Comparing HyperPCTL, HyperPCTL*, and PHL Bachelor's Thesis Final Talk

Georg Arapatsakos Supervision: Prof. Dr. Erika Ábrahám

LuFG Theory of Hybrid Systems

8th October 2024

naster@090e759

Outline

1 Markov Chains

2 HyperPCTL* vs. PHL

- HyperPCTL*
- PHL
- Comparison

3 HyperPCTL vs. PHL

- HyperPCTL
- PHL Syntax Recap
- Comparison

4 Conclusion

Outline

1 Markov Chains

2 HyperPCTL^{*} vs. PHL

- HyperPCTL*
- PHL
- Comparison

3 HyperPCTL vs. PHL

- HyperPCTL
- PHL Syntax Recap
- Comparison

4 Conclusion

Comparing HyperPCTL, HyperPCTL*, and PHL

Definition

$$\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$$

Definition

- $\mathcal{D} = (S, s_i, p, \mathsf{AP}, l)$
 - S: set of states

Comparing HyperPCTL, HyperPCTL*, and PHL

Definition

- $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$
 - S: set of states
 - s_i : initial state

Comparing HyperPCTL, HyperPCTL*, and PHL

Definition

- $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0, 1]$: transition probability function

Definition

- $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0, 1]$: transition probability function
 - AP: set of atomic propositions

Definition

- $\mathcal{D} = \left(S, s_{\iota}, p, \mathsf{AP}, l\right)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0, 1]$: transition probability function
 - AP: set of atomic propositions
 - $l: S \rightarrow \mathscr{P}(AP)$ a labelling function

Definition

- $\mathcal{D} = \left(S, s_{\iota}, p, \mathsf{AP}, l\right)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0, 1]$: transition probability function
 - AP: set of atomic propositions
 - $l: S \rightarrow \mathscr{P}(AP)$ a labelling function

Definition

- $\mathcal{D} = \left(S, s_{\iota}, p, \mathsf{AP}, l\right)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0, 1]$: transition probability function
 - AP: set of atomic propositions
 - $l: S \rightarrow \mathscr{P}(AP)$ a labelling function

Definition

- $\mathcal{D} = \left(S, s_{\iota}, p, \mathsf{AP}, l\right)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0,1]$: transition probability function
 - AP: set of atomic propositions
 - $l: S \rightarrow \mathscr{P}(AP)$ a labelling function

Definition

- $\mathcal{D} = (S, s_\iota, p, \mathsf{AP}, l)$
 - S: set of states
 - s_i : initial state
 - $p: S^2 \rightarrow [0, 1]$: transition probability function
 - AP: set of atomic propositions
 - $l: S \rightarrow \mathscr{P}(AP)$ a labelling function

$$\sum_{t\in S} p(s,t) = 1, \quad \forall s \in S$$

For all $s \in S$, the function p_s , defined by $p_s(t) := p(s, t)$, is a probability distribution.

65 / F master@090e759

G. Arapatsakos (THS)

Outline

1 Markov Chains

2 HyperPCTL* vs. PHL

- HyperPCTL*
- PHL
- Comparison

3 HyperPCTL vs. PHL

- HyperPCTL
- PHL Syntax Recap
- Comparison

4 Conclusion

HyperPCTL* Syntax

Syntax

Path Formulae

$$\varphi ::= \varphi \land \varphi \ \big| \ \neg \varphi \ \big| \ a_{\hat{\pi}} \ \big| \ \vartheta \ \big| \ \rho < \rho \ \big| \ \mathsf{true}$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

HyperPCTL* Syntax

Syntax

Path Formulae

$$\varphi ::= \varphi \land \varphi \ \big| \ \neg \varphi \ \big| \ a_{\hat{\pi}} \ \big| \ \vartheta \ \big| \ \rho < \rho \ \big| \ \mathsf{true}$$

Probabilistic Expressions

$$\rho ::= \mathbb{P}_{\overline{\kappa}}(\varphi) \mid f \overline{\rho}$$

-

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

HyperPCTL* Syntax

Syntax

Path Formulae

$$\varphi ::= \varphi \land \varphi \ \big| \ \neg \varphi \ \big| \ a_{\hat{\pi}} \ \big| \ \vartheta \ \big| \ \rho < \rho \ \big| \ \mathsf{true}$$

Probabilistic Expressions

$$\rho \coloneqq \mathbb{P}_{\overline{\kappa}}(\varphi) \mid f \overline{\rho}$$

Path Expressions

$$\vartheta ::= \bigcirc \varphi \ \big| \ \varphi \cup \varphi \ \big| \ \varphi \cup^{\leq k} \varphi$$

