumulunimbus (Cb) ”Heavy and dense cloud, with a considerable vertical extent,
in the form of a mountain or huge towers. At least part of its upper portion is usually
smooth, or fibrous or striated, and nearly always flattened; this part often spreads out
in the shape of an anvil or vast plume. Under the base of this cloud, which is often
very dark, there are frequently low, ragged clouds, either merged with it or not, and
precipitation sometimes in the form of virga.”

Certainly, not all genera are equally important as their impact on GHI/DNI is either
not significant or too intense making nowcasting unnecessary. A study conducted by
Matuszko [21] on cloud types and the effect on solar irradiance showed that Ci, Cu,
Ac, and Cb cause the most variances throughout a day making them of special interest
for nowcasting.

2.3. Neuronal Networks

Figure 3: Standard structure of a single neuron with inputs from a previous layer of
neurons.

The idea of a trainable multi-layer perceptron or neural network dates back to the
late 1950s and is nowadays a key technology for complex problem solving tasks [22]. A
standard NN consists of layers of so called neurons. Each neuron produces a real-valued
output y often referred as activation which is passed to all neurons of the subsequent
layer. Input neurons receive activation via the input while inner neurons get it by
weighted connections from previous neurons. The activation of a neuron is computed
via a non-linear activation function f e.g. tanh on the sum of all incoming connections
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(see Figure 3). Learning happens by adjusting these weights in a way that the entire
network exhibits desired behavior, such as recognizing faces in images. The behavior
is expressed by a loss function L which penalizes incorrect outputs. The loss function
allows to compute the gradient with respect to the parameters (weights) W of the
network which minimizes the function for the dataset. Gradient-based learning can be
solved analytically (due to a closed-form solution of the loss) but must usually be per-
formed iteratively as denoted in (2.1). The gradient updates the parameters weighted
by a constant learning rate η which guides the magnitude of the update. A popular
minimization procedure is to frequently perform parameter updates after processing a
small batch of the dataset rather than processing the entire dataset before adjusting
the parameters.

Wk = Wk−1 − η
∂L(W )

∂W
(2.1)

In a regular feed-forward NN, the activation flows from input to output layer in an
acyclic manner. If given a task which requires processing a sequence of inputs, this
network will process each part of the sequence separately without making links between
single elements. In recurrent neural networks (RNN) activations flow cyclic through
the network and allow to change input activations over time while previous activations
are memorized via the cyclic connection (see Figure 4). By that RNNs are able to
build up long temporal dependencies and are more powerful in processing sequential
patterns than feed-forward NNs [22]. A prominent representative of RNNs is the Long
Short-term Memory (LSTM) model introduced by Hochreiter et al. [23].

Figure 4: Unfolded RNN. The input is changed at each fold while previous inputs are
memorized through the cyclic connection [24].

A second specialized type of NNs are convolutional neural networks. Although, their
application is not limited to the domain of computer vision, CNNs are mostly known
for image-based tasks. The secret behind the success is the hierarchical interpretation
of image feature which is very similar to how visual perception is structured in the hu-
man brain. Instead of recognizing entire objects at once, lower brain layers only react
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on simple edges. Such low abstracted visual features are combined to primitive shapes
in higher layers until reaching the highest level of visual abstraction which is capable
of recognizing an entire object model. CNNs realize this by the use of so called filters
or kernels. A filter is a square matrix containing a set of trainable weights. Filter size
refers to the shape of the matrix and basically determines the number of weights and
the amount of convolved input pixel. A single convolution step produces an activation
for the corresponding pixel block (see Figure 5). The convolved feature map serves as
input to higher convolutional layers which work after the same principle. A layer usu-
ally comprises multiple filter which is often referred as layer depth. Learning happens
by adjusting the weights of each filter in a way that it reacts to certain patterns like
edges. The offset of a filter between two convolution steps is called stride and mainly
determines the dimensions of the final convolved feature map. This output dimensions
are usually lower than the input dimensions. In many situations it is relevant to main-
tain the dimensions of an input. This is accomplished by padding the input e.g. with
zeros so that the resulting feature map has the same shape as the original input before
padding. With this method the shape of the output can be even increased compared
to the input which is often referred as deconvolution. A common concept which com-
bines, but is not limited to these two layer types, is the encoder-decoder architecture.
In this, the encoder is used to learn an efficient, low-dimensional representation of the
input while the decoder learns to map this representation back to the original format
with the desired content.

Figure 5: Convolving a filter (orange) of size 3 × 3 and stride 1 with a single channel
image (green). For demonstration, the filter holds arbitrary weights denoted
in red within the filter patch.
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3. Related Work

For the task of intra-hour irradiance nowcasting, the majority of proposed models use
cloud images received from TSI systems. Common steps in this approach are cloud
pixel classification, cloud motion vector estimation and irradiance prediction.

In order to separate cloud pixels from sky pixels, thresholding is a prevalently used
method [11, 12, 13, 25, 26, 27, 28]. There exist several types while each focuses on
the fact that cloud pixels have a higher red color intensity than sky pixels. Fixed
threshold methods define fixed values for the red-blue ratio, red-blue difference or
multi-color criterions [29]. Li et al. [30] report good performance on clear and overcast
images but attest that this method is incapable of detecting cirriform clouds. In turn,
Blanc et al. [13] achieve classification errors between 6-17% via multi-color criterions
during various cloud conditions and solar zenith angles. Minimum cross entropy is an
adaptive thresholding technique for unsupervised classification [31]. It was shown that
this method outperforms fixed threshold methods for cumuliform and cirriform clouds.
However, both methods are highly sensitive to sun glare leading to significant portions
of false positive pixels in the circumsolar region [30]. This is partly circumvented by
the preliminary use of the clear-sky library method. This method consists of a collec-
tion of clear sky images at different solar zenith angles capturing the variations in the
red-blue ratio introduced by the sun position [12, 25, 28, 32]. Chu et al. [28] report only
mixed performance for this approach as it globally affects red-blue ratio which leads to
an increase of false negatives depending on occlusion of the solar disk. Moreover, the
clear-sky library method does not consider second-order effects on red-blue ratio like
aerosol [28]. The majority of authors state that misclassified pixels greatly contribute
to the overall model error, which opens the discussion for a different approach for cloud
pixel classification.

The next step is cloud motion vector prediction. A simple but effective method is to
cross-correlate pixel subsets on consecutive images. The distance between two match-
ing pixel patches is aggregated to an average wind speed of the patch. This enables
the computation of grid fractions which may shade the sun in the near future. One
drawback of this method is the resulting sparsity as each aggregation implies homoge-
nous velocities of the corresponding patch [11, 12]. Another approach is particle image
velocimetry resulting in a set of velocity vectors. While this method captures for het-
erogenous velocities, it is unable to differentiate trajectories of multi-layer clouds [26,
28]. Similar applies for sparse optical flow methods which refer to this as the object
occlusion problem [25]. A more sophisticated method was proposed by Blanc et al.
[13]. The authors use stereoscopic photogrammetry with two TSI systems to estimate
the cloud base height allowing them to compute three-dimensional (3D) cloud motion
vectors via cross-correlation per cloud base height layer. Although, the overall model
performance was mixed, the authors emphasise the benefits of including depth informa-
tion for motion estimation and address the complexity of multi-layer cloud dynamics.
Comparable approaches which utilise depth information were used by the groups of
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Huang et al. [33] and Peng et al. [34] yielding an improvement of 28% in motion predic-
tion and 26% respectively in the overall model performance compared to their baseline.

The last step aggregates all data into an irradiance prediction. All models so far
predict minute-wise averages of irradiance by various means. A very straightforward
way is to combine classified cloud pixel to a two-dimensional (2D) cloud map with
a homogenous cloud base height. The binary occlusion state in the region of inter-
est is calculated by a simple planar projection of the map to the surface using the
current solar zenith angle [26]. More versatile approaches account for different irradi-
ance/cloud types, heterogenous cloud base height and even atmospheric conditions. A
common way is to describe irradiance through the clear-sky index capturing the ratio
between achievable irradiance at clear sky conditions and actual measured irradiance.
The clear sky irradiance is retrieved according to meteorological models [35]. While
some authors assign fixed values to a occlusion state [11], others follow a more adaptive
approach by tracking this index during a preliminary time span. Significant peaks in
the histogram are then assigned to corresponding occlusion states [12, 25] or classified
cloud types [13]. Regression models are also used although they are more applicable
in estimation of irradiance at a single spot [34]. One significant aspect affecting the
estimation is optical perspective. Many TSI systems use fish-eye cameras resulting in
strong distortions close to the edge of the view field. Schmidt et al. [25] report that
distant cumuliform clouds with a strong vertical extent were often incorrectly projected
to long horizontally covers leading to significantly underestimated gaps in the cloud
map.

Coming to NN-based approaches, one will find that the body of work applying end-to-
end NNs for spatially comprehensive solar irradiance nowcasting is rather sparse. In
[36] TSI images are used to estimate current single point GHI. The authors computed
pixel clusters as features for a fully connected NN. Similar, Sun et al. [37] developed
a CNN architecture which estimates the current power output of a PV plant based
on video streams. Although, these models neither nowcast irradiance nor provide spa-
tially comprehensive outputs, the authors showed that NNs are capable of regressing
irradiance from TSI data. A more versatile model was proposed by Ryu et al. [38].
The authors nowcast single spot GHI up to 20 minutes ahead from TSI and lagged
GHI data. However, the model was not able to significantly outperform the baseline
[38].

