SMT Solving for Al Planning:
Theory, Tools and Applications

Erika Abraham Francesco Leofante
RWTH Aachen University, Germany RWTH Aachen University, Germany

University of Genoa, Italy

ICAPS 2018
Delft, The Netherlands
25 June 2018

RWTH UNIVERSITA
DEGLI STUDI

DI GENOVA

Erika Francesco
Full professor Ph.D. Student

Theory of Hybrid Systems @ RWTH
https://ths.rwth-aachen.de

Resources for this tutorial
https://ths.rwth-aachen.de/research/talks/smt4planning

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 2/74

https://ths.rwth-aachen.de
https://ths.rwth-aachen.de/research/talks/smt4planning

What is this tutorial about?

-aAbVe

X%+ X, \/6

What is satisfiability checking?

O

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 3/74

What is this tutorial about?

-aAbVe

X2+ X \/6

What is satisfiability checking?

How does SMT solving work?

o

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 3/74

What is this tutorial about?

Planning problem

-aAbVe

X2+ X \/6

What is satisfiability checking?
How does SMT solving work?

How to use it for planning?

—&@

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 3/74

SMT solving

I Historical notes

1T SAT and SMT solving

III Some applications outside planning
SMT solving for planning

IV SMT and planning

\ Application: optimal planning with OMT

Concluding remarks

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

SMT solving

I Historical notes

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 5/74

The satisfiability problem

Propositional logic

Formula: (aV =b)AN(maV bV c)
Satisfying assignment: « = itrue, b = false, ¢ = true

It is perhaps the most well-known NP-complete problem [Cook, 1971].

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 6/74

The satisfiability problem

Propositional logic
Formula: (aV =b)AN(maV bV c)
Satisfying assignment: « = itrue, b = false, ¢ = true

It is perhaps the most well-known NP-complete problem [Cook, 1971].

Non-linear real algebra (NRA)
Formula: x=2y>0vx2-2=0)Ax*y+2x?-4>0
Satisfying assignment: x= V2, y=2

There are some hard problem classes... non-linear integer arithmetic is
even undecidable.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 6/74

7174

&
o
~
g
&
§
A
f
2020

©
o
(S0
“
[
[}
c
=
=

2010

2000

S
&
K
&
-

ICAPS’18

()
-—
Q@

1990

incomp

I
T
1980

I
T
1970

E. Abraham, F. Leofante

Computer algebra systems

I
T
1960

Tool development

2010

)
.AQ/
58
&
&

()
-—
Q@

1990

incomp

I
T
1980

I
T
1970

Computer algebra systems

2
E
8
o
Q
-
w
=
@
<
<]
Q
<
U

SAT solvers

I
T
1960

Tool development

7174

&
o
~
g
&
§
A
f
2020

$2°

©
o
(S0
“
[
[}
c
=
=

9
4
£
S
4
&
&£
f
2010

S
&
K
&
-

|
ICAPS’18

1990

(

incomplete

I
T
1980

I
T
1970

“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).” [zch, |

E. Abraham, F. Leofante

Computer algebra systems

SAT

I
T
1960

Tool development

Tool development (incomplete!)

SAT

.8 % <.
N A

o
o2
“We have success stories of using zChaff to solve problems w
than one million variables and 10 million clauses.

(Of course, it can’t solve every such problem!).” [zch, |

= & 2,
G T %

“The efficiency of our programs allowed us to solve over one hundred
open quasigroup problems in design theory.” [SATO webpage,]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m A wide range of applications, e.g., verification, synthesis,
combinatorial optimization, etc.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 8/74

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m A wide range of applications, e.g., verification, synthesis,
combinatorial optimization, etc.

Community support:
m Standard input language.
m Large benchmark library.
m Competitions since 2002.
2017: 6 tracks, 28 solvers in the main track.

m SAT Live! forum as community platform, dedicated conferences,
journals, etc.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

An impression of the SAT solver development

CPU Time (in seconds)

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 — . . . ‘ F——— —
+ Limmat (2002) o L o®
Zehaff (2002) o - . 7 ° 09 &
% Berkmin (2002) + - M o)
O Forklift 2003) N v &
® Siege (2003) + - ¥ v & N
1000 Zehaff (2004) + % - A v S o A
SatELite (2005) o I~ v
Minisat 2 (2006) * & . S &
A Picosat (2007) Y o8
v Rsat 2007) o F &
¥ Minisat 2.1 (2008) x 7 " -t o
800 - Precosat (2009) o vg & £ B
Glucose (2009) ™ ' (o]
Clasp (2009) + x Ly ors ° &
e Cryptominisat (2010) o . & e 00
© Lingeling (2010) * *..““ 7
© Minisat 2.2 (2010) w
600 © Glucose3 (2011) . ® - v og g e
© Glueminisat 2011) S5 £ 7 &
© Contrasat 2011) * @D & £
+ *
b R
<
400 214 e
200 E
04 s L L L
0 20 40 60 80 100 120 140 160 180

Number of problems solved

Source: The International SAT Solver Competitions [Jarvisalo et al., 2012]

E. Abraham, F. Leof:

10/74

of
29, 412 2 . N mo»\L © m
Spy Sx, g 18 ARG s S
@] o 4 as, S 2 RPES & 04?,9 <
gy, ‘o, &y $ 09 ©
Qg M ey c
; 7 509 =
w s & S5, (0 NS E
0. @ A
Lo, 2] 2 G
VSW % QVQM $®,~u~ 4 O&@(
€, W 7o <9
owb& @bw, %VV 4 1Y x5 e
258 o Ly, | 8 S e
P2y, 2 2 g ©
% ©8 B
on e, = o e
& N Q >
2 Suow 5 %, %8 e) @wﬁﬁo oS
77 'z .,u\,q < &O
5, Nocf oty | g R
e TN s.ﬁ 4 m AT
5 AR It
2, i, @ g g & S
— %, % wA.N N %Vo. ms&.m v/\%m
() Yoo, wQ mu,u&\va\\ “ ¢ [
..mw QbC@QN\.Cm%wQ%@ <
QVQ R, 72 18 S}
= Xy % T8
nmuu s bwv@op
S
72 ®,
7
o » Ly,
(&) £ Ky A
c (o) gz@ -
~— k) &, Yo T8
=) f@uﬁ\ "
P
o @ g,
3
m w &y 1 QQQ,N &, m
q S wa |, :
o . TS e 3
— = b@% - (0] w
W.v m P2y, %vw% W g
¢ £
e mn QQQOQMQ\ n ..m
O 5 R e <
== O o (%)) u
S lg
T