-

G. Arapatsakos (THS)

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

$$\mathbb{P}_{\hat{\pi}_{1}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{1}}\cup\left(\mathbb{P}_{\hat{\pi}_{2}\leftarrow\hat{\pi}_{1},\hat{\pi}_{3}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{2}}\cup\bullet_{\hat{\pi}_{3}}\right)>c_{1}\right)\right)>c_{2}$$

Comparing HyperPCTL, HyperPCTL*, and PHL

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

$$\mathbb{P}_{\hat{\pi}_{1}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{1}}\cup\left(\mathbb{P}_{\hat{\pi}_{2}\leftarrow\hat{\pi}_{1},\hat{\pi}_{3}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{2}}\cup\bullet_{\hat{\pi}_{3}}\right)>c_{1}\right)\right)>c_{2}$$

 \rightarrow

Comparing HyperPCTL, HyperPCTL*, and PHL

 $\mathcal{D} = (S, s_l, p, \mathsf{AP}, l)$

$$\mathbb{P}_{\hat{\pi}_{1}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{1}}\cup\left(\mathbb{P}_{\hat{\pi}_{2}\leftarrow\hat{\pi}_{1},\hat{\pi}_{3}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{2}}\cup\bullet_{\hat{\pi}_{3}}\right)>c_{1}\right)\right)>c_{2}$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

 $\mathcal{D} = (S, s_l, p, \mathsf{AP}, l)$

$$\mathbb{P}_{\hat{\pi}_{1}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{1}}\cup\left(\mathbb{P}_{\hat{\pi}_{2}\leftarrow\hat{\pi}_{1},\hat{\pi}_{3}\leftarrow\varepsilon}\left(\bullet_{\hat{\pi}_{2}}\cup\bullet_{\hat{\pi}_{3}}\right)>c_{1}\right)\right)>c_{2}$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

 $\mathcal{D} = (S, s_l, p, \mathsf{AP}, l)$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

 $\mathcal{D} = (S, s_l, p, \mathsf{AP}, l)$

G. Arapatsakos (THS)

 $\mathcal{D} = (S, s_l, p, \mathsf{AP}, l)$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

65 / L master@090e759

Syntax

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \ \big| \ \neg \varphi \ \big| \ \rho < \rho \ \big| \ \vartheta$$

Syntax

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho \mid \vartheta$$

Probabistic Expressions & Unmarked LTL

$$\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$$
$$\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$$

Comparing HyperPCTL, HyperPCTL*, and PHL

Syntax

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho \mid \vartheta$$

Probabistic Expressions & Unmarked LTL

$$\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$$
$$\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$$

Comparing HyperPCTL, HyperPCTL*, and PHL

Syntax

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho \mid \vartheta$$

Probabistic Expressions & Unmarked LTL

$$\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$$
$$\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$$

HyperCTL*

$$\vartheta \coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \mid \forall \hat{\pi}. \vartheta$$

Taking out all ϑ rules from PHL, we are left with

Top-Level Formulae $\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$ Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

Taking out all ϑ rules from PHL, we are left with

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

This fragment fits entirely into HyperPCTL* – but not the other way around.

Taking out all ϑ rules from PHL, we are left with

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL

$$\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$$
$$\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$$

This fragment fits entirely into HyperPCTL* – but not the other way around. To transform to HyperPCTL*, simply

Take over the original formula.

Taking out all ϑ rules from PHL, we are left with

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL

$$\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$$
$$\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$$

This fragment fits entirely into HyperPCTL^{*} – but not the other way around. To transform to HyperPCTL^{*}, simply

- Take over the original formula.
- Map each atomic a to $a_{\hat{\pi}}$.

Taking out all ϑ rules from PHL, we are left with

Top-Level Formulae

$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL

$$\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$$
$$\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$$

This fragment fits entirely into HyperPCTL^{*} – but not the other way around. To transform to HyperPCTL^{*}, simply

- Take over the original formula.
- Map each atomic a to $a_{\hat{\pi}}$.
- Map \mathbb{P} to $\mathbb{P}_{\hat{\pi}\leftarrow\varepsilon}$

Theorem

There is no PHL probabilistic expression that evaluates equivalently to $\mathbb{P}_{\hat{\pi}_1,\hat{\pi}_2}(a_{\hat{\pi}_1} \cup b_{\hat{\pi}_2})$ on DTMCs.

Theorem

There is no PHL probabilistic expression that evaluates equivalently to $\mathbb{P}_{\hat{\pi}_1,\hat{\pi}_2}(a_{\hat{\pi}_1} \cup b_{\hat{\pi}_2})$ on DTMCs.

Proof sketch:

In PHL, prob. measures can only be taken over LTL formulae, and $\rho \cdot \rho$ is illegal.

