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What is satisfiability checking?

âHow does SMT solving work?

Planning problem
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How to use it for planning?
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The satisfiability problem

Propositional logic
Formula: (a ∨ ¬b) ∧ (¬a ∨ b ∨ c)
Satisfying assignment: a = true, b = false, c = true

It is perhaps the most well-known NP-complete problem [Cook, 1971].

Non-linear real algebra (NRA)
Formula: (x − 2y > 0 ∨ x2 − 2 = 0) ∧ x4y + 2x2 − 4 > 0

Satisfying assignment: x =
√

2, y = 2

There are some hard problem classes... non-linear integer arithmetic is
even undecidable.

E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 6 / 74



The satisfiability problem

Propositional logic
Formula: (a ∨ ¬b) ∧ (¬a ∨ b ∨ c)
Satisfying assignment: a = true, b = false, c = true

It is perhaps the most well-known NP-complete problem [Cook, 1971].

Non-linear real algebra (NRA)
Formula: (x − 2y > 0 ∨ x2 − 2 = 0) ∧ x4y + 2x2 − 4 > 0

Satisfying assignment: x =
√

2, y = 2

There are some hard problem classes... non-linear integer arithmetic is
even undecidable.

E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 6 / 74



Tool development (incomplete!)

1960 1970 1980 1990 2000 2010 2020

Computer algebra systems

SAT solvers

SMT solvers
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“We have success stories of using zChaff to solve problems with more
than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).” [zch, ]

“The efficiency of our programs allowed us to solve over one hundred
open quasigroup problems in design theory.” [SATO webpage, ]
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Satisfiability checking for propositional logic

Success story: SAT-solving

Practical problems with millions of variables are solvable.

A wide range of applications, e.g., verification, synthesis,
combinatorial optimization, etc.

Community support:

Standard input language.

Large benchmark library.

Competitions since 2002.

2017: 6 tracks, 28 solvers in the main track.

SAT Live! forum as community platform, dedicated conferences,
journals, etc.
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An impression of the SAT solver development

Source: The International SAT Solver Competitions [Järvisalo et al., 2012]
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Google Scholar search for “SAT modulo theories”
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Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:

Propositional logic is sometimes too weak for modeling.

Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.

Community support:

SMT-LIB: standard input language since 2004.

Large (∼ 250.000) benchmark library.

Competitions since 2005.

2017: 26 solvers in the main track.
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SMT-LIB logics

Quantifier-free equality logic with uninterpreted functions
( a = c ∧ b = d ) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

( a|b ) ≤ ( a&b )
Quantifier-free array theory

i = j → read(write(a, i, v), j) = v
Quantifier-free integer/rational difference logic

x − y ∼ 0, ∼∈ {<,≤,=,≥, >}
(Quantifier-free) real/integer linear arithmetic

3x + 7y = 8
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y2 ≥ 0
Combined theories

2f (x) + 5y > 0

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 16 / 74



DPLL SAT solving with conflict-directed clause learning

Assumption: propositional logic formula in conjunctive normal form (CNF)

Assumption: propositional logic formula in conjunctive normal form (CNF)

Ingredients: Enumeration

Ingredients: Enumeration + Boolean constraint propagationIngredients: Enumeration + Boolean constraint propagation + Resolution

c1 : ( ¬a ∨ b )∧
c2 : ( ¬b ∨ ¬c )∧
c3 : ( ¬b ∨ c )∧

. . .

. . .
1 0

1 0

1 0 1 0

a
b

c

0

a
b

c

0 0

a
b

c c

0 0 0

a
b

c c

0 0 0 0

aa
b

0

a
b

c

00

0

c3 : (¬b ∨ c) c2 : (¬b ∨ ¬c)
c4 : (¬b) Resolution

c4 : ( ¬b )∧

c1 : ( ¬a ∨ b )∧
c2 : ( ¬b ∨ ¬c )∧
c3 : ( ¬b ∨ c )∧

. . .
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Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent1 . . . antecedentn
consequent Rule name

(l1 ∨ . . . ∨ ln ∨ x) (l′1 ∨ . . . ∨ l′m ∨ ¬x)
(l1 ∨ . . . ∨ ln ∨ l′1 ∨ . . . ∨ l′m)

Ruleres

∃x. Cx ∧ C¬x ∧ C ↔ Resolvents (Cx,C¬x) ∧ C
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(Full/less) lazy SMT solving

