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Motivation

Safety verification for hybrid systems has come a long way, but:
Ï Analysis parameters: Tuning of analysis parameters requires expert knowledge.

Ï Refinement: Verification fails → restart whole analysis with adjusted parameters.

Partial path refinement in a nutshell

Ï Analysis parameters: Ordered sequence of analysis parameter configurations.

Ï Refinement: Only partial refinement instead of full refinement.

Ï Incremental: Reuse information from previous refinement runs.

Hybrid Automata [1]

Example: Hybrid automaton

l0

ẋ = 0.9x − 0.8y
ẏ = 0.3x −1.8y −0.6

true

x = 1
y ∈ [−1,−0.9]

l1

ẋ = 2.6x − 5y − 0.1
ẏ = 5x − 2.6y − 0.7

true

e : x = 0
x’ := x
y’ := y

Ï Time evolution: Variables change according to ODE in current mode.

Ï Discrete jumps: Guarded switching between modes.

Flowpipe Construction

Reachability analysis: Over-approximate the set of reachable states R of system S for
time horizon T by a set R ′. Check R ′ against bad states Pbad.
Verification: R ′∩Pbad =;⇒ S safe, otherwise: unknown (failure).

Flowpipe construction: Use geometric or symbolic state set representations to over-
approximate R.

Some analysis parameters affecting over-approximation R ′:

Ï Discretize T : δ= T
N , large δ→ less precision, faster.

Ï State set representations (e.g. boxes, convex polytopes, support functions) [2].

state set V0 boxpolytope

Ï Discrete jumps: aggregate (left) or cluster state sets (right).

g g

In general: Precision vs. computational effort.

Error Reduction: Partial Path Refinement

Ï Parameter configuration pi: One set of relevant analysis parameters.

Ï Strategy: Finite, ordered sequence of parameter configurations pi .

Example continued: Strategy

p0: box,

δ= 0.01, agg.

p1: support f.,

δ= 0.02, agg.

p2: support f.,

δ= 0.004, agg.

Partial path refinement

Idea:

Ï Start analysis with configuration p0.

Ï Bad states reachable using configuration pi : Refine counterexample path with
configuration pi+1.

Ï Store refinement information.
→ Counterexamples with shared path prefix: reuse refinements.

Ï Reuse information during refinement (e.g. time intervals for enabled transi-
tions).

Example continued: Analysis

initial states
l0, x = 1,
y ∈ [−1,−0.9]

stay in l0

jump to l1

guard e: x = 0

bad states Pbad

fail l1: p0

fail l1: p1

success l1: p2

success l0: p0

stay in l0

Observations:

Ï Coarse analysis (p0) sufficient for mode l0.

Ï Require configuration p2 for mode l1.

Ï Not visible: Reduced number of guard checks for configurations p1, p2 in mode l0.

Future Work

Ï Increase usage of information obtained during refinements.

Ï Synthesize parameter configurations (at runtime).

Ï Introduce conditional strategies (strategy tree).

Ï Parallelization.
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