Theorem

There is no PHL probabilistic expression that evaluates equivalently to $\mathbb{P}_{\hat{\pi}_1,\hat{\pi}_2}(a_{\hat{\pi}_1} \cup b_{\hat{\pi}_2})$ on DTMCs.

Proof sketch:

- In PHL, prob. measures can only be taken over LTL formulae, and $\rho \cdot \rho$ is illegal.
- Words over traces recognised by LTL formulae are ω -regular.
Comparison: HyperPCTL* vs. PHL HyperCTL*-less PHL

Theorem

There is no PHL probabilistic expression that evaluates equivalently to $\mathbb{P}_{\hat{\pi}_1,\hat{\pi}_2}(a_{\hat{\pi}_1} \cup b_{\hat{\pi}_2})$ on DTMCs.

Proof sketch:

- In PHL, prob. measures can only be taken over LTL formulae, and $\rho \cdot \rho$ is illegal.
- Words over traces recognised by LTL formulae are ω -regular.
- Build family of DTMCs

Comparison: HyperPCTL* vs. PHL HyperCTL*-less PHL

 $\begin{array}{l} \mathsf{HyperCTL}^{*} \\ \vartheta ::= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \mid \vartheta \cup \vartheta \mid \forall \hat{\pi}. \vartheta \end{array}$

Comparing HyperPCTL, HyperPCTL*, and PHL

$\vartheta ::= a_{\hat{\pi}}$	true	$\vartheta \land \vartheta \mid \neg \vartheta \mid ($	$\supset \vartheta \mid \vartheta \cup \vartheta$
	$\forall \hat{\pi}. \vartheta$	(HyperCT	L*)

What does not work:

 $\forall \hat{\pi}. \Diamond a_{\hat{\pi}} \vDash \mathbb{P}(\Diamond a) = 1 \quad \text{but} \quad \mathbb{P}(\Diamond a) = 1 \nvDash \forall \hat{\pi}. \Diamond a_{\hat{\pi}}$

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

What does not work:

$$\forall \hat{\pi}. \Diamond \bullet_{\hat{\pi}} \vDash \mathbb{P}(\Diamond \bullet) = 1 \quad \text{but} \quad \mathbb{P}(\Diamond \bullet) = 1 \nvDash \forall \hat{\pi}. \Diamond \bullet_{\hat{\pi}}$$

Why does it not work?

Comparing HyperPCTL, HyperPCTL*, and PHL

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \quad (\mathsf{HyperCTL}^*) \end{split}$$

What does not work:

$$\forall \hat{\pi}. \diamondsuit \bullet_{\hat{\pi}} \vDash \mathbb{P}(\diamondsuit \bullet) = 1 \quad \text{but} \quad \mathbb{P}(\diamondsuit \bullet) = 1 \nvDash \forall \hat{\pi}. \diamondsuit \bullet_{\hat{\pi}}$$

Why does it not work?

 $\forall \hat{\pi} . \Diamond \bullet_{\hat{\pi}}$ is a divergent property.

Cylinder Sets, Measures, and Divergence

A path prefix is a **finite** initial segment of an infinite path.

Cylinder Sets, Measures, and Divergence

A path prefix is a **finite** initial segment of an infinite path. The cylinder set of a path prefix is the set of all **infinite** continuations of the prefix.

Cylinder Sets, Measures, and Divergence

A path prefix is a **finite** initial segment of an infinite path. The cylinder set of a path prefix is the set of all **infinite** continuations of the prefix. The probability measure of a cylinder set is always **nonzero**:

$$\Pr\left(\mathsf{Cyl}(s_0...s_n)\right) = \prod_{i < n} p(s_i, s_{i+1})$$

Cylinder Sets, Measures, and Divergence

A path prefix is a **finite** initial segment of an infinite path. The cylinder set of a path prefix is the set of all **infinite** continuations of the prefix. The probability measure of a cylinder set is always **nonzero**:

$$\Pr\left(\mathsf{Cyl}(s_0...s_n)\right) = \prod_{i < n} p(s_i, s_{i+1})$$

Idea: Isolate properties that can be consistently checked against path prefixes, since counterexamples are probabilistically 'detectable' \implies nondivergent properties.

Cylinder Sets, Measures, and Divergence

Definition

A property *P* is called **non-divergent** iff to each DTMC \mathcal{D} and path π on \mathcal{D} with

$$\mathcal{D}, \pi \vDash P$$

there exists a finite prefix $\pi_{\text{PRE}} \subseteq \pi$ with

 $\mathcal{D}, \pi' \vDash P$,

for all $\pi' \in Cyl(\pi_{PRE})$.