More work is available by looking into individual steps mentioned in the beginning
of this chapter. Tulpan et al. [39] compare learning techniques for binary cloud pixel
classification on pre-computed textural features. The features are extracted via var-
ious thresholding methods. The NN method achieves competitive error rates of 7%.
Dev et al. [40] recently proposed a CNN-based binary pixel classifier for day and night
images. The method works without manual feature selection as in [39] and achieves
similar error rates for daytime images. The same authors proposed in a very recent
pre-print submission a model for multi-class cloud pixel classification based on a CNN
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architecture from biomedical image processing. Preliminary evaluation on a very small
dataset shows promising class-dependent error rates between 4-7% [41]. However, these
error rates must be interpreted with care as non of the used datasets include images
displaying clouds in the circumsolar region.

In literature there exist no NN-based framework specifically for motion estimation
of clouds. Consequently, this paragraph summarizes general approaches of NN-based
trajectory estimation. Recent work put increasing efforts into dense optical flow estima-
tion with deep CNN. Notable contributions are EpicFlow [42] and FlowNet2 [43] which
allow pixel-wise trajectory estimation without aggregation per pixel patch. However,
these models are trained in a purely supervised fashion and labeled data is expensive.
This encouraged researchers to also investigate on unsupervised NN or self-supervised
models. Yin et al. [44] recently proposed GeoNet, a self-supervised deep CNN model
which jointly estimates dense optical flow, scene depth and camera pose from monoc-
ular videos. The authors achieve competitive results compared to supervised, state-
of-the-art methods. Another way to account for cloud motion is to predict future
sky images from a past image sequence. Although, CNNs can be used for this task,
the performance is often limited due to input size restriction or a missing memory
capability [45, 46]. Here, RNNs work far better for the prediction of spatiotempo-
ral features and are widely used for image or video frame prediction. Inspired by
FlowNet2, Patraucean et al. [47] combine LSTMs and optical flow for pixel-wise video
frame prediction. Xingjian et al. [48] proposed convolutional LSTMs (ConvLSTM)
which combine convolutional operations with recurrent connections. This model was
also starting point of some mentionable extensions [49, 50]. More recently, Wang et al.
[51] published a specialized LSTM design called Causal LSTM (CausalLSTM) which
allow to model very long spatiotemporal dependencies.

The prediction of irradiance from pictures is split into planar projection of clouds
and irradiance estimation. Admittedly, the body of work specifically addressing this
challenges for NNs is also limited. This changes if looking into NN-based approaches
for the more general task of planar object projection. A projection from 3D to 2D
is mathematically speaking an easy task once the 3D coordinates and the viewpoint
parameters are known. Wu et al. [52] employ a differentiable projection layer which
is capable to learn external viewpoint parameters from images and projects 3D coor-
dinates accordingly. However, in the usual case 3D coordinates are not available and
many models need to derived such from 2D images beforehand. A common approach
in 3D view synthesis is to jointly train: perspective-invariant feature representations
from 2D images, affine transformations in 3D space and reprojection to 2D [53, 54, 55,
56, 57]. A more flexible approach for planar image projection is NN-based point cloud
prediction or simply depth estimation. In this method the relative distance between
camera and objects in an image is estimated per pixel. The resulting depth map can
then be used in a subsequent model to compute a planar projection of the scene. In
contrast to analytical methods like photogrammetry, models in this domain do not
require specially calibrated camera systems.
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4. Model

A central design goal is to tackle each step with an NN-based approach while keeping
the requirements on labeled data to a minimum. The model consists of three conceptual
stages. First, predicting a sequence of future cloud images from a sequence of past
images (forecasting stage). Second, extract scene depth features from image features
(extraction stage). Third, estimate an areal shadow map for each image (projection
stage).

Figure 6: (a) A part of the forecasting stage showing single CausalLSTM cells and
how temporal information is propagated at different abstraction levels. (b)
The model of the forecasting stage predicting a sequence of future images
I ′t+1, ..., I

′
t+10 from a preliminary image sequence It−9, ..., It. (c) Extraction

stage applied on each image of the predicted sequence. The resulting depth
map is stacked channel-wise with the corresponding image. (d) Projection
stage applied on each stacked image prediction yielding a shadow map S ′t′ .

The goal of this three-staged architecture is a separation of the overall problem into
smaller sub-problems with minimal learning dependencies on each other. For example,
the estimation of scene depth is an enclosed problem which is not dependent on the
input being a real or a synthesized image. Evaluation of a single stage can therefore
take place without error accumulation. Another argument is that the network used
in each step solves a more clear problem resulting in less complex learning objectives.
Each neural network is specific to the problem of its stage and is individually trained.

In detail, the forecasting stage gets a sequence of images It−9, ..., It to predict a se-
quence of future images I ′t+1, ..., I

′
t+10 (see Figure 6b). Next, depth features D′t′ are

extracted per predicted image I ′t′ (see Figure 6c). This depth map is stacked channel-
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wise with the original image and is passed to the projection stage. The projection
network then estimates the shadow map S ′t′ (see Figure 6d) where the environmental
parameters Ω contain solar position angels.

4.1. Forecasting Stage

Although current research offers many viable techniques for motion prediction (see
Section 3), the decision to predict future image features rather than to extract features
to perform temporal regression, comes with advantages. Raw image features offer the
most flexibility to subsequent learning methods. Neither this network nor the network
of the next stage is interdependent. Thus, the remainder of the pipeline is unrestricted
in choice of the learning method.

(a) Convolutional LSTM (b) CausalLSTM

Figure 7: Overview of information flows in (a) conventional design of stacked convolu-
tional layers with temporal transitions between each abstraction level (hor-
izontal black arrows), (b) CausalLSTM design with deep transitions (red
arrows) and GHU layer (blue) [51].

A central aspect of the network architecture in this step is the use of CausalLSTM lay-
ers which are a specialized variant of a convolutional LSTM layer. This unit has much
deeper transition paths for spatiotemporal information flow compared to conventional
RNN designs. The network can therefore maintain much longer temporal dependencies
compared to other models. These transitions also traverse the network in both, spatial
and temporal dimension to allow information flow through all spatial and temporal ab-
straction levels. In contrast, the information flow in a ConvLSTM design is propagated
horizontally per abstraction level which may inhibits learning capabilities (see Figure
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7) [51]. Deep temporal transitions often cause a vanishing gradient which hinders the
network to learn long temporal dependencies [58]. The authors developed a Gradient
Highway Unit (GHU) to by-pass the gradient to deep layers during back-propagation
which makes this architecture superior to other designs [51]. The network consists of
19 cells of which the first 10 cells read the input sequence and the next 9 predict the
future images from the inner state. For each cell, the design of the original paper with
4 CausalLSTM layers and a GHU between the first and the second CausalLSTM layer
was kept (see Figure 6a). The filter size was increased from 5 to 9 compared to the
original paper as the size of the input also increased (64px to 256px). Larger filter
sizes could not be tested as the model size exceeded the available hardware resources.
However, a large receptive field has a strong abstraction effect on spatial features and
can even be disadvantageous for the task. A large filter size result in over-smoothing
of fine structures specifically of small or far distant clouds spreading only a couple of
pixels in the input image. A summary of further layer parameters is given in Table
1. As objective function, the authors use the sum of L1 and L2 loss of each predicted
frame which they argue gives a better balance between sharpness and smoothness of
generated images [51]. Since the used training data shows no fine texture, the L1 term
enforcing image sharpness is omitted resulting in the objective function given in (4.1).
Moreover, the authors employ batch normalization inside CausalLSTM layers to nor-
malize incoming activations. In this model the batch normalization is disabled as it
showed a significant slowing effect on training without yielding better generalization.

L = LL2 =
1

2

∑
∆t

(It+∆t − I ′t+∆t)
2 (4.1)

Height Width Depth Filter Size Number Filter Stride

Output 256 256 3 1 3 1

CausalLSTM-4 256 256 64 9 64 1

CausalLSTM-3 256 256 64 9 64 1

CausalLSTM-2 256 256 64 9 64 1

GHU-1 256 256 128 - - 1

CausalLSTM-1 256 256 128 9 128 1

Input 256 256 3 - - -

Table 1: Layer configuration of single CausalLSTM cell.
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4.2. Extraction Stage

Neural networks are very capable in detecting structural patterns in raw data and
process such to solve classification or regression tasks. One advantage is that feature
selection is jointly trained making manual feature selection obsolete in the general case.
Consequently, asking about the necessity of this extra step to extract depth features
is a legitimate question. In order to predict shadows within an area of interest based
on a sky image, a network must be first of all able to learn which area in the input
image is relevant. The area of interest can be imaged as a window on the input image
in which clouds are projected. The position in the image is determined explicitly by
the solar angles, while its dimensions additionally depend on the cloud base height.
In contrast to the solar angles, this information is only given implicitly through the
ground truth and requires the network to spatially link shadows to clouds in the in-
put image. This is much more complex and also comes with ambiguity. Cloud base
height has a significant impact on the range in which a shadow is casted especially at
high solar zenith angles (> 70◦). Small differences in altitude (∼ 500m) which do not
significantly alter the input image can cause a very different shadow map. If a cloud
additionally changes in size this may even hold for lower zenith angles or larger altitude
changes. The main motivation behind enriching the visual input with depth features
is to remove such ambiguity. It also helps the network to weight relevant areas in the
image more accurately by the explicit, spatial connection of depth and image feature.

