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What is this tutorial about?

Planning problem

-aAbVe

X2+ X \/6

What is satisfiability checking?
How does SMT solving work?

How to use it for planning?

—&@
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SMT solving

I Historical notes

1T SAT and SMT solving

III Some applications outside planning
SMT solving for planning

IV SMT and planning

\ Application: optimal planning with OMT

Concluding remarks
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SMT solving

I Historical notes
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The satisfiability problem

Propositional logic

Formula: (aV =b)AN(maV bV c)
Satisfying assignment: « = itrue, b = false, ¢ = true

It is perhaps the most well-known NP-complete problem [Cook, 1971].
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The satisfiability problem

Propositional logic
Formula: (aV =b)AN(maV bV c)
Satisfying assignment: « = itrue, b = false, ¢ = true

It is perhaps the most well-known NP-complete problem [Cook, 1971].

Non-linear real algebra (NRA)
Formula: x=2y>0vx2-2=0)Ax*y+2x?-4>0
Satisfying assignment: x= V2, y=2

There are some hard problem classes... non-linear integer arithmetic is
even undecidable.
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“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).” [zch, |
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Tool development (incomplete!)

SAT

.8 % <.
N A

o
o2
“We have success stories of using zChaff to solve problems w
than one million variables and 10 million clauses.

(Of course, it can’t solve every such problem!).” [zch, |

= & 2,
G T %

“The efficiency of our programs allowed us to solve over one hundred
open quasigroup problems in design theory.” [SATO webpage, ]
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Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m A wide range of applications, e.g., verification, synthesis,
combinatorial optimization, etc.
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Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m A wide range of applications, e.g., verification, synthesis,
combinatorial optimization, etc.

Community support:
m Standard input language.
m Large benchmark library.
m Competitions since 2002.
2017: 6 tracks, 28 solvers in the main track.

m SAT Live! forum as community platform, dedicated conferences,
journals, etc.
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An impression of the SAT solver development

CPU Time (in seconds)

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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SAT modulo theories

Google Scholar search for
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Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:
m Propositional logic is sometimes too weak for modeling.

B Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.
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Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:
m Propositional logic is sometimes too weak for modeling.

B Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.

Community support:
m SMT-LIB: standard input language since 2004.
m Large (~ 250.000) benchmark library.
m Competitions since 2005.
2017: 26 solvers in the main track.
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SMT-LIB logics

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Quantifier-free equality logic with uninterpreted functions
(a=cAb=d) — f(a,b) = f(c,d)
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Quantifier-free bit-vector arithmetic
(alb) < (a&b)
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Quantifier-free array theory
i =j — read(write(a,i,v),j) = v
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

x_y"’O, ~€ {<5S7:’Za>}
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

(Quantifier-free) real/integer linear arithmetic
3x+7y=28
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

(Quantifier-free) real/integer non-linear arithmetic
¥ +2xy+y2>0
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Combined theories
2f(x) +5y >0
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http://smtlib.cs.uiowa.edu/logics.shtml

SMT solving

1T SAT and SMT solving
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Strategic combinations of decision procedures
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Strategic combinations of decision procedures
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DPLL SAT solving with conflict-directed clause learning

Assumption: propositional logic formula in conjunctive normal form (CNF)

cir: (mavVv b A
o ( =b V =c A
c3 . ( -b V ¢ )/\
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration

-a V b A

(& (
o ( =b V =c A
st bV ¢ A / \
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

cir: (mavVv b A / —

o ( =b V =c A
1 0

ey ( -b vV ¢ A / \
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

ci: (lma Vv b A M
2 ( =b V =c A
Zj( -b Vv CC N /\
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

cir:(—a Vv b A
o ( =b V —c A
c3 . ( -b V ¢ )/\
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

cir:(—a Vv b A
o ( =b V —c A
c3 . ( -b V ¢ )/\
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Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)
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Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent, ... antecedent,
consequent

Rule_name
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Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent, ... antecedent,
consequent

Rule_name

(Liv...VIvy)y ([[V...VI, V-x)
hv..vVL VI v.. V)
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Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent, ... antecedent,
consequent

Rule_name

(Liv...VIvy)y ([[V...VI, V-x)

V. NV V) Ruleres

Ax. C,AC_,AC & Resolvents(C,,C_,)AC
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

cir:(—a Vv b A
o ( =b V —c A
c3 . ( -b V ¢ )/\
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

cir: (ma Vv b A
o ( =b V —c A
Cc3 ( -b V ¢ )/\

c3:(=bVve) cp:(=bV-c)
Cq4 . (—lb)