Identifying a non-divergent fragment of HyperCTL*

$$\begin{split} \vartheta &\coloneqq= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

• Only existential formulae $(\exists \hat{\pi}.\vartheta \coloneqq \neg \forall \hat{\pi}.\neg \vartheta)$

Identifying a non-divergent fragment of HyperCTL*

$\vartheta ::= a_{\hat{\pi}}$	true	$\vartheta \wedge \vartheta \bigm \neg \vartheta \Bigg \bigcirc \vartheta \Bigg \vartheta \cup \vartheta$
	$\forall \hat{\pi}. \vartheta$	$(HyperCTL^*)$

• Only existential formulae $(\exists \hat{\pi}. \vartheta := \neg \forall \hat{\pi}. \neg \vartheta)$

Path-positive: Only strictly propositional subformulae can be negated:

Identifying a non-divergent fragment of HyperCTL*

$$\begin{split} \vartheta &\coloneqq= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

- Only existential formulae $(\exists \hat{\pi}.\vartheta \coloneqq \neg \forall \hat{\pi}.\neg \vartheta)$
- Path-positive: Only strictly propositional subformulae can be negated:

Identifying a non-divergent fragment of HyperCTL*

$$\begin{split} \vartheta &\coloneqq= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

- Only existential formulae $(\exists \hat{\pi}.\vartheta \coloneqq \neg \forall \hat{\pi}.\neg \vartheta)$
- Path-positive: Only strictly propositional subformulae can be negated:

Identifying a non-divergent fragment of HyperCTL*

$$\begin{split} \vartheta &\coloneqq= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

- Only existential formulae $(\exists \hat{\pi}.\vartheta \coloneqq \neg \forall \hat{\pi}.\neg \vartheta)$
- Path-positive: Only strictly propositional subformulae can be negated:

• Negation of \bigcirc implicitly allowed via $\neg \bigcirc a \equiv \bigcirc \neg a$.

Identifying a non-divergent fragment of HyperCTL*

$\vartheta ::= a_{\hat{\pi}}$	true	$\vartheta \wedge \vartheta \ \Big \ \neg \vartheta \ \Big \ \bigcirc \vartheta \ \Big \ \vartheta \cup \vartheta$
	$\forall \hat{\pi}. \vartheta$	$(HyperCTL^*)$

- Only existential formulae $(\exists \hat{\pi}.\vartheta \coloneqq \neg \forall \hat{\pi}.\neg \vartheta)$
- Path-positive: Only strictly propositional subformulae can be negated:

- Negation of \bigcirc implicitly allowed via $\neg \bigcirc a \equiv \bigcirc \neg a$.
- \sim the recursively-existential path-positive fragment of HyperCTL^{*}: [$\downarrow \exists^* | \pi^+$]

Rec.-exist. path-positive HyperCTL* to HyperPCTL*

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Theorem

 $[\downarrow \exists^* | \pi^+]$ -HyperCTL^{*} \leq HyperPCTL^{*}

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. path-positive HyperCTL* to HyperPCTL*

$$\begin{split} \vartheta &\coloneqq= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Proof: Nondivergence & Explicit transformation:

- Map ' $\exists \hat{\pi}$' to ' $\mathbb{P}_{\hat{\pi} \leftarrow \mathsf{last}}(...) > \mathsf{o}$ ' recursively.
- Take over all other syntactic elements.

Rec.-exist. path-positive HyperCTL* to HyperPCTL*

$$\exists \hat{\pi}_1. \ \exists \hat{\pi}_2. \ \left(\exists \hat{\pi}_3. \ \Diamond \bullet_{\hat{\pi}_3} \right) \cup \bullet_{\hat{\pi}_1} \cup \Diamond \bullet_{\hat{\pi}_2}$$

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. path-positive HyperCTL* to HyperPCTL*

$$\exists \hat{\pi}_{1}. \exists \hat{\pi}_{2}. (\exists \hat{\pi}_{3}. \Diamond \bullet_{\hat{\pi}_{3}}) \cup \bullet_{\hat{\pi}_{1}} \cup \Diamond \bullet_{\hat{\pi}_{2}} \downarrow$$
$$\downarrow$$
$$\mathbb{P}_{\hat{\pi}_{1} \leftarrow \varepsilon, \hat{\pi}_{2} \leftarrow \varepsilon} () > c$$

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. path-positive HyperCTL* to HyperPCTL*

$$\exists \hat{\pi}_{1}. \exists \hat{\pi}_{2}. (\exists \hat{\pi}_{3}. \Diamond \bullet_{\hat{\pi}_{3}}) \cup \bullet_{\hat{\pi}_{1}} \cup \Diamond \bullet_{\hat{\pi}_{2}} \\ \downarrow \\ \mathbb{P}_{\hat{\pi}_{1} \leftarrow \varepsilon, \hat{\pi}_{2} \leftarrow \varepsilon} () > o)) > o \\ \downarrow \\ \mathbb{P}_{\hat{\pi}_{1} \leftarrow \varepsilon, \hat{\pi}_{2} \leftarrow \varepsilon} ((\mathbb{P}_{\hat{\pi}_{3} \leftarrow \hat{\pi}_{2}} () > o))) > o$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. path-positive HyperCTL* to HyperPCTL*