10/74

\
A @MVO@MMM@MWA:
73, moz\,_&@wé»dw%o 2
L < X X 1)
Sy x, o Vg, . 18 N wMzw&MMowMM¢wMM@¢OMMO¢O 8
o2, s, (o Sl [\ a
2 z 2 $o7 %)OS S
“. 7 Nowfh mc.ﬁuwm. 5 @o¢v¢w&ﬂomewvwwwvﬁ «* g
Ly, " S5, 0 V5% W g T eor >
2
&o?vc %, $§ - oxwm%m %Mwoomv& M@%»
S 2 N
b e, 2, Wit Vol T
gl @y L 2 WA (@ Sy (00
bﬁ% S e w&v% R %ﬁu@@ W72 1% o
$@x,~$v@ RS < FEREY ® 58 =
S a9 B g @ °
e, oo, oo | 0% e
2y *xy oy 08 TS A
& Or 7o 5) L5 4 \/\Onu S A ¢ &Om.
9, ®))
loe, ety ey L 8 5 e
RENECNIC N RN
Ony Wy, g %y, N»G,¢ SIS
Yo, P gy P ST
— T2e, 15 ¥, Cup, S®
= % 9 by | W
(O] Y00, 7 &3y,
- &OC 2 x\%
() I m\xﬁmm%wﬁvu\ o
= NERORE:
m: s bmv@op
9,
72 ®,
74
o » Ly,
(&) I Ky A
c (o) VN\QS -
= » &, U T8
=) 5@0@% "
C %o
N
() o i,
3
m lm.vu &y 1 QQQ,N &, m
O 2 o) 5
= © o, S e o 2 8
O N QN» o b [0 -
— > Sy - () Y w
o 5 %y T, 2 5 £
T g,, My 7] e
D m. coovoxx %] — ..mm
© o 3 _N = ~
= o o n n «
5 lg
T

SAT modulo theories

Google Scholar search for

2500

2000

1500

1000

500

11/74

©
o
«
e}
&
o
c
S
3

ICAPS’18

E. Abraham, F. Leofante

Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:
m Propositional logic is sometimes too weak for modeling.

B Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:
m Propositional logic is sometimes too weak for modeling.

B Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.

Community support:
m SMT-LIB: standard input language since 2004.
m Large (~ 250.000) benchmark library.
m Competitions since 2005.
2017: 26 solvers in the main track.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

SMT-LIB logics

Source: http://smtlib.cs.uiowa.edu/logics.shtml

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Quantifier-free equality logic with uninterpreted functions
(a=cAb=d) — f(a,b) = f(c,d)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Quantifier-free bit-vector arithmetic
(alb) < (a&b)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Quantifier-free array theory
i =j — read(write(a,i,v),j) = v

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

x_y"’O, ~€ {<5S7:’Za>}

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

(Quantifier-free) real/integer linear arithmetic
3x+7y=28

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

(Quantifier-free) real/integer non-linear arithmetic
¥ +2xy+y2>0

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB logics

Combined theories
2f(x) +5y >0

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 13/74

http://smtlib.cs.uiowa.edu/logics.shtml

SMT solving

1T SAT and SMT solving

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 14/74

Strategic combinations of decision procedures

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 15/74

Strategic combinations of decision procedures

[l

.+

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 15/74

Strategic combinations of decision procedures

[l

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 15/74

Strategic combinations of decision procedures

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 15/74

DPLL SAT solving with conflict-directed clause learning

Assumption: propositional logic formula in conjunctive normal form (CNF)

cir: (mavVv b A
o (=b V =c A
c3 . (-b V ¢)/\

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration

-a V b A

(& (
o (=b V =c A
st bV ¢ A / \

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration

cir: (ma Vv b A
o (=b V —c A
c3: (-b V ¢)A

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration

cir: (ma Vv b A
o (=b V —c A
c3: (-b V ¢)A

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration

ci: (ma Vv b A
o (=b V =c A
c3: (-b V ¢)A

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration

ci: (ma Vv b A
o (=b V =c A
c3: (-b V ¢)A

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

cir: (mavVv b A / —

o (=b V =c A
1 0

ey (-b vV ¢ A / \

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

ci: (lma Vv b A M
2 (=b V =c A
Zj(-b Vv CC N /\

N N

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation

cir:(—a Vv b A
o (=b V —c A
c3 . (-b V ¢)/\

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

cir:(—a Vv b A
o (=b V —c A
c3 . (-b V ¢)/\

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 16/74

Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 17/74

Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent, ... antecedent,
consequent

Rule_name

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 17/74

Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent, ... antecedent,
consequent

Rule_name

(Liv...VIvy)y ([[V...VI, V-x)
hv..vVL VI v.. V)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 17/74

Resolution

Assumption: propositional logic formula in conjunctive normal form (CNF)

Derivation rule form:

antecedent, ... antecedent,
consequent

Rule_name

(Liv...VIvy)y ([[V...VI, V-x)

V. NV V) Ruleres

Ax. C,AC_,AC & Resolvents(C,,C_,)AC

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 17/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

cir:(—a Vv b A
o (=b V —c A
c3 . (-b V ¢)/\

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 18/74

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

cir: (ma Vv b A
o (=b V —c A
Cc3 (-b V ¢)/\

c3:(=bVve) cp:(=bV-c)
Cq4 . (—lb)

Resolution

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

DPLL SAT solving with conflict-directed clause learning

Ingredients: Enumeration + Boolean constraint propagation + Resolution

ci: (ma Vv b A
o (=b V —c A
c3: (-b V ¢)A
g (—b N /

c3:(=bVve) cp:(=bV-c)
Cq4 . (—lb)

Resolution

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

(Full/less) lazy SMT solving

(%2 quantifier-free FO formula
Boolean abstraction l

Tseitin’s transformation Y, o _ ,
¢’ propositional logic formula in CNF

@ SAT or UNSAT

SAT
theory constraints or +lemmas

UNSAT
Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 19/74

Less lazy SMT solving

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

—a

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

x>0, x>2

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

x>0, x>2 SAT

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

x>0, x>2

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

x>0, x>2

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

x>0, x>2,2#1,x2<0

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a Vv b)N ¢ VvV d)

x20,x>2,2#1, <0 UNSAT: —(:* < 0)

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA(¢ VvV d YA

x>0, x>2,x>#1, x> <0 UNSAT: =(x* < 0)

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA(¢ VvV d YA

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA(¢ VvV d YA

-d

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA(¢ VvV d YA

=d, ¢

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA(¢ VvV d YA

=d, ¢

>0, x2=1

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a vV b)IAN(¢ VvV d YN
=d, ¢

23>0, x% =1 SAT

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Less lazy SMT solving

(x<OVx>2D)AG =1V <0)

\

(a VvV b)YA(¢ VvV d YA

-d, c, ...

