
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

3D-Visualisierung von OpenStreetMap
GIS-Daten in WebGL

3D Visualization of OpenStreetMap
GIS Data in WebGL

Bachelorarbeit
Informatik

November 2020

Vorgelegt von Philipp Schulz
Presented by Am Südhang 4

57548 Kirchen
Matrikelnummer: 370838
philipp.gerhard.schulz@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. rer. nat. Thomas Noll
Second examiner Lehr- und Forschungsgebiet: Software Modellierung und Verifikation

RWTH Aachen University

Externer Betreuer Dr. rer. nat. Pascal Richter
External supervisor Steinbuch Centre for Computing

Karlsruhe Institute of Technology

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner
Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht. Dasselbe
gilt sinngemäß für Tabellen und Abbildungen. Diese Arbeit hat in dieser oder einer
ähnlichen Form noch nicht im Rahmen einer anderen Prüfung vorgelegen.

Aachen, im November 2020

Philipp Gerhard Schulz

II

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Processing Server . 2
1.3 Outline of this Work . 3

2 Geographical Information 5
2.1 Overpass API . 6
2.2 Content Description . 6

2.2.1 OSM Node . 6
2.2.2 OSM Way . 7
2.2.3 OSM Relation . 8

2.3 Query Example . 8

3 3D Object Construction 11
3.1 Buildings . 11

3.1.1 Raised Building Parts . 13
3.2 Roofs . 16

3.2.1 Flat . 16
3.2.2 Dome . 16
3.2.3 Pyramidal . 17
3.2.4 Gabled . 19
3.2.5 Skillion . 23

3.3 Roads . 24
3.3.1 Construction . 24
3.3.2 Texturing . 31
3.3.3 Types . 33

3.4 Trees . 34
3.4.1 Types . 34
3.4.2 Constructing . 36

4 Mercator Projection 40
4.1 Mapping . 41
4.2 Centering the Scene . 42

5 Shadows 44

6 Performance Optimization 45
6.1 Rendering Tests . 46

6.1.1 Default . 46
6.1.2 LOD . 46
6.1.3 Merged . 47

6.2 Memory Usage . 48
6.3 Loading Times . 48

III

6.4 Comparison to OSM2World . 49

7 Maintaining OSM Data 50
7.1 Collecting Information . 50
7.2 Publishing . 50

8 Conclusion and Future Work 51

References 53

IV

1 Introduction

The main motivation for this work is to make it possible to visualize the planning of
wind farms near residential areas or other regions. Wind turbines are environment
friendly energy producers, because they generate electrical energy exclusively from
wind energy. For this reason they are preferred over fossil energy sources in relation to
sustainability. Looking at the annual yields about 747 wind turbines of type Nordex
N149 would be needed to cover the energy produced by the hard coal power plant in
Hamburg-Moorburg1, which is enough for 3.29 million housholds assuming one con-
sumes 3 500kwh per year2. These results lead to build more wind farms in order to
reduce the usage of e.g. fossil energy sources. But there is some criticism about it.
Occasionally local communities like Böllen in Baden-Würtemberg e.g. complain about
wind farms near them as they produce continuous noises, cast shadows and cause loss
of property values3. This slows down the process of building up wind farms, which is
also shown in the article given above. Not only would this application counteract these
problems, but also reduce costs in planning wind farms and give a better imagination
of how one would fit in a specific location. Each individual citizen could walk through
a virtual presentation of her/his residence to eventually decide whether she/he is sat-
isfied with the given wind farm plan or not. This would make planning those farms
more comfortable.

1.1 Related Work

There exist a lot of other software implementations which create 3D visualizations
of cities and other regions. But some are not free, others do not support visualizing
scenes in a web browser and others do not have representations of any arbitrary region
available. One for example is virtualcitySYSTEMS4. They create 3D city models and
offer urban planning as commercial solutions. For the models they use CityGML5,
which is an open data model for the storage and exchange of virtual 3D city models
using XML as format. It allows for defining detailed buildings including their interiors,
which on one hand is superfluous for this work and on the other hand not available in
every arbitrary region. But the results they got are good and realistic, because they
make use of tilted satellite images to paint their buildings with.

Another software is OSM2World6, which is implemented using Java. With it one
can create scenes of arbitrary regions selected to view. The software already supports
a lot of different objects to display from the OSM database. Lastly developers of
OSM2World added support for dynamic road lanes including direction arrows7. Export

1https://www.entega.de/blog/windkraftanlage-leistung/
2https://www.ndr.de/nachrichten/info/Watt-Das-leisten-die-Anlagen-im-Vergleich,watt250.html
3https://www.zeit.de/2020/08/windenergie-erneuerbare-energien-klimaschutz-klimapolitik
4https://vc.systems/
5http://www.citygml.org/
6http://osm2world.org/
7https://raw.githubusercontent.com/tordanik/OSM2World/master/doc/changes.txt

1

options are also supported to formats like OBJ for example, which could be used
directly to display it in the browser via an according file loader. But the performance
for rendering those OBJ data is not as good as the app created in this work, which is
compared and shown in Section 6.4.

3D Visualization As the application should run on different devices like smartphones,
tablets, laptops and other computers, WebGL8 is choosen to represent real world ob-
jects in a virtual 3D scene in an internet browser. With this, only one application
needs to be developed in order to be used by all devices which support a modern web
browser. To prevent additional workload in creating such scenes we will use three.js9 to
create them. It is a JavaScript library which wraps the functionalities of WebGL and
extends it by providing helper functions, predefined primitive objects and more to get
started faster. This will help to generate 3D representations of buildings for example.
It also supports virtual reality technology, which is important to point out because it
gives users a better experience compared to the problems explained above10.

Another alternative to three.js is babylon.js11, which is also a powerful JavaScript
3D engine with focus on game development. But we will not make any usage of those
features as the complexity of the application is quite small regarding to other 3D
software.

Geographic Information System (GIS) As the geographic information system we
will use OpenStreetMap (OSM) which is free and open source. It is similar to map
services like Google Maps12, Apple Maps13 or Mapbox 14. There is no specific company
maintaining the data of OSM. Data is being maintained and collected by a community
of volunteers. Anyone can register an OSM account to start right away adding infor-
mation to the OSM world. How to maintain these information is explained in chapter
6 of this work. Mapping Parties or Mapping Weekends are organized to meet up a
group of people who select an area to collect information about constructions, roads,
forests and more. Afterwards they all come together in a café or at someone’s home
and fill in the collected data in OSM.

How to extract this information to create a 3D visualization of a selected location
will be explained in Section 3 of this work.

1.2 Processing Server

The server is used to process GIS data and convert it to 3D objects to then make it
available to the browser client to display. When requesting a scene the server expects

8www.wikipedia.org/WebGL
9https://threejs.org/

10https://threejs.org/docs/#manual/en/introduction/How-to-create-VR-content
11https://www.babylonjs.com/
12maps.google.com
13maps.apple.com
14mapbox.org

2

a boundary box of latitude/longitude coordinates which the scene should cover. The
current flow to create a scene is shown in Figure 1 in abstract form.

Figure 1: Interactions between client, server and OSM. First the client requests a scene.
Then the server checks whether the requested scene was already processed
before. If yes, return it from the cache. Otherwise request needed data from
OSM, process it, save it in cache and return it to the client.

A cache is also used to prevent unnecessary requests to the OSM database of scenes
which were already requested before. This cache holds the 3D information of a scene,
which means that there is no reprocessing needed, too.

For the server Deno15 is used which is modern JavaScript runtime. In contrast to
Node.js16, which is also a popular JavaScript runtime, it is possible to use JavaScript
features which are only available in a web browser. This is important for this work,
because the GLTFExporter of three.js (which is used to export scenes to a file to transfer
it to the client) depends on the Blob and FileReader classes which are generally
implemented in the browsers, but not in Node.js. Currently third party packages of
those classes are needed to be installed in Node.js.

1.3 Outline of this Work

First the Overpass API of OpenStreetMap will be presented in short as the source of
geographic information and how choosen data can be gathered. Then in Section 3 the
creation of buildings, roads and trees with help of these data is explained. As these
objects are placed via latitude/longitude coordinates in OSM a conversion of those
into a cartesian coordinate system with help of the Mercator Projection is described
in Section 4. Afterwards in Seciton 5 shadows are added which are quite important,
because shadow casting is a topic not to neglect as stated above. Then in Section
6 techniques to optimize performance will be shown and different results on different

15https://deno.land/
16https://nodejs.org/en/

3

devices will be compared. Last but not least an introduction of how data in OSM can
be maintained and what to watch out for when collecting data to get realistic buildings
in the 3D visualization.

4

2 Geographical Information

Geographical information is the main source of this work, because they contain details
about roads, buildings, rivers, bus stops and many more, which is important to give
a realistic visualization. But these are mostly available as 2D information meaning
you can view them on a flat map. This makes it hard to construct 3D data out of it
in the first place. OpenStreetMap helps us out by providing additional information
like heights, forms, colors etc. of objects. In this work only a subset of those objects
will be presented as it would go beyond the scope otherwise. One way to get these
information is to visit openstreetmap.org and use the export button placed at the top
bar. This takes you to the view shown in Figure 2.