G. Arapatsakos (THS)

Outline

1 Markov Chains

2 HyperPCTL^{*} vs. PHL

- HyperPCTL*
- PHL
- Comparison

3 HyperPCTL vs. PHL

- HyperPCTL
- PHL Syntax Recap
- Comparison

4 Conclusion

HyperPCTL Syntax

Syntax

State Formulae

$$\varphi ::= \forall \hat{s}. \varphi \ \big| \ \exists \hat{s}. \varphi \ \big| \ \varphi \land \varphi \ \big| \ \neg \varphi \ \big| \ \mathsf{true} \ \big| \ a_{\hat{s}} \ \big| \ \rho < \rho$$

HyperPCTL Syntax

Syntax

State Formulae

$$\varphi ::= \forall \hat{s}. \varphi \mid \exists \hat{s}. \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid \mathsf{true} \mid a_{\hat{s}} \mid \rho < \rho$$

Probabilistic Expressions

$$\rho ::= \mathbb{P}(\vartheta) \mid \rho + \rho \mid \rho \cdot \rho \mid c$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

HyperPCTL Syntax

Syntax

State Formulae

$$\varphi ::= \forall \hat{s}. \varphi \mid \exists \hat{s}. \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid \mathsf{true} \mid a_{\hat{s}} \mid \rho < \rho$$

Probabilistic Expressions

$$\rho ::= \mathbb{P}(\vartheta) \mid \rho + \rho \mid \rho \cdot \rho \mid c$$

Path Formulae

$$\vartheta ::= \bigcirc \varphi \mid \varphi \cup \varphi \mid \varphi \cup [k_1, k_2] \varphi$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

PHL Syntax Recap

Definition for Markov Chains

Syntax Top-Level Formulae $\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho \mid \vartheta$ Probabistic Expressions & Unmarked LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$ HyperCTL* $\vartheta ::= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \mid \forall \hat{\pi}. \vartheta$

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in HyperPCTL$

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in \mathsf{HyperPCTL}$

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in HyperPCTL$

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in \mathsf{HyperPCTL}$

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in HyperPCTL$

Problem:

 \sim PHL can only reference reachable states from the initial one.

Incompatibilities

 $\mathcal{D} = (S, s_{\iota}, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in HyperPCTL$

Problems:

- \sim PHL can only reference reachable states from the initial one.
- \sim HyperPCTL has no way of selecting s_i .

Incompatibilities

 $\mathcal{D} = (S, s_\iota, p, \mathsf{AP}, l)$

PHL relies on the presence of an initial state, HyperPCTL does not.

Example: $\exists \hat{s}_1$. $\exists \hat{s}_2$. $\bullet_{\hat{s}_1} \land \bullet_{\hat{s}_2} \in \mathsf{HyperPCTL}$

Problems:

- $\rightsquigarrow\,$ PHL can only reference reachable states from the initial one.
- \sim HyperPCTL has no way of selecting s_i .

Partial solution: Assume s_i is uniquely marked with init.

G. Arapatsakos (THS)
HyperCTL*-less PHL to HyperPCTL

Top-Level Formulae
$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

HyperCTL*-less PHL to HyperPCTL

Top-Level Formulae $\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

What part of this can be embedded into HyperPCTL?

Comparing HyperPCTL, HyperPCTL*, and PHL

HyperCTL*-less PHL to HyperPCTL

Top-Level Formulae $\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

What part of this can be embedded into HyperPCTL?

The 'syntactically compatible' part

HyperCTL*-less PHL to HyperPCTL

Top-Level Formulae
$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

What part of this can be embedded into HyperPCTL?

- The 'syntactically compatible' part
 - Restrict to shallow LTL expressions: take either
 Or U and drop to PL directly afterwards.

HyperCTL*-less PHL to HyperPCTL

Top-Level Formulae
$$\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

What part of this can be embedded into HyperPCTL?

- The 'syntactically compatible' part
 - Restrict to shallow LTL expressions: take either or U and drop to PL directly afterwards.
 - Allow $\bigcirc^k \eta$, as it can be emulated via true $U^{[k,k]} \eta$.

HyperCTL*-less PHL to HyperPCTL

Top-Level Formulae $\varphi ::= \varphi \land \varphi \mid \neg \varphi \mid \rho < \rho$

Probabilistic Expressions & LTL $\rho ::= \mathbb{P}(\eta) \mid \rho + \rho \mid c \cdot \rho \mid c$ $\eta ::= a \mid \text{true} \mid \eta \land \eta \mid \neg \eta \mid \bigcirc \eta \mid \eta \cup \eta$

What part of this can be embedded into HyperPCTL?