Resolution
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DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

ci: (ma Vv b A
o ( =b V —c A
c3: ( -b V ¢ )A
g ( —b N /

c3:(=bVve) cp:(=bV-c)
Cq4 . (—lb)

Resolution
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(Full/less) lazy SMT solving

(%2 quantifier-free FO formula
Boolean abstraction l

Tseitin’s transformation Y, o _ ,
¢’ propositional logic formula in CNF

@ SAT or UNSAT

SAT
theory constraints or  +lemmas

UNSAT
Theory solver(s)
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Less lazy SMT solving

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b )N ¢ VvV d )

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b )N ¢ VvV d )

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b )N ¢ VvV d )

—a

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b )N ¢ VvV d )

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b )N ¢ VvV d )

x>0, x>2

Theory solver(s)
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Less lazy SMT solving
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(a Vv b )N ¢ VvV d )

x>0, x>2 SAT

Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)
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(a Vv b )N ¢ VvV d )

x>0, x>2,2#1,x2<0

Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)
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(a Vv b )N ¢ VvV d )
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Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)
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(a VvV b)YA( ¢ VvV d YA

x>0, x>2,x>#1, x> <0 UNSAT: =(x* < 0)

Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA( ¢ VvV d YA

-d

Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA( ¢ VvV d YA

=d, ¢

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74



Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA( ¢ VvV d YA

=d, ¢

>0, x2=1

Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a vV b )IAN( ¢ VvV d YN
=d, ¢

23>0, x% =1 SAT

Theory solver(s)
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Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA( ¢ VvV d YA

-d, c, ...

>0, x2=1

Theory solver(s)
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Model constructing satisfiability calculus (MCSAT)

B-decision
B-propagation

B-conflict resolution
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Model constructing satisfiability calculus (MCSAT)

B-decision T-decision
B-propagation T-propagation

B-conflict resolution T-conflict resolution

E. Abraham, F. Leofante ICAPS'18 June 25, 2018



Optimization modulo theories (full lazy case)

@ + objective f
quantifier-free FO formula
Boolean abstraction
Tseitin’s transformation

’

©® propositional logic formula in CNF

@ (SAT + fiopr) OF UNSAT

SAT + popt: ¢ 1= @ Af ~ Uopt
theory constraints + f or
UNSAT + lemmas

Theory solver(s)
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Some theory solver candidates for arithmetic theories

Linear real arithmetic: Linear integer arithmetic:
m Simplex m Cutting planes, Gomory cuts
m Ellipsoid method m Branch-and-bound (incomplete)
m Fourier-Motzkin variable elimination m Bit-blasting (eager)

(mostly preprocessing) m Interval constraint propagation

Interval constraint propagation (incomplete)
(incomplete)

Non-linear real arithmetic: Non-linear integer arithmetic:

m Cylindrical algebraic decomposition m Generalised branch-and-bound

m Grdbner bases (incomplete)

(mostly preprocessing/simplification) m Bit-blasting (eager, incomplete)
m Virtual substitution (focus on low degrees) m Interval constraint propagation

. . . i |
m Interval constraint propagation (incomplete) (incomplete)
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Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?
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Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?

quantifier-free FO formula

Theory solvers should be SMT-compliant, i.e.,
they Sh0U|d Tseitin's lransiormalioni/

propositional logic formula in CNF

m work incrementally, @
SAT or UNSAT
m generate lemmas explaining

SAT

|ncons|stenc|e8, and theory constraints or  +lemmas

UNSAT
m be able to backtrack. \0/
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Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?

quantifier-free FO formula

Theory solvers should be SMT-compliant, i.e.,
they ShOU|d Tseitin's lransiormalioni/

propositional logic formula in CNF

@ SAT or UNSAT

m generate lemmas explaining -
|ncons|stenc|e8, and theory constraints or  +lemmas

UNSAT
m be able to backtrack. \0/

Originally, the mentioned methods are not SMT-compliant.

m work incrementally,

SMT-adaptations can be tricky, but can lead to beautiful novel algorithms.
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Satisfiability checking and symbolic computation

Bridging two communities to solve real problems

http://www.sc-square.org/CSA/welcome.html
sc?
Satisfiability Checking and Symbolic Computation

Bridging Two Communities to Solve Real Problems
Coordination and Support Activity

SUMMARY

This project is funded (subject to contract) as project H2020-FETOPN-2015-CSA_712689 of the European Union. It is the start of the
general push to create a real SC? community.