>0, x2=1

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 20/74

Model constructing satisfiability calculus (MCSAT)

B-decision
B-propagation

B-conflict resolution

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 21/74

Model constructing satisfiability calculus (MCSAT)

B-decision T-decision
B-propagation T-propagation

B-conflict resolution T-conflict resolution

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Optimization modulo theories (full lazy case)

@ + objective f
quantifier-free FO formula
Boolean abstraction
Tseitin’s transformation

’

©® propositional logic formula in CNF

@ (SAT + fiopr) OF UNSAT

SAT + popt: ¢ 1= @ Af ~ Uopt
theory constraints + f or
UNSAT + lemmas

Theory solver(s)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 22/74

Some theory solver candidates for arithmetic theories

Linear real arithmetic: Linear integer arithmetic:
m Simplex m Cutting planes, Gomory cuts
m Ellipsoid method m Branch-and-bound (incomplete)
m Fourier-Motzkin variable elimination m Bit-blasting (eager)

(mostly preprocessing) m Interval constraint propagation

Interval constraint propagation (incomplete)
(incomplete)

Non-linear real arithmetic: Non-linear integer arithmetic:

m Cylindrical algebraic decomposition m Generalised branch-and-bound

m Grdbner bases (incomplete)

(mostly preprocessing/simplification) m Bit-blasting (eager, incomplete)
m Virtual substitution (focus on low degrees) m Interval constraint propagation

. . . i |
m Interval constraint propagation (incomplete) (incomplete)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 23/74

Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 24 /74

Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?

quantifier-free FO formula

Theory solvers should be SMT-compliant, i.e.,
they Sh0U|d Tseitin's lransiormalioni/

propositional logic formula in CNF

m work incrementally, @
SAT or UNSAT
m generate lemmas explaining

SAT

|ncons|stenc|e8, and theory constraints or +lemmas

UNSAT
m be able to backtrack. \0/

E. Abraham, F. Leofante ICAPS'18

June 25, 2018 24 /74

Problem solved?

Can we simply plug in available implementations of such methods as
theory solvers into an SMT solver?

quantifier-free FO formula

Theory solvers should be SMT-compliant, i.e.,
they ShOU|d Tseitin's lransiormalioni/

propositional logic formula in CNF

@ SAT or UNSAT

m generate lemmas explaining -
|ncons|stenc|e8, and theory constraints or +lemmas

UNSAT
m be able to backtrack. \0/

Originally, the mentioned methods are not SMT-compliant.

m work incrementally,

SMT-adaptations can be tricky, but can lead to beautiful novel algorithms.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 24 /74

Satisfiability checking and symbolic computation

Bridging two communities to solve real problems

http://www.sc-square.org/CSA/welcome.html
sc?
Satisfiability Checking and Symbolic Computation

Bridging Two Communities to Solve Real Problems
Coordination and Support Activity

SUMMARY

This project is funded (subject to contract) as project H2020-FETOPN-2015-CSA_712689 of the European Union. It is the start of the
general push to create a real SC? community.

Background

The use of advanced methods to solve practical and industrially relevant problems by computers has a long history. Whereas Symbolic
Computation is concerned with the algorithmic determination of exact solutions to complex mathematical problems, more recent
developments in the area of Satisfiability Checking tackle similar problems but with different algorithmic and technological solutions. Though
both communities have made remarkable progress in the last decades, they still need to be strengthened to tackle practical problems of
rapidly increasing size and complexity. Their separate tools (computer algebra systems and SMT solvers) are urgently needed to examine
prevailing problems with a direct effect to our society. For example, Satisfiability Checking is an essential backend for assuring the security
and the safety of computer systems. In various scientific areas, Symbolic Computation enables dealing with large mathematical problems
out of reach of pencil and paper developments. Currently the two communities are largely disjoint and unaware of the achievements of each
other, despite strong reasons for them to discuss and collaborate, as they share many central interests. However, researchers from these two
communities rarely interact, and also their tools lack common, mutual interfaces for unifiying their strengths. Bridges between the
communities in the form of common platforms and roadmaps are necessary to initiate an exchange. and to support and to direct their
interaction. These are the main objectives of this CSA. We will initiate a wide range of activities to bring the two communities together,
identify common challenges, offer global events and bilateral visits, propose standards, and so on. We believe that these activities will

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 25/74

Some popular SMT solvers (incomplete!)

AProVE (RWTH Aachen University, Germany) [Giesl et al., 2004]
CVC4 (New York and lowa, USA) [Deters et al., 2014]

MathSAT 5 (FBK, Italy) [Cimatti et al., 2013]

MiniSmt (University of Innsbruck, Austria) [zankl and Middeldorp, 2010]
Boolector (JKU, Austria) [Niemetz et al., 2014]

SMT-RAT (RWTH Aachen University, Germany) [Corzilius et al., 2012]
Z3 (NYU, Microsoft Research, USA) [de Moura and Bjgrner, 2008]
Yices 2 (SRI International, USA) [Dutertre, 2014]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 26/74

Our SMT-RAT library (corzilus etal., 2012, Gorzilus et al., 2015]

SMT solver
Strategic composition of SMT-RAT modules

AR

SMT real-algebraic toolbox
collection of solver modules

CArL
real-arithmetic
computations

gmp, Eigen3, boost

m MIT licensed source code: github.com/smtrat/smtrat
m Documentation: smtrat.github.io

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 27174

github.com/smtrat/smtrat
smtrat.github.io

Strategic composition of solver modules in SMT-RAT

m Strategy: directed graph over modules with guarded edges

m Guard: may talk about the formula forwarded to backends

m Backend-calls: passed to all enabled successors — parallelism

Manager

Condition Condition

N

¥

Condition

¥

1,
Module

Module

Module

Module

E. Abraham, F. Leofante

ICAPS'18

June 25, 2018

SMT-RAT modules

Implements
m add(Formula)
m remove (Formula)
m check()
m updateModel)

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 29/74

SMT-RAT modules

Implements check () may
m add(Formula) m forward (sub-)problems to
m remove (Formula) backend modules
m check() m return sat or unsat
m updateModel () m return a lemma or split

m return unknown

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Solver modules in SMT-RAT (corzilius et al., 2012, Corzilius et al., 2015]

\/ CArL library for basic arithmetic datatypes and computations [NFM'11, CAI'11, Sapientia’18] J

Basic modules

(SAT solver) (CNF converter) [Preprocessing/simplifying modules]

Non-algebraic decision procedures Bit-vectors Bit-blasting

(Equalities and uninterpreted functions | (Pseudo-Boolean formulas |

[Interval constraint propagation }

Algebraic decision procedures (Fourier-Motzkin variable elimination) (Simplex |

Subtropical satisfiability] (Grébner bases [CAI3] | [MCSAT (FM,VS,CAD)]

Virtual substitution [FCT'11, SC*'17, PhD Corzilius]]

