
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Aufbau eines Frameworks für digitale diagnostische
Interviews

Building a framework for digital diagnostic interviews

Masterarbeit
Informatik

2023

Vorgelegt von Felix Nickels
Presented by Matrikelnummer: 421701

felix.nickels@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Dr. Ruth von Brachel
Second examiner Lehr- und Forschungsgebiet: Klinische Kinder- und Jugendpsychologie

Ruhr-University Bochum

Betreuer Dr. rer. nat. Pascal Richter
Supervisor Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Contents

1 Introduction 1
1.1 Related Work . 1

1.1.1 Paper-based Interview Guideline 2
1.1.2 DGPPN . 2
1.1.3 Online Survey . 2
1.1.4 testbox . 2

1.2 Contribution . 2
1.3 Outline . 3

2 Tools and Principles 3
2.1 Tools . 3

2.1.1 Figma . 4
2.1.2 Flutter . 4
2.1.3 Visual Studio Code . 5
2.1.4 Device Simulators . 5
2.1.5 SQLite . 6

2.2 User Interface and User Experience Design Principles 6
2.2.1 Fitts’ Law . 6
2.2.2 Gestalt Laws . 7
2.2.3 Affordances and Signifiers . 7
2.2.4 Mappings . 7
2.2.5 Constraints . 8
2.2.6 Feedback . 8
2.2.7 Knowledge in the World and in the Head 8
2.2.8 C.R.A.P. 9

2.3 User-centred Design . 9
2.3.1 Iterations . 10

3 Software Construction 13
3.1 Structured Interviews . 13
3.2 Requirements . 15
3.3 Project Structure . 15
3.4 Data Model . 16

3.4.1 SQLHelper . 16
3.4.2 Data Model: Question . 17
3.4.3 Data Model: Jump Rule . 21
3.4.4 Data Model: Answer . 24
3.4.5 Data Model: Disorder and Diagnosis 27

3.5 Major Software Components . 29
3.5.1 InterviewManager . 29
3.5.2 InterviewPage . 31
3.5.3 QuestionManager . 35

II

3.5.4 DiagnosticToolHelper . 38

4 App Solution 40
4.1 Home . 40

4.1.1 Registration and Login . 40
4.2 Document Cabinet and Profile . 42

4.2.1 Settings and Document Management 44
4.3 Patient Document . 44

4.3.1 Overview Tab . 45
4.3.2 Interview Tab . 46

4.4 Interview and assign Disorder . 47
4.4.1 Chapter Overview and Notepad 48
4.4.2 Clinical Assessment . 49

5 Comparison 50
5.1 Setup . 50
5.2 Execution . 51
5.3 Evaluation System Usability Scale . 51
5.4 Evaluation of Actual and Target Values 52

6 Conclusion 54
6.1 Future Work . 54

References 56

III

1 Introduction

Technological advancements have transformed various industries in today’s digital era,
and clinical psychology is no exception. With the increasing prevalence of mental dis-
orders - particularly due to the COVID-19 pandemic [18] - and the need for suitable
treatments, it is crucial to leverage technology to improve the efficiency and accessibil-
ity of therapeutic practices. This thesis focuses on developing an app specifically for
psychotherapists, aiming to replace the conventional paper-based interview guideline
currently utilized by psychotherapists.
The prevalence of mental disorder continues to exhibit an upward trend, highlighting
the pressing need for effective treatments and diagnostic tools.1 Structured interviews
are well known for an accurate diagnostic assessment, creating the basis for suitable
therapies. Furthermore, they are the gold standard in the diagnostic process, offering a
comprehensive understanding of the patient’s symptomatology. Despite the recognized
benefits of structured interviews, they are rarely used because of concerns about their
acceptance and feasibility. One explanation might be psychotherapists’ worries that
structured interviews would be ineffective or harm the therapeutic relationship [11].
However, previous studies with adults, children, adolescents and their parents on ac-
cepting structured interviews do not support these considerations [15]. Another reason
for the low usage is that psychotherapists prefer to rely on their judgment, although it
would lead to unreliable diagnoses. Another argument for not using structured inter-
views is about time since they are perceived as time-consuming, requiring additional
time and resources that psychotherapists may find impractical. Furthermore, psy-
chotherapists may feel uncomfortable using structured interviews and perceive them
as rigid and inflexible. [16, 3]
The primary objective of this research is to develop an app that addresses the challenges
previously mentioned, providing a user-friendly interface for conducting structured in-
terviews with ease. By digitizing the existing paper-based guideline, the app aims
to overcome the difficulties and barriers to using structured interviews and providing
accurate diagnoses.

1.1 Related Work

At the time of this thesis, only three digital applications exist in addition to the paper-
based interview guideline. In the following, the interview guideline that is currently
mainly used and the three digital applications are described.

1https://www.who.int/news-room/fact-sheets/detail/mental-disorders;
https://www.statista.com/statistics/979869/number-of-people-with-mental-health-disorders-
globally/

1

1.1.1 Paper-based Interview Guideline

Currently, there is no structured interview method without using the paper-based
interview guideline. This guideline is based on the DIPS (Diagnostische Interviews für
Psychische Störungen). It is used to classify mental disorders. The interviewer asks
precisely defined questions to his client. After the interview, an evaluation is made to
determine the fulfilled disorders based on the client’s answers. [14]

1.1.2 DGPPN

The mobile app DGPPN (Deutsche Gesellschaft für Psychiatrie und Psychotherapie,
Psychosomatik und Nervenheilkunde). It is available for both Android and iOS plat-
forms. The app provides a comprehensive platform for accessing guidelines, publica-
tions, and resources in the mental health field. It offers up-to-date information on
psychiatry, psychotherapy, and psychosomatic medicine. These guidelines serve as
evidence-based recommendations for diagnosis and treatment.2

1.1.3 Online Survey

It exists a digital version of a similar structured interview that is used with children
from the age of six. This online tool is a copy of the paper version embedded in an
online survey tool based on the platform REDCap3. It does not contain diagnostic
suggestions, nor does it adapt the interview content to the children’s age or the given
answers.4

1.1.4 testbox

It is an online assistant for standardized and test-based diagnostics. The user can
choose from a collection of different test types. Next, the client performs this test at
any place on any device. Afterwards, the test is automatically evaluated, and the user
receives the results on his dashboard. This result is used in combination with a scale
to determine how strong a disorder is. testbox does not offer diagnostic interviews but
disorder-specific tests. As a result, it cannot create or reject a client’s diagnosis but
determines the strength of a client’s already known diagnosis using these tests.5

1.2 Contribution

This thesis will focus on designing, developing, and evaluating the app, specifically tar-
geting its usability, effectiveness, and impact on the diagnostic process. The research
will involve cooperating with psychotherapists at the Ruhr University Bochum (RUB)

2https://www.dgppn.de/leitlinien-publikationen/die-dgppn-app.html
3https://www.project-redcap.org
4https://redcap.zih.tu-dresden.de/redcap/surveys/?s=A9497MKE7MDXFR7D
5https://testbox.de

2

of the chair of Clinical Child and Adolescent Psychology at the Forschungs- und Be-
handlungszentrum für psychische Gesundheit (FBZ)6 to understand their perspectives,
preferences, and concerns regarding the use of structured interviews and technology
in their practice, research and teaching. The app will be designed to be compati-
ble with both Android and iOS platforms, ensuring accessibility and convenience for
psychotherapists.