Background

The use of advanced methods to solve practical and industrially relevant problems by computers has a long history. Whereas Symbolic
Computation is concerned with the algorithmic determination of exact solutions to complex mathematical problems, more recent
developments in the area of Satisfiability Checking tackle similar problems but with different algorithmic and technological solutions. Though
both communities have made remarkable progress in the last decades, they still need to be strengthened to tackle practical problems of
rapidly increasing size and complexity. Their separate tools (computer algebra systems and SMT solvers) are urgently needed to examine
prevailing problems with a direct effect to our society. For example, Satisfiability Checking is an essential backend for assuring the security
and the safety of computer systems. In various scientific areas, Symbolic Computation enables dealing with large mathematical problems
out of reach of pencil and paper developments. Currently the two communities are largely disjoint and unaware of the achievements of each
other, despite strong reasons for them to discuss and collaborate, as they share many central interests. However, researchers from these two
communities rarely interact, and also their tools lack common, mutual interfaces for unifiying their strengths. Bridges between the
communities in the form of common platforms and roadmaps are necessary to initiate an exchange. and to support and to direct their
interaction. These are the main objectives of this CSA. We will initiate a wide range of activities to bring the two communities together,
identify common challenges, offer global events and bilateral visits, propose standards, and so on. We believe that these activities will
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Some popular SMT solvers (incomplete!)

AProVE (RWTH Aachen University, Germany) [Giesl et al., 2004]
CVC4 (New York and lowa, USA) [Deters et al., 2014]

MathSAT 5 (FBK, Italy) [Cimatti et al., 2013]

MiniSmt (University of Innsbruck, Austria) [zankl and Middeldorp, 2010]
Boolector (JKU, Austria) [Niemetz et al., 2014]

SMT-RAT (RWTH Aachen University, Germany) [Corzilius et al., 2012]
Z3 (NYU, Microsoft Research, USA) [de Moura and Bjgrner, 2008]
Yices 2 (SRI International, USA) [Dutertre, 2014]
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Our SMT-RAT library (corzilus etal., 2012, Gorzilus et al., 2015]

SMT solver
Strategic composition of SMT-RAT modules

AR

SMT real-algebraic toolbox
collection of solver modules

CArL
real-arithmetic
computations

gmp, Eigen3, boost

m MIT licensed source code: github.com/smtrat/smtrat
m Documentation: smtrat.github.io
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Strategic composition of solver modules in SMT-RAT

m Strategy: directed graph over modules with guarded edges

m Guard: may talk about the formula forwarded to backends

m Backend-calls: passed to all enabled successors — parallelism

Manager

Condition Condition

N

¥

Condition

¥

1,
Module

Module

Module

Module

E. Abraham, F. Leofante

ICAPS'18

June 25, 2018




SMT-RAT modules

Implements
m add(Formula)
m remove (Formula)
m check()
m updateModel )
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SMT-RAT modules

Implements check () may
m add(Formula) m forward (sub-)problems to
m remove (Formula) backend modules
m check() m return sat or unsat
m updateModel () m return a lemma or split

m return unknown
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Solver modules in SMT-RAT (corzilius et al., 2012, Corzilius et al., 2015]

\/ CArL library for basic arithmetic datatypes and computations [NFM'11, CAI'11, Sapientia’18] J

Basic modules

(SAT solver ) (CNF converter ) [Preprocessing/simplifying modules]

Non-algebraic decision procedures Bit-vectors Bit-blasting

(Equalities and uninterpreted functions | (Pseudo-Boolean formulas |

[Interval constraint propagation }

Algebraic decision procedures (Fourier-Motzkin variable elimination) (Simplex |

Subtropical satisfiability] (Grébner bases [CAI3] | [MCSAT (FM,VS,CAD) ]

Virtual substitution [FCT'11, SC*'17, PhD Corzilius] ]

[Cylindrical algebraic decomposition [CADE-24, SC*'17, PhD Loup, PhD Kremer]]

Generalized branch-and-bound [CASC'16] } [Cube tests ]
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SMT-RAT strategies

class myStrategy: public Manager {
myStrategy(): Manager() {
setStrategy(
addBackend<SATModule<SATSettings>>(
addBackend<CADModule<CADSettings>>()