Figure 2: View of OpenStreetMap Export webpage for location Aachen-Zentrum.

OpenStreetMap will collect all data available in their databases of the area which
is viewed in the map on the right side of the page. This can take a while to process
depending on how much information is available in this area. After it finished you will
get an OSM file which is formatted as XML and holds the geographical information.
With this file we could already start building 3D objects for our visualization. But
because we are using Deno as our server, which uses JavaScript as programming lan-
guage, this would imply to convert these map data to a readable format for JavaScript
first before being able to work with it in Deno. Deno packages exist, which would do
this work for us, but fortunately OpenStreetMap offers another way where there are
no extra steps needed to convert the requested data.

5

2.1 Overpass API

The Overpass API is another interface used to query map data from the Open-
StreetMap databases. In contrast to the main API used above, which is optimized
for editing data, this one is optimized for consuming only [1]. It offers various output
formats such as GeoJSON, JSON, GPX and more. The one we work with is JSON as
we can directly use it for our server without extra dependencies needed to be available.

One more advantage is the query language provided by the Overpass API which can
be used to fetch data based on specific criteria [3]. Not only can we select data we
want, but we can also filter data we do not want which makes our requests faster and
the responses cleaner. An example of a query which selects buildings only is shown in
Listing 1.

// Set output format
[out : j s on] [t imeout : 2 5] ;
// c o l l e c t r e s u l t s
(

way [” bu i l d i ng ”] ({ { bbox }}) ;
r e l a t i o n [” bu i l d i ng ”] ({ { bbox }}) ;

) ;

// Pr int r e s u l t s
out body ;
>;
out s k e l qt ;

Listing 1: An example query which queries buildings in Overpass QL.

I will not go into any detail here about making requests to the Overpass API as it
is a topic in itself. More information can be found in their user’s manual guide [2].

2.2 Content Description

Now that we know where to get geographical information from we can go on analyzing
these to know how to use them to extract information we need for the 3D visualization.
We will work with a minimal example of a response from the Overpass API in section
2.3 to explain the structure.

In general the OSM format consists of three data primitives called node, way and
relation. The relationships between them are hierarchically ordered and are interpreted
as references to their relationship partner.

2.2.1 OSM Node

A node is an object which has an id and a position, which it represents, described
in the WGS-84 coordinate system17 used by OpenStreetMap. It is used to represent

17https://en.wikipedia.org/wiki/World Geodetic System

6

single point objects such as bus stops, benches, wind turbines and more. A collection
of node ids is referenced by a way object which is described in the next subsection.

Additional information are tags, timestamp, version, changeset, user and uid. The
only one relevant of these for this work is tags. The rest is mainly used to track when
and who created or edited a node.

Tags consist of a list of key-value pairs which gives the node more specific informa-
tion. For example a bus stop usually has a name which results in a key-value pair with
key name and value Aachen Bushof to be listed under tags. These tags will be used
later in this work to get the height of a building and more details.

An example of such a node is given in Listing 2.

{
”type ”: ”node ” ,
” id ”: 371567077 ,
” l a t ”: 50 .7768890 ,
”lon ”: 6 .0906311 ,
”tags ”: {

”bus ”: ”yes ” ,
”highway ”: ”bus stop ” ,
” l o c a l r e f ”: ”H12 ” ,
”name ”: ”Aachen Bushof ” ,
”network ”: ”AVV” ,
”operator ”: ”ASEAG” ,
”p u b l i c t r a n s p o r t ”: ”p lat form ” ,
” r e f : IFOPT ”: ”DE:Q:66467110” ,
” s h e l t e r ”: ”yes ” ,
”whee l cha i r ”: ”yes ”

}
}

Listing 2: Node example in JSON format.

2.2.2 OSM Way

A way is an object which has an id and a list of ordered node ids. Like the node object
it also has a tags attribute to describe the way more specifically. There are two types
of ways: open and closed ways. An open way is similiar to a path whereas a closed
way is similiar to an area. Open ways are used to represent roads or rivers while closed
ways represent lakes, simple buildings or fields.

To decide whether a way is open or closed we have to check if the first node id is the
same as the last node id in the node ids list.

7

2.2.3 OSM Relation

A relation is an object which has an id and list of members. It has a tags attribute also
and the same additional attributes like a node. Each member represents a reference to
another object. Most of the time it is a reference to a way. Its function is to describe
more complex buildings which consist of many single parts for example.

It is hard to represent a cathedral with only one way because it could have multiple
spires at different positions. A solution would be to describe each spire with a way and
then list them in a relation’s members list to tell that they belong together. Another
usage is to define buildings which have an inner courtyard for example. In thise cases
relations are marked as multipolygon, which is used and explained in Section 3.4

2.3 Query Example

The base JSON structure is shown in Listing 3.

{
”ve r s i on ”: 0 . 6 ,
”genera to r ”: ”Overpass API 0 . 7 . 5 6 . 1 0 0 2 b121d216 ” ,
”osm3s ”: {

”timestamp osm base ”: ”2020−03−21T13 : 1 3 : 0 3 Z” ,
”copyr ight ”: ”The data inc luded in t h i s . . .

} ,
”e lements ”: [

. . .
]

}
Listing 3: Base response from the Overpass API.

It has some informational attributes about the API used which I will not go into.
The most important attribute is the elements attribute. This one holds all nodes, ways
and relations which we get from the specified query. With the query given in Listing
1 we could get the following response shown in Listing 4 depending on the viewed
bounding box.

8

{
”ve r s i on ”: 0 . 6 ,
”genera to r ”: ”Overpass API 0 . 7 . 5 6 . 1 0 0 2 b121d216 ” ,
”osm3s ”: {

”timestamp osm base ”: ”2020−03−21T14 : 4 0 : 0 2 Z” ,
”copyr ight ”: ”The data inc luded in t h i s document . . .

} ,
”e lements ”: [

{
”type ”: ”way ” ,
”id ”: 217460658 ,
”nodes ”: [

2267232606 ,
2267232735 ,
2267232737 ,
2267232755 ,
2267232606

] ,
”tags ”: {

”bu i l d ing ”: ”yes ”
}

} ,
{

”type ”: ”node ” ,
” id ”: 2267232606 ,
” l a t ”: 51 .1458531 ,
”lon ”: 5 .7479002

} ,
{

”type ”: ”node ” ,
” id ”: 2267232735 ,
” l a t ”: 51 .1457897 ,
”lon ”: 5 .7478806

} ,
{

”type ”: ”node ” ,
” id ”: 2267232737 ,
” l a t ”: 51 .1457734 ,
”lon ”: 5 .7480154

} ,
{

”type ”: ”node ” ,
” id ”: 2267232755 ,
” l a t ”: 51 .1458368 ,

9

”lon ”: 5 .7480349
}

]
}

Listing 4: A JSON response from the Overpass API.

The elements list in this response holds five items. Each item has a type attribute
which defines whether it is a node, way or relation. So we have one way and four
nodes. Additionally the nodes list of this way has five node ids referenced although we
only have four nodes available. But the first node id is the same as the last node id
and therefore we have a closed way here which results in a valid constellation. And the
tags of the way give us more information about the object itself and tells us with the
key building and belonging value yes that this way represents a building. So the four
unique nodes of the way are describing the corners of a building. And by the attributes
lat and lon, as abbreviation for latitude and longitude, in each node we also know its
location.

10

3 3D Object Construction

Now that we know how to get and read data given by the Overpass API we can go
on constructing 3D objects out of it. We choose the Aachen Cathedral as our working
object to construct as it includes a variety of forms. three.js offers many classes to
build objects with. We will use some of them to reduce additional work in creating
buildings. Yet there are special forms like roofs which need manual work to create.

First the creation of buildings will be explained followed by roofs and roads. Addi-
tionally the implementation of trees and forests will be introduced.

In the following points are an alias for vectors in R2 or R3.

3.1 Buildings

As described in Section 2.2.2 buildings in OpenStreetMap can be described as closed
OSM ways. This means we have a list of positions given which represent the outline of
a building. In OpenStreetMap these positions are described in the WGS-84 coordinate
system, which in short are latitude and longitude coordinates to represent positions on
earth.

The idea is to use these points to form a footprint and extrude it to a specific height.
This height will be the height of the building. We use the Shape class from three.js18

with which we can define this footprint. It has two methods moveTo and lineTo we
will be making use of:

• moveTo allows us to set an initial point to start our shape at.

• lineTo then enables us to define more points while lines are being connected
between the last added point and the new one.