1.3 Outline

The second section of the thesis focuses on explaining the tools used in the development
process. This includes a detailed description and justification of the specific tools and
technologies. The UI/UX principles used to develop the app are covered in section
2.2. It explains how these concepts were used to produce a clear and user-friendly
app interface, going into the fundamentals and recommended user interface and user
experience design methods. Furthermore, section 2.3 describes the chosen development
approach. The existing procedure, particularly the functioning of the paper-based
interview guideline, is explained in detail in section 3 to give an in-depth understanding
of the app’s functionality. Next, the data model is presented, explaining the underlying
data structure used in the app. It discusses the design and organization of the data
model, focusing on how it supports the app’s functionalities and facilitates data storage
and retrieval. The major software components are then explained by discussing their
functionalities and interdependencies. After all technical elements are explained, a
demonstration of the app’s features provides an overview of its user interface and
functionality in section 4. Through a comparison that incorporates a user study, the
performance and usability of the app are critically assessed. Section 5 compares the app
with the conventional paper-based interview guideline while presenting the user study’s
findings and analysis. Finally, the thesis concludes with a comprehensive summary of
the findings, drawing conclusions based on the comparison and user feedback. It also
discusses the implications of the findings and suggests areas for further development.

2 Tools and Principles

This section introduces the toolbox by clarifying the tools. The applied design prin-
ciples are explained to follow the design choices made to provide an engaging design
that offers the best user experience and usability. This is followed by an explanation
of the user-centered design approach.

2.1 Tools

First, the tools used are described, beginning with the prototyping tools and moving
on to the development tools.

6https://www.kli.psy.ruhr-uni-bochum.de/fbz/fbz.html

3

2.1.1 Figma

Figma is a powerful web-based tool for collaborative interface design. Additionally,
Figma provides mobile apps for both Android and iOS, enabling designers to work
seamlessly across various devices. Its wide range of features combines multiple vector
graphics editors and prototype tools with a specific emphasis on user interface (UI)
and user experience (UX) design.
The primary purpose of Figma is to enable the creation of medium to high-fidelity
prototypes. Designers can easily refine their prototypes with each iteration fostering
an iterative design process. This is due to the building of reusable components of
UI elements. In addition, the designer can add interaction sequences to UI elements
to encourage the user to interact with the prototypes. Moreover, Figma offers a file
format known as FigJam, which serves as an online whiteboard tool capable of creating
diverse visual diagrams such as mind maps. By utilizing FigJam files, designers can, for
example, effectively map workflows into flow charts, representing the data flow within
the UI.
Since Figma can work collaboratively, it can be used simply by multiple stakeholders
to work together in real-time. Designers can share their work easily, obtain feedback
and make changes.7

2.1.2 Flutter

The decision to use Flutter for this project arose from the requirement to develop an
application compatible with both Android and iOS platforms. Flutter, developed by
Google, proved an optimal choice due to its ability to create cross-platform applica-
tions using one single codebase. Besides Android and iOS, Flutter’s single codebase
can be used for web applications, desktop applications (macOS, Windows, Linux), and
embedded systems.
In Flutter, widgets are the building blocks of the UI, representing different elements
such as buttons, text, images, and more. They are divided into stateful and stateless
widgets playing an essential role in developing efficient and responsive Flutter applica-
tions. As the name implies, a stateful widget manages and maintains its internal state.
A stateful widget can change its behaviour or appearance whenever something changes,
such as data or other events. When UI elements must be dynamically modified due
to user interactions, data changes, or other events, the stateful widget is rebuilt to
reflect its new state. They provide a powerful mechanism for managing and reacting
to changes in state. On the other hand, stateless widgets are immutable and do not
have any internal state. They are used to presenting static content. Stateless widgets
are based on the data they provided at the creation time. Since they do not need
to manage an internal state, they are lightweight and efficient reducing unnecessary
rebuilds and minimizing memory consumption.8

Flutter uses the Dart programming language as its primary language for application

7https://www.figma.com
8https://flutter.dev

4

development. Dart is an object-oriented and class-based language that incorporates
garbage collection to efficiently manage memory. With its syntax similar to Java and
JavaScript, Dart offers a familiar environment for developers transitioning from other
programming paradigms. The code written in Dart is compiled into machine code (or
JavaScript in the case of web applications), optimizing the performance and ensuring
native-like execution on Android and iOS devices.9

2.1.3 Visual Studio Code

Visual Studio Code is a free and open-source code editor developed by Microsoft that
is available for Windows, Linux, and macOS. It provides debugging, syntax highlight-
ing, code completion, and refactoring features. The editor also includes IntelliSense, a
feature that provides smart completions based on variable types, function definitions,
and imported modules, which goes beyond syntax highlighting and autocomplete. An
outstanding aspect of Visual Studio Code is its rich extension ecosystem that adds
functionality, such as support for additional programming languages, themes, debug-
gers, commands, and more. These extensions are developed by both Microsoft and the
community.10 In this project, the extensions Dart and Flutter are used.11

2.1.4 Device Simulators

Testing on respective devices is essential to ensure the compatibility and functionality
of the app across both Android and iOS. Specialized integrated development environ-
ments (IDEs) such as Android Studio and Xcode are used to facilitate the process of
testing.
Android Studio, the official IDE for Android app development, provides a comprehen-
sive set of tools, including the Device Manager. Virtual Android devices (AVD) can
be created in the Device Manager, emulating the behaviour and characteristics of a
real Android device. An AVD allows developers to run and test their applications in
a controlled environment. This makes identifying and fixing platform-specific issues
easier and leads to optimal performance and user experience on Android devices.12

Similarly, for iOS app development, Apple offers Xcode as the official IDE. It provides
a range of features and functionalities to help developers in creating robust and visually
appealing applications for Apple devices. To test the iOS app, developers use Xcode’s
integrated simulator for various Apple devices such as iPhones and iPads. Using dif-
ferent devices and screen sizes ensures that the app delivers a consistent and optimized
experience across the Apple device ecosystem.13

9https://dart.dev
10https://code.visualstudio.com
11https://dartcode.org
12https://developer.android.com/studio
13https://developer.apple.com/xcode

5

2.1.5 SQLite

In this project, the relational database management system SQLite is chosen to benefit
from many advantages.
First, relational databases enforce strict data integrity rules to ensure that data is
consistent and accurate. This means that data is organized and stored in a way that
avoids duplicates and maintains consistency between tables. Relational databases are
scalable and can handle large amounts of data. They can process complex queries and
large amounts of data and are suitable for small and large applications. SQL provides
a flexible and powerful query language that allows users to extract and manipulate
data in a variety of ways. SQL is standardized, widely used, and well-supported by
many database tools and frameworks. [10]
Second, SQLite does not need any configuration or setup because it is self-contained and
does not require any separate server process. It can directly read and write database
files on the hard disk without requiring additional service processes. Thus, the data
protection regulation rules can be respected since every data is only located locally on
the device. In addition, it is fast, efficient, scalable, and independent of the operating
system, such that it can be used in various operating systems. [2]
Furthermore, SQLite supports the ACID principle. It is an acronym for Atomicity,
Consistency, Isolation, and Durability. These four key properties guarantee the relia-
bility of transactions in the database. Atomicity means that a transaction is treated
as a single, inseparable unit of work. If any part of the transaction fails, the entire
transaction is rolled back to ensure the consistency of the database. Consistency refers
to the fact that a transaction transfers the database from one consistent state to an-
other consistent state and, at the same time, ensures data integrity. Isolation describes
that several transactions can take place simultaneously without interfering with each
other. Each transaction is executed in isolation so that the results of one transaction do
not affect the results of another transaction. Moreover, Durability implies that once
a transaction is committed, its changes are permanent and will survive subsequent
failures or system crashes. The database ensures that all changes are written to disk
before acknowledging that the transaction is complete. [10]

2.2 User Interface and User Experience Design Principles

In order to comprehend the decisions made regarding the user interface and user ex-
perience design, detailed information about diverse rules and patterns is explained.