Due to the absence of ground truth depth data, its estimation must take place in
a self-supervised manner. Additionally, the input data origins from a single camera
which means that the model must find other means than e.g. multi-scopy. A com-
mon approach in self-supervised monocular depth estimation is to use adjacent frames
in a video signal to hallucinate depth as an intermediate variable to reconstruct the
middle frame from adjacent source frames. The reconstruction error serves as super-
visory signal. Training is performed on image sequences of uneven length to compute
the reconstruction error while testing happens on a single image. There exist two es-
sential challenges in reconstruction-based monocular depth estimation namely camera
ego-motion and object occlusion. In case of ego-motion the camera moves at a similar
speed as other moving object in the scene. The object will appear as rigid part in the
scene which leads to holes of infinite depth. Same applies in case of a static camera
and moving, low textured objects i.e. clouds which results in no changes for certain
pixel between adjacent frames [59]. In object occlusion, a source pixel being occulted
in the target image (or vice versa) causes a high reconstruction penalty even if its
depth was correctly estimated. Many recent proposal in this domain have addressed
this challenges by more sophisticated architectures or objective functions. However,
choosing the best model for estimating cloud base height is not as straightforward as
one may think. Most of these models were only trained and tested on the elaborated
KITTI dataset [60] containing street sceneries for autonomous driving. Good perfor-
mance may be very specific to the dataset and does not hold for a novel dataset. For
this analysis, two models are chosen and evaluated: GeoNet [44] and MonoDepth2 [59].
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Figure 8: Overview of reconstruction-based training. The network estimates depth
D′t and 6-axis pose change P ′t→s between target frame and source frame.
Subsequently, each source frame is reprojected by inverse warping to the
target plane yielding Is→t. K denotes a matrix of intrinsic camera parameters
describing focal length and sensor resolution.

GeoNet was originally designed for optical flow estimation but the authors use a mask-
ing mechanism based on scene depth for the task. This depth feature is acquired in
a separate step by a dedicated neural network which can also be used autonomously.
The architecture of the network is adapted from the proven ResNet-50 network [61].
Since the authors only modify the loss function of the network according to the new
training objective, GeoNet serves as a good baseline model. The network predicts a
depth map D′t and a pose change vector P ′t→s which is used to project a source frame
Is on the target frame It. The depth map is comparable to a single channel image
and encodes a normalized, relative distance of each pixel to the viewpoint. The pose
describes a pose change of the viewpoint between two frames in form of translation
and rotation. In the application of solar irradiance nowcasting the camera is static.
In this case the pose can be interpreted as the movement of the scenery described as
movement of the viewpoint. Depth and pose are estimated by separate networks which
are depicted in detail in the appendix (Figure A.1 and Figure A.3).
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A predicted depth map must minimize the two folded loss function (4.2) for all source
to target pairs. The first term is the photo-metric loss Lpm (4.3) between the projected
source to target frame Is→t and the target frame It. The loss is based on the structural
similarity index SSIM [62] and a parameter α = 0.85 which has been determined
by cross-validation. The second term is a depth smoothness loss Lds (4.4) enforcing
smoothness of the depth map by image gradient weighting. The directional color gra-
dient is denoted by the operator ∂x and ∂y respectively [44].

Is→t = proj−1(Is, D
′
t, P

′
t→s)

L =
1

n

∑
Is→t

Lpm + λdsLds (4.2)

Lpm = α
1− SSIM(It, Is→t)

2
+ (1− α)‖It − Is→t‖1 (4.3)

Lds = |∂xD′t|e−|∂xIt| + |∂yD′t|e−|∂yIt| (4.4)

The MonoDepth2 model builds on the same method as in GeoNet. However, this net-
work is solely designed for depth estimation. The architecture is inspired by ResNet-18,
a smaller variant of ResNet-50. A detailed illustration can be found in the appendix
(Figure A.4 and Figure A.6). In contrast to GeoNet, the authors of MonoDepth2 imple-
mented two countermeasures to the previously mentioned challenges of reconstruction-
based monocular depth estimation. First, instead of calculating the average photo-
metric loss Lpm among all source to target pairs, the minimum is used. By doing so
a high reconstruction penalty for occulted pixels is avoided if the pixel is visible in
one of the remaining frames. Second, the authors mask stationary pixel in adjacent
frames to prevent these pixels to contaminate the loss. This mask is computed in the
forward-pass based on the reprojection error and purges the loss in the backward-pass
for such stationary pixel. Generally, this architecture can be considered state-of-the-
art in depth estimation and the authors report a superior performance compared to
GeoNet on the KITTI dataset. The loss function is the same as in (4.2) with the
mentioned modification to the photo-metric loss term and a replacement of D′t in the
Lds term by a mean-normalized inverse variant D∗t = D′t/µD′

t [59].

4.3. Projection Stage

So far, the pipeline synthesizes future images features I ′ from past image features
and a subsequent feature extractor network predicts corresponding depth features D′.
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Now, in order to conclude cloud shadows S ′, the network in this stage must learn an
perspective-invariant representation of the input features and the projective function
to map this representation to 2D for various projection angles i.e. sun positions. Ad-
ditionally, the network has to perform a segmentation according to which pixel in the
image features actually casts a shadow. There exists no work in the domain of neu-
ral projection networks which exactly addresses all the mentioned challenges at once.
However, there are parallels to the work of Tatarchenko et al. [55] which makes it a
good candidate for this stage. The authors aim to synthesize an unseen view of an
object after rotating it in 3D space. The model acquires 3D features from a single
input image, performs a rotation and predicts the image projection in the new pose
to the same viewpoint. The only differences in cloud shadow prediction are that the
viewpoint is rotated instead of the object and the field of view is reduced. Moreover,
the authors use unsegmented images of objects as input which is also the case for cloud
images.

The original encoder-decoder design does not foresees the input of additional depth
features. Since depth maps have similar characteristics as images, a straightforward
approach would be to duplicate the encoder part of the network for this second input.
Both input layers would then be gradually fused together during the course of the
network. There exist a variety of fusion techniques and elaborating them all is a topic
on its own. Karpathy et al. [63] give a good overview of different fusion techniques and
their performance on multi-frame video classification. However, for the model of this
stage channel-stacking is used. In this, the single channeled depth map is appended
to the input image as a second (in grayscale images) or fourth (in color images) chan-
nel. One motivation behind is model complexity. While the design comprises 52M
trainable parameters (Forecasting stage: 27M , Extraction stage: 60M), extending the
encoder part possibly increases this number. A second aspect is the spatial correla-
tion of depth features and image features. Separating the inputs into different encoder
without sharing weights makes it harder to maintain this connection.

Additionally to the stacked image and depth features [D′, I ′], a vector Ω of envi-
ronmental parameters is fed to the network. As depicted in Figure 6d it is given
as intermediate input containing sine and cosine of the solar zenith angle θsun. The
trigonometric operation account for periodicity as well as normalization. The total loss
(4.5) is pixel-mean squared error of the predicted shadow map S ′ and ground truth
S. A L2 regularization on the fully connected layers with weight λL2 = 0.0001 showed
improved performance. A detailed overview of the network architecture is given in the
appendix (see Figure A.7).

L =
1

n
(S − S ′)2 (4.5)
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5. Evaluation

5.1. Simulation

The data used for the evaluation is computer-generated by a custom simulation soft-
ware. The software simulates a virtual environment with sun, clouds and wind effects
to output a 360◦ fish-eye camera image of the sky, a corresponding depth map encoding
distances to the viewpoint, a shadow map of the area around the camera and a vector
encoding the sun position (see Figure 12 for example output).

(a) (b)

Figure 9: (a) Definitions of translation and rotation origin [64]. (b) View of xy plane
displaying placement interval Rmin, Rmax of cloud centers.

The position of the sun is described by azimuth angle ϕsun and zenith angle θsun.
The environment simulates only horizontal wind with direction given by azimuth an-
gle ϕwind and surface wind speed v0 at 10m altitude (h0 = 10). The origin of the
simulation environment is defined by the camera (see Figure 9a for origin of angles).
The placement of cloud center points is described by radius R between Rmin and Rmax

in the xy plane as depicted in Figure 9b.