For example let S = (1, 1), P1 = (2, 2), P2 = (3, 1) and P3 = (2, 0.5) where S is the
starting point and Pi is a point to connect to for all i ∈ {1, 2, 3}. Calling moveTo(S)

will move the internal cursor of the shape to point S. Further calls lineTo(P1),
lineTo(P2) and lineTo(P3) in this order will result in the shape shown in Figure 3.

18https://threejs.org/docs/#api/en/extras/core/Shape

11

Figure 3: Result of shape with given points.

The shape will automatically connect a line from the last added point to the first
one to close it.

So for a building in OSM the list of nodes describing the outline of the building is
used to create a shape. As these outlines express a closed way corresponding to section
2.2.2 the last element in the list is skipped to keep unique points. At this point the
Aachen Cathedral base is already creatable shown in Figure 4.

Figure 4: Aachen Cathedral base footprint.

The next step now is to extrude this shape to its height given in the OSM tags.
From three.js the ExtrudeGeometry19 class is used which expects a shape or an array
of shapes to be passed. It offers many options to define how the geometry shall be
created. The important one is depth. It sets how deep the shape is to be extruded.
In this case we set it to the height of the building.

19https://threejs.org/docs/#api/en/geometries/ExtrudeGeometry

12

In OSM the tag with name height is commonly used to specify the height in meters
of a building20. Sometimes the height tag is not given and the person who added or
edited the building in OSM has defined the levels only. If this is the case it can be found
under the tag name building:levels. We use 4 meters for each level to approximate the
height for a building. So if there is no height specified but the levels with value 4 we
assume the building to be around 16 meters high. If even this tag is not available, we
fall back to a building height of 10 meters.

Another relevant option to care about is bevelEnabled. It adds beveling to the
geometry which is neither effective nor necessary for the current case and therefore
disabled.

Passing the shape of the Aachen Cathedral from Figure 4 to a new ExtrudeGeomtry

instance with options according to the description given above now results in some
depth in our scene shown in Figure 5.

Figure 5: Aachen Cathedral base extruded with height 7 (fall back value).

3.1.1 Raised Building Parts

At the moment we only worked with one part or in other words OSM way of the
Aachen Cathedral. But as already discussed in section 2.2.3 a complex building needs
more ways to describe parts of it separatly. Looking at the Aachen Cathedral it has a
mid tower and a front one which are of different shape. The mid one is rounded and
the latter is squared. Therefore, we query for more OSM ways to get the full cathedral.
After adding these ways belonging to the Aachen Cathedral which are available at the
moment we get a result shown in Figure 6.

20https://wiki.openstreetmap.org/wiki/Key:building#Additional Attributes

13

Figure 6: Aachen Cathedral with all OSM ways belonging to it.

As already explained above the mid tower is rounded and the front one is squared
which is visible in our new 3D version of the cathedral.

At the moment we assume every building or its part to lie on the ground by using its
given height. But this is not the case everywhere. For example the Aachen Cathedral
has a little bridge connecting the front and mid tower. It is marked in red in our
current model in Figure 7.

Figure 7: Bridge marked in red with falsely calculated facade in relation to its height.

Currently the height for this bridge set in OSM is 27 meters. But looking at real
pictures of the Aachen Cathedral the bridge has no wall underneath it like in our
current model. That is because we are missing one important property relevant for
these cases called min height21 in OSM. This tag describes at which height a part of

21https://wiki.openstreetmap.org/wiki/Simple 3D buildings#Height and levels

14

a building is placed at. Depending on that value the real height of this part results
in subtracting this value from the value given in height. For example if a building has
height = 30 and min height = 25 then this means that the building begins at height
25 and ends at height 30 and thus has a real height of 5 meters. An illustration with
the sideview of the Super C in Aachen in an abstract form as an example is given in
Figure 8.

Figure 8: Illustration of min height property in OSM.

After applying this tag the 3D model of the Aachen Cathedral now looks like shown
in Figure 9 (b).

(a) Overview of Aachen Cathedral.
(b) Close up view of the bridge. Note the gap

underneath it.

Figure 9: Aachen Cathedral after applying min height property.

Now the bridge part does not show any wall underneath it which is the result we
expected. Additionally the mid tower base is raised, too, leaving blank space to the
ground. This is intended by the OSM commmunity as will be comprehensible in the
next section about adding roofs.

15

3.2 Roofs

At the moment we covered many important properties to get an abstract 3D object of
a building. But roofs are still missing. As described in the introduction of this section
some roof types need to be created manually instead of using a predefined geometry
from the three.js library. For these we create the geometry by ourselves. There are
many different roofs supported in OSM which are not covered all in this work. The
complete list can be found in their wiki22. Four new relevant tags named roof:shape,
roof:height, roof:orientation and roof:direction will be introduced in this section. The
roof:shape is the important one because it defines whether a building has a roof or not
and if so what shape it represents. In this context a roof shape with value flat is the
same as there is no roof:shape tag defined. We will begin with the flat roof shape, then
the dome, the pyramidal, the gabled and the skillion one.

3.2.1 Flat

The flat roof is the simplest one because there is nothing to do to achieve it as a
building part itself is flat on top in our case. The Aachen Cathedral itself has no
visible flat roof available in OSM so there is nothing special to show anything apart of
Figure 9.

3.2.2 Dome

For the dome roof we will be making use of the SphereGeometry23 from three.js. As
it also has a height we have to look for the roof:height tag. When this tag is present
the real height of a building is once more recalculated depending on that value. Same
as for min height the value of roof:height gets subtracted from the value of height.
For example if a building has height = 30,min height = 10 and roof :height = 5
(assuming tag roof:shape is present) then the real height, respectively height of the
building facade, is 30− 10− 5 = 15 meters beginning at 10 meters above the ground.

Not only we can pass a radius to the SphereGeometry constructor, but also whether
we want a full sphere or just a half one for example, which represents a dome we can
use for a roof. The parameter to be changed is phiLength which expects an angle in
radians to define the size of the horizontal sweep. This defaults to 2 ∗ π which is a full
sweep and therefore a full sphere. In this case we set it to π to get a half one.

Now that we have a half sphere representing our dome we need to define its size. The
size is defined by scaling the roof along the up axis until it reaches the height which
results the roof in being a half ellipsoid instead of a half sphere. Adding this roof type
to our application we get a result shown in Figure 10. As visible the cathedral has
exactly two dome roofs at the moment. I have colored these to have some contrast to
the building facades and will do this for the other roof types, too.

22https://wiki.openstreetmap.org/wiki/Simple 3D buildings#Roof shape
23https://threejs.org/docs/#api/en/geometries/SphereGeometry

16

Figure 10: Aachen Cathedral after adding support for dome roof type.

3.2.3 Pyramidal

For this roof type we could go analogical to the dome roof and use the ConeGeometry
from three.js to create a pyramidal roof. But because this geometry is less complex than
a half sphere and we want to align the roof base with the building top (so the complete
area of this top is covered) we will create our own geometry. Latter strengthened by
the property of the ConeGeometry base being equilateral, which does not hold for
every building obviously. For this approach to work accurately the building area must
be convex, thus connecting two of any corner points of the building must not clip any
edge. But we accept buildings where this case does not hold as the probability of those
existing is nonzero, which comes from the fact that no data in OSM is checked against
validity before being published. In the following the algorithm for creating this roof
type based on a building base will be explained.

Given a set V of points Pi ∈ {

xy
0

 | x, y ∈ R} and finite n ∈ N with 1 ≤ i ≤ n

where the third component of a vector represents the height in the local coordinate
system of a roof, which in this case is 0 for all points and represents the roof’s base.
Furthermore, P1, P2, ..., Pn are mapped such that the first two components of Pi are
equal to the coordinates of the i-th node given in the nodes list of a OSM way described
in section 2.2.2. This list has n + 1 elements, because we consider closed ways in this
scenario. Now we define the center point Pc ∈ R3 of all points Pi which represents
the top of our pyramidal roof after height being applied. To calculate Pc we take the
average of the positions of all points and apply the roof height hr ≥ 0 (extracted from
tag roof:height) to it, which results in the following equation:

Pc =
1

n

n∑
i=1

Pi +

 0
0
hr

17

With this setup we now can create our geometry. For this we need to define polygons
as triangles connecting 3 points each from which exactly one is always Pc. All together
our pyramidal geometry then has n polygons. After adding support for this roof type
the visualization of the Aachen Cathedral looks as shown in Figure 11.

Figure 11: Aachen Cathedral after adding support for pyramidal roof type.

As mentioned in section 3.1.1 the mid tower of the dom was floating in the air. Now
this is fixed as the underlying building part has a roof of type pyramidal defined which
gives the illusion of it holding the tower part.

Another thing to notice is the front tower being squared, but the pyramidal roof not
matching its base which is contradictory to the algorithm described above for creating
these roofs. An illustration is given in Figure 12 where the building base is marked in
blue and the roof base is marked in red.

18

Figure 12: Bird’s eye view of Aachen Cathedral marking tower bases.