2.2.1 Fitts’ Law

Fitts’ Law is a popular law that calculates the necessary movement time for pointing
devices. The movement time is calculated as follows:

MT = a + b ∗ log2(
2A

W
)

6

Here a and b stand for regression coefficients and depend on the device. For example,
using a finger as a pointing device leads to a = 100ms and b = 50ms/bit. The width
(W) and the distance (A) to the target are also necessary to determine the movement
time. Overall, applying Fitts’ Law helps determine the correct width of elements and
an acceptable distance between starting point and the target. [13]

2.2.2 Gestalt Laws

Gestalt theory is a psychological theory explaining how human perception works and
why humans tend to group things together. Only the most commonly used Gestalt
laws in the app are explained since there exists over 100 of them.
The first Gestalt law is about proximity. Objects that are close together are perceived
as a group. Imagine a letter. A letter usually has a sender and a recipient. The data
of the recipient and the sender are written on the letter, and without further labels or
lines, it is clear which data belong to which person. This is because the sender’s name,
street, and place are written close to each other. The same applies to the recipient.
Due to the proximity of the individual lines, this unconsciously creates a grouping of
the data of the respective person. In addition, humans have an innate ability to close
gaps in shapes, especially when those shapes are known. This means incomplete shapes
are perceived as complete without consciously thinking about them. This is called the
law of closure. The next law is about similarity. Elements with similar properties (e.g.,
shape, colour, proximity, direction, size) are perceived as groups. This is also true if
the elements have a spatial distance from each other. [6] Lastly, the Gestalt law of
common region suggests that objects enclosed within the same region are perceived as
a group, regardless of their similarity or proximity [12].

2.2.3 Affordances and Signifiers

Affordances describe the relationship between an object and a person. Both the object’s
properties and the person’s capabilities are important and together determine the
affordances. Norman, the author of the book ”The Design of Everyday Things” [17],
uses a chair to demonstrate that while it would only afford sitting for weak people, it
would afford to lift strong ones. Some affordances are not perceived for a variety of
reasons. For this, Norman introduces signifiers. Signifiers act as labels and make it
possible to perceive affordances. Overall, affordances communicate what actions are
possible, and signifiers communicate where the action should occur. [17]

2.2.4 Mappings

The term mapping is derived from mathematics and describes the relationship between
the elements of two sets. For example, a set of light switches controls a set of lights in
a room. To control the lights without help or explanations, Norman recommends using
the concept of natural mappings that take advantage of spatial analogies. That means
if the light switches are arranged exactly like the lights that they control, there will
be no difficulty in using them. Besides the spatial mappings, there are also cultural,

7

biological, and perceptional ones. An example of cultural mapping would be reading.
In most countries, people read from left to right, but some read from right to left or
even top to bottom. Therefore, knowing the user group, including their culture, is
important. Biological mapping is used when using additive dimensions, for example,
amount, volume, and brightness. A rising level is naturally perceived as more, whereas
a falling level is perceived as less. A perceptional mapping is when a user perceives
an alignment between an action and its effect. When a steering wheel is turned to the
right, the car turns to the right, so the user to understand intuitively cause and effect.
[17]

2.2.5 Constraints

Just as affordances and signifiers offer actions, some constraints limit possible actions.
To enhance natural mapping, Norman introduces constraints in four different areas.
First, there are physical constraints. They are derived from the physical properties
of an object. For example, a USB plug can only be plugged in one way because of
its shape. Next, Norman explains cultural constraints. These are based on cultural
standards, such as red representing stop or danger. Consequently, cultural constraints
are not universal but are limited to certain cultures or regions. Then there are logical
constraints, which use logical relations and principles. If something is assembled and
a part remains, this suggests to the user that it was not assembled correctly. The
last category of constraints is semantics. It refers to interpreting symbols, signs, and
language to convey information and guide user actions. For example, a trash icon
represents deletion. [17]

2.2.6 Feedback

While users interact, e.g., with an app, they need feedback such that the users under-
stand that the app received the interaction and is processing it. Feedback communi-
cates the current state, success, or failure of an action. It should be immediate and
informative. If the time for feedback is too long, people may give up and move on to
other things. Additionally, the provided feedback needs to be informative and priori-
tized so the users understand the provided feedback and recognize the most important
feedback first. [17]

2.2.7 Knowledge in the World and in the Head

Norman uses the concepts of knowledge in the world and knowledge in the head to
describe the interplay between human cognition and the surrounding world. These
ideas highlight how external information and design may enhance human cognition
while facilitating the cognitive strain on humans. Information or knowledge present
in the environment or in artifacts but external to the user refers to knowledge in
the world. It serves as an external memory, allowing the user to offload cognitive
tasks onto the environment. In contrast, users’ images or information in their minds
refer to knowledge in the head. Knowledge in the head represents the user’s internal

8

knowledge, competencies, and capabilities. Creating a seamless interaction between the
user’s knowledge in the head and the knowledge in the world can reduce the cognitive
load on users and enhance their performance. [17]

2.2.8 C.R.A.P.

C.R.A.P. is an acronym for the four basic design principles: Contrast, Repetition,
Alignment, and Proximity. These four principles provide a guideline for creating an
attractive and effective design. Contrast is about creating visual differences be- tween
elements in a design to highlight them. This can be done by changing different prop-
erties like colour, size, shape, texture, and typography. Creating variation within the
design helps guide the user’s attention and creates a hierarchy. Consistency is a key
element in design and is achieved by repeating design elements throughout the design.
This involves colors, shapes, fonts, or other visual elements. Using repetition helps to
establish a sense of cohesion and organization. It adds visual interest and strengthens
the overall visual impact of the design. The positioning of elements also matters and
is explained by the Alignment principle. It refers to the arrangement of elements in
a design along a visual axis or edges. It helps create order and structure, ensuring
elements are visually connected and related. Suitable alignment improves readability,
clarity, and overall visual balance. Aligning elements to a grid or using clear visual
guides enhances the professional look of a design. Proximity is about grouping related
elements to show their connection and thus creating a sense of organization. Placing
elements that belong together closer to each other supports creating visual relation-
ships and avoids clutter. Proximity helps users understand the hierarchy and flow of
information within the design. [20]

2.3 User-centred Design

This project follows a user-centred design (UCD) approach to ensure optimal usability.
Through the UCD approach, the developers gain a comprehensive understanding of
the target users, including their capabilities, needs, expectations, goals, and the tasks
required to achieve those goals and the physical and social environments in which they
operate. [5]
Donald Norman, author of the book ”The Design of Everyday Things” [17], describes
this approach as an iterative process. First, Norman explains the observation phase, in
which users are observed in their natural environment, such as at home, school, work,
or social events, to gain a deep understanding of the user’s persona. The second phase
is called idea generation and focuses on creating many ideas without getting too at-
tached to specific ones too soon. Creativity and exploration are key in this phase, and
avoiding criticizing ideas or imposing constraints is important. Questioning everything,
including fundamental assumptions, can lead to profound discoveries and solutions to
problems. Challenging the obvious can often uncover new perspectives and innova-
tive ideas. Next, the prototyping phase starts to validate an idea’s feasibility. Quick
prototypes can be made using simple tools like sketches, cardboard models, or digital