- The 'syntactically compatible' part
 - Restrict to shallow LTL expressions: take either) or U and drop to PL directly afterwards.
 - Allow $\bigcirc^k \eta$, as it can be emulated via true $U^{[k,k]} \eta$.
- Special cases
 - $\blacksquare \mathbb{P}(\Diamond \Box \eta) \sim c.$
 - $\blacksquare \mathbb{P}(\Box \Diamond \eta) \sim c.$

$\vartheta ::= a_{\hat{\pi}}$	true	$ \vartheta \wedge \vartheta \neg \vartheta \bigcirc \vartheta \vartheta \cup \vartheta$
	$\forall \hat{\pi}. \vartheta$	$(HyperCTL^*)$

First, carry over what we can from HyperPCTL* vs. PHL.

Recursively-existential path-positive HyperCTL* fits into HyperPCTL*.

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

First, carry over what we can from HyperPCTL* vs. PHL.

- Recursively-existential path-positive HyperCTL* fits into HyperPCTL*.
- Modification:
 - HyperPCTL quantifies over states, has no intrinsics to continue paths where previously drawn ones start ~ restrict HyperCTL* to PNF.

$$\begin{split} \vartheta &\coloneqq= a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

First, carry over what we can from HyperPCTL* vs. PHL.

- Recursively-existential path-positive HyperCTL* fits into HyperPCTL*.
- Modifications:
 - HyperPCTL quantifies over states, has no intrinsics to continue paths where previously drawn ones start ~ restrict HyperCTL* to PNF.
 - HyperPCTL cannot directly nest U and $\bigcirc \rightsquigarrow$ restrict HyperCTL^{*} to shallow LTL.

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

First, carry over what we can from HyperPCTL* vs. PHL.

- Recursively-existential path-positive HyperCTL* fits into HyperPCTL*.
- Modifications:
 - HyperPCTL quantifies over states, has no intrinsics to continue paths where previously drawn ones start ~ restrict HyperCTL* to PNF.
 - HyperPCTL cannot directly nest U and $\bigcirc \rightsquigarrow$ restrict HyperCTL^{*} to shallow LTL.
- \sim PNF-existential LTL-shallow HyperCTL*: [$\exists^*|LTL^s$]

PNF-existential LTL-shallow HyperCTL* to HyperPCTL

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Theorem

 $[\exists^*|LTL^s]$ -HyperCTL* \leq HyperPCTL

Comparing HyperPCTL, HyperPCTL*, and PHL

PNF-existential LTL-shallow HyperCTL* to HyperPCTL

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Proof: Nondivergence & Explicit transformation:

PNF-existential LTL-shallow HyperCTL* to HyperPCTL

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Proof: Nondivergence & Explicit transformation:

• Map $\exists \hat{\pi}_{o} \cdots \exists \hat{\pi}_{n} \ldots$ to $\exists \hat{s}_{o} \cdots \exists \hat{s}_{n} \land \wedge_{i \leq n} \operatorname{init}_{\hat{s}_{i}} \land \mathbb{P}(\ldots) > o'$.

PNF-existential LTL-shallow HyperCTL* to HyperPCTL

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Proof: Nondivergence & Explicit transformation:

- Map $\exists \hat{\pi}_{o} \cdots \exists \hat{\pi}_{n} \ldots$ to $\exists \hat{s}_{o} \cdots \exists \hat{s}_{n} \land \wedge_{i \leq n} \operatorname{init}_{\hat{s}_{i}} \land \mathbb{P}(\ldots) > o'$.
- Map $a_{\hat{\pi}_i}$ to $a_{\hat{s}_i}$.

PNF-existential LTL-shallow HyperCTL* to HyperPCTL

$$\begin{split} \vartheta &\coloneqq a_{\hat{\pi}} \mid \mathsf{true} \mid \vartheta \land \vartheta \mid \neg \vartheta \mid \bigcirc \vartheta \mid \vartheta \cup \vartheta \\ \mid \forall \hat{\pi}. \vartheta \qquad (\mathsf{HyperCTL}^*) \end{split}$$

Proof: Nondivergence & Explicit transformation:

- Map $\exists \hat{\pi}_{o} \cdots \exists \hat{\pi}_{n} \ldots$ to $\exists \hat{s}_{o} \cdots \exists \hat{s}_{n} \land \wedge_{i \leq n} \operatorname{init}_{\hat{s}_{i}} \land \mathbb{P}(\ldots) > o'$.
- Map $a_{\hat{\pi}_i}$ to $a_{\hat{s}_i}$.
- Take over all other syntactic elements.