But this is intended and not an error by the algorithm. The trick is to define buildings
whose bases differ from their roof ones by adding another building part with a facade
height of 0. This can be achieved by the following equation with corresponding OSM
tags as described in section 3.2.2:

heightfacade = height−min height− roof:height = 0 with roof:height > 0

The values currently set for the tower are height = 74, min height = 49 and
roof:height = 25 which results in

heightfacade = 74− 49− 25 = 0

being true and therefore having a roof without a building.

3.2.4 Gabled

The gabled roof type is another object to be constructed manually as three.js does
not offer a predefined geometry of this form. It is similiar to a triangular prism. Its

19

base consists of four points in quadrilateral formation and two additional points lying
above opposite edges which form a triangle each that connect to make the roof. This
implies that there are two options of how the roof can be oriented, because in this
case, where the base has exactly four edges, only two can be pairwise selected to build
the triangles with. This is where the tag roof:orientation comes into play which has
two possible values called along and across. If this tag is not defined then the value
along will be assumed. along means the prism is aligned with the long side of the
building. Otherwise it is aligned with the short side. A visual illustration is given in
Figure 13.

(a) roof:orientation = along (b) roof:orientation = across

Figure 13: Gabled roof with different orientation on same building

The four corners of the roof are being taken from a building base to construct the
roof. But not each building, which has a gabled roof assigned in OSM, has exactly
four corners. Consider the building way from OSM given in Figure 14 below.

Figure 14: Building (id=83266236) with 5 corners and roof:shape set to gabled.

It shows one of many scenarios where two or more buildings are sharing one or more
points, because these buildings are directly next to each other. On the right there is
one point next to the corner of the marked building which is used to represent a corner
for the other building next to it. Because we cannot create a simple prism, which’s

20

base consists of more than four corners under the fact that we need two edges lying
on the opposite, the approach used in this work is to calculate the smallest bounding
box consisting of four corners which covers the whole building base. This bounding
box then represents the base of the gabled roof. An intution could be to calculate
the minimum and maximum values of x and y coordinates each of every point and
use these to represent the corners of the bounding box. But this leads to inaccurate
results. Take the building from Figure 14 for example. The result using this approach
would cover all corners, but the corners of the resulting roof would not match with the
building ones. See Figure 15 for illustration.

Figure 15: Bounding box in blue with building from above.

Calculating the ratio of the roof base area to the building base area in this example
results in a 97.4% surplus of the roof’s base area, which is almost twice as big as the
actual base area.

To counteract this we take the same approach but apply it to a different set of points
given. This set results from aligning the building’s longest side with the x-axis and
then doing the calculation of the bounding box for this rotated building. This way
we make sure that shorter sides are missing in the roof’s base area and the longest
side is always taken into account resulting in a greater area coverage. For this we
iterate through pairwise neighbored points and calculate the distance between those.
Mathematically this means finding two neighbored points Pi and Pi+1 from a set of
n ∈ N points and i ∈ [1, n] with Pn+1 = P1 where A = Pi+1 − Pi and

||A||2 >= ||Pj+1 − Pj|| for all j 6= i.

At next the signed angle α between vector A and B =

1
0
0

 is calculated with

21

which a rotation matrix R is created from by using the makeRotationZ function of the
Matrix4 class from three.js. This matrix has the following entries:

R =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

So for any vectors v, w ∈ R3 with w = R · v w is the vector which results from

rotating v by the angle α. As in this case the building is rotated by angle α seen from
the x-axis in its current state there must be vectors Qi which were rotated by using
the rotation matrix R to result in vectors Pi. Changing this equation as follows gives
the resulting points Qi of the building whose longest side is aligned with the x-axis:

R ·Qi = Pi

⇐⇒ R−1R ·Qi = R−1 · Pi

⇐⇒ Qi = R−1 · Pi

Now applying the bounding box approach on the points Qi results in four new points
B1, B2, B3, B4 ∈ R3, which represent the corners of the bounding box. These have to
be rotated by left multiplying R with Bk for k ∈ [1, 4] so they align with the original
building position. In this case, according to the ratio explained above, the surplus
reduces to 2.0%.

The same analysis was applied for 782 different buildings in Aachen where at first
85.4% of the roofs’ area were superfluous and after fixing the rotation of the buildings
it were reduced to 13.6%.

Now the Aachen Cathedral looks as shown in Figure 16.

Figure 16: Aachen Cathedral after adding support for gabled roof type.

On the right one gabled roof has been added which connects to two pyramidal roofs
next to it to create a bigger related roof.

22

3.2.5 Skillion

The skillion roof type is the last to be supported for now. It is basically a flat roof but
tilted to a given direction. That is where the roof:direction tag plays a role. It holds
either a cardinal value like N (north), S (south), SW (south west) or ESE (east south
east) or an angle in degree relative to north clockwise24. For example an angle of 90
degree is the same as the value E meaning it is facing to east direction. Assuming we
have already applied the bounding box approach explained above for a building with
a skillion roof we get exactly four points. In this case tilting the roof results in four
possibilities of pairwise neighbored points to be raised to the given roof height whereas
the other two keep a height of zero. Let P1, P2, P3, P4 ∈ R3 be the points of a building
base with skillion roof arranged as given in Figure 17.

Figure 17: Building base with points P1, P2, P3, P4.

Then if the value given in tag roof:direction is an angle in degrees we take it as it
is and pass it to the function d : [0, 360] → [1, 4]2 which maps the angle to a pair of
indices (i, j) ∈ [1, 4]2 where Pi and Pj will be modified such that they have the height
given in tag roof:height :

d(a) =

(1, 2) if a > 315◦ or a < 45◦

(2, 3) if a >= 45◦ or a < 135◦

(3, 4) if a >= 135◦ or a < 225◦

(4, 1) otherwise.

If for example the value of roof:direction is 60, then we get d(60) = (2, 3) and
therefore points P2 and P3 will be raised to the specified height such that the slope is
approximatly oriented to this direction.

Otherwise if the value given in tag roof:direction is an direction given as N, SW, etc.
(these values can be looked up on the wiki page16) we map it to an angle accordingly
and pass it to the function d given above to retrieve the indices of points to raise. For
example if the value is W it will be mapped to an angle of 270°. Furthermore, if it is
SSE, SSW or S all three get mapped to 180°.
24https://wiki.openstreetmap.org/wiki/Key:roof:direction

23

https://wiki.openstreetmap.org/wiki/Key:roof:direction

As the Aachen Cathedral has no skillion roof assigned in OSM another example with
two neighbored buildings, which have a skillion roof, is used and shown in Figure 18.

Figure 18: Two buildings with skillion roof type.

3.3 Roads

Roads in OSM are mostly represented as open OSM ways which all together give a big
road network. One case where roads are put in as closed ways are roundabouts. To
identify roads or pathes in OSM a lookup for the tag name highway with value yes is
to be done on way elements. There are many different highway types available which
are listed on their corresponding wiki page25. We will not cover all of them in this
work, but those which are present the most. We will first start with modelling roads in
three.js, applying textures to them, discussing different types and their different look
and show the results.

3.3.1 Construction

Roads in general follow a path which can be straight or curved. three.js offers a class
called SplineCurve, which uses the Catmull-Rom Spline technique to build a curve26.
Figure 19 shows such a spline curve in red constructed from a set of four points marked
in blue:

It also shows that these curves generate smooth transitions between given points.
We will take this curve as an example to create a road of. Let the points from left to
right be defined as

P1 = (0, 0, 0)

P2 = (1, 0, 0)

P3 = (2, 1, 0)

25https://wiki.openstreetmap.org/wiki/Key:highway
26https://threejs.org/docs/#api/en/extras/curves/SplineCurve

24

Figure 19: A spline curve constructed from four points.

P4 = (3, 0, 0)

where the third component is the value for depth or height respectively. Every curve
class in three.js has two functions

getPointAt getTangentAt

which both get a value between 0 and 1 passed to get a point or vector respectively
from a position on the curve interpolated according to the arc length. For example
let the arc length of a curve C be 10 units. Then getPointAt(0) returns the position
at the beginning of C whereas getPointAt(1) returns the position at the end of C.
getPointAt(0.5) returns the position on the curve which is exactly 0.5 ∗ 10 = 5 units
in arc length away from the beginning of C. Analogical getTangentAt returns the
tangent vector at those positions. We use these functions to generate vertices for our
road mesh.