9

images. Prototyping allows testing and reveals important requirements. Additionally,
prototyping serves to understand the problem better during the specification phase
and to create real prototypes during the solution phase of the design process. [17]
These prototypes can vary in fidelity, with low- and high-fidelity prototypes serving
different purposes at various stages of the design process. Low-fidelity prototypes
are typically simple, quick to create and have low costs. They often consist of basic
sketches, paper mock-ups or digital wireframes that visually represent the product’s
structure and functionality. In general, they do not offer any interaction. Low-fidelity
prototypes are useful for exploring different design ideas in the early design stages.
High-fidelity prototypes provide a more realistic representation of the final applica-
tion. They are similar to the actual application in appearance, functionality and user
experience. They include more interactions and functionalities. [8, 19]
Users test the prototype after an appropriate prototype is created in the third phase.
Norman calls this the fourth phase testing. While testing, the developers gather dif-
ferent information starting from initial user feedback about the basic functionality of
the design. Furthermore, they identify design flaws such as poor layout or unattractive
visual design. As fidelity increases, the complexity of the gathered information in-
creases as well. Users testing high-fidelity prototypes can identify usability issues and
areas for improvement in the application and evaluate how well users can complete
specific tasks within the application or the overall user experience. After completing
the fourth phase, the process starts again from the beginning. By iterating through
these phases, developers continuously improve requirements and prototypes and, thus,
the final application. [17]

2.3.1 Iterations

Three different iterations are presented below to explain the distinct phases of the
user-centred design approach. There may be several smaller iterations in between the
iterations presented. Furthermore, the different prototypes are discussed.

Iteration 1 Observing the user was due to physical distance not possible. Instead,
the users were interviewed as accurately as possible to collect all necessary informa-
tion. Additionally, the users described their usual working steps to ensure nothing
is missed. While gathering more and more information, the idea generation becomes
more detailed.
With the help of the information gained, the first ideas were created, which were then
presented through sketches (low-fidelity prototypes) with the users. Figure 1 shows one
of the first paper prototypes created on a tablet. The home screen displays a list of
created interviews and a button to create new ones. The list contains interviews with
different users that have used this device. The interviews are password protected to
prevent users from accessing interviews they did not create. The list elements contain
brief information about the name of the interview and interviewer. Additionally, the
user can filter the list by name, creation date or other criteria. The app header displays

10

Figure 1: One of the paper prototypes of the first iteration of the home screen contain-
ing a list of created interviews by different users. Each interview is password
protected to prevent unauthorized access.

the current page name and the username. In the bottom app bar, three different but-
tons are available for navigation between three pages. The first button is the current
page. The second one takes the user to the overview of the question catalogue. There
is no connection to a specific patient but only a general interview overview. The last
one provides settings, e.g. to change the name or password.
Low-fidelity prototypes, particularly sketches, are static and do not immediately allow
interactions. However, a setup was created such that some interaction was possible in
the testing phase. During the meeting, the users could see the developer’s screen and
were instructed to speak out loud while interacting with the sketch. This approach
follows the think-aloud method. Having users continually think aloud while using the
system or sketches allows usability and other issues to be easily identified [9]. The Wiz-
ard of Oz prototyping approach is used to simulate interactions with paper prototypes.
This means the user interacts with the paper prototype while the wizard (i.e. the de-
signer) observes and operates the prototype behind the scenes. The wizard manually
simulates the system’s responses by changing or replacing prototype elements based
on the user’s actions or requests. This allows the designer to gather insights into how
users interact with the design and identify usability issues. [4] For example, if a user
wants to open the first interview in the list, the developer would simulate the user’s
click and open the corresponding sketch.

Iteration 2 Interviews and open discussions again replaced the observation phase to
gain new insights into the purpose of the system and the problems faced by the users.
This is followed by an approach that replaces the previous idea of one interview list
for all users with user accounts containing only their data.
As seen in Figure 2a, the interview list was replaced by a patient list on the left. If
an entry is picked, general information is displayed on the main page. The app header
and the bottom bar keep their functionalities from the previous iteration. Clicking
the list tile indicated by a right arrow at the bottom of the overview takes the user

11

(a) (b)

Figure 2: (a) A list of patients only available to the logged-in user. The right area
shows information about the currently selected entry in the list.
(b) Clicking on the tile Interviewliste will open a new page showing a list of
the patient’s interviews.

to the interview list on a new page, as shown in Figure 2b. Each entry represents an
interview and displays the interview’s status and, if available, a diagnosis.
As in the first iteration, the think-aloud method tests the prototype and collects ap-
propriate user feedback.

Iteration 3 Through interviews and open discussions, all areas of concern of the
paper-based interview guide and the current paper prototype were again considered
leading to new ideas. The prototype’s fidelity increases by gathering more information
with each iteration. Therefore, a more interactive and realistic prototype is created
using Figma. As illustrated in Figure 3, a click prototype was created. Figma provides
a realistic device frame to encourage the user to interact. On the home page is the
document cabinet, i.e., the list of all created patients of the current user. A swipe
gesture to the left enables further actions. One is to delete the patient’s document,
and the other is to archive the document. Archiving refers to tidying up the list by
having two separate lists of current and past patients (see Figure 3a). If the user wants
to create a new patient, he clicks the button in the upper right corner redirecting him
to the new page, as shown in Figure 3b. The user enters the patient’s most important
and obligatory data in four text fields in the upper section. In the left lower corner
is a list of optional information. Entering these pages, text fields request the optional
information of the corresponding category. The interview list is visible next to the
list of optional information, which provides a grey container if it is empty. Otherwise,
it would be filled with list tiles similar to the optional information but presenting
information about interviews. If the user wants to start a new interview, he clicks on
the button below the list and gets to the interview questions.
Users can test more freely and provide feedback without much effort by creating click
prototypes and especially within Figma. Users are invited to the corresponding Figma

12

(a) (b)

Figure 3: (a) Click prototype created in Figma presenting a list of patient documents
available to the logged-in user.
(b) This page appears after the user clicks the button to add a new patient
document on the right above the list.

project and have access at any time to start the simulation of the click prototype. When
using the click prototype, the user can provide feedback directly to the respective state
via drag-and-drop speech bubbles. Furthermore, in Figma, among other things, UI
elements can be linked with special actions and effects. This means that, e.g. a button
can be linked to a click action, and after that, the page changes. In this case, navigation
from the document cabinet (see Figure 7a) to the page for creating a new patient (see
Figure 3b) is simulated. In the beginning, concrete click paths are created, also called
scenarios, because only certain UI elements are linked to actions that prevent the user
from interacting with anything else, although corresponding UI elements are visible.
Increased fidelity increases the number of possible actions, resulting in more detailed
scenarios.

3 Software Construction

This application aims to simplify diagnostic interviews and improve them economically
and environmentally. First, it is explained how structured interviews based on the
DIPS approach are used at the Ruhr University Bochum. Then the resulting basic
requirements forming the foundation of the system are described. From this, the
functionalities and design decisions regarding the software and the data model can be
explained in more detail.

