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Abstract

Stochastic Hybrid Automata are an extension of Hybrid Automata to resolve

nondeterminism and model hybrid processes by introducing stochastics. Exist-

ing modeling approaches specify for each system state a single "global" proba-

bility distribution, which �xes the behavior of all stochastic processes. Whereas

this has advantages for veri�cation, this formalism is often disadvantageous from

the modeling perspective.

This thesis presents a modeling language that models stochastic processes as

�rst-class citizens: "local" state-dependent stochastic distributions are speci�ed

per stochastic process and each such process is modeled by a set of edges. We

present syntax and semantics for our proposed language, including probability

calculations for symbolic paths of the model.

Our modeling language is designed to support compositional modeling, allow-

ing natural formalizations of both stochastically dependent as well as stochasti-

cally independent processes. To keep modeling intuitive, we introduce syntacti-

cal restrictions to avoid the introduction of unwanted stochastical dependencies

as well as deadlocks and timelocks. Finally, we discuss alternative design op-

tions and their advantages and disadvantages for the modeler and the system's

safety.
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Chapter 1

Introduction

Hybrid systems unite continuous dynamics and discrete dynamics in a model that is
commonly used to model, analyze and control complex systems. To further expand
the modeling scope, we can introduce uncertainty to the model, resolving the non-
determinism. Uncertainty can have di�erent sources: jump time, jump choice, reset
choice, dynamics uncertainties, and initial state choice. The stochastic models di�er
mainly in source and type of random behavior introduction [LP10]. For jump time
decisions, most literature uses a single "global" probability distribution for the loca-
tions or states of the model ([FHH+11, BBB+14, LP10]. Generally, in those models,
we sample the jump time �rst and then choose a suitable jump enabled at that time.
A generalization of these stochastic automata contains a transition rate function for
time selection and a transition kernel for jump selection [LP10]. When we add ran-
dom behavior, the question of safety is now no longer whether we can reach a bad
state but whether the probability of getting to a bad state is acceptable [FHH+11].
To get the model checking problem to be decidable, one approach is to restrict the
stochastic model further and use only �nite discrete distributions [Spr00]. Another
method is to only consider timed automata to simplify model checking and introduce
probability distributions only for delays and discrete choice of jumps [BBB+14].
In contrast to the above systems, in this work we want to de�ne a model with "lo-
cal" state-dependent probability distributions for the processes. We then assign each
stochastic process to edges. Furthermore, we want our model to be modeling-friendly
and compositional, i.e., stochastic independence of two processes, but also dependen-
cies, are easy to model. A problem for the existing approaches with global distri-
butions is that often it is not straightforward to use them for parallel composition
since we have to come up with new distributions for each location in the composition.
Making the framework applicable for parallel construction and abstraction can help
us to model larger and more complex applications. It also facilitates model analysis,
as we can divide the system into subsystems for the analysis [LP10].
There already exists some related works in the direction of local distributions for
the system's edges, for example by adding a set of probability distributions to the
states [KNSS00]. Here �rst, a satisfying distribution is chosen non-deterministically.
Next, the probability of going to one of the states is calculated with the selected
distribution. For our model, we want to eliminate all non-determinism and have the
distributions assigned to an edge. For Hybrid Petri Nets, a similar approach exists for
so-called 'race models.' Each enabled transition has a �ring delay, which runs down



10 Introduction

and competes with the other enabled candidates. The transition �res when a �ring
delay expires and its transition is still enabled [BK02, HPS+21]. In this thesis, we
will introduce clocks to the edges of Hybrid Automata for our compositional model-
ing language in a similar way. We will further de�ne well-formed models and their
probabilities to execute symbolic paths.



Chapter 2

Preliminaries

Hybrid systems combine discrete transitions, as used in discrete transition systems,
and continuous behaviors, i.e., continuous time evolution. An example is a heater in
a room with two modes o�` and on`, where it switches from one mode to another
according to a particular room temperature threshold. The room temperature evolves
continuously, while the heater determines its discrete model operation according to the
temperature value. In this work, we use the Hybrid Automata modeling framework,
which allows us to analyze the interplay of continuous and discrete activities of a
hybrid system. An advantage of this modeling is its graphical representation for
discrete and continuous activities via edges and vertices, respectively.

2.1 Hybrid Automata

For a function f : A → B and some A′ ⊆ A we denote by f |A′ the function
f |A′ : A′ → B with f |A′(x) = f(x) for all x ∈ A′.
By N and R we denote the set of all natural numbers including 0 and respectively the
real numbers.

De�nition 2.1.1 (Syntax of Hybrid Automata). A Hybrid Automaton [ACH+95] is
a tuple H = (Loc,Con,NCon,Edge,Act,Inv,Init) with

� Loc is a �nite non-empty set of locations;

� Con is a �nite set of controlled variables;

� NCon is a �nite set of non-controlled variables where Con ∩NCon = ∅;
We de�ne Var = Con ∪NCon;
Valuations ν : Var → R, V is the set of valuations;

For v ∈ Var, ν ∈ V we de�ne ν[v 7→ t] as ν[v 7→ t](x) =

{
ν(x) if x ̸= v

t if x = v;

� Edge is a �nite set of edges with Edge ⊆ Loc × 2V
2 × Loc such that for all

e = (l,µ,l′) ∈ Edge and for all (ν1,ν2) ∈ µ it holds

1. ν2 ∈ Inv(l′),

2. for all ν′1 ∈ V if ν1|Con = ν′1|Con then (ν′1,ν2) ∈ µ and

3. ν1|NCon = ν2|NCon;
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� Act is a function assigning a set of activities f : R≥0 → V to each location l
∈ Loc. The activity sets are time-invariant, i.e. f ∈ Act(l) implies (f + t) ∈
Act(l), where (f + t)(t′) = f(t+ t′) f.a. t′ ∈ R≥0.
Furthermore, for each ν ∈ V and each l ∈ Loc there exists exactly one f ∈ Act(l)
such that f(0) = ν; we denote this unique activity f as fl,ν ;

� Inv is a function assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc with
for all ν ∈ Inv, ν′ ∈ V, if ν|Con = ν′|Con then also ν′ ∈ Inv;
Σ is the set of states σ = (l,ν) ∈ Loc× V for which Inv(l) holds;

� Init ⊆ Σ is a set of initial states.

We modi�ed the syntax of Hybrid Automata from [ACH+95] by dividing the
variable set into controlled and uncontrolled variables. Further, we add constraints
to the edge and activity functions. We extended the original edge de�nition by three
restrictions. Firstly, the invariant in the source location and the guard of the edge
implies the invariant's satis�ability in the target location. Secondly, edge guards are
limited to controlled variables, and variables of NCon do not in�uence the guards.
Lastly, we have a controlled reset, meaning uncontrolled variables do not change their
values when taking a jump. Furthermore, we restrict Act to be deterministic, such
that we have a unique activity function for each location and valuation.