H

} &)

b

nonlinear real

CAD
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SMT-RAT strategies
( Preprocessing )

(8AT)

nonlinear real

CAD
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SMT-RAT strategies

Bit-blasting

nonlinear real
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SMT-RAT strategies

Bit-blasting

nonlinear real

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74



SMT-RAT strategies

Bit-blasting

nonlinear real
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SMT-RAT strategies

Preprocessing

Bit-blasting

linear real

Simplex
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SMT-RAT strategies

Bit-blasting

linear integer linear real

CBranch and bound)

Simplex
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Building an SMT solver from SMT-RAT modules

El Download and build CArL & SMT-RAT
http://smtrat.github.io/carl/getting_started.html

Optionally: Extend it with custom modules and strategies

Select a strategy
$ cmake -D SMTRAT Strategy=CADOnly ../

Build SMT-RAT

$ make smtrat

H Run it
$ ./smtrat input.smt2
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SMT solving

III Some applications outside planning
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SMT applications

model checking
termination analysis
runtime verification

test case generation
controller synthesis
predicate abstraction
equivalence checking
scheduling

planning

deployment optimisation on the cloud
product design automation
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Embedding SAT/SMT solvers

Environment

Software

engine Solution

Probl b I_r(:)%lceeri SHIEAT
roblem P solver

specification
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Embedding SAT/SMT solvers

Environment

Software

engine Solution

Probl b Lr((j)?)llceeri SHIEAT
roblem P solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!
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Embedding SAT/SMT solvers

Environment

Software

engine Solution

g SAT/SMT
(Potlem }———  prodlem
solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax — free solver choice
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Embedding SAT/SMT solvers

Environment

Software

engine Solution

Probl b I_r(:)%lceeri SHIEAT
roblem P solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax — free solver choice

In the following: applications of SMT solvers
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Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software '

Aboiit CBMC

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/
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Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]
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AbJat CBMC Logical encoding of finite paths
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Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software T /
Logical encoding of finite paths
About CBMC 9 9 P
CBMC is a Bounded Model Checker for C and C++ programs. It

supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using

SCOOl We

have recently added experimental support for Java

Encoding |dea Inlt(s()) A Trans(so, s1) A ... A Trans(si_1, sx) A Bad(sy, . . .

Tions and USer-Speciied assertons. FUMNErmore, it can Check C and B
C++ for consisten E

verificatior)
passing th|

While CBI
using mal|

CBMC is &
Solaris 11|

CBMC cof
alternative]

""‘"I'w'.iﬂ{‘[« ?

with other languages. such as Verilog.
Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

solvers wer

that these sorvers need to be installed separately and have d\ﬁerem licensing conditions.

TCTTO e T o orueT vorToeT Tees = wror =5 Note

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/
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Hybrid systems reachability analysis [kong etal., 2015]

DREAL DREACH BENCHMARKS PUBLICATION DOWNLOAD TRYONLINE PEOPLE

dReach is a tool for safety verfication of hybrid systems.

It answers questions of the type: Can a hybrid system run into an unsafe region of its state space? This question can be encoded to SMT formulas,
and answered by our SMT solver. dReach is able to handle general hyrbid systems with nonlincar differential equations and complex discrete

mode-changes.

dReach
Hybrid System Model
(drh)
BMC SMT2
Module | Formula dReal SAT/UNSAT

Unrolloing bound k

Source: D. Bryce, J. Sun, P. Zuliani, Q. Wang, S. Gao, F. Shmarov, S. Kong, W. Chen, Z. Tavares.

dReach home page. http://dreal.github.io/dReach/
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Termination analysis for programs [stsder etal., 2015]

APROVE

Automated Program Verification Envir

‘\ Compioiy
Non-Termination

Back-End

Symbolic
Execution

Graph

Haskell

Front-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
June 25,2018  38/74
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Termination analysis for programs [stsder etal., 2015]

Term rewrite system
‘ Complexity
Non-Termination

Back-End

:‘\[ﬁ

APR

Automated Program Verification Envir

Symbolic
Execution

Graph

Haskell

Front-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
E. Abraham, F. Leofante ICAPS'18 June 25, 2018 38/74



Termination analysis for programs [stsder etal., 2015]

Term rewrite system

‘ Complexity
Non-Termination

AF

Automated Program Verification Envir

Symbolic
Execution
Graph

Haskell

Front-End Back-End
Term rewrite system minus(2.0) — O dv(O.sw) -0 @
minus(0,s(y)) — 0 (2)  div(s(x). s(y)) — s(div(minus(z,y).s(y))) (5)
l minus(s(z),s(y)) — minus(z,y) (3)