[Cylindrical algebraic decomposition [CADE-24, SC*'17, PhD Loup, PhD Kremer]]

Generalized branch-and-bound [CASC'16] } [Cube tests]

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 30/74

SMT-RAT strategies

class myStrategy: public Manager {
myStrategy(): Manager() {
setStrategy(
addBackend<SATModule<SATSettings>>(
addBackend<CADModule<CADSettings>>()

H

} &)

b

nonlinear real

CAD

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

SMT-RAT strategies
(Preprocessing)

(8AT)

nonlinear real

CAD

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

SMT-RAT strategies

Bit-blasting

nonlinear real

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

SMT-RAT strategies

Bit-blasting

nonlinear real

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

SMT-RAT strategies

Bit-blasting

nonlinear real

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

SMT-RAT strategies

Preprocessing

Bit-blasting

linear real

Simplex

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

SMT-RAT strategies

Bit-blasting

linear integer linear real

CBranch and bound)

Simplex

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 31/74

Building an SMT solver from SMT-RAT modules

El Download and build CArL & SMT-RAT
http://smtrat.github.io/carl/getting_started.html

Optionally: Extend it with custom modules and strategies

Select a strategy
$ cmake -D SMTRAT Strategy=CADOnly ../

Build SMT-RAT

$ make smtrat

H Run it
$./smtrat input.smt2

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

http://smtrat.github.io/carl/getting_started.html

SMT solving

III Some applications outside planning

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 33/74

SMT applications

model checking
termination analysis
runtime verification

test case generation
controller synthesis
predicate abstraction
equivalence checking
scheduling

planning

deployment optimisation on the cloud
product design automation

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 34/74

Embedding SAT/SMT solvers

Environment

Software

engine Solution

Probl b I_r(:)%lceeri SHIEAT
roblem P solver

specification

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 35/74

Embedding SAT/SMT solvers

Environment

Software

engine Solution

Probl b Lr((j)?)llceeri SHIEAT
roblem P solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 35/74

Embedding SAT/SMT solvers

Environment

Software

engine Solution

g SAT/SMT
(Potlem }——— prodlem
solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax — free solver choice

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 35/74

Embedding SAT/SMT solvers

Environment

Software

engine Solution

Probl b I_r(:)%lceeri SHIEAT
roblem P solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax — free solver choice

In the following: applications of SMT solvers

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 35/74

Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software '

Aboiit CBMC

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

June 25, 2018 36/74

http://www.cprover.org/cbmc/

Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]

Carnegie Mellon

S Bounded Model Checking ..
rlomena for Software T /

AbJat CBMC Logical encoding of finite paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

June 25, 2018 36/74

http://www.cprover.org/cbmc/

Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]

Carnegie Mellon

S Bounded Model Checking ..
rlomena for Software T /

AbJat CBMC Logical encoding of finite paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scool We have recently added experimental support for Java

Encoding |dea Inlt(s()) A Trans(so, s1) A ... A Trans(sy_ 1,sk) A Bad(so, ..., sk)

fions and USer-Specified assertions. Furthermore, it can check C and Be
C++ for consistency with other languages, such as Verilog. The §
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

June 25, 2018 36/74

http://www.cprover.org/cbmc/

Bounded model CheCking for C/C++ [Kroening and Tautschnig, 2014]

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software T /
Logical encoding of finite paths
About CBMC 9 9 P
CBMC is a Bounded Model Checker for C and C++ programs. It

supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using

SCOOl We

have recently added experimental support for Java

Encoding |dea Inlt(s()) A Trans(so, s1) A ... A Trans(si_1, sx) A Bad(sy, . . .

Tions and USer-Speciied assertons. FUMNErmore, it can Check C and B
C++ for consisten E

verificatior)
passing th|

While CBI
using mal|

CBMC is &
Solaris 11|

CBMC cof
alternative]

""‘"I'w'.iﬂ{‘[« ?

with other languages. such as Verilog.
Application examples:
Error localisation and explanation
Equivalence checking
Test case generation
Worst-case execution time

solvers wer

that these sorvers need to be installed separately and have d\ﬁerem licensing conditions.

TCTTO e T o orueT vorToeT Tees = wror =5 Note

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

E. Abraham, F. Leofante

ICAPS’18 June 25, 2018 36/74

http://www.cprover.org/cbmc/

Hybrid systems reachability analysis [kong etal., 2015]

DREAL DREACH BENCHMARKS PUBLICATION DOWNLOAD TRYONLINE PEOPLE

dReach is a tool for safety verfication of hybrid systems.

It answers questions of the type: Can a hybrid system run into an unsafe region of its state space? This question can be encoded to SMT formulas,
and answered by our SMT solver. dReach is able to handle general hyrbid systems with nonlincar differential equations and complex discrete

mode-changes.

dReach
Hybrid System Model
(drh)
BMC SMT2
Module | Formula dReal SAT/UNSAT

Unrolloing bound k

Source: D. Bryce, J. Sun, P. Zuliani, Q. Wang, S. Gao, F. Shmarov, S. Kong, W. Chen, Z. Tavares.

dReach home page. http://dreal.github.io/dReach/
ICAPS'18 June 25,2018 37/74

http://dreal.github.io/dReach/

Termination analysis for programs [stsder etal., 2015]

APROVE

Automated Program Verification Envir

‘\ Compioiy
Non-Termination

Back-End

Symbolic
Execution

Graph

Haskell

Front-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
June 25,2018 38/74

ICAPS’18

E. Abraham, F. Leofante

Termination analysis for programs [stsder etal., 2015]

Term rewrite system
‘ Complexity
Non-Termination

Back-End

:‘\[ﬁ

APR

Automated Program Verification Envir

Symbolic
Execution

Graph

Haskell

Front-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
E. Abraham, F. Leofante ICAPS'18 June 25, 2018 38/74

Termination analysis for programs [stsder etal., 2015]

Term rewrite system

‘ Complexity
Non-Termination

AF

Automated Program Verification Envir

Symbolic
Execution
Graph

Haskell

Front-End Back-End
Term rewrite system minus(2.0) — O dv(O.sw) -0 @
minus(0,s(y)) — 0 (2) div(s(x). s(y)) — s(div(minus(z,y).s(y))) (5)
l minus(s(z),s(y)) — minus(z,y) (3)

Dependency pairs MINUS(s(2),5(s)) — MINUS(,5) (6) DIV(s(x), (y)) — MINUS(z,))
DIV(s(x), s(y)) — DIV(minus(z, y).s(y)) (8)

l O O
\ DIV(s(x),5(y)) — DIV(minus(x,), s(z)) (8) | \ MINUS (s(x), s(y)) — MINUS(z,) (6) |

Chains

DIV(s(z),s(y)) — MINUS(z,) (7)

Logical encoding for well-founded orders.