ϕ quantifier-free FO formula
Boolean abstraction

Tseitin’s transformation
ϕ′ propositional logic formula in CNF

SAT solver

Theory solver(s)

theory constraints
SAT
or

UNSAT
+ lemmas

SAT or UNSAT
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E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 20 / 74



Less lazy SMT solving

(x < 0 ∨ x > 2) ∧ (x2 = 1 ∨ x2 < 0)

( a ∨ b ) ∧ ( c ∨ d )

SAT solver

Theory solver(s)

¬a, b

x ≥ 0, x > 2 SAT
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E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 20 / 74



Less lazy SMT solving

(x < 0 ∨ x > 2) ∧ (x2 = 1 ∨ x2 < 0)

( a ∨ b ) ∧ ( c ∨ d ) ∧ (¬d)

SAT solver

Theory solver(s)
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Less lazy SMT solving

(x < 0 ∨ x > 2) ∧ (x2 = 1 ∨ x2 < 0)

( a ∨ b ) ∧ ( c ∨ d ) ∧ (¬d)

SAT solver

Theory solver(s)

¬d, c, . . .

x2 ≥ 0, x2 = 1
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Model constructing satisfiability calculus (MCSAT)

B-decision

T-decision

B-propagation

T-propagation

B-conflict resolution

T-conflict resolution
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Optimization modulo theories (full lazy case)

ϕ + objective f
quantifier-free FO formula

Boolean abstraction
Tseitin’s transformation

ϕ′ propositional logic formula in CNF

SAT solver

Theory solver(s)

theory constraints + f
SAT + µopt: ϕ := ϕ ∧ f ∼ µopt

or
UNSAT + lemmas

(SAT + µopt) or UNSAT
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Some theory solver candidates for arithmetic theories

Linear real arithmetic:

Simplex

Ellipsoid method

Fourier-Motzkin variable elimination
(mostly preprocessing)

Interval constraint propagation
(incomplete)

Linear integer arithmetic:

Cutting planes, Gomory cuts

Branch-and-bound (incomplete)

Bit-blasting (eager)

Interval constraint propagation
(incomplete)

Non-linear real arithmetic:

Cylindrical algebraic decomposition

Gröbner bases
(mostly preprocessing/simplification)

Virtual substitution (focus on low degrees)

Interval constraint propagation (incomplete)

Non-linear integer arithmetic:

Generalised branch-and-bound
(incomplete)

Bit-blasting (eager, incomplete)

Interval constraint propagation
(incomplete)
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Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?

Theory solvers should be SMT-compliant, i.e.,
they should

work incrementally,

generate lemmas explaining
inconsistencies, and

be able to backtrack.

ϕ quantifier-free FO formula
Boolean abstraction

Tseitin’s transformation
ϕ′ propositional logic formula in CNF

SAT solver

Theory solver(s)

theory constraints
SAT
or

UNSAT
+ lemmas

SAT or UNSAT

Originally, the mentioned methods are not SMT-compliant.

SMT-adaptations can be tricky, but can lead to beautiful novel algorithms.
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Satisfiability checking and symbolic computation
Bridging two communities to solve real problems

http://www.sc-square.org/CSA/welcome.html
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Some popular SMT solvers (incomplete!)

AProVE (RWTH Aachen University, Germany) [Giesl et al., 2004]

CVC4 (New York and Iowa, USA) [Deters et al., 2014]

MathSAT 5 (FBK, Italy) [Cimatti et al., 2013]

MiniSmt (University of Innsbruck, Austria) [Zankl and Middeldorp, 2010]

Boolector (JKU, Austria) [Niemetz et al., 2014]

SMT-RAT (RWTH Aachen University, Germany) [Corzilius et al., 2012]

Z3 (NYU, Microsoft Research, USA) [de Moura and Bjørner, 2008]

Yices 2 (SRI International, USA) [Dutertre, 2014]

. . .
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Our SMT-RAT library [Corzilius et al., 2012, Corzilius et al., 2015]

SMT solver

Strategic composition of SMT-RAT modules

SMT real-algebraic toolbox

collection of solver modules

CArL

real-arithmetic
computations

gmp, Eigen3, boost

MIT licensed source code: github.com/smtrat/smtrat
Documentation: smtrat.github.io
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Strategic composition of solver modules in SMT-RAT

Strategy: directed graph over modules with guarded edges

Guard: may talk about the formula forwarded to backends

Backend-calls: passed to all enabled successors→ parallelism

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 28 / 74



SMT-RAT modules

Module

Implements

add(Formula)

remove(Formula)

check()

updateModel()

check() may

forward (sub-)problems to
backend modules

return sat or unsat

return a lemma or split

return unknown
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Solver modules in SMT-RAT [Corzilius et al., 2012, Corzilius et al., 2015]