The cloud model is described by an outer ellipsoid with widths and thickness which
center will be placed in the placement area of the simulation environment. The base
height h of the cloud is uniform random between the interval hmin, hmax. Afterwards,
a random number of points is placed inside the ellipsoid of which each point spans a
sphere of random radius (see Figure 10). There are a number of cloud genera which
are relevant to irradiance forecasting as described in Section 2.2. The simulation fo-
cusses on Cumulus clouds which are a common cloud type in the context of irradiance
forecasting. The cloud model parameters are chosen accordingly to mimic this genus
of cloud. Based on meteorological observations the outer ellipsoid widths lies between
50− 250m with a thickness between 25− 50m. The radius of the inner spheres ranges
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Figure 10: 3D view of a generated cloud.

between 40 − 80m while each cloud contains between 10 to 15 spheres. These base
values are multiplied by a cloud size factor κ. The cloud movement is computed frame-
wise every 60s and translates the center of the outer ellipsoid into direction of ϕwind

with velocity v. The actual velocity follows the wind profile power law (5.1) and is a
function of surface wind speed v0 at altitude h0, cloud base height h and α = 0.143
being an empirical determined coefficient depending on the stability of the atmosphere
[65]. Further properties of clouds (e.g. shape, density) as well as cloud (de-)formation
are not considered.

v(h) = v0(
h

h0

)α (5.1)

A fish-eye camera is a complex optical system with multiple lenses. One important
property of such cameras is the large field of view reaching up to 280◦ [66]. However,
an image projection with such a large field of view is not possible without distortions.
This distortion can be simulated by a fish-eye projection function. While Figure 11
gives an overview of common functions, the simulation uses the equisolid function (5.2).
The projection radius r on the image plane is a function of the focal length f in mm
and θ the azimuthal projection angle. The usage of this function is mainly justified by
the well described Total Sky Imager systems applied by Yang et al. [12] which mount
a Sigma 4.5mm 2.8f lens with 180◦ field of view [67]. The sensor produces images at
a resolution of 2, 048× 2, 048px and has a pixel density of 160.722 px

mm
.

r = 2f × sin(
1

2
θ) (5.2)
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Figure 11: Overview of (a) equidistant, (b) equisolid, (c) orthographic and (d) stereo-
graphic fish-eye projection function [68].

The simulation outputs NI greyscale images (2, 048px × 2, 048px) of the sky, a nor-
malized depth map and a binary shadow map (100px × 100px) of the area around
the camera per t ∈ 0...T − 1. The dimensions of the shadow map span an area of
4km× 4km yielding a spatial resolution of 40m× 40m per pixel. This is higher than
the objective of this work which is to achieve a spatial resolution of less than 100m2 per
pixel. The motivation behind the increased area is to raise the probability of having
shadows in the output. One can argue that resizing the shape of the shadow map
accordingly would be a simple solution to this deviation. However, the input to the
model is down-sampled by a factor of 8 to decrease model size and training times. In
consequence evaluation results most likely also hold for sky image and shadow map
with increased resolution. The depth map is a matrix with the same dimensions as
the sky image and contains the absolute distance of each object per pixel. Due to
the shape it is encoded as single channel image. This introduces a discretization error
since the used format only supports 255 different color levels per pixel. The cloud base
height is normalized with 25, 500 which yields a resolution of 100m per color level. An
in depth analysis about the impact of this error is given in Section 5.6.
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5.2. Dataset

For evaluation of the model, three distinctive datasets were generated each comprising
a train set and test set. Below there is a short description of the datasets and its
purpose while Table 2 lists all simulation parameters.

Flat dataset Single frames capturing a moderate number of Cumulus clouds at a
static base height of 2, 000m. The sun zenith angle ranges between 9◦ to 81◦ simulating
a full day. Since it is a single frame, no movement is applied.

Depth dataset Same as the Flat dataset but with differing cloud base height h
between 2, 000m to 6, 000m.

Moving dataset This dataset consists of images showing a higher density of moving
Cumulus clouds at differing altitude. The set captures in total 20 frames per scene at
a moderate surface windspeed v0 = 2. The placement radius R is increased to ensure
cloud cover even at the last frame of the sequence.

(a) (b) (c) (d)

Figure 12: Examples of (a) a real fish-eye image [27], (b) colorized simulation image,
(c) depth map, (d) shadow map

5.3. Pre-processing

For improving the performance of the model, some pre-processing steps apply. First,
the input frames must be normalized in terms of orientation. This means the input
image is rotated by ∆ϕI so that ϕsun+∆ϕI = 0 holds. Due to the circular image shape,
this operation can easily be applied. Consequently, the model predicts a shadow map
which is rotated by ∆ϕI relative to the original coordinate system. Since the shadow
map is rectangular with width a, it cannot be rotated back in the same way. Instead,
a smaller rectangle of width a

′
= 1

2
a is taken and rotated as depicted in Figure 13.

Afterwards the rotated image grid is resampled from the original shadow map. This
optimization reduces the data variance resulting in faster training as the model must
only be aware of the solar zenith angle. The simulated data is generated by default
with ϕsun = 0 which leaves this pre-processing step to the later system environment.
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Parameter Flat Depth Moving

T
ra

in

NI 20, 000 20, 000 20, 000

NC 10 / 20 10 / 20 30 / 40

T 1 1 20

R 0 / 15, 000 0 / 15, 000 0 / 40, 000

h 2, 000 2, 000 / 6, 000 2, 000 / 6, 000

κ 4 4 5

θsun 9 / 81 9 / 81 0

ϕsun 0 0 0

ϕwind 0 0 0 / 90

v0 0 0 2

T
es

t

NI 4, 000 2, 000 2, 000

ϕsun 9 / 81

ϕwind 0 / 360

Table 2: Simulation parameters of all datasets. For test set, only deviating parameters
from the train set are given. Intervals are given by upper and lower bound.

A second, important pre-processing step is camera calibration. The general CNN
model builds on images from a pinhole camera in which each pixel in the image
plane covers an almost equally sized field of view. However, this assumption does
not hold for images from fish-eye cameras which follow a spheric projection model
with strong distortions towards the edge of the view field. Consequently, the transla-
tional weight sharing of rectangular convolutional filters is inefficient for such distorted
image features. Increasing the applicability of CNNs to these type of images is an
active field of research which has already shed some light on the building blocks of
novel CNN architectures addressing this issue [69, 70]. Nevertheless, there exists other
means, namely camera calibration, to reduce the impact of distorted image features
on the performance of CNNs. Camera calibration assumes an underlying distortion
model which allows to reproject points of the image plane without distortion. The
intrinsic parameters of such model are often determined algorithmically [71]. In this
work, the distortion model is based on Zhang [72] which uses four coefficients to de-
scribe the amount of distortion. The implementation is part of OpenCV 3.4 and
offers an algorithm to estimate these parameters [73]. This process is performed once
on a set of reference images (Figure 14, first row) yielding the following coefficients
k1 = −0.04180143, k2 = −0.00074245, k3 = 0.00168039, k4 = −0.00061223. Rectifica-
tion is applied per image (Figure 14, last row) and is referred as input image in the
remainder of this document. By this operation, the effective field of view is reduced to
approximately 156◦ on the main axis.
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At last, the forecasting stage includes a channel-wise mean centering. In this, the
mean value of among all input images is calculated beforehand. During training, this
mean is subtracted from the input data and added on the output prediction. Same
applies to testing although it is important to use the mean of the training set not the
test set. Without this procedure, the network of the forecasting stage was not able to
separate moving objects in the scenery resulting in blank predictions. The authors of
the network did not mention such procedure in their work.

(a) Input image (b) Shadow map

Figure 13: (a) Shows how ∆ϕI is derived from an input image with exemplary sun
position (red dot). (b) Displays inverse rotation of smaller rectangular area
(green) inside a predicted shadow map.

Figure 14: Different stages during camera calibration. First row, examples of cali-
bration images. Second row, input image before rectification. Third row,
corresponding image after rectification.
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5.4. Error Metrics

This section introduces the error metrics used to asses the quality of the models pre-
dictions. Two central error metrics for image comparison are mean-squared-error Emse

and root-mean-square-error Ermse where x denotes ground truth, x′ denotes prediction
and N is the number of samples i.e. pixel.

Emse =
1

N

N∑
i

(xi − x′i)2 (5.3)

Ermse =

√√√√ 1

N

N∑
i

(xi − x′i)2 (5.4)

Comparisons between solar forecasting models is not a simple task as evaluation data,
especially real world data, can vary drastically in its complexity. Thus, error rates often
reported in root-mean-squared error or correlation values are biased and inappropriate
if the underlying datasets differ. A much more meaningful metric for comparisons is
forecast skill FS which is the ratio of error metric E between a forecast model f(x)
and a baseline f ′(x) [74]. In this way, performance results are much less affected by
differing solar meteorology in the dataset. A positive FS indicates f(x) outperforms
the baseline.

FS = 1− E(f(x))

E(f ′(x))
(5.5)

An often used baseline in the context is the persistent model. This model assumes
that the current situation persists until the specified forecast horizon. Although, this
static approach has natural drawbacks in theory, researchers attest surprisingly good
performance on real world datasets [13, 25, 28, 38]. This encourages the use of this
model as a baseline model in this work while remarks regarding its shortcomings are
given at appropriate sections. A second baseline is to constantly predict no clouds
which is by far the simplest baseline. Obviously, a constant no cloud prediction is not
very useful in practice but serves for a better grading of the results.
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5.5. Forecasting Stage

The network was trained on the Moving dataset in batches of 8 images at an resolution
of 256px× 256px. Larger resolutions could not be trained as the model size exceeded
the available hardware resources (2 16GB Nvidia Tesla V100 GPUs). The model was
trained for about 12 epochs at a learning rate of 1.5e−4. Longer training period did not
yield better performance. Data augmentation was applied by randomly rotating a se-
quence by 90◦, 180◦ or 270◦ as the wind direction in the dataset covers just the first 90◦.