The current state of a Hybrid Automaton depends on both discrete and con-
tinuous behavior. A state change is possible either discretely when taking an edge
e = (l,µ,l′) ∈ Edge (jump) or continuously when letting the time elapse. This is mod-
eled by the continuous change of variables x ∈ Var according to the activity Act(l) in
the current location l ∈ Loc (�ow). For an edge to be taken, the guard of this edge
needs to be satis�ed. Respectively for time to elapse, the invariant of the current
location must hold. To model parallel composition of systems, we additionally intro-
duce environment steps, where another system can change certain variables while it is
running. We use the term 'environment' for these other components with which the
system is composed. Only the system itself has writing access for its controlled vari-
ables. Therefore we restrict all other components to be only able to change variables
that are not controlled. To achieve this, the sets of controlled variables of the systems
need to be disjoint for composition. After composing, we want to obtain a closed
system, i.e., the environment cannot change the variables in the system anymore. We
then de�ne the semantics only over closed systems.

De�nition 2.1.2 (Closed). A Hybrid Automaton is closed if NCon = ∅.

De�nition 2.1.3 (Semantics of Hybrid Automata). The semantics for a closed Hy-
brid Automaton H = (Loc,Con,NCon,Edge,Act,Inv,Init) consists of discrete instanta-
neous steps (jumps), continuous time steps (�ow) and environmental steps (τ -steps):

1. Discrete step

e = (l,µ,l′) ∈ Edge (ν,ν′) ∈ µ

(l,ν)
e−→ (l′,ν′)

Rulediscrete

2. Time step

f ∈ Act(l) f(0) = ν f(t) = ν′ t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l,ν)
t−→ (l,ν′)

Ruletime
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H0 :

ℓo�
ẋ = −1
x ≥ 20

ℓon
ẋ = 2
x ≤ 25

x = 25

e0 : x = 20

e1 : x = 25

Figure 2.1: Thermostat modeled as Hybrid Automaton

H1 :

ℓo�
ẋ = −1
x ≥ 20

ℓon
ẋ = 2
x ≤ 25

ℓERR
ẋ = 2
true

x = 25

e0 : x = 20

e1 : x = 25

e2 : x > 20

Figure 2.2: Thermostat with error state modeled as non-deterministic Hybrid Au-
tomaton

3. Environmental step

ν|Con = ν′|Con

(l,ν)
τ−→ (l,ν′)

Ruleenvironment

De�nition 2.1.4 (Execution step). We de�ne → = (
⋃

e∈Edge
e−→) ∪ (

⋃
t≥0

t−→)∪ τ−→.

De�nition 2.1.5 (Path, reachability). A path for a Hybrid Automaton (Loc,Con,
NCon,Edge,Act,Inv,Init) is an in�nite sequence of transitions: σ0 → σ1 → σ2... with
σ0 ∈ Init.
A state is called reachable if there is a path leading to it.

Example 2.1.1. In Figure 2.1 a basic Hybrid Automaton H0 = (Loc,Con,NCon,Edge,
Act,Inv,Init) is shown with

� Loc = {ℓon,ℓoff}

� Con = {x}

� NCon = ∅, Var = {x}

� Edge = {e0 = (ℓo�, {(ν,ν′) | ν(x) = 20 ∧ ν′(x) = ν(x)},ℓon),
e1 = (ℓon, {(ν,ν′) | ν(x) = 25 ∧ ν′(x) = ν(x},ℓo�)}

� Act (ℓo�) = {f : R≥0 → V | ∀t ∈ R≥0.f(t) = f(0)− t},
Act (ℓon) = {f : R≥0 → V | ∀t ∈ R≥0.f(t) = f(0) + 2t}

� Inv (ℓo�) = {ν ∈ V | ν(x) ≥ 20}, Inv (ℓon) = {ν ∈ V | ν(x) ≤ 25}

� Init = {(ℓo�, νs) | νs(x) = 25}.

We look at examples for the preceding de�nitions. H0 is a closed system because
Con = Var, meaning that the environment is not allowed to change the variable x and
can only read it. The reachable states are {(ℓo�, ν) | ν(x) ≥ 20}∪{(ℓon, ν) | ν(x) ≤ 25}.
To look at an example of �ow and jump, we start in the initial state (ℓo�, νs) with
νs(x) = 25. Here only �ow is possible: the automaton can stay in location ℓo� for
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a time duration t if the invariant x ≥ 20 is satis�ed for each time point in [0,t].
However, a jump is possible if we are in location ℓo� and guard x = 20 is satis�ed
(after time elapsed). We can then take the edge e0 to go to location ℓon. A path in the

automaton H0 looks like (ℓo�,ν0)
5−→ (ℓo�,ν1)

e0−→ (ℓon,ν1)
2.5−−→ (ℓon,ν0)

e1−→ (ℓon,ν0)...
with ν0(x) = 25 and ν1(x) = 20. In Figure 2.2, the Hybrid Automaton is extended
by another edge leading to an error state. Here we have non-deterministic behavior,
meaning e.g. it is possible from state (ℓon,ν0) to take both edges e1 and e2. Therefore
it is decided non-deterministically which one to take.

2.2 De�nitions

We need to de�ne a probability space and probability distributions to de�ne Stochastic
Hybrid Automata. For the de�nition of the probability space, we are following [Áb21].

De�nition 2.2.1 (Experiment). A random experiment is an act with an uncertain
outcome.

De�nition 2.2.2 (Sample space). The sample space Ω of an experiment is the set of
all possible outcomes of the experiment.

De�nition 2.2.3 (Event). Given a sample space Ω, an Ω-event is a subset of Ω.

De�nition 2.2.4 (σ-algebra). A σ-algebra F ⊆ 2Ω for a sample space Ω is a set
of Ω-events containing the maximal event Ω and being closed under complement and
countable union.

De�nition 2.2.5 (Probability measure, measurable space). Given (Ω,F), a proba-
bility measure for (Ω,F) is a function Pr : F → [0,1] ⊆ R with

� Pr(Ω) = 1;

� Pr(E) = 1− Pr(E) for all E ∈ F ;

� Pr(
⋃∞

i=0 Ei) =
∑∞

i=0 Pr(Ei) where Ei ∈ F and Ei∩Ej = ∅ for all i,j ∈ N, i ̸= j.

If such a function exists then (Ω,F) is also called a measurable space.