Dependency pairs MINUS(s(2),5(s)) — MINUS(,5) (6)  DIV(s(x), (y)) — MINUS(z, ) )
DIV(s(x), s(y)) — DIV(minus(z, y).s(y)) (8)

l O O
\ DIV(s(x),5(y)) — DIV(minus(x, ), s(z)) (8) | \ MINUS (s(x), s(y)) — MINUS(z, ) (6) |

Chains

DIV(s(z),s(y)) — MINUS(z, ) (7)

Logical encoding for well-founded orders.

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
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jUnitgy: Runtime verification of multi-threaded,

object-oriented systems (pecker et al., 2016]

Properties: linear temporal logics enriched with first-order theories
Method: SMT solving + classical monitoring

Synthesis

System

—
Maonitor
Observation
Verdict
Fig. 1 Schematic overview of the monitoring approach

Source: N. Decker, M. Leucker, D. Thoma.
Monitoring modulo theories.
International Journal on Software Tools for Technology Transfer, 18(2):205-225, April 2016.
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SCheduling [Ansétegui et al., 2011]

Resource 1, availability = 3

4 -- 5 > . -
Task time duration j 1 - 2 T 6 7
13,2 ) 0 b= —TT —T T time
Resource 2, availability = 3
K I [
3
2 5 ]
1A ! 4 7
2 6 .
0 T T T T T time
o n Resource 3, availability = 2
Demand on each resource —T 2 —— - - -
s [ 3
14 1 7
2 [4] 6 )
0 T T T T T time

Figure 1: An example of RCPSP (Liess and Michelon 2008)

Source: C. Ansétegui, M. Bofill, M. Palahi, J. Suy, M. Villaret.

Satisfiability modulo theories: An efficient approach for the resource-constrained project
scheduling problem.

Proc. of SARA'11.
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Deployment optimisation on the cloud jaoranam etal., 2016)

Location (e.g, VMs, PCs, ...)

Depoloyable Components.
______ - - ~
oo frontend [ P backend | \ , “t c_B_J@;gg_:[.____ a3 Iarge 2 N\
/ 4 S I User Constraints . \
\ HTTP_Load_Balancer s _ _ !
mysql \ |
"“” “"’" c3 _large 3 €3 xlarge 1
\wD backend mysql \ 9 9t |
RAM: 3750 RAM: 7000] :
MySQL \ [RAM: 7000} P
Wnrdpress [eeseies] | [eesezm] ,
N P S - ==
€3 large 1
wp_backend| mysal mysql

* =2 i
P Ll TR
<3 xlarge 1 3 large 2
wp_frontend| wp_backend | iwp_backend mysal ! mysqi
< < 3
1 =3 © =2 s
HTTP_Load Balancer, 1 WordPress 2 WSQL.2
3 large 3
wp_backend mysql
©
=
WordPress 3

Source: E. Abraham, F. Corzilius, E. Broch Johnsen, G. Kremer, J. Mauro.
Zephyrus2: On the fly deployment optimization using SMT and CP technologies

SETTA'16.
¥ June 25, 2018
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Parameter synthesis for probabilistic systems [pennert et al., 2015]

40p* +20pq + 6p + 3q
68p2 + 34pq + 34> + 34p + 17q

Fross =

SR

" (Parametric)
PRISM Model B

- Property )

GUI

i
j
i
1
1
1

- Plot of Regions .
1
1
1
1

Automatic Regions SMT Solver . “Liscof qm/ Un-

! safe Re;,mm

- User-defined Regions

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Abraham.
PROPHESY: A probabilistic parameter synthesis tool.