CArL library for basic arithmetic datatypes and computations [NFM’11, CAI’11, Sapientia’18]

Basic modules

SAT solver CNF converter Preprocessing/simplifying modules

Non-algebraic decision procedures Bit-vectors Bit-blasting

Equalities and uninterpreted functions Pseudo-Boolean formulas

Interval constraint propagation

Algebraic decision procedures Fourier-Motzkin variable elimination Simplex

Subtropical satisfiability Gröbner bases [CAI’13] MCSAT (FM,VS,CAD)

Cylindrical algebraic decomposition [CADE-24, SC2’17, PhD Loup, PhD Kremer]

Virtual substitution [FCT’11, SC2’17, PhD Corzilius]

Generalized branch-and-bound [CASC’16] Cube tests

E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 30 / 74



SMT-RAT strategies

class myStrategy: public Manager {

myStrategy(): Manager() {

setStrategy(

addBackend<SATModule<SATSettings>>(
addBackend<CADModule<CADSettings>>()
)

);

}

};

Preprocessing

Bit-blasting

SAT

ICP

VS

CAD

SimplexBranch and bound

Simplex

nonlinear real

nonlinear real

nonlinear realnonlinear real
linear reallinear integer
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Building an SMT solver from SMT-RAT modules

1 Download and build CArL & SMT-RAT
http://smtrat.github.io/carl/getting_started.html

2 Optionally: Extend it with custom modules and strategies

3 Select a strategy
$ cmake -D SMTRAT Strategy=CADOnly ../

4 Build SMT-RAT
$ make smtrat

5 Run it
$ ./smtrat input.smt2
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Outline

SMT solving

I Historical notes

II SAT and SMT solving

III Some applications outside planning

SMT solving for planning

IV SMT and planning

V Application: optimal planning with OMT

Concluding remarks

E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 33 / 74



SMT applications

model checking

termination analysis

runtime verification

test case generation

controller synthesis

predicate abstraction

equivalence checking

scheduling

planning

deployment optimisation on the cloud

product design automation

. . .
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Embedding SAT/SMT solvers

Software
engine

Problem
Logical
problem

specification

SAT/SMT
solver

Solution

Environment

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax→ free solver choice

In the following: applications of SMT solvers
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Bounded model checking for C/C++ [Kroening and Tautschnig, 2014]

Logical encoding of finite paths

Encoding idea: Init(s0) ∧ Trans(s0, s1) ∧ . . . ∧ Trans(sk−1, sk) ∧ Bad(s0, . . . , sk)

Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/
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Hybrid systems reachability analysis [Kong et al., 2015]

Source: D. Bryce, J. Sun, P. Zuliani, Q. Wang, S. Gao, F. Shmarov, S. Kong, W. Chen, Z. Tavares.

dReach home page. http://dreal.github.io/dReach/
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Termination analysis for programs [Ströder et al., 2015]

Term rewrite system

Term rewrite system

Dependency pairs

Chains

Logical encoding for well-founded orders.

Source: T. Ströder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.

AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
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jUnitRV : Runtime verification of multi-threaded,
object-oriented systems [Decker et al., 2016]

Properties: linear temporal logics enriched with first-order theories
Method: SMT solving + classical monitoring

Source: N. Decker, M. Leucker, D. Thoma.

Monitoring modulo theories.

International Journal on Software Tools for Technology Transfer, 18(2):205-225, April 2016.
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Scheduling [Ansótegui et al., 2011]

Source: C. Ansótegui, M. Bofill, M. Palahı́, J. Suy, M. Villaret.

Satisfiability modulo theories: An efficient approach for the resource-constrained project

scheduling problem.

Proc. of SARA’11.
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Deployment optimisation on the cloud [Ábrahám et al., 2016]

Location (e.g, VMs, PCs, ...)Depoloyable Components

User Constraints

WordPress

MySQL

HTTP_Load_Balancer

HTTP_Load_Balancer_1

WordPress_3

MySQL_2

MySQL_1

WordPress_2

WordPress_1

Source: E. Ábrahám, F. Corzilius, E. Broch Johnsen, G. Kremer, J. Mauro.

Zephyrus2: On the fly deployment optimization using SMT and CP technologies.