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

Conjecture

 $[\downarrow \exists^* | LTL^s]$ -HyperCTL* \leq HyperPCTL

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

Conjecture

 $[\downarrow \exists^* | LTL^s]$ -HyperCTL* \leq HyperPCTL

Idea: Bind the behaviour of each path variable to that of the one that comes before it.

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_3}).$

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_3}).$

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_3}).$ $a_{\hat{\pi}_3}$ $a_{\hat{\pi}_2}$ $\exists \hat{\pi}_1. \longrightarrow \cup$ $\exists \hat{\pi}_2. \longrightarrow \cup$ $\exists \hat{\pi}_3. \longrightarrow \Diamond \longrightarrow c_{\hat{\pi}_3}$

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL* to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_3}).$ $\exists \hat{\pi}_1. \longrightarrow \cup$ $\exists \hat{\pi}_1. \longrightarrow \cup$ $\exists \hat{\pi}_2. \longrightarrow \cup$ $\exists \hat{\pi}_3. \longrightarrow \Diamond$ $a_{\hat{\pi}_2}$ $b_{\hat{\pi}_3}$ $b_{\hat{\pi}_2}$

$$\exists \hat{\pi}_{1}. \ (a_{\hat{\pi}_{1}} \land a_{\hat{\pi}_{2}} \land a_{\hat{\pi}_{3}}) \cup \exists \hat{\pi}_{2}. \ ((b_{\hat{\pi}_{2}} \land b_{\hat{\pi}_{3}}) \cup \exists \hat{\pi}_{3}. \ \Diamond c_{\hat{\pi}_{3}})$$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL^{*} to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_2}).$ $a_{\hat{\pi}_2}$ $a_{\hat{\pi}_2}$ $b_{\hat{\pi}_3}$ Λ $\exists \hat{\pi}$. $a_{\hat{\pi}}$ Λ $\exists \hat{\pi}_{2}$ $b_{\hat{\pi}}$ $\exists \hat{\pi}_{2}$ $\mathbb{P}\left(\left(a_{\hat{\pi}_{1}}\wedge a_{\hat{\pi}_{2}}\wedge a_{\hat{\pi}_{3}}\right)\cup \exists \hat{\pi}_{2}.\left(\left(b_{\hat{\pi}_{2}}\wedge b_{\hat{\pi}_{3}}\right)\cup \exists \hat{\pi}_{3}.\Diamond c_{\hat{\pi}_{3}}\right)\right) > \mathsf{o}$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL^{*} to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_2}).$ $a_{\hat{\pi}_2}$ $a_{\hat{\pi}_2}$ $b_{\hat{\pi}_3}$ Λ $\exists \hat{\pi}$. $a_{\hat{\pi}}$ Λ $\exists \hat{\pi}_{2}$ $b_{\hat{\pi}}$ $\exists \hat{\pi}_{2}$ $\mathbb{P}\left(\left(a_{\hat{\pi}_{1}} \wedge a_{\hat{\pi}_{2}} \wedge a_{\hat{\pi}_{3}}\right) \cup \mathbb{P}\left(\left(b_{\hat{\pi}_{2}} \wedge b_{\hat{\pi}_{3}}\right) \cup \exists \hat{\pi}_{3}. \Diamond c_{\hat{\pi}_{3}}\right) > o\right) > o$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL^{*} to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_3}).$ $a_{\hat{\pi}_2}$ Λ $a_{\hat{\pi}_2}$ $b_{\hat{\pi}_3}$ Λ $\exists \hat{\pi}_1$. $a_{\hat{\pi}_1}$ \wedge L $\exists \hat{\pi}_2$. $b_{\hat{\pi}_{\alpha}}$ $\exists \hat{\pi}_{2}$. $C_{\hat{\pi}_2}$

$$\mathbb{P}\left(\left(a_{\hat{\pi}_{1}} \wedge a_{\hat{\pi}_{2}} \wedge a_{\hat{\pi}_{3}}\right) \cup \mathbb{P}\left(\left(b_{\hat{\pi}_{2}} \wedge b_{\hat{\pi}_{3}}\right) \cup \mathbb{P}\left(\Diamond c_{\hat{\pi}_{3}}\right) > o\right) > o\right) > o\right)$$

Rec.-exist. LTL-shallow HyperCTL^{*} to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_2}).$ $a_{\hat{\pi}_2}$ $a_{\hat{\pi}_2}$ $b_{\hat{\pi}_3}$ Λ $\exists \hat{\pi}$. $a_{\hat{\pi}}$ Λ $\exists \hat{\pi}_{2}$ $b_{\hat{\pi}}$ $\exists \hat{\pi}_{2}$ $\mathbb{P}\left(\left(a_{\hat{s}_{1}} \wedge a_{\hat{s}_{2}} \wedge a_{\hat{s}_{3}}\right) \cup \mathbb{P}\left(\left(b_{\hat{s}_{2}} \wedge b_{\hat{s}_{3}}\right) \cup \mathbb{P}\left(\Diamond c_{\hat{s}_{3}}\right) > o\right) > o\right) > o$

