
EFFICIENT DYNAMIC ERROR REDUCTION

FOR HYBRID SYSTEMS REACHABILITY ANALYSIS
Stefan Schupp Erika Ábrahám

RWTH Aachen University, Germany

EFFICIENT DYNAMIC ERROR REDUCTION

FOR HYBRID SYSTEMS REACHABILITY ANALYSIS
Stefan Schupp Erika Ábrahám

RWTH Aachen University, Germany

Motivation

Safety verification for hybrid systems has come a long way, but:
Ï Analysis parameters: Tuning of analysis parameters requires expert knowledge.

Ï Refinement: Verification fails → restart whole analysis with adjusted parameters.

Partial path refinement in a nutshell

Ï Analysis parameters: Ordered sequence of analysis parameter configurations.

Ï Refinement: Only partial refinement instead of full refinement.

Ï Incremental: Reuse information from previous refinement runs.

Hybrid Automata [1]

Example: Hybrid automaton

l0

ẋ = 0.9x − 0.8y
ẏ = 0.3x −1.8y −0.6

true

x = 1
y ∈ [−1,−0.9]

l1

ẋ = 2.6x − 5y − 0.1
ẏ = 5x − 2.6y − 0.7

true

e : x = 0
x’ := x
y’ := y

Ï Time evolution: Variables change according to ODE in current mode.

Ï Discrete jumps: Guarded switching between modes.

Flowpipe Construction

Reachability analysis: Over-approximate the set of reachable states R of system S for
time horizon T by a set R ′. Check R ′ against bad states Pbad.
Verification: R ′∩Pbad =;⇒ S safe, otherwise: unknown (failure).

Flowpipe construction: Use geometric or symbolic state set representations to over-
approximate R.

Some analysis parameters affecting over-approximation R ′:

Ï Discretize T : δ= T
N , large δ→ less precision, faster.

Ï State set representations (e.g. boxes, convex polytopes, support functions) [2].

state set V0 boxpolytope

Ï Discrete jumps: aggregate (left) or cluster state sets (right).

g g

In general: Precision vs. computational effort.

Error Reduction: Partial Path Refinement

Ï Parameter configuration pi: One set of relevant analysis parameters.

Ï Strategy: Finite, ordered sequence of parameter configurations pi .

Example continued: Strategy

p0: box,

δ= 0.01, agg.

p1: support f.,

δ= 0.02, agg.

p2: support f.,

δ= 0.004, agg.

Partial path refinement

Idea:

Ï Start analysis with configuration p0.

Ï Bad states reachable using configuration pi : Refine counterexample path with
configuration pi+1.

Ï Store refinement information.
→ Counterexamples with shared path prefix: reuse refinements.

Ï Reuse information during refinement (e.g. time intervals for enabled transi-
tions).

Example continued: Analysis

initial states
l0, x = 1,
y ∈ [−1,−0.9]

stay in l0

jump to l1

guard e: x = 0

bad states Pbad

fail l1: p0

fail l1: p1

success l1: p2

success l0: p0

stay in l0

Observations:

Ï Coarse analysis (p0) sufficient for mode l0.

Ï Require configuration p2 for mode l1.

Ï Not visible: Reduced number of guard checks for configurations p1, p2 in mode l0.

Future Work

Ï Increase usage of information obtained during refinements.

Ï Synthesize parameter configurations (at runtime).

Ï Introduce conditional strategies (strategy tree).

Ï Parallelization.

References

[1] Thomas A. Henzinger. “The theory of hybrid automata”. In: Proc. LICS’96. IEEE Computer Society
Press, 1996, pp. 278–292.

[2] Stefan Schupp et al. “HyPro: A C++ library for state set representations for hybrid systems reacha-
bility analysis”. In: Proc. of NFM’17. Vol. 10227. LNCS. Springer, 2017, pp. 288–294.

Acknowledgments

This work was partially funded by the German research council (DFG) in the
context of the project HyPro and the DFG Research Training Group 2236 Un-
RAVeL.

Download this poster