In Proc. of CAV’'15.
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SMT solving for planning

IV SMT and planning
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From planning to satisfiability checking

Classical planning
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From planning to satisfiability checking

Classical planning

V restrict search for a plan to paths with (predetermined) bound
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From planning to satisfiability checking

Classical planning

V restrict search for a plan to paths with (predetermined) bound

Reductions of planning to SAT
m linear encodings [Kautz and Selman, 1992]
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From planning to satisfiability checking

Original work by Kautz and Selman was later extended with, e.g.,*

m parallel plans [Kautz et al., 1996, Rintanen et al., 2006]

m metric constraints [Wolfman and Weld, 1999]

m non-deterministic domains [Giunchiglia, 2000]

m time constraints [Shin and Davis, 2005] (when SMT was not yet known as such)
m preferences [Giunchiglia and Maratea, 2007]

*Have a look at, e.g., [Rintanen, 2009] for more on planning and SAT.
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From planning to satisfiability checking

Original work by Kautz and Selman was later extended with, e.g.,*

m parallel plans [Kautz et al., 1996, Rintanen et al., 2006]

m metric constraints [Wolfman and Weld, 1999]

m non-deterministic domains [Giunchiglia, 2000]

m time constraints [Shin and Davis, 2005] (when SMT was not yet known as such)
m preferences [Giunchiglia and Maratea, 2007]

Then SMT came. .. and new solutions followed, e.g.,

m numeric planning [Scala et al., 2016]

m temporal planning [Rintanen, 2015, Rintanen, 2017]

m planning in hybrid domains [Cashmore et al., 2016]

m optimal temporal planning (with OMT) [Leofante et al., 2018]

*Have a look at, e.g., [Rintanen, 2009] for more on planning and SAT.
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Planning as satisfiability (kautz and seiman, 1992]

Planning problem
Let ¥ and A be the sets of fluents and actions.
Let X =F UA and X’ = {x’ : x € X} be its next state copy.

A planning problem is a triple of boolean formulae IT = (/, 7', G) where
m /(7)) represents the set of initial states
m 7(X.,X’) describes how actions affect states
m G(¥) represents the set of goal states
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Planning as Sat|Sf|ab|l|ty [Kautz and Selman, 1992]

Encoding IT in SAT - renaming

For a givenbound ke N, let X, = {x, : x € X}, n=0, ...k .
Furthermore, let

m /(X,) (resp. G(X,)) be the formula obtained from / (resp. G) by
replacing each x € X with the corresponding x, € X,

m 7(X,, X, ) be the formula obtained from 7 by replacing each x € X
(resp. x' € X’) with the corresponding x,, € X,, (resp. x,+1 € Xu+1)-
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Planning as Sat|Sf|ab|l|ty [Kautz and Selman, 1992]

Encoding IT in SAT - renaming

For a givenbound ke N, let X, = {x, : x € X}, n=0, ...k .
Furthermore, let

m /(X,) (resp. G(X,)) be the formula obtained from / (resp. G) by
replacing each x € X with the corresponding x, € X,

m 7(X,, X, ) be the formula obtained from 7 by replacing each x € X
(resp. x' € X’) with the corresponding x,, € X,, (resp. x,+1 € Xu+1)-

Encoding IT in SAT - the formula

The planning problem IT with makespan k is the formula

k-1

oaLr = 1(Xo) A /\ T(Xi, Xiv1) A G(Xy)
i=0
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Planning as satisfiability (kautz and seiman, 1992]

Encoding IT in SAT

® ¢k is sat iff there exists a plan with length &
+ in that case, a plan can be extracted from the satisfying assignment

m in parallel encodings, two actions can be executed in parallel if they
are non-mutex

m optimal plans minimize the number of steps:

P» start withk = 1

< increase until o4 becomes sat or upper bound on k is reached.
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Encoding planning problems: how to?

We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.
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We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.

What we will see:

m Brief problem description (also comes in PDDL ©)
m SMT-LIB standard (basic syntax, advance features)
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Encoding planning problems: how to?

We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.

What we will see:
m Brief problem description (also comes in PDDL ©)
m SMT-LIB standard (basic syntax, advance features)

Disclaimer

Planning problems can be encoded in many different (+ efficient) ways.
Given the introductory nature of this tutorial, we will use naive encodings
only to introduce functionalities of SMT solvers.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018



Working example: TSP

Problem statement
m Set of locations: ¢4, (>
m All locations must be visited
m Each location must be visited

at most once

Simplifying assumptions:
m Graph fully connected, undirected,
unweighted (weights kick in later)
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Working example: TSP

PDDL Domain

(define (domain tsp)
(:requirements :negative-preconditions)
(:predicates (at ?x) (visited ?7x))
(:action move
(?x ?y)
(and (at ?x) (not (visited ?7y)))
(and (at ?y) (visited ?y) (not (at ?x)))))

PDDL Problem

(define (problem tsp-2)

(:domain tsp)

(:objects 11 12 )

(:init

(at 11))