Figure 15: Forecast skill FS per ∆t for each variant of the test set.

Figure 16 shows the frame-wise mean test error on different variants of the Moving
test set. In the main test set, the same wind speed as in the training set was used
(v0 = 2). The first two variants were simulated with an increased wind speed (v0 = 4,
v0 = 8) while the last variant was simulated with a uniform random wind speed be-
tween 2 to 6 m/s (v0 ∼ U(2, 6)). The wind speed is sampled before simulating a
sequence and does not change over time. Generally, the persistent model as well as
the forecasting model suffer from the fact that they collect twice the error for a falsely
predicted cloud. Once for the wrong cloud pixel and once for the wrong sky pixel. The
constant model only collects an error for wrong sky predictions. The persistent model
error therefore exceeds the constant model error as soon as half of the clouds of the
persisted frame are displaced. In the v0 = 2 case this happens between the second and
third frame. This roughly corresponds to 150s due to the time interval of 60s between
frames. In theory, doubling the speed halves this timespan to approximately 75s. This
lies in the first quarter between the first and second frame and actually the persistent
model error exceeds the constant model error around this time in the v0 = 4 case.
With v0 = 8 half of the clouds in the persisted frame are displaced after 37.5s which is
even before the first predicted frame. This results in a failure of the persistent model
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compared to the constant model even before the first predicted timestep. Furthermore,
the overall cloud density slightly varies among the test sets which results in differing
error magnitudes of Emse. Within a test set the density stays stable over all frames
except for the v0 = 8 case in which the high cloud speed inhibited to maintain the
density by the right simulation parameters. Hence, comparisons of results between
different test sets should be based on forecast skill.

Figure 16: Emse per ∆t for forecasting model, baseline and a constant no-cloud pre-
diction on four test sets with varied wind speed. The markers in the plot
are horizontally displaced for illustration purposes. Each timestep shows
average, minimum and maximum of the 2000 instances per set. The model
was trained on the Moving dataset with v0 = 2. A detailed list of mean
values and variance is given in Table A.2.
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The model outperforms the persistent baseline for each frame in the v0 = 2 case.
The result decreases with later frames as also indicated by forecast skill (see Figure
15). In the v0 = 4 case, the model is able to outperform the baseline for all frames
but is worse than the constant model after the sixth frame. In the v0 = 8 case the
model performs at a similar error rate as the baseline and is worse than the constant
model for all frames except the first three. In the random case the forecast model Emse

shows a very similar progression compared to the v0 = 4 case but with less outliers as
indicated by averages closer to the bottom of the error bar in Figure 16. The forecast
skill is marginally lower for earlier frames and matches after the sixth frame.

In the v0 = 2 case the forecast model Emse increases over time. This has two rea-
sons. First, the shape and size of a cloud prediction changes over time, most probably
due to the inability to accurately model the spatial-dependent distortion of the camera
calibration. Clouds which move off the center axis are often predicted with a circu-
lar shape in later frames (see Figure 18c). Moreover, in dense cloud accumulations
a merging effect causes an over-smoothed prediction of such (see Figure 18b). This
effect gets even more visible for higher cloud velocities as shown in Figure 19a. Second
reason which contributes to the model error are clouds which gradually enter the field
of view during the forecasting period without being visible in the preliminary frames.
The model has no chance to predict these hidden clouds and therefore misses them in
the output (see Figure 19b). This is a technical limitation due to the cameras field
of view and generally applies to all camera-based forecasting models. The effect is
rather insignificant in the beginning of the v0 = 2 case and gradually increases as in-
dicated by a growing error bar. An in depth analysis revealed that sequences with the
highest error rate are those which show a large number of hidden clouds. In contrast,
movements of clouds which enter the field of view during the preliminary frames are
correctly estimated as visible in Figure 18a. The model is even capable to accurately
predict a clouds shape even though it has only partially entered the field of view in
the preliminary frames.

For further analysis, let EC denote the error due to incorrect cloud pixel prediction, ES

denote the error due to incorrect sky pixel prediction and EH denote the error caused
by a incorrect sky pixel prediction due to a hidden clouds. A hidden cloud pixel is not
visible in the preliminary frames and is not counted in ES. The total error is the sum
of all above. By looking at the generalization capabilities for unseen cloud velocities
one can say that the model performance is strongly affected by a change in wind speed.
While constant model FS decreases moderately over time in the v0 = 2 case, the decay
drastically increases for higher velocities. In the random case, the set has on average
the same wind speed as the v0 = 4 case due to the uniform distribution. The plot
shows that both cases show more or less the same forecast skill. Thus, the effect of
different wind speeds on the model error averages out within one set. This linear cor-
relation indicates that the network systematically underestimates a clouds movement.
More precisely, after each timestep EC and ES increase by a constant factor caused by
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the underestimated cloud movement due to the difference between trained and actual
cloud velocity. The persistent model FS flattens for v0 = 4 and v0 = 8, since the
forecast model behaves similar to the persistent model in this cases. The error rates
converge as soon as most of the truth is missed. The further increase of forecast model
Emse in the v0 = 8 case for later frames is possibly caused by an increased size of the
cloud predictions (EC) as visible in Figure 19a.

How can these error types be circumvented? With respect to cloud movement speed,
the network is able to predict heterogenous movements (wind profile power law) in a
sequence with low constant surface wind speed. In presence of heterogenous surface
wind speed as may happen throughout a day, the forecast model performs according
to the average of the set. The network is not able to sufficiently generalize for unseen
data (depending on the delta between trained and actual surface wind speed). A pos-
sible solution is to train several networks for different surface wind speeds and select
the network accordingly to a measured average wind speed. If the network is able to
achieve the same prediction quality of the v0 = 2 case likewise for higher velocities
should be of special interest for future research.

Mitigate the effect of hidden clouds is a more fundamental question and applies in
general to image-based forecasting models. How much of the predicted frame is actu-
ally relevant to the subsequent shadow prediction? The required field of view depends
on the range within a cloud can cast a shadow onto the area of interest. This is a func-
tion of cloud base height h and the solar zenith angle θsun and determines the horizontal
distance of the cloud (see Figure 17a). In Figure 17b the required field of view with
regards to horizontal distance to the camera is given. Generally, lower altitudes cause
a strong increase of required field of view due to the dimensions of the area of interest.
All values in the following are based on the most restrictive cloud base height. In a
first perspective, without forecasting, the required field of view is mostly below 150◦

throughout the middle of a day (θsun < 70◦). For early and late daytimes (θsun > 70◦)
the required field of view quickly reaches values above 150◦. In a second perspective
the maximum travel distance of a cloud during the forecast lead time is considered.
Because if a hidden cloud occurs in the frame at the first prediction step, it is irrelevant
as long as it does not enter the required field of view for the shadow prediction for
the rest of the sequence. With an exemplary strong surface wind speed (v0 = 8) the
actual cloud velocity amounts to 17-20m/s depending on cloud base height. Within
the forecast lead time of 10 minutes a cloud can travel between 10, 200m to 12, 000m.
This requires a margin in the field of view of 17◦ (θsun = 70◦) resulting in a total field
of view of 167◦. For solar positions above 70◦ this value only slightly increases to 170◦

(θsun = 80◦) while a lower surface wind speed of 2m/s reduces these values to 157◦

(θsun = 70◦) and 165◦ (θsun = 80◦) respectively. In conclusion to the initial question of
the paragraph, the relevant field of view ranges between 165 to 170◦ depending on the
wind conditions. While this applies to forecasting in general, it reveals a significant
drawback of camera calibration. By this the effective field of view is reduced (157◦in
this model) which can only be recovered by the use of additional cameras. A first next

29



step would be to quantify the forecast error of hidden clouds for various solar positions
and wind speeds. Based on this a balance between long term prediction quality and
model complexity can be determined.

(a)

(b)

Figure 17: (a) Horizontal distance of a cloud casting a shadow on the camera. (b) Re-
quired field of view as function of cloud base height and horizontal distance
to camera. A cloud with base height of 3km has a horizontal distance of
5km at a solar zenith angle of 60◦ in order to cast a shadow onto the cam-
era. The one-sided area of interest comprises 2km and the required field of
view to see such cloud in the image which casts a shadow onto this areas
lies between 130 and 140◦.
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Figure 18: Qualitative comparison of ground truth (top row) and prediction (bottom
row) of forecasting stage at different timesteps for v0 = 2. (a) Correctly es-
timated cloud shape. (b) Merging effect. (c) Lacking affine transformation.

Figure 19: Last frame of the predicted sequence for variants of the Moving test set
with higher wind speed. (a) Merging effect. (b) Hidden clouds. Top row
shows ground truth, bottom row model prediction.
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5.6. Extraction Stage

The two networks of the extraction stage were trained on the Depth dataset also at an
image resolution of 256px×256px. The batch size was 8 (MonoDepth2 ) and 4 (GeoNet)
respectively. The training procedure for GeoNet was 60 epochs at a learning rate of
2e−4 and another 60 epochs at a rate of 2e−5. MonoDepth2 showed a much slower
convergence possibly due to the chosen batch size. It was trained in three rounds each
60 epochs long at learning rates of 1e−4, 1e−5 and 5e−6. Both networks employed data
augmentation by randomly flipping single or both images axis and modifying bright-
ness and saturation. The remaining training parameters from the original publication
were left unchanged.