De�nition 2.2.6 (Probability space). A probability space is a triple (Ω,F , P r) with

� (Ω,F) is a measurable space and

� Pr a probability measure for (Ω,F).

De�nition 2.2.7 (Random variable). Assume a probability space (Ω,F , P r) and a
measurable space (S,Σ).

� For X : Ω → S, s ∈ S and σ ∈ Σ we de�ne

� X = s to be {ω ∈ Ω |X(ω) = s} and

� X−1(σ) =
⋃

s∈σ(X = s)

� X is measurable if X−1(σ) ∈ F for all σ ∈ Σ

� A random variable is a measurable function X : Ω → S.
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The supp(f) of a function is the set of all elements from S, which are mapped to
a positive value.

De�nition 2.2.8 (Support). For a function f : S → R≥0 its support is de�ned as
supp(f) = {s ∈ S | f(s) > 0}.

De�nition 2.2.9 (Probability distributions). A function f : S → R≥0 is

� a discrete probability distribution if supp(f) is countable and
∑

s∈supp(f) f(s) =

1. The codomain is reduced to [0,1] ⊆ R≥0 in that case;

� a continuous probability distribution if f is continuous, supp(f) is uncountable
and

∫
s∈S

f(s)ds = 1.

A probability distribution is either a discrete or a continuous probability distri-
bution. It is is a function showing the distribution of probabilities allowing us to
compute the probability measure of an experiment.
In the following, we consider S to be either R≥0 the Euclidean space Rn or the location
set of a Hybrid Automaton.
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Chapter 3

Stochastic Hybrid Automata

We present Stochastic Hybrid Automata intending to resolve non-determinism by
introducing probabilities. In our approach, we use probability distributions for each
stochastic process locally, allowing easy model composition. To de�ne semantics and
probabilities we assume from now on that the Stochastic hybrid system is closed. We
also assume that the enabled time interval for an edge is a closed set, meaning all
guards and invariants are closed sets.

3.1 Syntax of Stochastic Hybrid Automata

De�nition 3.1.1 (Syntax of Stochastic Hybrid Automata). A Stochastic Hybrid Au-
tomaton (SHA) is a tuple A = (H,Lab,Edger, JmpT,Wgt,Rst, Initloc, Initval) where
H = (Loc,Con,NCon,Edge,Act,Inv,Init) is a Hybrid Automaton with the following
components:

� Lab is a set of labels specifying the random processes;

� Edger : Edge → Lab is a function assigning a random process to each edge;

� JmpT(r,σ) : R≥0 → R≥0 is a function assigning a probability distribution to
each label r ∈ Lab and each state σ ∈ Σ;

� Wgt : Edge → N>0 is a function assigning a weight to each jump;

� Rst(e, ν) : V → R≥0 is a function assigning a probability distribution to each
edge and each valuation.
For e = (l, µ, l′) ∈ Edge and σ = (l,ν) we require supp(Rst(e,ν)) ⊆ {ν ∈
V | (ν,ν′) ∈ µ};

� Initloc : Loc → R≥0 is a discrete probability distribution with supp(Initloc) ⊆
{l ∈ Loc | (l,ν) ∈ Init};

� Initval(l) : V → R≥0 is a function assigning a continuous distribution to each
location l ∈ Loc with supp(Initval) ⊆ {ν ∈ V | (l,ν) ∈ Init}.

Additional to the Hybrid Automaton de�nition, we now introduce labels to assign
a random process to each edge. We also add a distribution for each label r to determine
when the corresponding jumps should be taken, which we then store in a random
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variable cr. Furthermore, we use distributions to reset system variables and choose
the initial state's location and valuation. In the following Section 3.3 the individual
functions and backgrounds of the elements of an SHA are explained in more detail.

3.2 Semantics of Stochastic Hybrid Automata

The following probability distributions are part of the model:

� JmpT(r,σ) stochastically determines how long jumps of the process r need to
be enabled before one of them is taken.
We can model urgent jumps, that are taken almost surely, immediately when
they are enabled, by setting JmpT(r,σ)(0) = 1.
For a discrete probability distribution, the probability that a jumps of process
r is taken after an enabling duration between a and b is de�ned with Pe(a ≤
cr ≤ b) =

∑b
i=a,i∈supp(JmpT(r,σ)) JmpT(r,σ)(i). Otherwise the probability can

be calculated using Pe(a ≤ cr ≤ b) =
∫ b

a
JmpT(r,σ)(x)dx.

� Rst(e,ν) resolves non-determinism on reset values. Only resets, that are included
in the transition relation, can be part of the support.

� Initloc determines the initial location.

� Initval determines the initial valuation.
If the domain is discrete then the distribution needs to be discrete, otherwise it
can be discrete or continuous.

The transition relation µ ∈ 2V
2

of an edge is a set of pairs of valuations (ν,ν′) ∈ µ.
The �rst valuation ν represents the guard and the second one ν′ represents the reset.
We introduce a new variable set for random variables V arr and we further use a
transition relation µr and valuations νr for the random variables. We also introduce
a notation to combine the pair of valuations for system and random variables. Ac-
cordingly, we de�ne a valuation by assigning each system variable its value according
to ν and each random variable its value according to νr.

De�nition 3.2.1 (Random variables). Let Varr = {cr | r ∈ Lab} with Var∩Varr = ∅
contain a unique freh variable for each random process. We call the elements of V arr
random variables and de�ne Vr to be the set of all valuations νr : Varr → R.

De�nition 3.2.2 (Guard). For a given transition relation µ ⊆ V ×V the guards are
de�ned as the set
gµ = {ν ∈ V | ∃ν′ ∈ V. (ν,ν′) ∈ µ}.

De�nition 3.2.3 (isEn). isEn(gµ,t,f) = true ⇔ f(t) ∈ gµ.

De�nition 3.2.4 (enablednessInv). enablednessInv(l,t,f,νr,ν′
r)

= true i�

∀e = (l,µ,l∗) ∈ Edge.
[[
ν′r(cr) = νr(cr)− t ≥ 0 ∧ ∀0 < t′ < t.isEn(gµ,t

′,f)
]
∨[

ν′r(cr) = νr(cr) ∧ ∀0 < t′ < t.¬isEn(gµ,t′,f)
]]
.

When time evolves, we need to make sure that random variables are running
down as they should. During the whole enabling time of an edge, its process should
be running, meaning its random variables run down without interruption.Therefore
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A0 :

cr ∼ λe−λx

Rst(e,ν) = λe−λx for ν ∈ V

ℓ0
ẋ = 1
true

ℓ1
ẋ = 1
true

x = 0

Wgt1 = 1

e : r

Figure 3.1: Stochastic Hybrid Automaton example

during a timestep the guards of all outgoing edges should be either invariantly true
or invariantly false. All guards that were enabled with the old valuation ν need to
remain enabled after time t passed with the new valuation ν′, and all guards that were
not enabled, also need to stay disabled. Predicate 'enablednessInv' ensures that a
jump cannot change its enabledness within the time (0,t). And if so, we take another
timestep from that time point on.