(:goal

(and (visited 11) (visited 12))))
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SMT-LIB standard

Syntax of core theory

:sorts ((Bool ©))

:funs (

(true Bool)

(false Bool)

(not Bool Bool)

(and Bool Bool Bool :left-assoc)

(par (A) (= A A Bool :chainable))
(par (A) (ite Bool A A A))
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SMT-LIB standard

Syntax of arithmetic theories

:sorts ((Real 0))
:funs (

(+ Real Real Real :left-assoc)
(* Real Real Real :left-assoc)

(< Real Real Bool :chainable)

)

June 25, 2018
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SMT-LIB standard

Check the following link for more:
http://smtlib.cs.uiowa.edu/index.shtml
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Boolean example

Propositional encoding - |

; SAT encoding for TSP

; benchmark generated from python API

; Declare variables

(declare-fun visited_1_
(declare-fun visited_2_
(declare-fun visited_1_
(declare-fun visited_2_

(declare-fun at_1_0 ()
(declare-fun at_2_0 Q)
(declare-fun at_1_1 Q)
(declare-fun at_2_1 ()

E. Abraham, F. Leofante
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Boolean example

Propositional encoding - Il

Assert formula for initial state

(assert (and at_1_0 visited_1_0 (not visited_2_0) (not at_2_0)))

Assert formula encoding unrolling of
transition relation

(assert
(let (($x1 (and (and at_1_0 (not visited_2_0) at_2_1 visited_2_1
(not at_1_1)) (and (= visited_1_1 visited_1_0)))))

(let (($x2 ... )))
Cor $x1 $x2))))
Assert formula for goal states

(assert (and visited_1_1 visited_2_1))
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Boolean example

Propositional encoding - IlI

; Assert additional conditions

(assert (=> at_1_0 (not at_2_0)))

(assert (=> at_2_0 (not at_1_0)))

; Check whether the formula is satisfiabile
(check-sat)

; If sat, retrieve model

(get-value ( at_1_0 visited_1_0 at_2_0 visited_2_0 at_1_1
visited_1_1 at_2_1 visited_2_1))

; (get-model) to retrieve the complete model
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Boolean example

Propositional encoding - IlI

; Solver returns

sat

(Cat_1_0 true)
(visited_1_0 true)
(at_2_0 false)
(visited_2_0 false)
(at_1_1 false)
(visited_1_1 true)
(at_2_1 true)
(visited_2_1 true))
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Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

*More here: [Liffiton and Sakallah, 2008]
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Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

Recall: ¢ is CNF

ki

so::/n\c,- with C; 2=\/a,-,-
i=1 .

j=1

*More here: [Liffiton and Sakallah, 2008]
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Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

Recall: ¢ is CNF

ki

so::/n\c,- with C; 2=\/a,-,-
i=1 .

j=1
Transform formula adding clause-selector variables

Cz/ =y VvC) VYi=1,...,n

*More here: [Liffiton and Sakallah, 2008]
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Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

Recall: ¢ is CNF

ki

n
@Y= /\ Ci with C,‘ = ajj
i=1 j=1

Transform formula adding clause-selector variables

Cz/ =y VvC) VYi=1,...,n
We can now enable and disable constraints by playing with y;
7 check satisfiability of subsets of original constraints

*More here: [Liffiton and Sakallah, 2008]
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Unsat cores

Propositional encoding - |

; SAT encoding for TSP
; benchmark generated from python API
(set-info :status unsat)

; Enable unsat core generation
(set-option :produce-unsat-cores true)

; Declare variables

; Assert formula for initial state

(assert (! at_1_0 :named I1))

(assert (! visited_1_0 :named I2))
(assert (! (not visited_2_0) :named I3))
(assert (! (not at_2_0) :named I4))

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 54/74



Unsat cores

Propositional encoding - Il

; Assert formula encoding unrolling of
; transition relation

(assert (!
(let (($x1 (and (and at_1_0 (not visited_2_0) at_2_1
visited_2_1 (not at_1_1)) (and (= visited_1_1 visited_1_0)))))
(let (($x2 ... )))
(or $x1 $x2))) :named T))

Assert formula for goal states

(assert (! (not visited_1_1) :named G1) )
(assert (! visited_2_1 :named G2))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 54/74



Unsat cores

Propositional encoding - IlI

; Check whether the formula is satisfiabile
(check-sat)

; If unsat, produce unsat core
(get-unsat-core)