3.1 Structured Interviews

The DIPS are structured interviews to diagnose mental disorders. There exist sev-
eral DIPS for specific target groups. In this project, the Kleinkind-DIPS is developed,

13

which is used to identify disorders in infants up to age six. Diagnostic criteria are tested
based on the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders)14 to de-
termine whether a mental disorder is present (lifetime diagnoses, comorbid diagnoses)
or absent. The DSM-5 is the fifth version of a manual for assessing and diagnosing
mental disorders.
The interview guideline is divided into several sections, each representing a mental
disorder. In order to test the diagnostic criteria, a section contains several questions.
These questions can be classified as either criterion or non-criterion questions. In the
case of criterion questions, a letter refers to the corresponding diagnostic criterion
based on the DSM-5. Non-criterion questions are advanced questions that may be
relevant to therapy or allow for a more detailed analysis of the problem. There are 29
sections in total. Of these, four sections are independent of a disorder but serve as an
introduction or screening into the interview.
Some sections depend on the age of the patient. For example, some sections require
the patient to be younger than two years old. Other sections do not begin until the
patient is four years old.
Most sections have jump rules that, when satisfied, exit the section and continue with
another. These jump rules are usually located at the beginning of the section and are
closely linked to the criterion questions. After the first asked criterion questions of the
section, the interviewer can already determine whether the disorder can no longer be
satisfied. In this case, a jump rule is fulfilled, the section is left and continued with
the next one. But in some cases, the only statement that can be made is whether the
disorder is not fulfilled in the present, but it may have been fulfilled once in the past.
In this case, the section is not left, instead the interviewer has to rephrase and ask
questions into the past tense.
In addition to the typical yes-no questions, there are other types. Some specific ques-
tions need a description in order to be answered. Other questions only allow a prede-
fined (multiple) selection of possible answers. An exceptional type of question is the
scale question. A scale question consists of different areas that contain a set of ques-
tions. Each area corresponds to a symptom. A symptom is fulfilled if a certain number
of questions from the corresponding area are fulfilled. Overall, the scale question is
fulfilled when a certain number of symptoms are fulfilled.
At the end of most sections, suffering and impairment are determined using the same
eight questions. Suffering and impairment are considered to be fulfilled if certain ques-
tions of these eight questions are answered with a certain value. Most disorders are
only considered to be fulfilled if suffering and impairment are also fulfilled. That means
suffering and impairment can be both diagnostic criterion and non-criterion questions.
If the interviewer is able to determine suffering and impairment and the disorder is
met, he proceeds to the next section. If the disorder is not fulfilled, there is the op-
tion of asking the section again in the past tense. For this purpose, a question and
corresponding jump rule take the interviewer back to the beginning of the section.
From there, the initial criterion questions must be skipped and finally continue with

14https://www.psychiatry.org/psychiatrists/practice/dsm

14

the actual questions, which must be rephrased into past tense.
At the end of the interview, the diagnosis is determined. For this purpose, it is checked
section by section whether all conditions are fulfilled so that the disorder may be as-
signed. For this, criterion question by criterion question is checked and it is determined
whether it is fulfilled or not. In addition, questions within specific questions, such as
scale questions and suffering and impairment, must be checked individually to assess
whether they are met as a whole. Finally, the diagnosis can then be made. This is
divided into a primary, any number of additional and previous diagnoses. A diagnosis
has a severity level as well as its name. The age at the start and end time must also
be entered for the previous diagnoses.
With the completion of the diagnosis, the interview is finished. Sometimes it is of
interest, e.g., for research purposes, to transfer the data into a statistics program. For
this purpose, the answers to the corresponding questions are entered manually into an
Excel template. The statistics program may then read this Excel file.

3.2 Requirements

First, the system serves the purpose of guiding the user through a structured interview.
The application focuses on a simple and clear construction of the interview content.
During the interview, a stopwatch automatically records the time. In addition, a
chapter overview helps for fast navigation and an integrated notepad enables the user
to take notes without losing the focus on the interview content. After the interview, the
system provides a list of all fulfilled disorders so that the user can determine a diagnosis
without checking section by section in the interview content again. In addition to
the interview, other general patient-related data can be recorded. This information,
including all interviews, can be exported to a specific server the admin sets up. Usually,
a user has more than one patient at a time, which is why the system features the
management of different patient documents. Furthermore, several users likely share
one device in a practice. Therefore, the system also offers user management. This
leads to role management, in which the admin has certain additional rights, including
assigning patient documents to other users in case a user leaves the practice, in addition
to setting up the server.

3.3 Project Structure

The initial project is built with Flutter’s command flutter create app name. This cre-
ates a bunch of predefined files and directories. Most important is the file pubspec.yaml
and the folder lib. The primary objective of the pubspec.yaml file is to manage the
project dependencies and configurations. It acts like a manifest file, enabling developers
to define the required packages. Every declared package within this file is automatically
fetched and integrated during the build process. Furthermore, the file allows developers
to specify various project-specific details and configurations, such as the project name,
version, and description. Lastly, the developers can add paths to additional assets like

15

images within the file, ensuring their integration and accessibility inside the project.15

Inside the folder lib exist all Dart code required by the application. The file main.dart
is located on the first level. It serves as the entry point and the initial configuration
file for the application. It sets up the necessary environment and defines the root
widget. Furthermore, there are files representing the basic pages of the application,
including the homepage, imprint, settings, profile, user management, and document
cabinet. The homepage is the first visible screen after the launch image. It offers the
user to log in, register or view the imprint. After the user is logged in, the document
cabinet with the list of patient documents is presented. The user can switch between
this page and the profile, settings, and user management in the bottom app bar. The
user can change his data on the profile page, like e-mail or password. The settings and
user management are only available for the administrator and offer the possibility of
setting up a server for data export and (re-) assigning patient documents to users.
Furthermore, the lib folder includes subfolders (data, widgets, dialogs, helper, inter-
view, and document) representing different functional areas of the application. This
hierarchical structure allows for further organization and categorization of code files,
enhancing clarity and ease of navigation within the project. All files related to the ap-
plication’s data are contained in data. Both the subfolders widgets and dialogs contain
all reusable widgets, whereas reusable dialogs are separated. There are a variety of
functions in helper that are not directly linked to widgets but rather conduct compu-
tations, validations, and formatting. The subfolders interview and document include
the files for the two main areas: interviews and patient documents.

3.4 Data Model

As already introduced in 3.3, the folder lib includes the subfolder data containing all
relevant files regarding the application’s data. It is divided into static and non-static
data. Static data is all that users cannot change (e.g., sections and their questions),
while non-static data, such as patient information or interview answers, can be changed.
A data model always has the same structure. It consists of two classes. The first
class operates directly with the SQLite database and offers functions such as fetching,
creating, updating, and deleting database entries. Moreover, the second class converts
the fetched database entries into corresponding objects of the Dart class and vice
versa. This helps structure and organize the data, leverage the benefits of object-
oriented programming, simplify data manipulation and management, and ensure type
safety. The following explains the database manager and the essential data models.