Figure 20: Ermse of the two architectures on first frame of the Depth test set once for
masked background and once for unmasked background. The mean Ermse

is denoted at the top of each histogram.

The networks were both trained in a self-supervised manner. Therefore, the output
of these network do not share the same normalization and most certainly also not the
one of the simulated ground truth data. It can be observed that GeoNet outputs a
value between 7 to 9 for infinite depth while MonoDepth2 outputs 0 in such case. The
simulation encodes infinite depth as 0 (compare Figure 21). The behavior of GeoNet is
the result of two effects. Pixel of infinite depth (sky) have no texture or color difference
and a reprojection of such pixel onto another sky pixel will not cause any loss in image
similarity. To recall, the network is trained so that the estimated depth map first of
all minimizes the structural similarity index between the target image and reprojected
source frames. Consequently, the network learns to predict a depth for sky pixel which
results in reprojection onto another sky pixel. But this alone does not explain that
the network outputs a depth at all for such pixel. The second effect is caused by the
depth smoothness constrain which minimizes the gradient between pixel in the depth
map. There are regions in the image namely the areas close to clouds in which a repro-
jection based on incorrect depth causes a similarity loss. Thus, the network learns to
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predict a certain depth for such pixel. In order to minimize image gradients, adjacent
pixel receive a similar depth which balances the similarity loss due to reprojection and
smoothness loss. Because of the mentioned reason the similarity loss is of decreasing
significance in low textured regions and therefore causes the network to smooth out
the depth prediction over such areas. This also explains the slight variations in depth
among the maps for sky pixel as the network must average over all present cloud depth
predictions (see Figure 21, second row). In contrast, MonoDepth2 predicts 0 at least
for some sky pixel although it is trained with the same loss and reprojection function
as GeoNet. This is a result of the pixel masking mechanism which purges the loss
for stationary pixel. This inhibits the smoothness loss to contaminate the supervisory
signal for low texture regions so that the network correctly learns to predict 0 for sky
pixel. The role of stationary pixel masking for the model performance is discussed
later in this section.

Why does a non-zero value for infinite depth does not affect the network of the subse-
quent projection stage? In theory, the position of a pixel with infinite depth matches
the position of sky pixel in the image. Moreover, the 2D filter of a CNN is applied
on all channels of the input and results are summed up vertically. Since the predicted
depth map will be stacked channel-wise with the camera image, the assumption is that
the constant value of infinite depth predictions apply to all sky pixel and therefore
alter the magnitude of all filter activation in the same way. In order to reflect this
assumption in the subsequent evaluation, a mask is computed to exclude pixel of infi-
nite depth from the evaluation. The mask covers all pixel which have a depth of 0 in
the ground truth depth map (masked case). Any further computations apply to the
remaining pixel if not specified differently. Next the differing normalization needs to
be harmonized. The ground truth is normalized by a constant value of 25, 500 while
the model predictions are normalized based on the intrinsic camera parameters used
in the reprojection function. By the equation given in (5.6), a sequence of data points
x = (x1, x2, ..., xn) is normalized from 0 to 1. Afterwards each ground truth depth map
D and predicted depth map D′ is zero-centered by subtracting its mean µD and µD′

respectively. Lastly, the depth maps are normalized a second time by equation (5.6)
at which the global minimum/maximum among ground truth and prediction is used
instead.

zi =
xi −min(x)

max(x)−min(x)
(5.6)
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Figure 20 displays the masked and unmasked performance of the models on the Depth
dataset. Surprisingly, GeoNet slightly outperforms in the more relevant case of masked
depth maps although MonoDepth2 initially was considered the superior model. An av-
erage Ermse of 0.113 means that the predicted depth of a single pixel differs by 11.3%
from the correct depth on average. Even in the unmasked comparison, MonoDepth2
does not achieve significant better quality e.g. due to its masking mechanism of sta-
tionary pixel. By looking at qualitative performance in Figure 21, the predicted depth
maps of MonoDepth2 appear much more noisy even thought the total loss function
includes the depth smoothness constrain Lds. As mentioned before, a very likely expla-
nation is the loss purging due to the stationary pixel masking criterion. Generally, one
would expect a rather smooth mask covering most of the stationary sky pixel and some
low textured clouds pixel. Instead, the masks look almost like white noise indicating
a failure of the masking criterion. A modification of the criterion or even removal of
the masking mechanism may be beneficial to the model performance and is left to
future work. Hence, the remainder of the pipeline is performed with GeoNet as feature
extractor of this stage.

Figure 21: Qualitative comparison of depth maps: ground truth (first row), prediction
GeoNet (second row) and prediction MonoDepth2 (third row). Brighter
means higher and black means infinite or no depth.

Regarding the predictions of GeoNet, depth maps are generally smooth and roughly
capture the correct height profile of the clouds. In some cases the depth maps show
artefacts around the center and/or halos around far distant clouds (see Figure 21, first
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two from left in second row). Another notable aspect is that GeoNet is able to predict
differing height profiles of overlapping clouds from just a single image. This is espe-
cially surprising as the authors of GeoNet did not take specific means to account for
this. Also, two clouds at different altitudes which overlap from the ground perspective,
do not appear very differently compared to a single, larger cloud. However, this should
be treated with care as it grounds on simple, appearance-based image features which
are very specific for the simulated dataset and may be very different in e.g. a real
world dataset.

5.7. Projection Stage

For the evaluation of this stage, multiple case studies were performed. The first study
evaluates segmentation and projection capabilities for clouds at a constant height (Flat
dataset). The second block investigates on performance for clouds with different height
profile and the benefit of prior extracted depth features (Depth dataset). Lastly, the
same aspect is researched for the first frame of the Moving dataset. Each training
was performed in two rounds of 60 epochs each at a learning rate of 1e−5 and 5e−6

respectively. A significant speed up of training was achieved with a batch size of 16
and batch normalization enabled.

First to mention is the positive effect of image rectification due to camera calibra-
tion. The network achieves .1352 mean Ermse in the rectified Flat/Flat case (Table
3) while this error increases to .2746 in the non-rectified case. Secondly, the network
is able to learn a static height profile and underperforms as expected if presented to
clouds with a different height (Flat/Depth case). The predicted shadow is slightly
offset the correct position as depicted in Figure 22.

In the Depth dataset train case, the network surprisingly does not gain much per-
formance by being trained with or without ground truth depth features. However,
estimating depth features has a minor effect as opposed to not introducing such depth
features. Looking at the error rates of the Flat and Depth training set, it seems
that there is a general misfit of the model performance for clouds with static height
and clouds at diverging height. Although the quantitative results differ only slightly,
the qualitative results show a completely different picture. Predicted shadows in the
Flat/Flat case are clear and accurate while in all Depth/Depth cases such are rather
blurred. A likely explanation is data imbalance as the Flat dataset contains on average
10.31% occulted pixels per shadow map while the Depth dataset contains 6.32%. The
ratio of occulted pixel in shadow maps of the Moving dataset however reaches 15.07%
which is also reflected by more certain shadow predictions. Nevertheless, the error rate
in the Depth/Depth/GN case share the same magnitude as the Flat/Flat case and
attest for a minor benefit of estimated depth features.

For the last set of cases the error rate drastically increases which is a result of the
higher number of shadows present in the dataset. In contrast to the previous case,
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Train

Flat Depth Moving

Test DC Ermse Test DC Ermse Test DC Ermse

Flat - .1352 Depth GT .1497 Moving GT .4759

Flat - .2746* Depth - .1607 Moving - .4088

Depth - .2331 Depth GN .1555 Moving GN .4103

Table 3: Results of different training/testing setups. The second row denotes the
dataset used for training (in the Moving set only the first frame is used).
The DC column describes the depth channel used: (GT) ground truth, (GN)
GeoNet prediction and (-) no depth. (*) was trained and tested without prior
image rectification.

providing ground truth depth features shows the worst performance. Figure 22 shows
that shadow position and shape are amiss in this case. A notable but probably rather
insignificant source of error is depth map discretization. The simulation encodes such
maps as greyscale images with 255 color levels at a resolution of 100m per level (see
Section 5.1). Given the dimensions of the simulated shadow map and an exemplary
extreme value of 81◦ for θsun, the maximum deviation in the shadow map amounts to
315.69m or 7.89px. While this partly accounts for the offset in the Moving/Moving/GT
case, the offset in remaining tests indicates a general bias. Upon closer inspection there
exist two failure modes, one in which the shape of a shadow was correctly estimated
but its position is offset and the second mode where both, general shape and position,
is wrong. The reason behind this observations could not entirely be clarified. One
hypothesis is insufficient evidence in the data for each solar position. The network
effectively learns from solar positions and sky conditions which cause shadows. Al-
though solar positions are equally represented in the data, it is not guaranteed for the
shadow map to actually contain shadows. The network then performs accordingly to
the potential of a solar position to yield such low quality training instances. One may
argue that this also applies for other datasets but the number of clouds is much lower
in these which reduces the variance in the image features. Generally, the performance
of the last stage for a more versatile dataset stays behind the expectations.
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Figure 22: Qualitative comparison of prediction per case in the same order as in Table 3
(except un-rectified case). Left, binarized residual of ground truth (yellow)
and prediction (purple). Right, predicted shadow map.