For that let u ∈ [0, 1], vu ∈ R3 be the position at u as a vector returned from get-

PointAt(u) and tu ∈ R3 the tangent at u as a vector returned from getTangentAt(u)

with ||tu||2 = 1. Furthermore, let w ∈ R be the width of the road to be constructed. To
define the outlines of the road we need to create points which follow the curve parallel
to its layout with a distance w

2
. Figure 20 shows an example with six different values

for u.
To define those points we take the up vector (0, 0, 1)T and calculate the cross product:

tu × (0, 0, 1)T = pu ∈ R3

where pu is the vector perpendicular to tu with the third component being 0 as well
due to the cross product. Next we set the length of pu to be w

2
. Because ||pu||2 = 1

holds we only need to multiply every component of pu by w
2

and therefore get:

25

Figure 20: Spline curve with outline points for six different values of u.

pu,w =
w

2
· pu

Now we can define two outline positions vu,1 and vu,2 which both have a distance of
w
2

from the curve and vu respectively:

vu,1 = vu + pu,w

vu,2 = vu − pu,w

With this we can now create vertices for our road at any value u. Those vertices
are marked as pink squared points in Figure 20 for example. They are used to define
3D objects, which are also called meshes. This is done by defining faces in form of
triangles which connect three vertices each to fill up space between them. We will not
go into any detail here as this is a topic in itself. A quick search on the internet gives
many results of explanations and instructions.

But before we create such a mesh we need to define how detailed it should be, because
theoretically there are infinte values for u ∈ [0, 1] in R, for which we cannot generate
vertices of as it would blow the computation for rendering the road. Therefore, we
define a grade value d ∈ N which tells how many segments the curve or road respectively
should consist of. For example the grade of the curve in Figure 20 is d = 5 as the curve
is split up into five segments. Increasing d results in more segments and therefore more
vertices. Taking this curve to create a road from with the approach given above we
get the result shown in Figure 21.

What stands out here is the fourth segment being stretched due to the big angle
between the tangents of both positions the segment lies between in. Increasing d coun-
teracts this problem, but at the same time increases the complexity of the geometry.
Figure 22 shows the same road once with d = 15 and d = 50.

26

Figure 21: Road in grey created from curve of Figure 20 with d = 5.

(a) d = 15 (b) d = 50

Figure 22: Road of length 3.9 with different values for d.

The more vertices are used the smoother the road. The value d = 15 for this road
would be sufficient for the 3D visualization. But we cannot use this value for every
road, because every road differs in length from others. Figure 23 shows a longer road
with same d = 15 compared with d = 40.

27

(a) d = 15
(b) d = 40

Figure 23: Road of length 10.9 with different values for d.

As Figure 23 (a) shows a value of d = 15 would not be sufficient for a smooth road
whereas for the road in Figure 22 (a) it would be. So we need to make sure that
regardless of the length of a road every road is smooth enough to look acceptable.
Saying that every arc length of one unit should be split up into five segments gives
adequate results. For d this means we first calculate the arc length ` of a curve and
multiply it by 5:

d = b` · 5c

Then for the curve in Figure 19 the value

d = b3.9 · 5c = b19.5c = 19

is calculated while for the other curve we get

d = b10.9 · 5c = b54.5c = 54

The resulting road meshes are shown in Figure 24.

28

(a) d = 19

(b) d = 54

Figure 24: Road meshes of different length.

As mentioned above the complexity of the geometry can get quite high, which is
an important topic in computer graphics. A common measurement for performance
is the amount of faces a computer needs to render in a 3D scene. As our scenes can
get quite large and should run smoothly on mobile devices we also want to reduce this
complexity as much as possible. At the moment the number of faces for the road in
Figure 24 (a) is 38 and for (b) it is 108, which in some cases can be unnecessarily high.
For example consider a straight road of length 4 in our scene shown in Figure 25.

(a) Solid road mesh. (b) Underlying faces of the road mesh.

Figure 25: Straight road mesh once solid and wired.

This road has 40 faces which all need to be rendered. But the geometry could be
reduced to just two faces due to the simple rectangular form it has. This would result
in what Figure 26 represents.

Figure 26: Simplified road mesh.

A simple approach is to scan the curve for how bent it is at certain positions and if
there is a lot of bending we split the road more often, otherwise we split it less often
or even not at all if it is straight. The amount of scans nscans ∈ N to do depends on
the arc length of the curve. We choose it to be 200 times the length, which results in

29

nscans = b` ∗ 200c

The idea is to collect all u where the road needs to be split up. The ones which are
definitely needed are u = 0 and u = 1 as they represent the start and end of the road.

For every iteration the algorithm checks whether the difference of the angles to the
x-axis of the current tangent vector tu at u ∈ (0, 1) and the previous one tv at v ∈ [0, u)
exceeds a given threshold T . Previous here means where the road was last split, because
if we would take the tangent vector from the previous iteration and check their angles
a curve with small bending less than the threshold would be considered a straight road.
The threshold used in the following results is T = 0.31.

(a) Faces: 38 (b) Faces: 20

Figure 27: Road mesh before and after the algorithm is applied.

For the road in Figure 27 the amount of faces is reduced by almost half of the
previous one. Comparing the solid version of the roads there is almost no difference.

(a) Faces: 38 (b) Faces: 20

Figure 28: Solid road mesh before and after the algorithm is applied.

Curves can even be smoother after applying the algorithm as they are split up more
than before. Figure 29 shows the same comparison with the longer road.

30

(a) Faces: 108 (b) Faces: 70

Figure 29: Long road mesh before and after the algorithm is applied.

At the moment roads look bare due to the simple grey color. The next subsection
will explain how to apply a road looking texture to our mesh for realistic style using
the UV mapping technique.

3.3.2 Texturing

UV mapping is a common technique used to map 2D images onto 3D objects. Usually
this is done by assigning each vertex of a mesh a two dimensional coordinate which
references a location on an image or texture respectively. We will not go into any detail
here on how this technique works and assume that there is basic knowledge given.

Texturing curved objects can be tricky, especially when the form is dynamically
created like the roads. Therefore, UV coordinates need to be generated dynamically,
too. But there is a simple way to achieve this. The underlying curve of a road will be
used to determine distances between adjacent splits, which will be used to define how
much of the texture should be applied to the corresponding faces. The texture used is
shown in Figure 30.

31

Figure 30: Simple road texture.

This texture is seamless in one way meaning that we can append it to itself on the
top or bottom without creating a visible cut at the transition. This is important,
because it makes a road look more natural. Furthermore, the width and length of this
road segment represented by the texture is assumed to be five meters. So five meters
in arc length of the curve should match one time the whole texture. This also means
for shorter segments of a road to only match a part of the texture which in turn means
that the next segment should start to be textured where the previous segment stopped
to be textured. For this an accumulator variable is used to sum up arc lengths of the
road segments. In the end the roads created above look like presented in Figure 31
after applying the texture.

Figure 31: Roads with texture from above applied.

In the next subsection different types of roads with higher meaning are presented.

32

3.3.3 Types

As already mentioned above there are many different types of highways in OSM avail-
able. They range from streets to small paths. The ones that will be presented here
are streets. There are currently seven different types available of those (motorway,
trunk, primary, secondary, tertiary, unclassified and residential). According
to the wiki page and example images given some of the types can be grouped together
by their look. In this work trunk, primary, secondary and tertiary are grouped
together to have the same texture given in Figure 30. Furthermore, unclassified

and residential are grouped to have the texture shown in Figure 32 (a). The only
one left is motorway which is assigned to the texture shown in Figure 32 (b) which
represents a typically German Autobahn with two lanes.

(a) Blank road texture. (b) Road texture for 2 lane motorways.

Figure 32: Road textures for different OSM highway types.

Adding these road types more variety is given to the road network. Figure 33 shows
the Autobahn A3 in Cologne Rath.

Figure 33: Highway A3 in Cologne Rath.

33

There are still a lot of things regarding roads missing like intersections or elevations.
But these are topics which are complex and hard to implement. Therefore, [8] is
referred to give motivation for creating smooth intersections at crosses.

3.4 Trees

To give the scene a more natural look trees and forests are added. The following
approach can be applied analogical to other natural incidences like water for example.
But also farm fields and other landuse types can be derived from it. The idea is to
define a polygon from data given in OSM and randomly generate trees inside this
polygon. The algorithm used is called PNPOLY by W. Randolph Franklin [11], which
tests whether a point lies within a polygon or not. It works by taking a semi-infinte ray
and switch between outside and inside whenever the ray crosses an edge of a polygon.
With this technique it also supports holes inside a polygon, which is important in this
work’s use case. All together a list of positions is collected to define where trees should
be placed.

3.4.1 Types

For trees there are different ways to add them to the OSM database. One is to place
a single tree by defining an OSM node including its location. To identify this node
as a tree the tag natural with value tree should be set. This type should not be
used to define forests, but where trees occur particularly like in front of a building for
example. In this case there is obviously no need to define a polygon. Only the position
is collected and added to the list.

Another way to define where trees are is an area like a forest for example. Those are
typically defined using OSM relations of type multipolygon27 and hold a tag named
landuse with value forest28. Other landuse types like farmland for example can
be found on the wiki page29. In contrast to a polygon a multipolygon can consist of
multiple polygons. With it holes in a polygon can be defined by setting another polygon
inside it. OSM distinguishes between outer and inner polygons by setting an attribute
called role with one of those values to a member of the relation accordingly. Figure
34 shows an example of a multipolygon which defines a polygon with a hole in it.