3.4.1 SQLHelper

The SQLHelper is not a data model but manages the basic functionalities of the
database and controls all data models together. The most important function is
connectDatabase(). It is used to connect to the SQLite database. It returns a Fu-
ture<Database> object indicating that the connection is asynchronous and resolves

15https://docs.flutter.dev/tools/pubspec

16

to a database object once the connection is successfully created. Another function is
called inside the function, which takes the following argument. First, the path to the
database file is passed by joining the path to the application’s database directory with
the database file name. Another parameter specifies the version number. The database
is password protected to prevent unauthorized access. Additionally, the function takes
three different callbacks. One callback is only triggered when the database is created
the first time and executes createTables(...) and insertStaticData(...). By this, the
tables are created and the static data is inserted. The next callback is always triggered
and activates foreign keys. Finally, a callback that updates the static data if there
are changes is executed. The function connectDatabase() ensures that the database
connection is established, necessary tables are created, static data is inserted, and any
additional setup is performed before returning the database object.

3.4.2 Data Model: Question

As mentioned above, the data model is divided into two separate classes, Question-
Model and Question. The QuestionModel represents a model for interacting with the
SQLite database table QUESTION. Since the questions are the same for everyone and
cannot be modified by the user, it is a static table. Therefore, the table name is written
in capital letters to make distinguishing static from non-static tables easier.

The main purpose of the QuestionModel is to create the database table and insert
data. The createStaticTable(...) function is called from the SQLHelper and takes the
database object that is created inside the connectDatabase() function (see 3.4.1). List-
ing 1 shows only lines of the SQL statement in the corresponding function, which are
also explained in more detail. The interview guideline consists of several sections, and
each containing questions. Each question is unique and can be uniquely identified by
the primary key questionID (see Listing 1, line 3). In order to assign a question to a
section, a foreign key relationship is defined to the primary key of the database table
SECTION (see lines 4 and 19). Apart from the text and numbering of the question,
they also differ on other levels. Some questions require only a yes or no answer, and
others offer predefined options. Therefore, the QUESTION table holds a foreign key
of the QUESTION TYPE table, assigning each question a specific type. Depending
on the type of question, appropriate input options are displayed. For example, in the
first case, there are only two checkboxes for yes and no. In the second case, there is a
dropdown to select the answer. The different input options for the answers have the
consequence that additional information is desirable for corresponding question types.
For example, labels can be explicitly defined for the text input fields (see line 11) or a
list of dropdown options (see line 10). Also, there are questions that are only relevant
up to a certain age. For this, an age limit defines when the question should be hidden
(see line 16). In this case, ”hidden” means that the question is greyed out and only a
teaser (the first line of the question) is displayed. Since the sections are also queried
in the past tense, there is still a corresponding counterpart in the past tense for each
question in the present tense (see line 17).

17

The most important property is whether the question is a criterion question (see line
9). Depending on this, the answer matters in the respective section or not. The rough
functionality of jump rules is already explained in 3.1. To keep this functionality and
improve this by applying jump rules automatically, special properties are added to the
question model to identify these initial criterion questions, which determine whether a
section is fulfilled in the present, in the past, or not at all. They are called criterion-
Present (A) and criterionPast (V) (see lines 13 and 14). At the beginning of (almost)
every section, there is always at least one criterion question A and one criterion ques-
tion V. These two properties, which are set at the corresponding questions, are crucial
for the execution of the jump rules (see 3.4.3). For simplicity, it is assumed that there is
exactly one criterion question each of the present and the past. Then, there are three
possible combinations: First, criterion questions A and V have been answered with
no. This means the disorder cannot be fulfilled and has never been fulfilled. Second,
criterion question A received a no response, whereas the answer to criterion question
V was positive. Then the disorder is not fulfilled in the present. Thus it is determined
whether the disorder has ever existed by looking at the past. Moreover, the last possi-
bility is that criterion question A was answered with yes. Then the answer to criterion
question V is irrelevant, because the disorder is potentially fulfilled in the present, and
therefore, the past is no longer important. However, in the process of the section, it
might turn out that the disorder is not fulfilled in the present, such as the past should
be checked. For this, a flag exists to show the special question, allowing the user to
decide if he wants to check the past or continue with the next section.
Other special flags can and must be set to ensure correct functionality. Exactly one
question of a section must be marked as the first question of the present so that the
jump rules automatically jump to the right place if the criterion questions about the
past are skipped.
Each section always has a small set of questions at the end, which, considered together,
decides whether suffering and impairment are fulfilled. If the given answers show that
suffering and impairment are fulfilled, then the user has to explicitly decide about the
assignment. The questions about suffering and impairment and the question about
assignment have special flags. In the same way, if the criteria are met and thus the
disorder can be assigned, the user is explicitly asked to decide with a corresponding
question.
Lastly, there are scale questions. These are related questions that do not need to be
fulfilled individually. Instead, it is checked whether a certain constellation exists for
the set of questions (i.e., the scale question) to be fulfilled. A scale question is often
divided into several categories (see line 12). For each category, it is defined how many
questions must be fulfilled for the category to be fulfilled. Overall, the scale question
is then fulfilled if a certain number of categories is fulfilled. For this, questions can be
assigned to the categories respectively scale questions.

1 Future<void> c r e a t e S t a t i c T a b l e (Database database) async {
2 await database . execute (’ ’ ’CREATE TABLE QUESTION(

18

3 quest ionID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
4 fkSect ionID INTEGER,
5 fkQuestionTypeID INTEGER NOT NULL,
6 . . .
7 quest ionText TEXT NOT NULL,
8 numbering TEXT NOT NULL,
9 c r i t e r i a L e t t e r TEXT,

10 dropdownValues TEXT,
11 l a b e l TEXT,
12 category TEXT,
13 c r i t e r i o n P a s t INTEGER NOT NULL DEFAULT 0 ,
14 c r i t e r i o n P r e s e n t INTEGER NOT NULL DEFAULT 0 ,
15 . . .
16 ageLimitInMonths INTEGER,
17 past INTEGER NOT NULL DEFAULT 0 ,
18 . . .
19 FOREIGN KEY(fkSect ionID) REFERENCES SECTION(sec t ionID) ,
20 . . .
21) ; ’ ’ ’) ;
22 }

Listing 1: This function creates the table QUESTION in the database.

Besides the function to create the database table, the class QuestionModel also has
the task, since it is a static table, to fill the table with data accordingly. For this
purpose, each section has a file containing the corresponding questions. This brings a
structure and overview to a large number of questions. The questions of all files are
then inserted into the table in the function QuestionModel.insertStaticData(...). This
call occurs within the insertStaticData(...) function inside the SQLHelper.
In addition to creating the table and inserting static data, a data model can contain
any number of other functions. In this case, Listing 2 shows a function that returns
all stored questions in the database. First, line 2 connects to the database using the
already known function connectDatabase() (see 3.4.1). After establishing the connec-
tion, an implicit SQL statement is executed on the database object (see lines 3 and
4). This results in a list of maps which is iterated over and a corresponding Question
object is created.

1 s t a t i c Future<List<Question>> getQuest ions () async {
2 f i n a l db = await SQLHelper . connectDatabase () ;
3 f i n a l List<Map<String , dynamic>> maps =
4 await db . query (’QUESTION ’) ;
5 return L i s t . generate (maps . length , (i) {
6 return Question . fromMap(maps [i]) ;
7 }) ;

19

8 }
Listing 2: This function fetches all questions in the database table QUESTION. It

transforms table entries into Dart objects of the class Question and returns
a list of these.