The Semantics for a Stochastic Hybrid AutomatonA = (H,Lab,Edger, JmpT,Wgt,
Rst,Initloc, Initval) where H = (Loc,Con,NCon,Edge,Act,Inv,Init) is only de�ned for
closed systems and consists of discrete instantaneous steps (jumps), continuous time
steps (�ow) and environmental steps (τ -steps):
First we initialize all random variables from their distribution in the initial state. For
all r we sample cr ∼ JmpT(r,σ) with σ is the initial state.

1. Discrete step

(l, ν)
e−→ (l′,ν′) r = Edger(e) νr(cr) = 0

ν′ ∈ supp(Rst(e,ν)) ν′r(cr) ∈ supp(JmpT(r,(l′,ν′)))

(l,ν,νr)
e
=⇒ (l′,ν′, ν′r)

Rulediscrete

2. Time step

(l,ν)
t−→ (l,ν′) enablednessInv(l,t,f,νr,ν′

r)

(l,ν, νr)
t
=⇒ (l,ν′, ν′r)

Ruletime

3. Environmental step

(l,ν)
τ−→ (l,ν′)

(l,ν, νr)
τ
=⇒ (l,ν′, νr)

Ruleenvironment

3.3 Explanation

With the help of example Stochastic Hybrid Automaton shown in Figure 3.1, we
explain the individual probability distributions and elements of a Stochastic Hybrid
Automaton.
A0 is a SHA with

� Lab = {r}

� Edger(e) = r

� JmpT(r,σ) = λe−λx
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� Wgt(e) = 1

� Rst(e1,ν) = λe−λx

� Initloc = δ(ℓ0) Dirac distribution Initloc(ℓ0) = 1

� Initval = δ(ν) Dirac distribution with Initval(ℓ0)(ν) = 1 for ν(x) = 0

To resolve non-determinism for edge decisions, we introduce state-dependent prob-
ability distributions JmpT(r,σ) for stochastic processes and assign processes to the
edges. For each jump, a non-negative value of its distribution gets randomly chosen
and stored in the random variable cr. These random variables are backward running
clocks only decreasing when a jumps of its random process is enabled. We can take
the jump as soon as the variable gets to 0, and we reset it after to a new random
value. A second distribution Rst(e,ν) also allows resetting the system variables. We
exclude some complications, e.g., the user de�ning a distribution for reset outside of
the possible valuation values. To do so, we restrict the support of reset to only go
over the transition relation. To build a meaningful and working system, the modeler
should choose the distributions wisely. In that sense, a discrete jump distribution �ts
if an edge is enabled at a countable number of discrete time points and a continuous
distribution if its guard is satis�ed at uncountable many time points. Although the
distribution should be in a way, so it is impossible to sample a too large value, we do
not exclude this possibility. In this case, we can rescale the probability if it is possible
to take another edge.

We expanded the three semantical rules from Hybrid Automata for the semantics
of Stochastic Hybrid Automata. Starting with the discrete step, we assumed that
guard and reset of jump directly imply the invariant of the following location to make
the model easier. The following must hold to take a given edge e with its random
label r: the guard is enabled, the valuation is part of the transition relation (same
as in Hybrid Automata), the random clock reaches 0, and we sample a suitable value
for the reset of the system and the random variable. Next, we take a look at the time
steps. We start in time point 0 with valuation ν, and after t time, we get the valuation
ν′. With the attribute 'enablednessInv', we make sure that the following conditions
are met: The invariant holds for the whole time step, the same edges are enabled,
and the random clocks for these enabled edges run down. It is important to note that
the time only elapses as long as the enabling conditions do not change. When one
jump's enabling value changes, we update its random variable, i.e., it starts or stops
running. This way, we can have multiple time steps after each other. Every time a
condition for a jump is enabled or disabled, we take a new time jump to ensure the
random clock cr counts its assigned edge's total time of enabledness.

3.4 Well-formed Automata

To protect the probability space, we need to assure that the control always (almost
surely) leaves a location before the location's invariant gets violated. If it is possible
to leave before the invariant gets violated, this will occur with a probability of 1 per
de�nition. We will neglect the whole path where the random variable is assigned to
a value to violate the invariant. The whole probability will split between the possible
paths; therefore, the probability gets rescaled. If we cannot leave the location at any
time and the invariant gets violated unavoidably, then the model is not meaningful.
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De�nition 3.4.1 (Time convergence). For a Stochastic Hybrid Automaton
A = (H,Lab,Edger, JmpT,Wgt,Rst, Initloc, Initval) where H = (Loc,Con,NCon,Edge,
Act,Inv,Init) we de�ne
ExecT ime : R≥0 → R≥0 with ExecTime(d)=d for d ∈ R≥0 and ExecTime(e)=0 for

e ∈ Edge ∪ {τ}. Furthermore, for ρ = σ0
α0==⇒ σ1

α1==⇒ σ2... we de�ne ExecT ime(ρ) =∑∞
i=0 ExecT ime(αi).

A path is called time-divergent i� ExecT ime(ρ) = ∞, and time-convergent otherwise.
A path is called zeno i� it is time-divergent and contains in�nitely many discrete steps.

The probability to reach a time-convergent path should be 0 in a well-de�ned
automaton, therefore the probability for an in�nite time-divergent path should be 1
at all times. This implies (almost sure) the property of non-zenoness, and freedom of
time- and deadlocks.

De�nition 3.4.2 (Timelock, deadlock). State σ has a timelock if there is no time-
divergent path starting in σ.
State σ has a deadlock if no transition can be taken from σ.

Example of an automaton with a timelock:
A0 : cr ∼ f,

f(x) =

{
1
4 for x ∈ {0,1,2,3}
0 otherwise

ℓ0
ẋ = 1
x ≤ 2

ℓ1
ẋ = 1
true

x = 0

e : r

JmpT(r,σ) is a discrete uniform distribution from 0 to 3. If a time point over 2
is sampled e.g. Xr = 3, it is not possible to take the edge at time 3, so we should
stay in location ℓ0 forever, but it is not possible. We have a timelock.
An automaton is timelock-free if no reachable state contains a timelock with a pos-
itive probability. Following, we describe two su�cient conditions for a timelock-free
automaton. The �rst one is that we can always leave each location, i.e., for all lo-
cations l and each valuation ν, the guard of at least one edge with source location l
is satis�ed by ν. An automaton is also timelock-free if all locations have the trivial
invariant 'true', and therefore, it is possible to stay in each location forever.