27https://wiki.openstreetmap.org/wiki/Relation:multipolygon
28https://wiki.openstreetmap.org/wiki/Tag:landuse%3Dforest
29https://wiki.openstreetmap.org/wiki/Key:landuse

34

Figure 34: Example of a multipolygon. Outer polygon defined by blue points. Inner
polygon defined by red points.

To decide where trees are to be placed in a multipolygon area an iteration of positions
is needed which cover this area. So in every iteration the current position is checked
against whether it lies within the polygon or not. To save up iterations we make use of
the bounds element of a relation given in the Overpass API query response. It defines
the boundary box of all elements assigned to the relation. The loop of iterations then
starts at the lowest value according to the x/y values (in this case from top left).
Every step the current position’s x and y values are increased by an offset o (in the
following o = 10) depending on the current iteration. Taking the multipolygon of
Figure 34, the loop results in evenly distributed positions shown in the Figure 35 (a)
in red. Placing trees at those positions would result in an unnatural look of the forest,
because at certain viewing angles straight empty lines of spaces would be visible. To
make it look more chaotic and therefore more natural we add a random values rx, ry
(in the following rx, ry ∈ [−5, 5]) to x and y respectively in every iteration and check
the updated position against being contained in the multipolygon. r is reset to a new
random value in the same interval per iteration. The result of this is shown in Figure
35 (b).

35

(a) Evenly distributed points.
(b) Distributed points with random

offset.

Figure 35: Comparison of distributed points in the example multipolygon.

The last method to define tree areas are OSM closed ways. They also hold a tag
named landuse with value forest. The only difference to a relation, regarding to this
usage, is that there is no hole in the area to be expected as a closed way defines only
one polygon. Therefore, the same algorithm as used for an OSM relation can be used
to generate positions for trees to be placed at.

3.4.2 Constructing

Tree models can be very complex because of the amount of branches and leaves a tree
can have. Therefore, there exist many different techniques to display trees in a 3D
scene. For example one of them is to model the tree trunk and branches in 3D and
then add leaves by appending alpha textured plane meshes to the branches. This can
reveal very realistic looking models. But those are of high geometry complexity and
are mostly applicable in animated movies or similiar use cases. Another way would
be to reduce the complexity of trees to primitive models like OSM2World does in its
current state. But this can lead to unrealistic results. Another less complex but still
detailed technique is to take a side viewed texture of a tree and apply it to simple
mesh like a plane for example. This way we can store a detailed image of a tree while
keeping the complexity of the model low. This is also important as a lot of trees can
be rendered inside a forestial area. Such a texture is given in Figure 36.

36

Figure 36: Texture of a tree viewed from the side.

Taken from https://www.cleanpng.com/png-tree-png-66102/

There are now two ways to use this texture to display trees with. One is to create
a mesh with multiple planes intersection in their centers.

(a) Tree model viewed from front. (b) Tree model viewed from top.

Figure 37: Three planes intersection at their centers with the tree texture applied.

As the texture is transparent around the tree crown the borders of the planes are
not visible, which is intended as it would destroy the look of the tree model.

Using this tree model the Westpark in Aachen looks like shown in Figure 38.

37

Figure 38: Westpark in Aachen with tree model given above.

Depending on the current sun position some planes of the trees are dark while
neighboring planes are bright, which gives an inconsistent look of the tree. This is
because the same plane facing or not facing the sun appears on both sides of the tree’s
center.

The other way is to only use one single plane mesh with the tree texture applied
and let it always face the camera. Such planes are also called billboards as they always
rotate to the camera independent of its location30. With this always the exact same
view of a tree is visible to the camera. Not only the amount of faces for this model is
reduced (by exactly four faces in this case), but also the result looks better and more
natural as shown in Figure 39.

30http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/billboards/

38

Figure 39: Westpark in Aachen with tree billboards.

39

4 Mercator Projection

The Mercator Projection is a cylindrical map projection created by cartographer Ger-
ardus Mercator in the 16th century and today it is used by atlases and navigation
charts to represent a flat visualization of earth’s surface. Back then this projection
provided a simple way to travel along big distances, which was important for marine
navigators, by drawing a straight line on a map from the starting point to the desti-
nation point and following a course along that line[9]. This property comes from the
fact that this projection maps all lines with constant bearing to straight lines (also
called rhumbs)[9]. Instead of using rhumb lines one could use a great circle route to
navigate which would make shorter ways over long distances on spherical objects like
earth. But using this way navigators needed to adjust their courses by continuously
changing their bearings while travelling a great circle route.

OpenStreetMap mainly uses a pseudo mercator projection meaning that earth is
modelized as a perfect sphere, because it gives a fast approximation of the projection31.
So far we did not discuss how we interpret the position of every node in OpenStreetMap.
As already mentioned before every node element holds information about its latitude
and longitude coordinate according to the WGS-84 coordinate system. This system is
used to describe how locations on an ellipsoid, in this case earth, can be identified by
points of two parameters latitude ϕ and longitude ϑ both in degrees, where ϕ ranges
from −90° to 90° and ϑ ranges from −180° to 180°.

Figure 40: Example of a point on a sphere located at (ϕ, ϑ) = (40°,−90°)

Figure 40 illustrates how a point is located on a sphere where the origin (0°,0°) is
at the front cross. As points in the 3D scene will have coordinates in a cartesian

31https://wiki.openstreetmap.org/wiki/Mercator

40

coordinate system, we need to find a way to map coordinates described as points on a
sphere to points in a cartesian coordinate system.

4.1 Mapping

A scene in three.js is a three dimensional cartesian coordinate system with three axes
x, y and z (where x and z are for length and depth while y is for height). Because as
input we get coordinates which represent locations on a sphere we need to map those
coordinates to cartesian ones. If not we would run into biased results. Here latitude
values will be mapped to y values and longitude ones to x values. Take the following
scenario as an example: Assuming earth - as a perfect sphere - has a radius of 6,371 km,
then, under the condition of ϕ = 0° and variable ϑ, which means every location (ϕ, ϑ)
is on the equator, a difference of ∆ϑ = 1° results in an arc length of around 111.19 km.
Now when letting ϕ and thus the latitude coordinate converge to 90°, which means
the location is exactly at north pole, the arc length would converge nonlinear to 0 km
under the same condition that ∆ϑ = 1°, because all meridians meet at both north and
south pole. Therefore, we can not just use the coordinates given in the OSM nodes
for our cartesian coordinate system. Figure 41 illustrates what would happen with the
cathedral used in section 3 when not taking this behaviour into account.

(a) Real (b) Biased

Figure 41: Comparison of the cathedral’s real size and biased size viewed from the
exact same location.

The cathedral on the right is stretched, because of the behavior described above. If
we would place the cathedral on a sphere with size of earth its dimensions would be
correct. But because we are placing objects into an absolutely flat world (the three.js

41

scene), we need to fix this by using the Mercator Projection. As mentioned above
the projection is cylindrical meaning that we convert earth’s spherical surface to a flat
squared map, where the top edge belongs to north pole and the bottom edge belongs
to south pole. The squared form comes from the idea of mapping every component
of a latitude/longitude coordinate to an interval [−180, 180] in a cartesian coordinate
system. With this every longitude value is mapped to its own value. For example:
ϑ = 100° will be mapped to the value 100. For the latitude one a more complex
formula is needed:

flat(ϕ) = ln(tan((
ϕ

90◦ + 1) · π
4

)) · 180◦

π

where ϕ is the latitude value in degree. A proof of this formula can be found in [4].
Now we are able to map WGS-84 coordinates into cartesian coordinates. Last but

not least we need to correct the size of distances to be realistic in meters by dividing
every mapped value by 360 and multiplying it by earth’s circumference of around
40 075 016.69 meters. As the value of the circumference is quite big, which can result
to big values for vertices of the geometry, and floating-point numbers used by most
computers are not one hundred percent accurate, we do one last step before the 3D
scene is finished. This is not really problematic, but counteracting it prevents possible
artifacts in the 3D visualization.

4.2 Centering the Scene

The technical standard IEEE 754 for floating-point arithmetic is used by many com-
puters. Deno - which uses JavaScript under the hood - also represents floats with this
technique. As stated above those numbers are not absolutely accurate which comes
from the fact that those numbers are stored either in 4 or 8 bytes depending on the
desired precision (in case of JavaScript it is 8 bytes also known as IEEE 764 Double
Precision). By mean of this there are only limited possible different values to represent
floating-point numbers. As there are infinite decimal numbers in reality this implies
that there exist gaps between two neighboring numbers regarding to IEEE 754, which
is in fact true[10]. Those gaps grow in increasing numerical values, which is shown in
[10].

To decrease numerical values of vertices in geometry used in our scene we move all
of it together to the center of the cartesian coordinate system. To determine how much
the scene has to be moved an origin has to be calculated. This is done by finding the
minimum and maximum value for the longitude coordinate. Note that we cannot do
the same for the latitude as with its value the strength of the distortion changes. Let
lonmin be the minimum longitude value and lonmax the maximum value. Then the
value ∆lon to adjust the coordinates can be calculated as:

∆lon =
lonmin + lonmax

2

42

For example, if we have lonmin = 10 and lonmax = 20 then ∆lon = 10+20
2

= 15 and
every longitude value is recalculated by subtracting ∆lon from it.