The evaluation of the entire pipeline is performed (trained/tested) on the Moving
dataset. The first stage predicts 10 future frames from a preliminary sequence of
10 frames. The second stage predicts depth features for these frames and the last
stage predicts the corresponding shadow maps. The persistent model (see Section 5.4)
serves again as baseline. Figure 23 shows average Ermse and FS per frame in which the
model seems to outperform the baseline after the second frame. The baseline maintains
a constantly higher error after the sixth frame whereas the model seems to reduce its
error over time. This is the result of two effects. First, with increasing time more and
more clouds left the circumsolar region resulting in significantly less shadows for later
frames (see Figure 23, decreasing ground truth occlusion ratio). Similar to the behavior
described in Section 5.5, the persistent model takes the shadow map of the last seen
frame as prediction and accumulates error over time until it eventually converges. The
increase in persistent model FS is therefore just a consequence of the baseline getting
worse. Second, the model constantly predicts almost no shadow as indicated by a low
occlusion ratio of the forecast model in Figure 23. The model is actually slightly worse
than a constant no shadow prediction. Speaking in classification terms, the model is
not very sensitive with a high number of false negatives. Since the projection model
was previously able to predict dense shadow maps for the Moving dataset either with
true or predicted depth maps, the root cause must lie in the synthesized input images
of the extraction stage. This indicates a dependency of these stages on certain image
features which significantly change if generated by the forecasting model.
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Figure 23: Frame-wise average of Ermse (lower is better) and FS (higher is better)
for the entire pipeline compared to the baseline. Additionally, the average
shadow map occlusion ratio is given for prediction and ground truth. A
detailed list of values is given in Table A.1.
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6. Discussion

Following up on the insights of the previous chapter, this part elaborates possible im-
provements for future works. At first, the discussion sheds light on each stage of the
pipeline. Subsequently, also fundamental advances to the architecture are examined.

The model of the forecasting stage outperformed the baseline for a trained, moderate
cloud velocity. Qualitative results show that the model is capable to track heterogenous
cloud movements within a sequence of images according to the wind profile power law
at a constant surface wind speed and interpolate those into the future. It is also able
to predict size and shape of occulted and partly visible clouds at the edge of the frame.
For unseen velocities the model systematically underestimates cloud movements and
thus is limited in the general case. The idea of using multiple, specialized networks
as countermeasure was discussed. Here, future work should have a special focus on if
the network can maintain its performance also for higher cloud velocities. In a broader
perspective, the largest fraction of the error was caused by a merging of nearby clouds
to a smoothed, single unit. A potential countermeasure is to include a L1 loss term
to penalize smooth image gradients stronger. Another countermeasure would be an
entire change of the loss function towards the structural similarity loss presented in
Section 4.2 which is a more state-of-the-art approach for image synthesis. Lastly, a
word on how the model can be trained for higher image resolutions despite the vast
resource requirements. Instead of resizing images by standard interpolation techniques
and possibly loosing information, one can use a single encoder to downsample inputs
and a single decoder to upsample predictions. This image feature extractor is jointly
trained with the forecasting network. Losses are summed over all scales of the pre-
diction to train the encoder-decoder. Multi-scale loss is a common technique and is
applied in [44, 59, 75] to name a few.

In the extraction stage two improvements can be made. First, the aim was to work with
a single camera in the field. This does not necessarily apply to training. The method
of reconstruction based monocular depth estimation can also be done for stereo image
pairs. Here, the source frames origin from a stereo-camera pair while the target frame
still origins from a single camera. This method is very comparable to a human who
estimates distances with one eye covered. While the authors of GeoNet did not in-
vestigate this approach, the authors of MonoDepth2 denote an improvement for their
model. The method seamlessly integrates into the existing training framework and
can therefore easily be transferred to the GeoNet model. The second improvement
addresses the stationary pixel masking mechanism in MonoDepth2. This mechanism
often failed and caused unintended masking which inhibits the network to learn. A
modification of the masking criterion is left to future research.

As mentioned, the last stage offers the greatest potential for improvements. Despite
the described architectural changes regarding the encoder of the model, further pre-
processing might be a simpler enhancement. Missing evidence of certain solar positions
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is the central hypothesis for the lack of performance. Since each predicted frame is
processed individually, the most relevant area always lies around the circumsolar re-
gion. Consequently, the network does not need to see a whole 360◦ image to estimate
shadows. The field of view can be limited to a smaller streak covering only the solar
trace on the zenith axis. In addition, to this reduction of dimensionality, the input
variance can be further diminished. One mean is to train many networks for different
solar positions. This way, each network is presented to a more or less static solar posi-
tion and only needs to generalize for this. The encoders of the networks can even share
weights to speed up training of cloud segmentation. A second extension is the use
of spatial transformer networks. This singular CNN module allows to jointly train a
sampling layer for transformation-invariant feature representation. The authors report
significant performance gains at almost no training overhead for image classification
[76]. In the projection network, this advancement may further balance optical variance
due to fish-eye distortion or introduced over-compensation by image rectification.

From a more general perspective, separated training of depth feature extractor and
projection model did not provide a significant performance gain compared to training
without depth features. Although, the deeper reasons for this contrary outcome have
not been fully understood, it opens up the discussion for an alternative architecture.
While the proposal fosters an end-to-end neural learning approach, certain aspect can
also be solved analytically. The general planar projection model is easily applied as
soon as the 3D coordinate of an object is known. So far this coordinate was somehow
encoded in the inner, latent sub-space unit of an encoder-decoder network. Instead,
a network can be trained to predict such coordinate explicitly while the projection is
computed analytically. This architecture does not need any additional data if used with
e.g. the reconstruction-based training framework of the second stage. The predicted
coordinates of cloud pixel are used to compute a shadow map. The supervisory signal
is given by the error between this prediction and the ground truth shadow map. In this
framework, segmentation and depth estimation can be jointly performed by a single
network e.g. GeoNet, MonoDepth2, the design of Tatarchenko et al. [55] or by separate
networks i.e. segmentation and depth. Possible NN-based candidates for multi-class
segmentation task are given in Section 3. A general challenge in this approach is the
generalization capabilities of the networks as the supervisory signal is only present for
areas in the image which can cause shadows.

Following up on the idea of merging the last two stages, one can also think of a
hybrid approach. Here, forecasting is performed by the network of the first stage while
shadow prediction is done analytically. The end-to-end test showed that extraction
and projection stage are much more sensitive to the input image being real or synthe-
sized than expected. A hybrid architecture might lower this dependency. Such model
will require explicit cloud segmentation either by conventional means i.e. thresholding
or a learning approach which in this case would require additional ground truth data.
Nonetheless and thanks to the image-based forecasting, standard techniques for 3D
reconstruction e.g. general photogrammetry as used by Blanc et al. [13] or specialized
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cloud photogrammetry as presented by Crispel et al. [77] can be applied. The use
of novel reconstruction techniques is very promising and future work should focus on
improved cloud segmentation in this prospect.

7. Conclusion

In this work, an image-based model for spatially comprehensive solar irradiance now-
casting was proposed. In contrast to existing work, an end-to-end neural network
approach was used which also closes the gap of such a model in literature. The ap-
proach consists of three stages: forecasting, extraction and projection where each stage
comprises a specialized neural network architecture. The overall model performance
is mixed and many advancements to improve are discussed. Generally, the forecasting
and extraction stage performed well in their task while most of the overall error origins
in the projection stage. NN-based approaches are a promising technique to conquer
common shortcomings of conventional methods in solar irradiance nowcasting. It also
benefits from a very active research community which continuously improves the state-
of-the-art. Certainly, there exist multiple possible designs to tackle the general task at
hand and some were discussed earlier. The proposed three-staged layout of the prob-
lem forms a first narrative and by that contributes also general design decisions i.e.
pre-processing for such models. Future work should follow up on this framework imple-
menting stated advancements while also discussing different problem layouts. Lastly
to mention, future work should establish standardized datasets for the task making the
problem more accessible to the research community and allowing resilient inter-model
evaluation.
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A. Appendix

Ermse FS

Model M BS -

∆t

1 .2449 .1836 -.3337

2 .2393 .2497 .0417

3 .2358 .2886 .1831

4 .2318 .3069 .2448

5 .2276 .3150 .2775

6 .2239 .3186 .2973

7 .2207 .3206 .3116

8 .2184 .3214 .3205

9 .2151 .3215 .3311

10 .2117 .3212 .3409

Table A.1: List of frame-wise mean error of overall model performance (M ) compared
to baseline persistent model (BS ).
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Emse

Model M (v0 = 2) BS (v0 = 2) C (v0 = 2) M (v0 = 4) BS (v0 = 4)