De�nition 3.4.3 (Well-formed automata). A SHA is well-formed if the underlying
hybrid automaton is free of timelocks, it has no zeno paths, and both the invariants
and the guards are closed sets.

In the following we only consider well-formed automata.

3.5 Probabilities of Stochastic Hybrid Automata

We now introduce a way to calculate the probability of taking speci�c paths in a
Stochastic Hybrid Automaton. We note that the probability of reaching a single
state will typically be 0. However, the likelihood of getting to a state set can be
positive. Therefore, we de�ne �nite symbolic paths, which start at a �xed state and
follow a sequence of edges. Symbolic paths represent the set of all paths for which
the edges are the same, but the time steps can di�er. We use the attribute �reable,
which means that not only is the edge's guard enabled at the current state, but also
its random variable has reached 0.
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De�nition 3.5.1 (Fireable). �reable((l,ν, νr),e) = true i�
e = (l,µ,l′) ∧ r = Edger(e) ∧ ν ∈ gµ ∧ νr(cr) = 0.

De�nition 3.5.2 (Execution step). ⇒ = (
⋃

e∈Edge
e
=⇒) ∪ (

⋃
t≥0

t
=⇒)∪ τ

=⇒

De�nition 3.5.3 (Symbolic paths). We de�ne a �nite symbolic path π = (σ, e1, ..., en)
with σ ∈ Init and e1,...,en ∈ Edge.

De�nition 3.5.4 (Probability of symbolic paths). The probability for a symbolic path
π = (σ, e1, ..., en) with a known σ = (l,ν), e1 = (l, µ, l′),Lab = {r1,...,rk},Edger(e1) =
r is de�ned as P (σ) = 1 for n = 0 and otherwise for n ≥ 1:

P ((σ, e1, ..., en)) =

∫ ∞

t1=0

JmpT(r1,(l,ν))(t1) · ... ·
∫ ∞

tk=0

JmpT(rk,(l,ν))(tk)

· P ′(σ′,e1,...,en)dtk...dt1

with σ′ = (l,ν, νr), with νr is the valuation assigning the value ti to cri for each
i = 1,...,k.

P ′((σ′, e1, ..., en)) = P ′′·Remainder+[
∏

e∈Edge

(1−�reable(σ′,e))]·Fin·P ′(succt(σ
′),e1,...,en)

P ′′ =

{
0 if

∑
e∈Edge,�reable(σ′,e)Wgt(e) = 0

�reable((l,ν,νr),e1)·Wgt(e1)∑
e∈Edge,�reable(σ′,e) Wgt(e) otherwise

Remainder =


∫
ν′∈V

Rst(e1,ν)(ν
′) ·

∫
t≥0

JmpT(r,(l′,ν′))(t)

·P ′((l′, ν′, νr[cr 7→ t]),e2,...,en)dt dν
′ if n ≥ 2

1 otherwise

Fin =

{
1 if maximal time duration in σ is �nite

0 otherwise

succt(σ) = {σ′ |σ t
=⇒ σ′, t is maximal}

If the distributions used above are continuous, we use the given integrals. If the
distributions are discrete, we replace the integrals with (potentially in�nite) sums. The
weight only in�uences the probabilities if two edges are �reable simultaneously. Yet,
the likelihood to choose the same point when at least one distribution has countable
support is 0. For this reason, weights only a�ect the non-continuous case, i.e., discrete
distributions with �nite support, and we can omit them otherwise from the probability
calculation.

De�nition 3.5.5 (Probability for sequence of edges). For e1 = (l,µ,l′) the probability
of starting at any initial state such that (e1,...,en) can be executed is:

P (e1,...,en) = Initloc(l) ·
∫
ν∈V

Initval(l)(ν) · P ((l,ν),e1,...,en)dν

To calculate the probability of symbolic paths, we �rst need the probability of
initializing every single random process. For this, we assign a duration ti to each
random value. The valuation ν denotes the valuation at the very beginning, where
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only the system variables are initialized. Now we de�ne νr assigning the value t to
each random variable. After initialization, we recursively calculate the probability for
each of the jumps with P ′ for the given ti. This way we get the probability that for
this t1,...,tk we will execute e1 to en. P ′ consists of two summands. The �rst one rep-
resents the probability that e1 happens now: If e1 is �reable, we take the probability
that we take e1, considering the weight of all other enabled edges (P ′′). Then we take
the jump, so we reset the system variables with Rst, after that we reset the random
clock to t with the distribution JmpT for the new state. The edge we take tells us in
which location we go and ν′ denotes the valuation after the reset. Finally, we multiply
the probability of the remaining path, considering that we took edge e1 and we have
new values for system variables and the clock. The predicate �reable has the output
true or false, but in P ′′ we consider it a pseudo boolean with the value 0 for false or
1 for true. With the second summand of P ′, we calculate the probability of taking
e1 later because it is not �reable now. We �gure if none of the edges in the current
state are enabled with the product. If one is �reable, the product is 0. Otherwise we
make the longest time step possible, and if it is �nite, we take P ′ for the successor of
the longest step. The longest step exists, because we assumed that the enabled time
interval for an edge is a closed set. The �ag Fin ensures that we get the probability 0
if the maximum time to stay in the location is in�nite. This happens if no edge will
ever be enabled in the future. But if it is possible to take a jump in the future, then
the time cannot elapse forever, so a maximum for succt exists. When we look at the
last edge of a sequence, that means n = 1, and we either take the �nal step in P ′ or
let time elapse.
It is challenging to compute these integrals, and in general, this task is undecidable
because the reachability problem for Hybrid Automata is undecidable. Here we show
how we calculate the probabilities for a simple example.