SETTA’16.
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Parameter synthesis for probabilistic systems [Dehnert et al., 2015]

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Ábrahám.

PROPhESY: A probabilistic parameter synthesis tool.

In Proc. of CAV’15.
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Outline

SMT solving

I Historical notes

II SAT and SMT solving

III Some applications outside planning

SMT solving for planning

IV SMT and planning

V Application: optimal planning with OMT

Concluding remarks
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From planning to satisfiability checking

Classical planning

� ­­
­

?

� restrict search for a plan to paths with (predetermined) bound

Reductions of planning to SAT

linear encodings [Kautz and Selman, 1992]
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From planning to satisfiability checking

Original work by Kautz and Selman was later extended with, e.g.,∗

parallel plans [Kautz et al., 1996, Rintanen et al., 2006]

metric constraints [Wolfman and Weld, 1999]

non-deterministic domains [Giunchiglia, 2000]

time constraints [Shin and Davis, 2005] (when SMT was not yet known as such)

preferences [Giunchiglia and Maratea, 2007]

Then SMT came. . . and new solutions followed, e.g.,

numeric planning [Scala et al., 2016]

temporal planning [Rintanen, 2015, Rintanen, 2017]

planning in hybrid domains [Cashmore et al., 2016]

optimal temporal planning (with OMT) [Leofante et al., 2018]

∗Have a look at, e.g., [Rintanen, 2009] for more on planning and SAT.
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Planning as satisfiability [Kautz and Selman, 1992]

Planning problem

Let F and A be the sets of fluents and actions.

Let X = F ∪A and X′ = {x′ : x ∈ X} be its next state copy.

A planning problem is a triple of boolean formulae Π = 〈I,T ,G〉 where

I(F ) represents the set of initial states

T(X,X′) describes how actions affect states

G(F ) represents the set of goal states
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Planning as satisfiability [Kautz and Selman, 1992]

Encoding Π in SAT - renaming

For a given bound k ∈ N, let Xn = {xn : x ∈ X}, n = 0, ..., k .

Furthermore, let

I(Xn) (resp. G(Xn)) be the formula obtained from I (resp. G) by
replacing each x ∈ X with the corresponding xn ∈ Xn

T(Xn,Xn+1) be the formula obtained from T by replacing each x ∈ X
(resp. x′ ∈ X′) with the corresponding xn ∈ Xn (resp. xn+1 ∈ Xn+1).

Encoding Π in SAT - the formula

The planning problem Π with makespan k is the formula

ϕ(Π,k) := I(X0) ∧
k−1∧
i=0

T(Xi,Xi+1) ∧ G(Xk)
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Planning as satisfiability [Kautz and Selman, 1992]

Encoding Π in SAT

ϕ(Π,k) is sat iff there exists a plan with length k

± in that case, a plan can be extracted from the satisfying assignment

in parallel encodings, two actions can be executed in parallel if they
are non-mutex

optimal plans minimize the number of steps:

¿ start with k = 1
Î increase until ϕ(Π,k) becomes sat or upper bound on k is reached.
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Encoding planning problems: how to?

We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.

What we will see:

Brief problem description (also comes in PDDL )

SMT-LIB standard (basic syntax, advance features)

Disclaimer
Planning problems can be encoded in many different (± efficient) ways.
Given the introductory nature of this tutorial, we will use naive encodings
only to introduce functionalities of SMT solvers.
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Working example: TSP

Problem statement

Set of locations: `1, `2

All locations must be visited

Each location must be visited
at most once

Simplifying assumptions:

Graph fully connected, undirected,
unweighted (weights kick in later)

`1 `2

E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 49 / 74



Working example: TSP

PDDL Domain

(define (domain tsp)
(:requirements :negative-preconditions)
(:predicates (at ?x) (visited ?x))
(:action move
:parameters (?x ?y)
:precondition (and (at ?x) (not (visited ?y)))
:effect (and (at ?y) (visited ?y) (not (at ?x)))))

PDDL Problem

(define (problem tsp-2)
(:domain tsp)
(:objects l1 l2 )
(:init
(at l1))

(:goal
(and (visited l1) (visited l2))))
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SMT-LIB standard

Syntax of core theory

:sorts ((Bool 0))

:funs (

(true Bool)

(false Bool)

(not Bool Bool)

(and Bool Bool Bool :left-assoc)

...

(par (A) (= A A Bool :chainable))

(par (A) (ite Bool A A A))

...
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SMT-LIB standard

Syntax of arithmetic theories

:sorts ((Real 0))

:funs (

...