Metric µ σ2 µ σ2 µ σ2 µ σ2 µ σ2

∆t

1 0.170 0.001 1.420 0.064 3.239 0.353 0.950 0.064 4.080 0.372

2 0.223 0.002 2.812 0.244 3.243 0.355 1.775 0.222 6.908 1.031

3 0.319 0.005 3.970 0.484 3.247 0.357 2.645 0.437 8.057 1.383

4 0.461 0.014 4.752 0.693 3.251 0.358 3.504 0.678 8.524 1.521

5 0.647 0.034 5.228 0.841 3.256 0.359 4.324 0.920 8.742 1.576

6 0.873 0.070 5.511 0.934 3.259 0.361 5.085 1.149 8.842 1.592

7 1.135 0.128 5.686 0.991 3.263 0.362 5.774 1.361 8.882 1.582

8 1.426 0.213 5.801 1.024 3.267 0.363 6.384 1.550 8.886 1.545

9 1.744 0.331 5.879 1.044 3.270 0.364 6.911 1.715 8.875 1.522

10 2.081 0.481 5.935 1.055 3.273 0.365 7.355 1.852 8.854 1.503

Table A.2: List of frame-wise mean error of the first stage model performance (M ) compared to baseline persistent model
(BS ) and constant model (C ).
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C (v0 = 4) M (v0 = 8) BS (v0 = 8) C (v0 = 8) M (v0 ∼ U(2, 6))

µ σ2 µ σ2 µ σ2 µ σ2 µ σ2

5.043 0.632 5.087 0.803 6.808 1.121 5.427 0.757 0.780 0.384

5.053 0.635 7.556 1.355 8.568 1.601 5.317 0.732 1.418 1.301

5.059 0.638 8.688 1.540 8.906 1.646 5.170 0.702 2.007 2.290

5.062 0.643 9.279 1.587 8.900 1.607 5.002 0.673 2.549 3.148

5.061 0.650 9.593 1.611 8.809 1.559 4.819 0.650 3.048 3.806

5.054 0.655 9.750 1.629 8.690 1.475 4.628 0.632 3.509 4.249

5.039 0.658 9.829 1.636 8.570 1.395 4.436 0.611 3.930 4.489

5.017 0.656 9.857 1.642 8.445 1.331 4.242 0.582 4.317 4.554

4.983 0.650 9.867 1.681 8.322 1.284 4.046 0.550 4.667 4.482

4.941 0.640 9.854 1.741 8.205 1.239 3.854 0.524 4.982 4.314
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BS (v0 ∼ U(2, 6)) C (v0 ∼ U(2, 6))

µ σ2 µ σ2

5.427 0.757 3.370 0.497

5.317 0.732 3.381 0.501

5.170 0.702 3.389 0.504

5.002 0.673 3.393 0.505

4.819 0.650 3.392 0.504

4.628 0.632 3.387 0.501

4.436 0.611 3.375 0.498

4.242 0.582 3.357 0.495

4.046 0.550 3.334 0.496

3.854 0.524 3.306 0.499
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FS

Model BS (v0 = 2) C (v0 = 2) BS (v0 = 4) C (v0 = 4) BS (v0 = 8) C (v0 = 8)

∆t

1 0.88 0.95 0.77 0.81 0.25 0.06

2 0.92 0.93 0.74 0.65 0.12 -0.42

3 0.92 0.90 0.67 0.48 0.02 -0.68

4 0.90 0.86 0.59 0.31 -0.04 -0.86

5 0.88 0.80 0.51 0.15 -0.09 -0.99

6 0.84 0.73 0.42 -0.01 -0.12 -1.11

7 0.80 0.65 0.35 -0.15 -0.15 -1.22

8 0.75 0.56 0.28 -0.27 -0.17 -1.32

9 0.70 0.47 0.22 -0.39 -0.19 -1.44

10 0.65 0.36 0.17 -0.49 -0.20 -1.56

Table A.3: List of frame-wise forecast skill of the first stage model performance compared to baseline persistent model (BS )
and constant model (C ).
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BS (v0 ∼ U(2, 6)) C (v0 ∼ U(2, 6))

0.71 0.77

0.69 0.58

0.63 0.41

0.56 0.25

0.49 0.10

0.42 -0.04

0.36 -0.16

0.30 -0.29

0.24 -0.40

0.19 -0.51
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Figure A.1: Architecture of the network used for depth estimation in GeoNet. The first convolution layer (orange) uses a
filter stride of 2. The max pooling layer (blue) halves the input dimensions followed by a sequence of blocks of
residual layers (green, see Figure A.2 for details). The filter specification applies to all layers of a residual block.
The upconvolution layer are a combination of an upsampling by nearest neighbor (grey) and a convolutional layer
with a filter size of 3 and stride of 1. A second convolutional layer is applied on the channel-wise concatenation of
the upconvolution and the outputs of previous residual blocks at the same scale. All layer use ReLu activation.
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Figure A.2: A residual layer in GeoNet consists of three main convolutions and a skip convolution which directly links the
input to the output. The Skip layer and the Conv2 layer are applied with stride 2 if the dimension of the output
is halve the dimensions of the input. Otherwise a residual layer does not change the input dimensions. Conv2
and Skip layer have the same number of filters and do not apply any activation function. The sum of the outputs
of these layers is passed to a ReLu function.
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Figure A.3: Architecture of the network used for pose estimation in GeoNet. Each convolution has a filter stride of 2 except
and uses ReLu activation except for the last convolution which runs with stride 1 and no activation function.
The output is a vector with 6 elements describing translation and rotation of the viewpoint between two adjacent
frames.
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Figure A.4: Architecture of the network used for depth estimation in MonoDepth2. It is a lightweight variant compared to
GeoNet. The first convolution layer uses a filter stride of 2. The max pooling layer (blue) halves the input
dimensions followed by a sequence of blocks of residual layers with filter stride of 2 fo ResBlock1 to ResBlock3
(green, see Figure A.5 for details). The upconvolution layer are a combination of an upsampling by nearest
neighbor (grey) and a convolutional layer with a filter size of 3 and stride of 1. A second convolutional layer is
applied on the channel-wise concatenation of the upconvolution and the outputs of previous residual blocks at
the same scale. All layer use ReLu activation.

51



32

25
6

Input

64
12
8

Residual Layer

3

64 12
8

Conv0

3

64 12
8

Conv1

+ r

3

64 12
8

Skip

(a)

32

25
6

Input

32
25
6

Residual Layer

3

32

25
6

Conv0

3

32

25
6

Conv1

+ r

(b)

Figure A.5: MonoDepth2 comprises two residual layer types of which (a) applies to the first layer of ResBlock1 to ResBlock3
and (b) applies to all remaining layers. (a) Layer with skip convolution and a filter stride of 2. Skip and Conv1
are without activation function while the sum of both outputs is passed to a ReLu function. (b) Layer with
direct skip connection. In this type each convolution preserves the input dimensions.
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Figure A.6: Architecture of the network used for pose estimation in MonoDepth2. The encoder is the same as in the depth
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Figure A.7: Network architecture of the projection stage. A convolutional unit consist of two convolutional layers of which
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fully connected layer (purple) and an auxiliary input for the environmental parameters. A deconvolution unit
consist of a deconvolutional layer (teal) with filter stride 2 and a convolutional layer with stride 1. The last
layer is a single deconvolutional layer with sigmoid activation. Fully connected layer use tanh activation while
all remaining layer use leaky ReLu with 0.2 leakage.
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Nomenclature

h Base height of cloud (m)

hmin Minimum base height of cloud (m)

hmax Maximum base height of cloud (m)

h0 Surface height (m)

Dt Depth map to image at time step t

D′t Predicted depth map to image at time step t

Emse Mean squared error

Ermse Root mean squared error

FS Forecast skill

It Image frame at time t

I ′t Predicted image frame at time t

κ Cloud size scaling factor

LL2 L2 loss

Lpm Photo-metric loss

Lds Depth smoothness loss

NC Number of clouds in one frame

NI Number of simulated images

Ω Environmental parameters

∆ϕI Delta of image rotation angle

ϕsun Azimuth angle sun (◦)

ϕwind Azimuth angle wind (◦)

R Radius for cloud center placement from camera (m)

Rmax Maximum radius for cloud center placement (m)

Rmin Minimum radius for cloud center placement (m)

St Shadow map at time step t

S ′t Predicted shadow map at time step t

SSIM Structural similarity index

T Total number of time steps

∆t Nowcasting lead time steps

θsun Zenith angle sun (◦)

v0 Surface wind speed at surface height h0 (m/s)
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Abbreviations

2D two-dimensional

3D three-dimensional

Ac Altocumulus

As Altostratus

Cb Cumulunimbus

Cc Cirrocumulus

Ci Cirrus

CNN Convolutional neural network

Cs Cirrostratus

CSP Concentrated Solar Power

Cu Cumulus

DHI Diffuse Horizontal Irradiance

DNI Direct Normal Irradiance

e.g. exempli gratia

GHI Global Horizontal Irradiance

GHU Gradient Highway Unit

i.e. id est

LSTM Long Short-term Memory

NN Neural Network

Ns Nimbostratus

NWP Numerical Weather Prediction

PV Photovoltaic

RNN Recurrent Neural Network

Sc Stratocumulus

St Stratus

TSI Total Sky Imagery
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