A : cr1 ∼ λe−λx

cr2 ∼ λe−λx
ℓ0

ẋ = 1
true

x = 0

Wgt2 = 2
r2

e2 : x ≥ 3
x := 0

Wgt1 = 1
r1
e1 : x ≥ 2
x := 0

Figure 3.2: A simple Stochastic Hybrid Automaton, for which we compute the prob-
abilities of symbolic paths

Example 3.5.1. The �gure 3.2 shows a SHA A = (H,Lab,Edger, JmpT,Wgt,Rst,
Initloc, Initval) where H = (Loc,Con,NCon,Edge,Act,Inv,Init) with:

� Loc = {ℓ0}

� Con = {x}

� NCon = ∅, Var = {x}

� Edge = {e1 = (ℓ0, {(ν,ν′) | ν(x) ≥ 2, ν′ = ν[x 7→ 0]},ℓ0),
e2 = (ℓ0, {(ν,ν′) | ν(x) ≥ 3, ν′ = ν[x 7→ 0]},ℓ0)}
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global time
0 1 2 3 4 5

choose t1
0 1 2 3

e1

choose t2
0 1 2

e2 e1

Figure 3.3: Timelines for the clocks of edge e1 and e2:
e1 is taken as �rst edge, if t1 is sampled between 0 and 1
e2 is taken as �rst edge, if t1 is sampled above 1 and t2 is sampled between 0 and
t1 − 1
e1 is taken as �rst edge, if t1 is sampled above 1 and t2 is sampled between t1− 1 and
∞

� Act(ℓ0) = {f : R≥0 → V | ∀t ≥ 0.f(t) = f(0) + t}

� Inv(ℓ0) = V

� Init = {(ℓ0, ν) ∈ Σ | ν(x) = 0}

� Lab = {r1,r2}

� Varr = {cr1 ,cr2}

� Edger(e1) = r1,Edger(e2) = r2

� JmpT(r1,σ) = JmpT(r2,σ) = λe−λx continuous exponential distribution, with
rate parameter λ = 2

� Wgt(e1) = 1,Wgt(e2) = 2

� Rst(ei,ν) = δ(ν′) Dirac distribution with ν′(x) = 0 for i = 1,2

� Initloc = δ(ℓ0) Dirac distribution

� Initval(ℓ0) = δ(ν) Dirac distribution with ν(x) = 0

We are �rst going to calculate the probability of taking only e1 and only e2 using
De�nition 3.5.4. To do so, we insert a arbitrary edge e �rst and then split these
calculations into the choice to take either e1 or e2. Going further, we calculate the
probability of taking a sequence of two edges. We always split the integrals during
calculation until we get the corresponding path we want to compute. We illustrated
the values where we need to split the integrals for the probabilities for one execution
in the timelines in Figure 3.3.

For e ∈ Edge we get:

P (e) = Initloc(ℓ0) ·
∫
ν∈V

Initval(ℓ0)(ν) · P ((ℓ0,ν),e1)dν

= 1 ·
∫
ν∈V

Initval(ℓ0)(ν) · P ((ℓ0,ν),e1)dν
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P ((ℓ0,ν), e)

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′(σ′,e1)dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · Remainder︸ ︷︷ ︸
= 0 until an edge is �reable

+ [
∏

e∈Edge

(1− �reable(σ′,e))] · Fin︸ ︷︷ ︸
= 1 until an edge is �reable

· P ′(succt(σ
′),e1)dt2dt1

take time steps until �rst edge e is �reable

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · Remainder︸ ︷︷ ︸
> 0 because e is �reable

+ 0︸︷︷︸
e is �reable

dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · �reable((l,ν, νr),e1) ·Wgt(e1)∑
e∈Edge,�reable(σ′,e) Wgt(e)︸ ︷︷ ︸

P ′′=1 if e �reable now ∧ |supp(JmpT)| = ∞

·Remainder︸ ︷︷ ︸
=1

dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · 1 dt2dt1

split in di�erent integrals

=

∫ 1

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ dt2dt1︸ ︷︷ ︸
belongs to P (e1)

+

∫ ∞

t1=1

2e−2t1 ·
∫ t1−1

t2=0

2e−2t2 · P ′′ dt2dt1︸ ︷︷ ︸
belongs to P (e2)

+

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=t1−1

2e−2t2 · P ′′ dt2dt1︸ ︷︷ ︸
belongs to P (e1)

We can now calculate the probability to take e1.

P ((ℓ0,ν), e1)

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′(σ′,e1)dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · Remainder︸ ︷︷ ︸
= 0 until e1 is �reable

+ [
∏

e∈Edge

(1− �reable(σ′,e))] · Fin︸ ︷︷ ︸
= 1 until e1 is �reable or e2 but then = 0

· P ′(succt(σ
′),e1)dt2dt1

take time steps until cr1 = 0

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · Remainder︸ ︷︷ ︸
> 0 because e1 is �reable

+ 0︸︷︷︸
e1 is �reable

dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · �reable((l,ν, νr),e1) ·Wgt(e1)∑
e∈Edge,�reable(σ′,e) Wgt(e)︸ ︷︷ ︸

=P ′′=1 if e1 �reable now and |supp(JmpT)| = ∞

· Remainder︸ ︷︷ ︸
=1

dt2dt1

=

∫ ∞

t1=0

2e−2t1︸ ︷︷ ︸
split at 1

·
∫ ∞

t2=0

2e−2t2 · P ′′ · 1 dt2dt1
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=

∫ 1

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2︸ ︷︷ ︸
= 1, e1 taken in any case

·P ′′ · 1 dt2dt1 +

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=0

2e−2t2︸ ︷︷ ︸
split at t1 − 1

·P ′′ · 1 dt2dt1

=

∫ 1

t1=0

2e−2t1 · P ′′ dt1 +

∫ ∞

t1=1

2e−2t1 ·
( ∫ t1−1

t2=0

2e−2t2 · P ′′︸︷︷︸
=0 because �rable(e1)=0

dt2

+

∫ ∞

t2=t1−1

2e−2t2 · P ′′ dt2
)
dt1

=

∫ 1

t1=0

2e−2t1 · P ′′ dt1 +

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=t1−1

2e−2t2 · P ′′ dt2dt1

=(1− e−2) +

∫ ∞

1

2e2−4t1dt1

=(1− e−2) +
e−2

2
≈ 0.9323

We have a �xed initial state in the example. Therefore, we can skip integrating
over possible initial locations and valuations. We follow the formula to calculate the
probability P (e1). We notice that the �rst summand will return 0 until e1 is �reable,
as this is part of the numerator of P ′′. At the same time, the second summand will
recursively call P ′ until we can take a jump. Fin is always one since we can take
an edge when their counter is 0. In this example, one of the edges' random variables
will equal 0 after a �nite time. We skip until an edge is �reable, i.e., to a time where
cr1 = 0 if we make sure that e1 is the �rst edge enabled. Since initially cr1 is set to
t1 we wait t1 (+2) time until we can take the jump. Now the second summand will
be 0 since an edge is �reable. In contrast, we notice that both the fraction P ′′ and
the Remainder will equal one if e1 is �reable. Thus we want to split the intervals so
that e1 is the �rst edge �reable and therefore taken. The semantics assures that edge
e1 is taken as long as e2 is not taken before. In this example, there are two cases in
which e1 is the �rst edge �reable. For this, either its random variable sampled a value
below or equal to 1, resulting in e1 being �reable, no matter e2's random variable
value. The other case is that e1s random variable contains a value above 1, but it
will still be smaller than e2. Since e1 is enabled one time unit before its competitor,
we compare the value of e1's random variable minus 1. Therefore cr2 must be below
t1 + 1 to make sure that edge e1 is taken before.