Furthermore, with centering the scene it is more convenient to develope and debug
the application as the origin is right in the middle of it.

43

5 Shadows

Shadows are important when planning wind farms, because they can be a problem for
residents as shown in the introduction of this work. Therefore, implementing those is
important for a 3D visualization. Fortunately three.js already offers a way to easily add
shadows in a scene. For this the property shadowMap.enabled in a WebGLRenderer

instance32 needs to be set and a DirectionalLight with a shadow object33 needs to
be added. This is already done in the figures given in Section 3. three.js uses the
shadow mapping technique and offers three different filters for it out of the box. Those
filters are used to blur the resulting shadows in the scene for better look. The filter
used in this work is the Variance Shadow Map (VSM) algorithm. Choosing this one
over other filters like Percentage-Closer Filtering (PCF) for example comes from the
shadow results being more realistic and smoother, but with minimal additional memory
storage and computation [5]. Figure 42 shows the result when enabling shadows for
the scene using the VSM filter.

Figure 42: Shadow casting of Cologne Cathedral.

One thing to consider at the moment is that the distance of the directional light is
fixed and can only be rotated to simulate the sun position in the sky. This can lead
to objects far away from the origin (in this case > 2 500 units) not to cast shadows,
because the ”view of the light” does not cover regions beyond. The problem is that the
greater the allowed distance is set, the worse the quality of the shadows get without
increasing the dimensions of the shadow map.

32https://threejs.org/docs/#api/en/renderers/WebGLRenderer.shadowMap
33https://threejs.org/docs/#api/en/lights/DirectionalLight.shadow

44

6 Performance Optimization

Performance optimization is fundamental for the application to run on slower devices.
three.js already offers some techniques out of the box to increase performance. One
of them is called Frustum Culling. This means instead of rendering all objects at the
time, only objects which are within the camera view are rendered. But for complex
scenes this optimization alone is not enough as performance tests done in this section
reveal. Those tests will be run on the following three devices to compare the results:

• Smartphone iPhone X (iOS 14.0.1)

– Browser: Safari

• Laptop Acer Aspire VN7-571G-52EP (Windows 10 (20H2))

– CPU: Intel Core i5-5200U 2.20 GHz (2 cores)

– RAM: 8 GB

– Graphics Card: GeForce 940M (2048 MB dedicated memory)

– Resolution: 1920 x 1080 pixels

– Browser: Google Chrome

• PC Desktop (Manjaro Linux (Mikah 20.1.2))

– CPU: Intel Core i5-3570 3.40 GHz (4 cores)

– RAM: 12 GB

– Graphics Card: GeForce GTX 660 Ti (2048 MB dedicated memory)

– Resolution: 1920 x 1080 pixels

– Browser: Google Chrome

The testing scene is Aachen Center with an area of around 4 · 3 = 12 square kilome-
ters, which currently includes 14,245 building and 1,156 road meshes.

First performance tests with the default settings34 of three.js are run. Afterwards
another technique offered by three.js called Level of Detail (LOD) is applied and tested.
Last but not least a geometry merging approach is tested and compared to the other
two results. All optimizations are evaluated by frames per seconds (FPS) the device can
perform. The more FPS the faster and therefore smoother the application. Addition-
ally, the memory usage is compared, too, where less usage is better. stats.js35, which
is developed by the same author as three.js, is used to measure those two performance
indicators, where latter is only available on the laptop and PC device, because Safari
on iOS currently does not support the Performance.memory API36. At the end of this
section loading times of a scene are also presented depending on the used technique.

34general settings like shadows or lights are enabled
35https://github.com/mrdoob/stats.js/
36https://developer.mozilla.org/en-US/docs/Web/API/Performance/memory

45

6.1 Rendering Tests

In the following the optimization of buildings only is considered. Exclusively for the
buildings 353 844 faces were rendered at once. Furthermore, a value of 60 FPS is
considered to be ”at least 60 FPS”, because browser generally limit the amount frames
according to the refresh rate of the monitor, which in this case was 60 Hz for all three
devices. The results of the following subsections will be packed into one diagram at
the end for comparison. In this case the tests are run once with shadows enabled and
disabled to give performance results between a variable setting.

6.1.1 Default

As already stated above three.js already offers and enables Frustum Culling by default
for every mesh added to the scene. But it turned out that this is not sufficient for the
scene to render smoothly on the devices as the results in Table 1 shows.

Device FPS (Shadows off) FPS (Shadows on)
PC 15 10

Laptop 11 7
Smartphone - -

Table 1: FPS of the scene with default settings once with shadows enabled and disabled
for all three devices. The smartphone did not load the scene at all due to
crashes.

6.1.2 LOD

LOD is a technique to define multiple versions of the same object with different levels
of detail to then switch between those depending on the distance from the camera to
the object’s location. The aim is to reduce complexity of objects far away, because
details are not recognizable anymore. The same can be applied for buildings. For
this we define a simple box, which covers a whole building part. All together when
the distance between the camera location and the building location is less than 1 500
units, the original geometry of the building is rendered, otherwise the corresponding
box is rendered. At first an optimization compared to the results above was expected,
because less faces needed to be rendered, but the results are a bit worse, as Table 2
shows.

46

Device FPS (Shadows off) FPS (Shadows on)
PC 7 5

Laptop 7 5
Smartphone - -

Table 2: FPS of the scene with LODs once with shadows enabled and disabled for all
three devices. The smartphone did not load the scene at all due to crashes.
Furthermore, the best case scenario was given, meaning that all buildings were
rendered as their lower level boxes.

This implies that the bad performance does not lie in the complexity of the geome-
tries. The additional loss probably comes from checking the distances for every object
in every frame.

6.1.3 Merged

Another reason why 3D applications run slowly is the amount of draw calls per frame
[6]. In three.js one draw call is done per mesh. So for the scene there are 15 401 draw
calls done regarding to the buildings and roads. The next step now is to merge the
geometry of those meshes into one single mesh. That means all buildings and all roads
of the same type are merged into one mesh each. With this, flexibility regarding the
transformation of single objects is lost. But this is not needed in this case, because
buildings and roads are static, and therefore merging is no problem. After applying
this approch the performance is increased by at least 300% in average37 compared to
the default settings as Table 3 shows. The amount of meshes is reduced to five (1 for
buildings and 1 for each road type).

Device FPS (Shadows off) FPS (Shadows on)
PC 60+ 60+

Laptop 31 25
Smartphone 60+ 40

Table 3: FPS of the scene with merged geometries once with shadows enabled and
disabled for all three devices.

All results are available in Figure 43 for direct comparison.
Something to note here is that the scene (representation of Aachen Center) has a lot

of buildings compared to a village where the planning of a wind farm is more common.
Therefore, even better performance is to be expected for smaller towns.

37The results of the smartphone are excluded, because they are only available for the merged approach.

47

Default LOD Merged
0

10

20

30

40

50

60

10

5

60

7
5

25

0 0

40

F
P

S

PC Laptop Smartphone

Figure 43: Rendering performance. As the results show the best of the shown methods
is the merge approach. As explained above this comes from the reduction
of draw calls to the graphics card, because complexity reduction did not
increase the performance as shown in the LOD approach.

6.2 Memory Usage

Not only FPS is increased, but also memory usage is minimal with the merged ap-
proach. The default settings used around 109 MB of RAM. The LOD technique used
around 220 MB of RAM, which is comprehensible because twice the amount of objects
need to be held in memory. Merging everything together, the used memory could be
reduced to just 49 MB, which results from holding just 5 instead of 15,401 mesh objects
in memory. Regarding mobile devices battery usage is therefore also reduced, where
exact values are not measured here.

6.3 Loading Times

Loading times are also an important factor, because they influence the flow of an
application. Here the fastest solution is the merged approach again, which results
from the same reason that there are only 5 meshes to be processed and loaded to the
graphics card. The following loading times are measured from the beginning of the
script until the first rendering on the client. Both the server and client were running
on the same machine, which is why the loading time for fetching the scene data from
the server is very low. So depending on the internet connection, time is to be added
to the values given in Table 4.

48

Device Default LOD Merged
PC 17.10 19.48 0.44

Laptop 39.48 40.30 1.05
Smartphone - - 1.17

Table 4: Loading times in seconds of the application on client side measured from the
beginning of the script until the first rendered frame. This was done 3 times
for every constellation.

6.4 Comparison to OSM2World

As already stated in the introduction the performance of OSM2World is a little worse
compared to the application in this work regarding to FPS measurement. This is
shown by a smaller test scene (2 km × 1 km = 2 km2) of Aachen Center run on the
PC. While OSM2World reached around 45 FPS, the application of this work reached
60+ FPS. To note here is that OSM2World currently supports some more objects like
bus stops, fences, benches etc. which are 3D representated in their visualization.