This object belongs to the Question class representing the second important class of
the data model. As mentioned above, it handles the conversion of the fetched data into
corresponding objects of the Dart class to simplify data manipulation and management
and ensure type safety. The data retrieved from the database comes in a list of key-
value pairs, where the keys are strings and the values can be of any type (see Listing 2,
line 3). Each map in the list represents a row of data from the database table, where
the keys are the column names and the values are the corresponding values from the
database. It is iterated over this list of maps using fromMap(...). Listing 3 shows the
simplified function which takes a map, i.e. the current element of the list of maps,
and returns a Question object. Each question has a specific type and is represented
by the foreign key relationship. Instead of storing only the foreign key in the object, a
matching mapping is performed directly between the foreign key and the enumeration
QuestionType. For this, a QuestionType variable questionType is declared and a default
value is assigned. Then a switch statement determines the correct value (see Listing 3,
lines 4-13). Another mapping between SQLite and Dart can be seen in lines 15 et sqq.
in Listing 3. Line 10 in Listing 1 reveals that dropdownValues is of type TEXT. This
property is used for the predefined answer options for questions with dropdowns. Since
SQLite does not support a list of texts or numbers, a mapping must be done here. For
this, the text from the database is always separated by a semicolon and assigned to
a list of strings. Another reason for mapping are boolean values. SQLite does not
support boolean values. Thus only flags are used, i.e., the value is 0 or 1. Line 25
shows how the current value of the map is determined with the ternary operator. If
the value corresponds to a 1, true is set, otherwise false. The function then creates
a new Question object using the values extracted or calculated from the passed map
(see Listing 3, lines 20 et sqq.). They are provided as arguments to the constructor of
the Question class to initialize a new object.

1 s t a t i c Question fromMap(Map map) {
2 QuestionType questionType = QuestionType . yesNo ;
3
4 switch (map [’ fkQuestionTypeID ’]) {
5 case 1 :
6 questionType = QuestionType . yesNo ;
7 break ;
8
9 case 2 :

10 questionType = QuestionType . d e s c r i p t i o n ;
11 break ;
12 . . .
13 }

20

14
15 List<String> dropdownValues = [] ;
16 i f (map [’ dropdownValues ’] != nu l l) {
17 dropdownValues = map [’ dropdownValues ’] . s p l i t (’ ; ’) ;
18 }
19
20 return Question (
21 map [’ quest ionID ’] ,
22 questionType ,
23 map [’ quest ionText ’] ,
24 map [’ numbering ’] ,
25 map [’ aboutSuf fer ingImpairment ’] == 1 ? true : f a l s e ,
26 . . .
27 dropdownValues ,
28 . . .
29) ;
30 }

Listing 3: This function converts one entry of the database table QUESTION into an
object of type Question. Different types are mapped between SQLite and
Dart accordingly.

3.4.3 Data Model: Jump Rule

This data model is also divided into two classes, JumpRuleModel and JumpRule. The
capitalized table name in Listing 4 indicates that the jump rules are static.

Listing 4 shows the function to create the JUMP RULE database table. The in-
terview content is not static but adapts to the answers given. There are jump rules
to decide which questions or even whole sections should be skipped. A jump rule is
executed only within a section. Therefore, a foreign key relationship to the static table
SECTION is defined (see Listing 4, lines 4 and 14). Furthermore, a start question and
a next question, or a next section are required (see lines 5-7). The questions between
the start and end question are then hidden or displayed again accordingly. If a section
is specified instead of the end question, all questions beginning from the start question
are hidden or displayed again. Originally, not the numbering (see Listing 1, line 8)
of the questions, but the primary key questionID was defined here. However, it was
changed to numbering to simplify the maintenance of the jump rules. If the primary
keys were used and any question before them were removed, the primary keys for the
start and end questions would have to be manually decreased by one. Since, especially
during active development, the set of questions was not final, this led to unnecessary
additional work. Because of this, the numbering of the questions is now used here,
which is also unique per section. In the corresponding Dart class JumpRule, the cor-
rect primary keys dynamically replace the numbering. There is sqlStatement to enable

21

a jump rule to determine when a question or section can be skipped (see Listing 4, line
8). Imagine there is a question 7, which can be answered with yes or no. In addition,
question 7.1 exists as a follow-up question. In case question 7 was answered with no,
there is no need to ask and answer question 7.1 anymore. A SQL query can map this
dependency, as seen in Listing 5. The strings between ”<” and ”>” are replaced with
the corresponding IDs whenever the jump rules are fetched from the database. In the
given case, the query result should be one since the answer exists and was answered
with no, i.e., answer.yesNo is 0. The jump rules need a corresponding expected result
to validate whether the result is correct (see Listing 4, lines 9-11). If the query result
meets this defined expected result, question 7.1 is skipped and continues with the next
question. By using SQL queries, it is possible to map arbitrary conditions. Thus,
they are also used to validate scale questions by setting the flag isScale (see line 13).
In the case of only one category within a scale question, the SQL query is similar to
Listing 5. Scale questions having more than one category and each category has its
condition, nested SELECT-statements can be used to validate whether the scale ques-
tion is satisfied or not. Since the questions have a corresponding counterpart in the
past tense, the jump rules can also be defined for the past by setting a flag (see line 12).

1 Future<void> c r e a t e S t a t i c T a b l e (Database database) async {
2 await database . execute (’ ’ ’CREATE TABLE JUMP RULE(
3 jumpRuleID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
4 fkSect ionID INTEGER NOT NULL,
5 startQuestionNumbering TEXT NOT NULL,
6 nextQuestionNumbering TEXT,
7 n e x t S e c t i o n T i t l e TEXT,
8 sq lStatement TEXT NOT NULL,
9 countShouldBe INTEGER,

10 countShouldBeLTE INTEGER,
11 countShouldBeGTE INTEGER,
12 past INTEGER NOT NULL DEFAULT 0 ,
13 i s S c a l e INTEGER NOT NULL DEFAULT 0 ,
14 FOREIGN KEY(fkSect ionID) REFERENCES SECTION(sec t ionID)
15) ; ’ ’ ’) ;
16 }

Listing 4: This function creates the static database table JUMP RULE.

1 SELECT COUNT(∗) AS r e s u l t FROM answer
2 WHERE fk Interv i ewID = <fkInterv iewID>
3 AND fkQuestionID = <fkQuestionID>
4 AND yesNo = 0 ;

Listing 5: This function illustrates how the arbitrary conditions of jump rules are
mapped in one property. In this case, the jump rule checks whether a specific
question is answered with no.

22

In 3.4.2, the three combinations of criterion questions A and V are introduced, as
well as the fourth option in which criterion question A was answered with yes. How-
ever, the disorder is still unsatisfied; therefore, the section should be queried in the past
tense. In the beginning, specific jump rules were in each section to check these different
answer combinations. Nevertheless, with a few exceptions, creating a pattern for these
four options was possible. Through the pattern and an appropriate handling of the
exceptions it was possible that the number of jump rules could be greatly reduced,
which also decreases the effort for maintenance. This pattern uses a combination of
different flags on various questions within a section. It is explained in 3.5.4. Since
these jump rules do not exist in the individual sections but are created the same for
each section, they are called static jump rules.