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
E. Abraham, F. Leofante

ICAPS’18 June 25, 2018 38/74

jUnitgy: Runtime verification of multi-threaded,

object-oriented systems (pecker et al., 2016]

Properties: linear temporal logics enriched with first-order theories
Method: SMT solving + classical monitoring

Synthesis

System

—
Maonitor
Observation
Verdict
Fig. 1 Schematic overview of the monitoring approach

Source: N. Decker, M. Leucker, D. Thoma.
Monitoring modulo theories.
International Journal on Software Tools for Technology Transfer, 18(2):205-225, April 2016.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 39/74

SCheduling [Ansétegui et al., 2011]

Resource 1, availability = 3

4 -- 5 > . -
Task time duration j 1 - 2 T 6 7
13,2) 0 b= —TT —T T time
Resource 2, availability = 3
K I [
3
2 5]
1A ! 4 7
2 6 .
0 T T T T T time
o n Resource 3, availability = 2
Demand on each resource —T 2 —— - - -
s [3
14 1 7
2 [4] 6)
0 T T T T T time

Figure 1: An example of RCPSP (Liess and Michelon 2008)

Source: C. Ansétegui, M. Bofill, M. Palahi, J. Suy, M. Villaret.

Satisfiability modulo theories: An efficient approach for the resource-constrained project
scheduling problem.

Proc. of SARA'11.

E. Abraham, F. Leofante June 25, 2018

Deployment optimisation on the cloud jaoranam etal., 2016)

Location (e.g, VMs, PCs, ...)

Depoloyable Components.
______ - - ~
oo frontend [P backend | \ , “t c_B_J@;gg_:[.____ a3 Iarge 2 N\
/ 4 S I User Constraints . \
\ HTTP_Load_Balancer s _ _ !
mysql \ |
"“” “"’" c3 _large 3 €3 xlarge 1
\wD backend mysql \ 9 9t |
RAM: 3750 RAM: 7000] :
MySQL \ [RAM: 7000} P
Wnrdpress [eeseies] | [eesezm] ,
N P S - ==
€3 large 1
wp_backend| mysal mysql

* =2 i
P Ll TR
<3 xlarge 1 3 large 2
wp_frontend| wp_backend | iwp_backend mysal ! mysqi
< < 3
1 =3 © =2 s
HTTP_Load Balancer, 1 WordPress 2 WSQL.2
3 large 3
wp_backend mysql
©
=
WordPress 3

Source: E. Abraham, F. Corzilius, E. Broch Johnsen, G. Kremer, J. Mauro.
Zephyrus2: On the fly deployment optimization using SMT and CP technologies

SETTA'16.
¥ June 25, 2018

E. Abraham, F. Leofante

Parameter synthesis for probabilistic systems [pennert et al., 2015]

40p* +20pq + 6p + 3q
68p2 + 34pq + 34> + 34p + 17q

Fross =

SR

" (Parametric)
PRISM Model B

- Property)

GUI

i
j
i
1
1
1

- Plot of Regions .
1
1
1
1

Automatic Regions SMT Solver . “Liscof qm/ Un-

! safe Re;,mm

- User-defined Regions

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Abraham.
PROPHESY: A probabilistic parameter synthesis tool.

In Proc. of CAV’'15.
E. Abraham, F. Leofante ICAPS'18 June 25, 2018 42/74

SMT solving for planning

IV SMT and planning

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 43/74

From planning to satisfiability checking

Classical planning

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 44 /74

From planning to satisfiability checking

Classical planning

V restrict search for a plan to paths with (predetermined) bound

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 44 /74

From planning to satisfiability checking

Classical planning

V restrict search for a plan to paths with (predetermined) bound

Reductions of planning to SAT
m linear encodings [Kautz and Selman, 1992]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 44 /74

From planning to satisfiability checking

Original work by Kautz and Selman was later extended with, e.g.,*

m parallel plans [Kautz et al., 1996, Rintanen et al., 2006]

m metric constraints [Wolfman and Weld, 1999]

m non-deterministic domains [Giunchiglia, 2000]

m time constraints [Shin and Davis, 2005] (when SMT was not yet known as such)
m preferences [Giunchiglia and Maratea, 2007]

*Have a look at, e.g., [Rintanen, 2009] for more on planning and SAT.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 45/74

From planning to satisfiability checking

Original work by Kautz and Selman was later extended with, e.g.,*

m parallel plans [Kautz et al., 1996, Rintanen et al., 2006]

m metric constraints [Wolfman and Weld, 1999]

m non-deterministic domains [Giunchiglia, 2000]

m time constraints [Shin and Davis, 2005] (when SMT was not yet known as such)
m preferences [Giunchiglia and Maratea, 2007]

Then SMT came. .. and new solutions followed, e.g.,

m numeric planning [Scala et al., 2016]

m temporal planning [Rintanen, 2015, Rintanen, 2017]

m planning in hybrid domains [Cashmore et al., 2016]

m optimal temporal planning (with OMT) [Leofante et al., 2018]

*Have a look at, e.g., [Rintanen, 2009] for more on planning and SAT.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Planning as satisfiability (kautz and seiman, 1992]

Planning problem
Let ¥ and A be the sets of fluents and actions.
Let X =F UA and X’ = {x’ : x € X} be its next state copy.

A planning problem is a triple of boolean formulae IT = (/, 7', G) where
m /(7)) represents the set of initial states
m 7(X.,X’) describes how actions affect states
m G(¥) represents the set of goal states

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 46 /74

Planning as Sat|Sf|ab|l|ty [Kautz and Selman, 1992]

Encoding IT in SAT - renaming

For a givenbound ke N, let X, = {x, : x € X}, n=0, ...k .
Furthermore, let

m /(X,) (resp. G(X,)) be the formula obtained from / (resp. G) by
replacing each x € X with the corresponding x, € X,

m 7(X,, X,) be the formula obtained from 7 by replacing each x € X
(resp. x' € X’) with the corresponding x,, € X,, (resp. x,+1 € Xu+1)-

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 47 /74

Planning as Sat|Sf|ab|l|ty [Kautz and Selman, 1992]

Encoding IT in SAT - renaming

For a givenbound ke N, let X, = {x, : x € X}, n=0, ...k .
Furthermore, let

m /(X,) (resp. G(X,)) be the formula obtained from / (resp. G) by
replacing each x € X with the corresponding x, € X,

m 7(X,, X,) be the formula obtained from 7 by replacing each x € X
(resp. x' € X’) with the corresponding x,, € X,, (resp. x,+1 € Xu+1)-

Encoding IT in SAT - the formula

The planning problem IT with makespan k is the formula

k-1

oaLr = 1(Xo) A /\ T(Xi, Xiv1) A G(Xy)
i=0

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 47 /74

Planning as satisfiability (kautz and seiman, 1992]

Encoding IT in SAT

® ¢k is sat iff there exists a plan with length &
+ in that case, a plan can be extracted from the satisfying assignment

m in parallel encodings, two actions can be executed in parallel if they
are non-mutex

m optimal plans minimize the number of steps:

P» start withk = 1

< increase until o4 becomes sat or upper bound on k is reached.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 47174

Encoding planning problems: how to?