(+ Real Real Real :left-assoc)

(* Real Real Real :left-assoc)

...

(< Real Real Bool :chainable)

...

)
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SMT-LIB standard

Check the following link for more:
http://smtlib.cs.uiowa.edu/index.shtml
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Boolean example

Propositional encoding - I

; SAT encoding for TSP

; benchmark generated from python API

; Declare variables

(declare-fun visited_1_0 () Bool)

(declare-fun visited_2_0 () Bool)

(declare-fun visited_1_1 () Bool)

(declare-fun visited_2_1 () Bool)

(declare-fun at_1_0 () Bool)

(declare-fun at_2_0 () Bool)

(declare-fun at_1_1 () Bool)

(declare-fun at_2_1 () Bool)
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Boolean example

Propositional encoding - II

; Assert formula for initial state

(assert (and at_1_0 visited_1_0 (not visited_2_0) (not at_2_0)))

; Assert formula encoding unrolling of

; transition relation

(assert

(let (($x1 (and (and at_1_0 (not visited_2_0) at_2_1 visited_2_1

(not at_1_1)) (and (= visited_1_1 visited_1_0)))))

(let (($x2 ... )))

(or $x1 $x2))))

; Assert formula for goal states

(assert (and visited_1_1 visited_2_1))
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Boolean example

Propositional encoding - III

; Assert additional conditions

(assert (=> at_1_0 (not at_2_0)))

(assert (=> at_2_0 (not at_1_0)))

...

; Check whether the formula is satisfiabile

(check-sat)

; If sat, retrieve model

(get-value ( at_1_0 visited_1_0 at_2_0 visited_2_0 at_1_1

visited_1_1 at_2_1 visited_2_1))

; (get-model) to retrieve the complete model
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Boolean example

Propositional encoding - III

; Solver returns

sat

((at_1_0 true)

(visited_1_0 true)

(at_2_0 false)

(visited_2_0 false)

(at_1_1 false)

(visited_1_1 true)

(at_2_1 true)

(visited_2_1 true))
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Unsat cores - intuition∗

Let’s assume our input formula ϕ is unsat...we would like to know why!

Recall: ϕ is CNF

ϕ :=
n∧

i=1

Ci with Ci :=
ki∨

j=1

aij

Transform formula adding clause-selector variables

C′i := (¬yi ∨ Ci) ∀i = 1, . . . , n

We can now enable and disable constraints by playing with yi

y check satisfiability of subsets of original constraints

∗More here: [Liffiton and Sakallah, 2008]
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Unsat cores

Propositional encoding - I

; SAT encoding for TSP

; benchmark generated from python API

(set-info :status unsat)

; Enable unsat core generation

(set-option :produce-unsat-cores true)

; Declare variables

...

; Assert formula for initial state

(assert (! at_1_0 :named I1))

(assert (! visited_1_0 :named I2))

(assert (! (not visited_2_0) :named I3))

(assert (! (not at_2_0) :named I4))
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Unsat cores

Propositional encoding - II

; Assert formula encoding unrolling of

; transition relation

(assert (!

(let (($x1 (and (and at_1_0 (not visited_2_0) at_2_1

visited_2_1 (not at_1_1)) (and (= visited_1_1 visited_1_0)))))

(let (($x2 ... )))

(or $x1 $x2))) :named T))

; Assert formula for goal states

(assert (! (not visited_1_1) :named G1) )

(assert (! visited_2_1 :named G2))
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Unsat cores

Propositional encoding - III

...

; Check whether the formula is satisfiabile

(check-sat)

; If unsat, produce unsat core

(get-unsat-core)

; Solver returns

; unsat

; (I2 T G1)
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Some theories in: QF UFLIA

SMT encoding - I

; SMT encoding for TSP

...

; Declare variables

(declare-fun at_0 () Int)

(declare-fun at_1 () Int)

; Declare UF to encode predicate

(declare-fun visited (Int Int) Bool)

; Assert bounds on integers

(assert (and (>= at_0 1) (<= at_0 2)))

(assert (and (>= at_1 1) (<= at_1 2)))

; Assert formula for initial state

(assert (and (and (= at_0 1) (visited 1 0)) (not (visited 2 0))))
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Some theories in: QF UFLIA

SMT encoding - II

; Assert unrolling of transition relation

(assert

(let (($x1 (and (= at_0 1) (and (not (visited 2 0))) (= at_1 2)

(visited 2 1) (and (= (visited 1 1) (visited 1 0))))))