Furthermore, OSM2World in its current version (0.2.0) has errors in some of their
representation of building parts. For example Aachen Cathedral is not complete as
Figure 44 shows.

(a) Our version. (b) OSM2World version.

Figure 44: Comparison of Aachen Cathedral between our application and OSM2World.
Additionally, missing roofs were colored in red to give a better comparison
to OSM2World. Visibly the front tower is missing on the right as well as
another building part at the bottom.

49

7 Maintaining OSM Data

Maintaining OpenStreetMap data is one of the most important tasks to keep the service
up to date and consistent. Moreover it helps to make a 3D visualization as realistic as
possible. As already stated in the introduction of this work, data in OSM is maintained
by a community of volunteers who collect and add information to the system in their
free time. Related to this work this possibility is important, because by choosing an
area to plan a wind farm in there could be too little information (e.g. buildings and
their details) available to give a realistic 3D representation of. Current observations
show that there is more data available in cities than in little towns, where a wind farm
is rather to be planned as there is more space in most cases. Therefore, extra work
should be done by visiting the choosen area and collecting missing details to add them
to the OSM databases before creating a 3D visualization. In the following, we will
go through small steps needed to collect relevant data, organize it and publish those
information in OSM.

7.1 Collecting Information

Results of instances of scenes shall be as precise as possible. This means silhouettes
of constructions for example should not differ too much from their real representation,
because wrong dimensions lead to wrong shadow castings. Therefore, it is important to
keep some properties in mind to collect for. Furthermore, locations of those construc-
tions are important. But these can be gathered from satellite pictures OSM provides
while adding data in their editor. These include roads, forests and more as well.

In this case constructions are the most important objects to collect for. Especially
their dimensions like form, size, roof and color. One way is to take pictures of buildings
and other constructions. If taking pictures is not appropriate directly taking down
notes about an object is another option. To not forget associations of those objects
with their location, one strategy can be to go street by street, where every building on
the right side is noted one by one. This means a street needs to be walked two times
at least. Additionally, the starting point of a street should be written down to prevent
confusing the direction.

Heights should be estimated, because there is not always the opportunity to measure
a buildings facade height exactly with suitable tools (for legal reasons).

7.2 Publishing

To be able to publish data to OSM an account needs to be created, where no more
than a username, email and password has to be given. After verifying the email, you
can go right into managing data in OSM. Navigating to the location chosen, the taken
notes can be added one by one. OSM offers an own wiki page for contributing map
data to their databases.

50

8 Conclusion and Future Work

In conclusion this work shows that OpenStreetMap is able to offer enough geographic
information to make a 3D visualization of a region possible. Here the level of detail
depends on how many tags are specified on a given object. Furthermore, the correctness
of those values is important to avoid misleading results. Therefore, preparation and
maintenance of those data is advantageous. But there are also some objects missing
to be supported by the application. These include roof types, where 6 of 12 in total
are currently implemented in the application (5 where shown in this work), vegetation
types, benches, bus stops and many more. Additionally, the performance is a big
issue in this work. At the beginning 14 245 buildings were rendered at 15 FPS on
the PC, which is a poor performance considering the human eye can only see smooth
transitions from 24 FPS up. With optimizations presented in Section 6 the performance
is increased by at least 300% in average. 60+ FPS were reached on the PC as well as on
the smartphone. But not only FPS were increased, memory usage and loading times
were also decreased with the same approach. On one hand there is still the possibility
to fine tune the scene to get a little bit more performance by removing unseen faces of
objects. But on the other hand this would lead to more processing time to calculate
and find those cases, which is not exceeded by the value of the outcoming improvement
and therefore unnecessary to implement at the moment.

At the moment every scene, regardless of the given coordinates, lies in an absolutely
flat world, which is not realistic because earth’s surface is not perfectly flat. To imple-
ment elevation in our application a data source is needed. NASA for example offers
land elevation data with a precision of 30 meters collected on their Shuttle Radar To-
pography Mission38 (SRTM) in 2000. Since 2015 this information is available globally
and can be downloaded freely under condition of having a NASA Earthdata account39.
The data comes in pixels where each pixel represents an area of 1×1 arcsecond, which
translates into approximately 30× 30 meters.

Applying elevation data comes with some problems to be solved. Firstly buildings
must not be tilted by their underlying ground bevel. But without tilting, buildings at
a sloped location will partly float above the ground. To prevent this buildings could be
extended downwards so that neither the actual building is clipping the ground nor the
extended building is floating above it. Secondly roads need to be adjusted, too. This
can be more complex, because in some situations the mesh itself needs to wrap around
edges with different slopes to prevent clipping them. Therefore, checking against those
and changing the geometry of a road mesh is necessary. Altogether [7] is referred here
for integrating SRTM data into 3D rendering together with OpenStreetMap data.

Another subject to discuss is the look of objects in the world. Currently for example
buildings do not have any structure and just look blank. Applying textures to them
would make them look more realistic, which is what OSM2World does, too. Fortunaly
OpenStreetMap offers a public collection of textures in their offical texture library40.

38https://www2.jpl.nasa.gov/srtm/
39https://dwtkns.com/srtm30m/
40https://wiki.openstreetmap.org/wiki/Texture Library

51

They can be used freely and do have dimensions given, which describe how big they
are in the real world in meters. One challenge here will be to apply them to the single
existing buildings mesh generated in Section 6. There is one option available to do:
collect all textures representing building facades and roofs and pack them together
into one single texture. At the same time the position (i.e. UV coordinates) and
dimensions for each packed texture must be saved and be available to the application.
This is necessary, because then a specific facade or roof can be selected to be displayed
for a building without cutting a shown window for example.

52

References

[1] Overpass API, . URL https://wiki.openstreetmap.org/wiki/Overpass_API.

[2] Overpass API User’s Manual, . URL https://dev.overpass-api.de/

overpass-doc/en/.

[3] Overpass QL, . URL https://wiki.openstreetmap.org/wiki/Overpass_API/

Overpass_QL.

[4] Daniel Daners. The mercator and stereographic projections, and many in
between. The American Mathematical Monthly, 119(3):199–210, 2012. doi:
10.4169/amer.math.monthly.119.03.199. URL https://www.tandfonline.com/

doi/abs/10.4169/amer.math.monthly.119.03.199.

[5] William Donnelly and Andrew Lauritzen. Variance shadow maps. In Proceedings
of the 2006 Symposium on Interactive 3D Graphics and Games, I3D ’06, page
161–165, New York, NY, USA, 2006. Association for Computing Machinery. ISBN
159593295X. doi: 10.1145/1111411.1111440. URL https://doi.org/10.1145/

1111411.1111440.

[6] Sébastien Hillaire. Improving performance by reducing calls to the driver. In
Patrick Cozzi and Christophe Riccio, editors, OpenGL Insights, pages 353–364.
CRC Press, 2012.

[7] Tobias Knerr. Merging Elevation Raster Data and OpenStreetMap Vectors for
3D Rendering. May 2013.

[8] M. C. Lin, J. Sewall, and D. Wilkie. Transforming gis data into functional road
models for large-scale traffic simulation. IEEE Transactions on Visualization &
Computer Graphics, 18(06):890–901, jun 2012. ISSN 1941-0506. doi: 10.1109/
TVCG.2011.116.

[9] Mark Monmonier. Rhumb lines and map wars: a social history of the Mercator
projection. University of Chicago Press, United States, 2004. ISBN 9780226534329.
Includes bibliographical references (pages 207-229) and index.

[10] Michael L. Overton. Floating Point Representation and the IEEE Standard. pages
7–21, 1997.

[11] W. Randolph Franklin (WRF). PNPOLY - Point Inclusion in Polygon Test. URL
https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html.

53

https://wiki.openstreetmap.org/wiki/Overpass_API
https://dev.overpass-api.de/overpass-doc/en/
https://dev.overpass-api.de/overpass-doc/en/
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.119.03.199
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.119.03.199
https://doi.org/10.1145/1111411.1111440
https://doi.org/10.1145/1111411.1111440
https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html

	Introduction
	Related Work
	Processing Server
	Outline of this Work

	Geographical Information
	Overpass API
	Content Description
	OSM Node
	OSM Way
	OSM Relation

	Query Example

	3D Object Construction
	Buildings
	Raised Building Parts

	Roofs
	Flat
	Dome
	Pyramidal
	Gabled
	Skillion

	Roads
	Construction
	Texturing
	Types

	Trees
	Types
	Constructing

	Mercator Projection
	Mapping
	Centering the Scene

	Shadows
	Performance Optimization
	Rendering Tests
	Default
	LOD
	Merged

	Memory Usage
	Loading Times
	Comparison to OSM2World

	Maintaining OSM Data
	Collecting Information
	Publishing

	Conclusion and Future Work
	References