We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 48/74

Encoding planning problems: how to?

We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.

What we will see:

m Brief problem description (also comes in PDDL ©)
m SMT-LIB standard (basic syntax, advance features)

E. Abraham, F. Leofante ICAPS'18

June 25, 2018 48/74

Encoding planning problems: how to?

We will now consider a simpl-{e,ified} planning problem and show how it
can be encoded as an SMT formula.

What we will see:
m Brief problem description (also comes in PDDL ©)
m SMT-LIB standard (basic syntax, advance features)

Disclaimer

Planning problems can be encoded in many different (+ efficient) ways.
Given the introductory nature of this tutorial, we will use naive encodings
only to introduce functionalities of SMT solvers.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Working example: TSP

Problem statement
m Set of locations: ¢4, (>
m All locations must be visited
m Each location must be visited

at most once

Simplifying assumptions:
m Graph fully connected, undirected,
unweighted (weights kick in later)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 49/74

Working example: TSP

PDDL Domain

(define (domain tsp)
(:requirements :negative-preconditions)
(:predicates (at ?x) (visited ?7x))
(:action move
(?x ?y)
(and (at ?x) (not (visited ?7y)))
(and (at ?y) (visited ?y) (not (at ?x)))))

PDDL Problem

(define (problem tsp-2)

(:domain tsp)

(:objects 11 12)

(:init

(at 11))

(:goal

(and (visited 11) (visited 12))))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 50/74

SMT-LIB standard

Syntax of core theory

:sorts ((Bool ©))

:funs (

(true Bool)

(false Bool)

(not Bool Bool)

(and Bool Bool Bool :left-assoc)

(par (A) (= A A Bool :chainable))
(par (A) (ite Bool A A A))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 51/74

SMT-LIB standard

Syntax of arithmetic theories

:sorts ((Real 0))
:funs (

(+ Real Real Real :left-assoc)
(* Real Real Real :left-assoc)

(< Real Real Bool :chainable)

)

June 25, 2018

E. Abraham, F. Leofante ICAPS'18

SMT-LIB standard

Check the following link for more:
http://smtlib.cs.uiowa.edu/index.shtml

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 51/74

http://smtlib.cs.uiowa.edu/index.shtml

Boolean example

Propositional encoding - |

; SAT encoding for TSP

; benchmark generated from python API

; Declare variables

(declare-fun visited_1_
(declare-fun visited_2_
(declare-fun visited_1_
(declare-fun visited_2_

(declare-fun at_1_0 ()
(declare-fun at_2_0 Q)
(declare-fun at_1_1 Q)
(declare-fun at_2_1 ()

E. Abraham, F. Leofante

0 O
0 O
10O
1 0

Bool)
Bool)
Bool)
Bool)

Bool)
Bool)
Bool)
Bool)

ICAPS’18

June 25, 2018

52/74

Boolean example

Propositional encoding - Il

Assert formula for initial state

(assert (and at_1_0 visited_1_0 (not visited_2_0) (not at_2_0)))

Assert formula encoding unrolling of
transition relation

(assert
(let (($x1 (and (and at_1_0 (not visited_2_0) at_2_1 visited_2_1
(not at_1_1)) (and (= visited_1_1 visited_1_0)))))

(let (($x2 ...)))
Cor $x1 $x2))))
Assert formula for goal states

(assert (and visited_1_1 visited_2_1))

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 52/74

Boolean example

Propositional encoding - IlI

; Assert additional conditions

(assert (=> at_1_0 (not at_2_0)))

(assert (=> at_2_0 (not at_1_0)))

; Check whether the formula is satisfiabile
(check-sat)

; If sat, retrieve model

(get-value (at_1_0 visited_1_0 at_2_0 visited_2_0 at_1_1
visited_1_1 at_2_1 visited_2_1))

; (get-model) to retrieve the complete model

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 52/74

Boolean example

Propositional encoding - IlI

; Solver returns

sat

(Cat_1_0 true)
(visited_1_0 true)
(at_2_0 false)
(visited_2_0 false)
(at_1_1 false)
(visited_1_1 true)
(at_2_1 true)
(visited_2_1 true))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 52/74

Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

*More here: [Liffiton and Sakallah, 2008]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 53/74

Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

Recall: ¢ is CNF

ki

so::/n\c,- with C; 2=\/a,-,-
i=1 .

j=1

*More here: [Liffiton and Sakallah, 2008]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

Recall: ¢ is CNF

ki

so::/n\c,- with C; 2=\/a,-,-
i=1 .

j=1
Transform formula adding clause-selector variables

Cz/ =y VvC) VYi=1,...,n

*More here: [Liffiton and Sakallah, 2008]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Unsat cores - intuition®

Let’s assume our input formula ¢ is unsat...we would like to know why!

Recall: ¢ is CNF

ki

n
@Y= /\ Ci with C,‘ = ajj
i=1 j=1

Transform formula adding clause-selector variables

Cz/ =y VvC) VYi=1,...,n
We can now enable and disable constraints by playing with y;
7 check satisfiability of subsets of original constraints

*More here: [Liffiton and Sakallah, 2008]

June 25, 2018

E. Abraham, F. Leofante ICAPS'18

Unsat cores

Propositional encoding - |

; SAT encoding for TSP
; benchmark generated from python API
(set-info :status unsat)

; Enable unsat core generation
(set-option :produce-unsat-cores true)

; Declare variables

; Assert formula for initial state

(assert (! at_1_0 :named I1))

(assert (! visited_1_0 :named I2))
(assert (! (not visited_2_0) :named I3))
(assert (! (not at_2_0) :named I4))

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 54/74

Unsat cores

Propositional encoding - Il

; Assert formula encoding unrolling of
; transition relation

(assert (!
(let (($x1 (and (and at_1_0 (not visited_2_0) at_2_1
visited_2_1 (not at_1_1)) (and (= visited_1_1 visited_1_0)))))
(let (($x2 ...)))
(or $x1 $x2))) :named T))

Assert formula for goal states

(assert (! (not visited_1_1) :named G1))
(assert (! visited_2_1 :named G2))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 54/74

Unsat cores

Propositional encoding - IlI

; Check whether the formula is satisfiabile
(check-sat)

; If unsat, produce unsat core
(get-unsat-core)

; Solver returns

; unsat
; (I2 T G1)