(let (($x2 ... )))

(or $x1 $x2))))

; Assert formula for goal state

(assert (and (visited 1 1) (visited 2 1)))

; Check sat. If sat, retrieve model

(check-sat)

(get-value (at_0 (visited 1 0) (visited 2 0) at_1

(visited 1 1) (visited 2 1)))
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Some theories in: QF UFLIA

SMT encoding - II

; Solver returns

sat

((at_0 1)

((visited 1 0) true)

((visited 2 0) false)

(at_1 2)

((visited 1 1) true)

((visited 2 1) true))
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Optimization

OMT encoding - I

; OMT encoding for TSP

; benchmark generated from python API

(set-info :status sat)

; Declare variables

(declare-fun at_0 () Int)

(declare-fun at_1 () Int)

; Cost variables

(declare-fun c_0 () Int)

(declare-fun c_1 () Int)

; Assert formula for initial state

(assert (and ... (= c_0 0) ...))
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Optimization

OMT encoding - II

...

(assert

(let (($x1 (and (= at_0 1) (and (not (visited 2 0))) (= at_1 2)

(visited 2 1) (and (= (visited 1 1) (visited 1 0))) (= c_1 (+ c_0 3)))))

(let (($x2 ... )))

; Define objective function

(minimize c_1)

(check-sat)

; Solver returns

;sat

;(objectives

; (c_1 3)

;)
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Outline

SMT solving

I Historical notes

II SAT and SMT solving

III Some applications outside planning

SMT solving for planning

IV SMT and planning

V Application: optimal planning with OMT

Concluding remarks
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Planning in the era of Smart Factories
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Planning & Execution Competition for
Logistics Robots in Simulation [Niemueller et al., 2015]

Source: [Zwilling et al., 2014].
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Planning & Execution Competition for
Logistics Robots in Simulation [Niemueller et al., 2015]

BS RS 1 RS 2 RS 2 CS 2

Source: [RCLL Technical Committee, 2017].
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Planning & Execution Competition for
Logistics Robots in Simulation [Niemueller et al., 2015]

Temporal planning with OMT for the RCLL. What’s hard?

time windows

domain representation: over 250 configurations possible!

combinatorics

scalability

Ô compact representations are needed to help solvers
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The need for compact encodings

s0 s1 s2 s3 s4
a1
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The need for compact encodings

(??
?

?
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A reduced encoding [Leofante et al., 2018]
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. . .
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E. Ábrahám, F. Leofante ICAPS’18 June 25, 2018 61 / 74



A reduced encoding [Leofante et al., 2018]

s0 s1 s2 s3 s4s0 s1 s2 s3 s4s0 s1 s2 s3 s4s0 s1 s2 s3 s4

. . .
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Integrated synthesis and execution

Model
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A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL

Ë Cool but...How does it perform on other planning problems? Ì

(The New York Times)

We’re working on a planner implementing our ideas, stay tuned!

�

�
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Outline

SMT solving

I Historical notes

II SAT and SMT solving

III Some applications outside planning

SMT solving for planning

IV SMT and planning

V Application: optimal planning with OMT

Concluding remarks
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Concluding remarks

Satisfiability checking combines methods in innovative ways

; emphasis on practical efficiency.

SAT and SMT solvers are powerful general-purpose tools.

SMT has a wide (and increasing) range of application areas

Ç planning is one of them!

The SMT solving community is always looking for interesting
problems. . .

Have one? Let’s talk!
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Ábrahám, E., Corzilius, F., Johnsen, E. B., Kremer, G., and Mauro, J. (2016).
Zephyrus2: On the fly deployment optimization using SMT and CP technologies.
In Dependable Software Engineering: Theories, Tools, and Applications - Second International
Symposium, SETTA 2016, Beijing, China, November 9-11, 2016, Proceedings, pages 229–245.
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Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., and Tacchella, A. (2018).
Integrated synthesis and execution of optimal plans for multi-robot systems in logistics.
Information Systems Frontiers.

Liffiton, M. H. and Sakallah, K. A. (2008).
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33.

Niemetz, A., Preiner, M., and Biere, A. (2014).
Boolector 2.0.
JSAT, 9:53–58.

Niemueller, T., Lakemeyer, G., and Ferrein, A. (2015).
The RoboCup Logistics League as a benchmark for planning in robotics.
In Proc. of PlanRob@ICAPS’15.

RCLL Technical Committee (2017).
RoboCup Logistics League – Rules and regulations 2017.
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