In both cases, we ensured that e1 is the �rst edge �reable and therefore know
that P ′′ and Remainder decompose to one. Rst will always reset x to 0 and P ′′

will eventually be 1 if e1 is enabled. We can now calculate the integrals and get a
probability from 93.23 % to take e1.

With the same calculations we obtain for e2:

P ((ℓ0,ν), e2)

=

∫ ∞

t1=1

2e−2t1 ·
∫ t1−1

t2=0

2e−2t2 · P ′′ dt2dt1

=

∫ ∞

1

(2e2t1 − 2e2−4t1)dt1

=
1

2
e−2 ≈ 0.0676

P ((ℓ0,ν), e1) + P ((ℓ0,ν), e2) = 1

Further, we compute the probability of executing a sequence of two edges. There-
fore we calculate four combinations of taking the two di�erent self-loops.
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P ((ℓ0,ν), e1, e1)

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′(σ′,e1,e1)dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · Remainder︸ ︷︷ ︸
= 0 until e1 is �reable

+

[
∏

e∈Edge

(1− �reable(σ′,e))] · Fin · P ′(succt(σ
′),e1,e1)︸ ︷︷ ︸

= 1 until e1 is �reable or e2 but then = 0

dt2dt1

take time steps until cr1 = 0

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ · Remainder︸ ︷︷ ︸
> 0 because e1 is �reable

+ 0︸︷︷︸
e1 is �reable

dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · �reable((l,ν, νr),e1) ·Wgt(e1)∑
e∈Edge,�reable(σ′,e) Wgt(e)︸ ︷︷ ︸

=P ′′=1 if e1 �reable now and |supp(JmpT)| = ∞

·
∫
ν′∈V

δ(ν′)︸ ︷︷ ︸
=1

·
∫
t′1≥0

2e−2t′1 · P ′((l′, ν′, ν′
r[cr 7→ t′1]),e1)dt

′
1dν

′dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ ·
∫
t′1≥0

2e−2t′1 · P ′′ · Remainder︸ ︷︷ ︸
after timestep until e1 �reable again

dt′1dt2dt1

=

∫ ∞

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ ·
∫ ∞

t′1=0

2e−2t′1 · P ′′ · Remainder dt′1dt2dt1

=

∫ ∞

t1=0︸ ︷︷ ︸
split this at 1

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ ·
∫ ∞

t′1=0︸ ︷︷ ︸
split this at 1

2e−2t′1 · P ′′ · Remainder dt′1dt2dt1

=

∫ 1

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′

︸ ︷︷ ︸
= 1, e1,e1 in any case

·
∫ 1

t′1=0

2e−2t′1 · P ′′ · Remainder dt′1dt2dt1

+

∫ 1

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ ·
∫ ∞

t′1=1

2e−2t′1 · P ′′ · Remainder dt′1︸ ︷︷ ︸
split into

∫ (t2+1)

t′1=1
... +

∫ ∞

t′1=(t2+1)
...︸ ︷︷ ︸

=0

dt2dt1

+

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 · P ′′ ·
∫ 1

t′1=0

2e−2t′1 · P ′′ · Remainder dt′1dt2︸ ︷︷ ︸
split into

∫ (t1−1)

t2=0
...︸ ︷︷ ︸

=0

+
∫∞
t2=(t1−1) ...

dt1

+

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=0︸ ︷︷ ︸
split at
(t1 − 1)

2e−2t2 · P ′′ ·
∫ ∞

t′1=1︸ ︷︷ ︸
split at (t2 − t1 + 2)

2e−2t′1 · P ′′ · Remainder dt′1dt2

︸ ︷︷ ︸
=0 for all but

∫∞
t2=(t1−1) ...

∫ (t2−t1+2)

t′1=1
...

dt1

�rst P ′′ = 1 because e1 is enabled and taken as �rst edge,

P ′′ · Remainder = 1 because e1 is enabled again and taken as second edge
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=

∫ 1

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 ·
∫ 1

t′1=0

2e−2t′1dt′1dt2dt1

+

∫ 1

t1=0

2e−2t1 ·
∫ ∞

t2=0

2e−2t2 ·
∫ t2+1

t′1=1

2e−2t′1dt′1dt2dt1

+

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=(t1−1)

2e−2t2 ·
∫ 1

t′1=0

2e−2t′1dt′1dt2dt1

+

∫ ∞

t1=1

2e−2t1 ·
∫ ∞

t2=(t1−1)

2e−2t2 ·
∫ (t2−t1+2)

t′1=1

2e−2t′1dt′1dt2dt1

=(1− e−2)2

+ (
1

2
· e−2 · (1− e−2))

+ (
1

2
· e−2 · (1− e−2))

+
1

4
e−4

≈0.7476

+ 0.0585

+ 0.0585

+ 0.0046

≈0.8692

In the following calculations we denoted
∫ y

t=x
2e−2tdt with

∫ y

x
E dt to have a better overview.

P (e1,e2) =

∫ 1

0

E

∫ ∞

0

E

∫ ∞

t2+1

E dt′1dt2dt1 +

∫ ∞

1

E

∫ ∞

t1−1

E

∫ ∞

t2−t1+2

E dt′1dt2dt1

=
1

2
e−2 − 1

2
e−4 +

1

4
e−4

≈0.0631

P (e2,e1) =

∫ 2

1

E

∫ t1−1

0

E

∫ ∞

0

E dt′2dt2dt1 +

∫ ∞

2

E

∫ t1−2

0

E

∫ ∞

t1−t2−2

E dt′2dt2dt1

+

∫ ∞

2

E

∫ t1−1

t1−2

E

∫ ∞

0

E dt′2dt2dt1

=(
1

2
e−6 − e−4 +

1

2
e−2) + (

1

2
e4 − 1

2
e6) +

1

4
e−4

≈0.0631

P (e2,e2) =

∫ ∞

2

E

∫ t1−2

0

E

∫ t1−t2−2

0

E dt′2dt2dt1

=
1

4
e−4

≈0.0046

The probability to take two executions e,e′ ∈ Edge after each other sums up to

P (e,e') = P (e1,e1) + P (e1,e2) + P (e2,e1) + P (e2,e2) = 1

.



Parallel Composition 29

P e_1 e_2
e_1 0.869 0.0631
e_2 0.0631 0.005

We have seen that the probabilities sum up to one for both one execution and two
executions. Following the probability to stay in the state is 0 in this example. The
reason is that we use exponential distributions that converge to 0 in this example, i.e.
probability to stay forever in state is 0. It can be calculated using 1 − P (init,e1) −
P (init,e2). If we do not cover the whole distribution, the remaining probability �ows
into other edges. If this happens for all jumps, we either stay in this location with a
positive likelihood or have a deadlock if the invariant is violated.