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 54/74

Some theories in: QF_UFLIA

SMT encoding - |

; SMT encoding for TSP

; Declare variables
(declare-fun at_0 () Int)
(declare-fun at_1 () Int)

; Declare UF to encode predicate
(declare-fun visited (Int Int) Bool)

; Assert bounds on integers
(assert (and (>= at_0 1) (<=
(assert (and (>= at_1 1) (<=

; Assert formula for initial
(assert (and (and (= at_0 1)

E. Abraham, F. Leofante

at_0 2)))
at_1 2)))

state

(visited 1 0)) (not (visited 2 0))))

ICAPS’18

June 25, 2018

55/74

Some theories in: QF_UFLIA

SMT encoding - Il

; Assert unrolling of transition relation

(assert

(let (($x1 (and (= at_0® 1) (and (not (visited 2 0))) (= at_1 2)
(visited 2 1) (and (= (visited 1 1) (visited 1 0))))))

(let (($x2 ... D))

Cor $x1 $x2))))

; Assert formula for goal state

(assert (and (visited 1 1) (visited 2 1)))

; Check sat. If sat, retrieve model

(check-sat)

(get-value (at_® (visited 1 0) (visited 2 0) at_1
(visited 1 1) (visited 2 1)))

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 55/74

Some theories in: QF_UFLIA

SMT encoding - Il

; Solver returns

sat

(Cat_0 1)

((visited 1 0) true)
((visited 2 0) false)
(at_1 2)

((visited 1 1) true)
((visited 2 1) true))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 55/74

Optimization

OMT encoding - |

; OMT encoding for TSP
; benchmark generated from python API
(set-info :status sat)

; Declare variables

(declare-fun at_0 () Int)
(declare-fun at_1 () Int)

; Cost variables

(declare-fun c_0® () Int)
(declare-fun c_1 () Int)

; Assert formula for initial state
(assert (and ... (= c_0 0) ...))

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 56/74

Optimization

OMT encoding - Il

(assert

(let (($x1 (and (= at_® 1) (and (not (visited 2 0))) (= at_1 2)

(visited 2 1) (and (= (visited 1 1) (visited 1 0))) (= c_1 (+ c_0 3)))))
(let (($x2 ... D))

; Define objective function
(minimize c_1)

(check-sat)

; Solver returns
;sat

; (objectives

; (c_1 3)

1))

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 56 /74

SMT solving for planning

\ Application: optimal planning with OMT

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 57/74

Planning in the era of Smart Factories

. N

o
l'l

— -

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 58/74

Planning in the era of Smart Factories

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 58 /74

Planning & Execution Competition for
Logistics Robots in Simulation iemueter et al., 2015]

Source: [Zwilling et al., 2014].

Planning & Execution Competition for

Logistics Robots in Simulation iemueter et al., 2015]

A B A A
AR ST O TIR - SETIS - ST TIS -

Source: [RCLL Technical Committee, 2017].

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 59/74

Planning & Execution Competition for

Logistics Robots in Simulation iemueter et al., 2015]

Temporal planning with OMT for the RCLL. What's hard?

m time windows

m domain representation: over 250 configurations possible!
m combinatorics

m scalability

&d compact representations are needed to help solvers

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

The need for compact encodings

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 60 /74

The need for compact encodings

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 60/74

The need for compact encodings

aiNap as ay
Sso — 51 = 2 - 83

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 60/74

The need for compact encodings

ajhay as aqg
S0 —» 51 = S — 83

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 60/74

The need for compact encodings

ajhay as ag
S0 —»> 51 = S - 83

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 60/74

The need for compact encodings

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 60/74

A reduced enCOding [Leofante et al., 2018]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

S0 S1 A\ S3 S4

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

S0 S1 A\ S3 S4

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

S0 S1 A\ S3 S4

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

A reduced enCOding [Leofante et al., 2018]

S0 S1 A\ S$3 S4

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 61/74

Integrated synthesis and execution

5

Synthesis

Plan

|

S ——

Executive

|

{ Robot

1

Monitor

E. Abraham, F. Leofante

ICAPS’18

June 25, 2018

62/74

A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 63/74

A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL

&6 Cool but...How does it perform on other planning problems? 99

(The New York Times)

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 63 /74

A reduced encoding - towards a general approach

We implemented a domain-specific planner for the RCLL
&6 Cool but...How does it perform on other planning problems? 99

(The New York Times)

We’re working on a planner implementing our ideas, stay tuned!

&

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 63 /74

Concluding remarks

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 64 /74

Concluding remarks

m Satisfiability checking combines methods in innovative ways

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 65/74

Concluding remarks

m Satisfiability checking combines methods in innovative ways

! emphasis on practical efficiency.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 65/74

Concluding remarks

m Satisfiability checking combines methods in innovative ways

! emphasis on practical efficiency.

m SAT and SMT solvers are powerful general-purpose tools.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 65/74

Concluding remarks

m Satisfiability checking combines methods in innovative ways

! emphasis on practical efficiency.

m SAT and SMT solvers are powerful general-purpose tools.
m SMT has a wide (and increasing) range of application areas

< planning is one of them!

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

Concluding remarks

m Satisfiability checking combines methods in innovative ways

! emphasis on practical efficiency.

m SAT and SMT solvers are powerful general-purpose tools.
m SMT has a wide (and increasing) range of application areas
= planning is one of them!

m The SMT solving community is always looking for interesting
problems. ..

Have one? Let’s talk!

E. Abraham, F. Leofante ICAPS'18 June 25, 2018

References |

ﬁ zchaff webpage.
https://www.princeton.edu/~chaff/zchaff.html.
Accessed: 2018-06-13.

ﬁ Abraham, E., Corzilius, F.,, Johnsen, E. B., Kremer, G., and Mauro, J. (2016).
Zephyrus2: On the fly deployment optimization using SMT and CP technologies.
In Dependable Software Engineering: Theories, Tools, and Applications - Second International
Symposium, SETTA 2016, Beijing, China, November 9-11, 2016, Proceedings, pages 229-245.

ﬁ Ansétegui, C., Bofill, M., Palahi, M., Suy, J., and Villaret, M. (2011).
Satisfiability modulo theories: An efficient approach for the resource-constrained project
scheduling problem.
In Proceedings of the Ninth Symposium on Abstraction, Reformulation, and Approximation,
SARA 2011, Parador de Cardona, Cardona, Catalonia, Spain, July 17-18, 2011.

ﬁ Cashmore, M., Fox, M., Long, D., and Magazzeni, D. (2016).
A compilation of the full PDDL+ language into SMT.
In Proceedings of the Twenty-Sixth International Conference on Automated Planning and
Scheduling, ICAPS 2016, London, UK, June 12-17, 2016., pages 79-87.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 66/74

https://www.princeton.edu/~chaff/zchaff.html

References Il

ﬁ Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani, R. (2013).
The mathsat5 SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems - 19th International
Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, pages
93-107.