G. Arapatsakos (THS)

Comparing HyperPCTL, HyperPCTL*, and PHL

Rec.-exist. LTL-shallow HyperCTL^{*} to HyperPCTL

Example: $\exists \hat{\pi}_1. a_{\hat{\pi}_1} \cup \exists \hat{\pi}_2. (b_{\hat{\pi}_2} \cup \exists \hat{\pi}_3. \Diamond c_{\hat{\pi}_2}).$ $a_{\hat{\pi}_2}$ $a_{\hat{\pi}_2}$ $b_{\hat{\pi}_2}$ $\exists \hat{\pi}$ $a_{\hat{\pi}}$ ∃Â₂ $\exists \hat{\pi}_{2}$ $\exists \hat{s}_1. \exists \hat{s}_2. \exists \hat{s}_3. \wedge_{1 \leq i \leq 3} \operatorname{init}_{\hat{s}_i} \wedge \mathbb{P}\left((a_{\hat{s}_1} \wedge a_{\hat{s}_2} \wedge a_{\hat{s}_3}) \cup \mathbb{P}\left((b_{\hat{s}_2} \wedge b_{\hat{s}_3}) \cup \mathbb{P}(\Diamond c_{\hat{s}_3}) > o \right) > o \right) > o$

G. Arapatsakos (THS)

Outline

1 Markov Chains

2 HyperPCTL^{*} vs. PHL

- HyperPCTL*
- PHL
- Comparison

3 HyperPCTL vs. PHL

- HyperPCTL
- PHL Syntax Recap
- Comparison

4 Conclusion

HyperPCTL* vs. PHL.

HyperPCTL* vs. PHL.

• $PHL^{no\vartheta} \prec HyperPCTL^*$.

HyperPCTL* vs. PHL.

- $PHL^{no\vartheta} \prec HyperPCTL^*$.
 - PHL^{no9} \neq HyperPCTL^{*}.

HyperPCTL* vs. PHL.

- PHL^{noθ} < HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL*. PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL* vs. PHL.

- PHL^{noθ} < HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

- Incompatibilities.
 - Initial states.
 - Nested paths.

HyperPCTL* vs. PHL.

- PHL^{noθ} < HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.

HyperPCTL* vs. PHL.

- PHL^{noθ} < HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
HyperPCTL* vs. PHL.

- PHL^{noθ} < HyperPCTL^{*}. PHL^{noθ} ≱ HyperPCTL^{*}.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

HyperPCTL* vs. PHL.

- $PHL^{no\vartheta} \prec HyperPCTL^*$. $PHL^{no\vartheta} \neq HyperPCTL^*$.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

Also covered in the thesis:

Details of the downscaled PHL.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

- Details of the downscaled PHL.
- Reverse directions.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL^{*}. PHL^{noθ} ≱ HyperPCTL^{*}.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

- Details of the downscaled PHL.
- Reverse directions.
- Path-positiveness (π⁺) cannot be lifted.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL^{*}.
 PHL^{noθ} ≱ HyperPCTL^{*}.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

- Details of the downscaled PHL.
- Reverse directions.
- Path-positiveness (π⁺) cannot be lifted.
- Excursus on HyperPCTL and HyperPCTL*.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL^{*}.
 PHL^{noθ} ≱ HyperPCTL^{*}.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

- Details of the downscaled PHL.
- Reverse directions.
- Path-positiveness (π⁺) cannot be lifted.
- Excursus on HyperPCTL and HyperPCTL^{*}.
- Upscaling results for MDPs.

HyperPCTL* vs. PHL.

- PHL^{noθ} ≺ HyperPCTL*.
 PHL^{noθ} ≱ HyperPCTL*.
- $[\downarrow \exists^* | \pi^+]$ -HyperCTL* < HyperPCTL*.

HyperPCTL vs. PHL.

- Incompatibilities.
 - Initial states.
 - Nested paths.
- $[LTL^{s}]$ -PHL^{no ϑ} < HyperPCTL.
- $[\exists^*|LTL^s]$ -HyperCTL* < HyperPCTL.
- $[\downarrow \exists^* | LTL^s]$ -HyperCTL* < HyperPCTL.

- Details of the downscaled PHL.
- Reverse directions.
- Path-positiveness (π⁺) cannot be lifted.
- Excursus on HyperPCTL and HyperPCTL*.
- Upscaling results for MDPs.
- Modifications to HyperPCTL*.