With this example, we do not only illustrated the computations but also how we
compose seemingly stochastically independent processes. We can see the example as
an already composed system resulting from a parallel composition of two indepen-
dent processes. We introduce stochastic dependencies between the processes by using
shared variables for concurrent, seemingly stochastically independent processes. We
can control the enabledness and disabledness of conditions with the shared variables.

3.6 Parallel Composition

We want to set up a model with the motivation of easy parallel composition. We
designed the semantics in a way that it allows a composition, but we do not formulate
it here. Instead, we focus on de�ning the conditions for parallel composition in detail.
Composition A||A′ should be an SHA again, where we get the same paths from
the composition as when we compose the paths of both systems separately. For
this purpose, the components need to respect the controlled variables, therefore we
introduce semantical composability. A and A′ are semantically composable if their
controlled variable and random process sets are disjoint.

De�nition 3.6.1 (Semantically composable). Two Stochastic Hybrid Automata A,A′

are semantically composable if Con ∩ Con′ = ∅ and Lab ∩ Lab′ = ∅

We only allow controlled variables in invariants and guards, so the possible envi-
ronmental behavior is �xed. Following, if A changed a variable's value, A′s invariants
and guards do not get violated. Even with the system only being able to change its
controlled variables, we can still use our model for real-life applications. In reality,
several components usually do not write the same value, but each member is an actor
or a sensor. Also, we typically do not directly change a dynamic variable, and we
can only change a control variable if needed. E.g., we cannot directly change the
speed of an engine, but we can brake or accelerate more. There is also the possibility
of implementing a writer for several components, which can write a value in a local
variable. The writer can then read the local values and is the only one having writing
access to the global variable.
In addition, we do not use label synchronization and only synchronize over variables.
In our model, only one random process determines the time point for each synchro-
nized jump. We could not assure this with label synchronization, then enabledness
would depend on several components. The synchronized step can only have one ran-
dom variable that cannot synchronize random values in that case. If we allowed only
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one of the systems to act for each synchronization label and determine a random
variable, then the second component might not be able to follow. To avoid these
problems, we currently do not include label synchronization.
Furthermore, we want the resulting system to be well-formed and closed, so we do
not lose probabilities on deadlocks and timelocks. The environment might change and
read non-controlled variables in a closed system, but it doesn't a�ect the system's be-
havior anymore. The environment is �xed, non-determinism is eliminated, and the
stochastic room is complete so we can de�ne the probabilities.
A step in the parallel automaton means that one of the components does a discrete
or a time step. At the same time, the other one does an environmental step, where
the �rst component can change everything but the controlled variables. The further
de�nition of the composition itself is left for future work.



Chapter 4

Alternative Design Options

Finally, we would like to present some alternative design ideas, some of which we did
not choose to keep the model simple. First, we have made some changes to Hybrid
Automata, which we want to discuss. One could choose not to split the variables into
controlled and non-controlled. Then several components can claim write access of a
variable simultaneously. We could try to restrict that using label synchronization,
bringing new problems. For two jumps with the same label, it is not clear which one
decides when we take the edge, as the probability that both are �reable at the same
time is 0 for distributions with uncountable support.
We also restrict invariance and guard only to contain controlled variables to exclude
some sources of deadlocks. If we allow non-controlled variables in both, modelers need
to use them very carefully in invariants and guards not to cause any deadlocks in the
composed system. We further assumed that the invariant and guard of a discrete step
imply the invariant of the target location for simplicity, so we do not need to check
if the invariant holds when taking an edge. We can relax this restriction by adding
a suitable attribute in various places, like guard and isEn. We have also decided to
add weights to the edges in case multiple jumps are �reable at the same time.
We further do not allow the weight 0 to avoid an additional query if only edges with
weight 0 are �reable, and we would have to divide by 0. Instead of using weights,
we could also use priorities on the edges. We would then choose the edge with the
highest priority with probability 1 �this way, we could express only taking a jump if
no other jumps are enabled.
Concerning the design of the probability distribution, we decided to initialize all
random variables at the very start with the initial state's distribution. Consequently,
we also initialize edges that are never going to be enabled, and therefore the associated
clocks will never decrease. An alternative would be to initialize them once the jump
is enabled for the �rst time. We wanted to keep resetting consistently since we also
reset them every other time after we take an edge and not before.
Last we had the idea to introduce a second distribution for each edge, which selects
how many times a discrete step needs to be enabled and disabled before taking it.
This way, we can model that we do not have to take an enabled jump immediately,
but that an edge must be enabled several times before we take it, e.g., e1 must be
enabled 3 times and then we take it. In the end, we did not leave this distribution
in the model to simplify it. We decided that we already had a similar e�ect with the
race between jumps that we aimed to get with a second distribution. Moreover, we
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dodge possible deadlocks happening if only a single jump is enabled, and according
to the model, we should wait until it is enabled a second time.



Chapter 5

Conclusion

5.1 Summary

This thesis introduced the syntax and semantics of a modeling language for stochastic
hybrid systems. In contrast to existing modeling approaches, we assign local stochas-
tic distributions for stochastic processes and add these processes to the edges of our
model. We extended Hybrid Automata to resolve non-determinism in a way to prepare
the way for the composition of automata. We further reduced unwanted stochastical
dependencies, deadlocks, and timelocks by introducing syntactical restrictions. We
�nally presented probability calculations for symbolic paths of the model. In sum-
mary, we designed a modeling language as the basis of a future de�nition of parallel
composition.

The main challenge in this work was to �nd the degree between a user-friendly and
simpli�ed model and still have it as expressive and free as possible for modeling. The
less error-prone we wanted to design the model, the more we had to limit it and make it
more complicated. As we could not include the �nal composition de�nition, one might
need to make further adjustments when de�ning the parallel construction. Another
challenge of this work was de�ning the model in a way such that the probability
later makes sense, and we can de�ne it. In this course, we introduced controlled
variables to the system, for example, to be able to de�ne closed systems and get
a deterministic model where the probability space is clearly de�ned. We have also
seen that probability calculations can get complex and error-prone, even for a small
example.

5.2 Future Work

Following this bachelor thesis, one can use the presented modeling language to de�ne
the parallel composition of models. Moreover, existing model checking algorithms can
be adjusted to take our model as input language and conduct reachability analysis.
Finally, it would be nice to compare the global and the local approaches in the aspects
of practicality, modeling-friendliness, and expressiveness. Accordingly, it might be
possible to de�ne a way to transform one model into the other.
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