[3 Cook, S. A. (1971).
The complexity of theorem-proving procedures.
In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971,
Shaker Heights, Ohio, USA, pages 151-158.

ﬁ Corzilius, F., Kremer, G., Junges, S., Schupp, S., and Abraham, E. (2015).
SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving.
In Theory and Applications of Satisfiability Testing - SAT 2015 - 18th International Conference,
Austin, TX, USA, September 24-27, 2015, Proceedings, pages 360-368.

ﬁ Corzilius, F., Loup, U., Junges, S., and Abraham, E. (2012).
SMT-RAT: an smt-compliant nonlinear real arithmetic toolbox - (tool presentation).
In Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference,
Trento, ltaly, June 17-20, 2012. Proceedings, pages 442—448.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 67/74

References llI

ﬁ de Moura, L. M. and Bjarner, N. (2008).
Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
pages 337-340.

ﬁ Decker, N., Leucker, M., and Thoma, D. (2016).
Monitoring modulo theories.
STTT, 18(2):205-225.

ﬁ Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J., and
Abraham, E. (2015).
Prophesy: A probabilistic parameter synthesis tool.
In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, pages 214—231.

ﬁ Deters, M., Reynolds, A., King, T., Barrett, C. W., and Tinelli, C. (2014).
A tour of CVC4: how it works, and how to use it.
In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October
21-24, 2014, page 7.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 68/74

References IV

ﬁ Dutertre, B. (2014).
Yices 2.2.
In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages
737-744.

Giesl, J., Thiemann, R., Schneider-Kamp, P., and Falke, S. (2004).

Automated termination proofs with aprove.

In Rewriting Techniques and Applications, 15th International Conference, RTA 2004, Aachen,
Germany, June 3-5, 2004, Proceedings, pages 210-220.

ﬁ Giunchiglia, E. (2000).
Planning as satisfiability with expressive action languages: Concurrency, constraints and
nondeterminism.
In KR 2000, Principles of Knowledge Representation and Reasoning Proceedings of the
Seventh International Conference, Breckenridge, Colorado, USA, April 11-15, 2000., pages
657-666.

Giunchiglia, E. and Maratea, M. (2007).

Planning as satisfiability with preferences.

In Proceedings of the Twenty-Second AAAI Conference on Atrtificial Intelligence, July 22-26,
2007, Vancouver, British Columbia, Canada, pages 987—-992.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 69/74

ﬁ Jarvisalo, M., Berre, D. L., Roussel, O., and Simon, L. (2012).
The international SAT solver competitions.
Al Magazine, 33(1).

ﬁ Kautz, H. A., McAllester, D. A., and Selman, B. (1996).
Encoding plans in propositional logic.
In Proceedings of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR'96), Cambridge, Massachusetts, USA, November 5-8, 1996., pages
374-384.

ﬁ Kautz, H. A. and Selman, B. (1992).
Planning as satisfiability.
In ECAI, pages 359-363.

ﬁ Kong, S., Gao, S., Chen, W., and Clarke, E. M. (2015).
dreach: é-reachability analysis for hybrid systems.
In Tools and Algorithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pages
200-205.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 70/74

References VI

ﬁ Kroening, D. and Tautschnig, M. (2014).
CBMC - C bounded model checker - (competition contribution).
In Tools and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, pages
389-391.

ﬁ Leofante, F., Abrahém, E., Niemueller, T., Lakemeyer, G., and Tacchella, A. (2018).

Integrated synthesis and execution of optimal plans for multi-robot systems in logistics.
Information Systems Frontiers.

ﬁ Liffiton, M. H. and Sakallah, K. A. (2008).
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1-33.

ﬁ Niemetz, A., Preiner, M., and Biere, A. (2014).
Boolector 2.0.
JSAT, 9:53-58.

ﬁ Niemueller, T., Lakemeyer, G., and Ferrein, A. (2015).
The RoboCup Logistics League as a benchmark for planning in robotics.
In Proc. of PlanRob@ICAPS’15.

ﬁ RCLL Technical Committee (2017).
RoboCup Logistics League — Rules and regulations 2017.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 71174

References VI

[
B

Rintanen, J. (2009).
Planning and SAT.
In Handbook of Satisfiability, pages 483-504.

Rintanen, J. (2015).

Discretization of temporal models with application to planning with SMT.

In Proceedings of the Twenty-Ninth AAAI Conference on Atrtificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 3349-3355.

Rintanen, J. (2017).

Temporal planning with clock-based SMT encodings.

In Proceedings of the Twenty-Sixth International Joint Conference on Atrtificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pages 743—749.

Rintanen, J., Heljanko, K., and Niemela, . (2006).
Planning as satisfiability: parallel plans and algorithms for plan search.
Artif. Intell., 170(12-13):1031-1080.

SATO webpage.

SATO solver.
http://homepage.divms.uiowa.edu/~hzhang/sato/.
Accessed: 2018-06-13.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 72174

http://homepage.divms.uiowa.edu/~hzhang/sato/

References VI

ﬁ Scala, E., Ramirez, M., Haslum, P., and Thiébaux, S. (2016).
Numeric planning with disjunctive global constraints via SMT.
In Proceedings of the Twenty-Sixth International Conference on Automated Planning and
Scheduling, ICAPS 2016, London, UK, June 12-17, 2016., pages 276-284.

[3 shin, J. and Davis, E. (2005).
Processes and continuous change in a sat-based planner.
Artif. Intell., 166(1-2):194—253.

ﬁ Stréder, T., Aschermann, C., Frohn, F., Hensel, J., and Giesl, J. (2015).
Aprove: Termination and memory safety of C programs - (competition contribution).
In Tools and Algorithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pages
417-419.

[3 Wolfman, S. A. and Weld, D. S. (1999).
The LPSAT engine & its application to resource planning.
In Proceedings of the Sixteenth International Joint Conference on Atrtificial Intelligence, IJCAI
99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages 310-317.

E. Abraham, F. Leofante ICAPS’18 June 25, 2018 73/74

References IX

ﬁ Zankl, H. and Middeldorp, A. (2010).
Satisfiability of non-linear (ir)rational arithmetic.
In Logic for Programming, Artificial Intelligence, and Reasoning - 16th International Conference,
LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers, pages 481-500.

B Zwilling, F., Niemueller, T., and Lakemeyer, G. (2014).
Simulation for the RoboCup Logistics League with real-world environment agency and
multi-level abstraction.
In Robot Soccer World Cup, pages 220-232. Springer.

E. Abraham, F. Leofante ICAPS'18 June 25, 2018 74174