; Solver returns

; unsat
; (I2 T G1)
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Some theories in: QF_UFLIA

SMT encoding - |

; SMT encoding for TSP

; Declare variables
(declare-fun at_0 () Int)
(declare-fun at_1 () Int)

; Declare UF to encode predicate
(declare-fun visited (Int Int) Bool)

; Assert bounds on integers
(assert (and (>= at_0 1) (<=
(assert (and (>= at_1 1) (<=

; Assert formula for initial
(assert (and (and (= at_0 1)

E. Abraham, F. Leofante

at_0 2)))
at_1 2)))

state

(visited 1 0)) (not (visited 2 0))))
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Some theories in: QF_UFLIA

SMT encoding - Il

; Assert unrolling of transition relation

(assert

(let (($x1 (and (= at_0® 1) (and (not (visited 2 0))) (= at_1 2)
(visited 2 1) (and (= (visited 1 1) (visited 1 0))))))

(let (($x2 ... D))

Cor $x1 $x2))))

; Assert formula for goal state

(assert (and (visited 1 1) (visited 2 1)))

; Check sat. If sat, retrieve model

(check-sat)

(get-value (at_® (visited 1 0) (visited 2 0) at_1
(visited 1 1) (visited 2 1)))
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Some theories in: QF_UFLIA

SMT encoding - Il

; Solver returns

sat

(Cat_0 1)

((visited 1 0) true)
((visited 2 0) false)
(at_1 2)

((visited 1 1) true)
((visited 2 1) true))
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Optimization

OMT encoding - |

; OMT encoding for TSP
; benchmark generated from python API
(set-info :status sat)

; Declare variables

(declare-fun at_0 () Int)
(declare-fun at_1 () Int)

; Cost variables

(declare-fun c_0® () Int)
(declare-fun c_1 () Int)

; Assert formula for initial state
(assert (and ... (= c_0 0) ...))
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Optimization

OMT encoding - Il

(assert

(let (($x1 (and (= at_® 1) (and (not (visited 2 0))) (= at_1 2)

(visited 2 1) (and (= (visited 1 1) (visited 1 0))) (= c_1 (+ c_0 3)))))
(let (($x2 ... D))

; Define objective function
(minimize c_1)

(check-sat)

; Solver returns
;sat

; (objectives

; (c_1 3)

1))
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SMT solving for planning

\ Application: optimal planning with OMT
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Planning in the era of Smart Factories
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Planning in the era of Smart Factories
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Planning & Execution Competition for
Logistics Robots in Simulation iemueter et al., 2015]

Source: [Zwilling et al., 2014].



Planning & Execution Competition for

Logistics Robots in Simulation iemueter et al., 2015]

A B A A
AR ST O TIR - SETIS - ST TIS -

Source: [RCLL Technical Committee, 2017].
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Planning & Execution Competition for

Logistics Robots in Simulation iemueter et al., 2015]

Temporal planning with OMT for the RCLL. What's hard?

m time windows

m domain representation: over 250 configurations possible!
m combinatorics

m scalability

&d compact representations are needed to help solvers
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The need for compact encodings
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The need for compact encodings

aiNap as ay
Sso — 51 = 2 - 83
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The need for compact encodings

ajhay as aqg
S0 —» 51 = S — 83
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The need for compact encodings
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The need for compact encodings
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A reduced enCOding [Leofante et al., 2018]
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A reduced enCOding [Leofante et al., 2018]
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A reduced enCOding [Leofante et al., 2018]
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Integrated synthesis and execution

5

Synthesis

Plan

|

S ——

Executive

|

{ Robot
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A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL
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A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL

&6 Cool but...How does it perform on other planning problems? 99

(The New York Times)
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A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL
&6 Cool but...How does it perform on other planning problems? 99

(The New York Times)

We’re working on a planner implementing our ideas, stay tuned!

&
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Concluding remarks

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 64 /74



Concluding remarks

m Satisfiability checking combines methods in innovative ways
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Concluding remarks

m Satisfiability checking combines methods in innovative ways

! emphasis on practical efficiency.

m SAT and SMT solvers are powerful general-purpose tools.
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Concluding remarks

m Satisfiability checking combines methods in innovative ways

! emphasis on practical efficiency.

m SAT and SMT solvers are powerful general-purpose tools.
m SMT has a wide (and increasing) range of application areas
= planning is one of them!

m The SMT solving community is always looking for interesting
problems. ..

Have one? Let’s talk!
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