Similar to the QuestionModel in 3.4.2, the JumpRuleModel also has additional func-
tions, e.g., inserting and fetching jump rules. A special feature is the function execute-
JumpRule(...) (see Listing 4).
It takes a JumpRule object and returns an updated version; more specifically, it eval-
uates the result of the SQL statement to determine whether the jump rule is satisfied.
First, a connection to the database is established, then the SQL statements of the
static jump rules are executed, i.e., the dynamic jump rules are considered separately.
Afterwards, it is checked if the result is empty (see Listing 6, lines 7 et sqq.). In this
case, the result is set to false and the function is exited. Otherwise, the result is con-
verted to an integer (see lines 12 and 13) and compared to the predefined result of
the JumpRule object (see lines 15 et sqq.). Usually, it is sufficient if the query result
of the jump rule is equal to the predefined result. However, for the jump rules of the
scale questions, it is important to check whether the result is greater or equal to the
predefined result. This is because it is not the number of fulfilled symptoms counted
but the number of unfulfilled symptoms. From this, it can be determined whether
it is still possible to fulfill the scale question at all. For example, a scale question is
fulfilled according to the interview guideline as soon as at least three of the 15 possible
symptoms are given. Conversely, this means that if 13 or more symptoms are not
fulfilled, the scale question cannot be fulfilled anymore and the section is skipped due
to a jump rule. This behaviour cannot be mapped exclusively with countShouldBe, so
countShouldBeGTE and countShouldBeLTE have been added. Finally, the updated
JumpRule object is returned.

1 Future<JumpRule> executeJumpRule (JumpRule jumpRule) async {
2 f i n a l db = await SQLHelper . connectDatabase () ;
3 Lis t<Map<String , dynamic>> queryResult =
4 await db . rawQuery (jumpRule . sq lStatement) ;
5
6 // re turn f a l s e i f queryResu l t i s empty
7 i f (queryResult . isEmpty) {
8 jumpRule . queryResult = f a l s e ;
9 return jumpRule ;

23

10 }
11
12 i n t count = i n t . parse (
13 queryResult [0] [’ r e s u l t ’] . t oS t r i ng ()) ;
14
15 i f (jumpRule . countShouldBeGTE != nu l l) {
16 jumpRule . queryResult =
17 count >= jumpRule . countShouldBeGTE ! ;
18 } e l s e i f (jumpRule . countShouldBeLTE != nu l l) {
19 jumpRule . queryResult =
20 count <= jumpRule . countShouldBeLTE ! ;
21 } e l s e {
22 jumpRule . queryResult = count == jumpRule . countShouldBe ;
23 }
24
25 return jumpRule ;
26 }

Listing 6: Illustration of how jump rules are executed.

The corresponding Dart class JumpRule converts the retrieved database entries and
the respective objects. In doing so, it proceeds similarly to Listing 3 in 3.4.2. The
fromMap(...) function in this class differs because the jump rule templates (see List-
ing 5) defined in sqlStatement must be converted to real SQL statements. In the first
place, the numbering for the start and next questions is replaced by their actual pri-
mary keys. If the database entry for nextQuestionNumbering is null, the primary key
of the section is searched accordingly and entered in JumpRule.nextSectionID. Fur-
thermore, when mapping to the Dart object, an additional property is added which
originally does not exist in the database table. This is queryResult, which represents
the result of the execution of the SQL statement of the respective jump rule. It has
already appeared in lines 8 or 16 et sqq. in Listing 6 and stores the result of the
executed SQL statement.

3.4.4 Data Model: Answer

The AnswerModel is a non-static database table. Therefore, its name is written in
lowercase. Listing 7 presents the function of creating the database table.

Each answer can be assigned to exactly one question. Therefore, a foreign key re-
lationship to the primary key of the database table QUESTION is added in lines 4,
14, and 15. Additionally, to assign an answer to the correct interview, a foreign key of
the database table interview is added (see Listing 7, lines 5, 16, and 17). As introduced
in 3.1, there are different types of questions and consequently, there must be different
types of answers. However, instead of creating a separate model for each option, one
model that covers all answer options. The simple cases are questions that allow only

24

one answer option. For example, these are yes-no questions. As mentioned earlier,
SQLite does not support boolean values, instead 0 or 1 are entered here accordingly
(see Listing 7, line 6). For some questions, the answer is a description. Therefore,
there is the property description. Furthermore, there is the possibility to choose one
or more answer options from a predefined set (see lines 8 and 9). Some questions only
allow a number, a time, or a duration as an answer. At the end of each section, there
is a question for the interviewer to decide whether to assign the disorder. This ques-
tion only appears if the application has calculated that all the criteria for fulfilling the
disorder are given. The interviewer then decides between assigning, not assigning or
not sure. Finally, one special question that shows an empty diagram and the user can
draw points that are automatically connected with a line resulting in a mood curve.
Since there is a column for each possible answer type, any combination of answers to
a question can also be stored. For example, there are questions to which the answer is
yes or no and additionally, a description is necessary.
In addition to the function for creating the database table, AnswerModel also provides
the usual functions for creating, fetching, updating and deleting database entries.

1 Future<void> createTable (Database database) async {
2 await database . execute (’ ’ ’CREATE TABLE answer (
3 answerID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
4 fkQuestionID INTEGER NOT NULL,
5 fk Inte rv iewID INTEGER NOT NULL,
6 yesNo INTEGER,
7 d e s c r i p t i o n TEXT,
8 dropdownValue TEXT,
9 m u l t i S e l e c t i o n TEXT,

10 number TEXT,
11 timeOrHours TEXT,
12 a s s i gnD i so rde r INTEGER,
13 moodCurvePoints TEXT,
14 FOREIGN KEY (fkQuestionID) REFERENCES
15 QUESTION(quest ionID) ,
16 FOREIGN KEY (fkInterv i ewID) REFERENCES
17 in t e rv i ew (interv iewID) ON DELETE CASCADE
18) ; ’ ’ ’) ;
19 }

Listing 7: This function creates the non-static table answer in the database.

Since the answer table is not static, a new function called toMap(...) is needed in
addition to the already known fromMap(...). It performs exactly the opposite tasks,
i.e. instead of converting the fetched data into objects of the Answer class, toMap(...)
converts the Answer objects back into a map. toMap(...) returns a Map<String, dy-
namic> object that contains key-value pairs. Listing 8 shows the simplified function to
convert an Answer object into a map representation. First, a nullable integer variable

25

yesNo is declared. It is assigned either 0 if the answer to the yes-no question is no
(i.e. false) or 1 if the answer is yes. If this.yesNo is null because it is not a yes-no
question at all, the variable remains null (see Listing 8, lines 2-5). In the same way,
the variable this.multiSelection, which contains a list of strings, must be converted into
a single string. To do this, the elements are joined with a semicolon (see lines 7-19).
To conclude the section, if the criteria are met, the interviewer is asked if he would
like to assign the disorder. Three options exist, represented by an enumeration within
the Dart object. For the SQLite table, the enumeration is replaced by an integer value
(see lines 21-34). Another property that needs to be converted is the mood curve. In
the Answer object, it is represented by a list of x and y coordinates. This list of points
is converted to a single string within an outsourced function (see lines 36-40). This
string is then of the form x0, y0;x1, y1; ..., xn, yn. Then a map object is created and
populated with key-value pairs. The keys correspond to the property names of the
Answer object, and the values are obtained from the corresponding properties. The
returned map object can then be stored in the SQLite database (see lines 42 et sqq.).

1 Map<String , dynamic> toMap () {
2 i n t ? yesNo ;
3 i f (t h i s . yesNo != nu l l) {
4 yesNo = t h i s . yesNo ! ? 1 : 0 ;
5 }
6
7 Str ing ? m u l t i S e l e c t i o n ;
8 i f (t h i s . m u l t i S e l e c t i o n != nu l l) {
9 m u l t i S e l e c t i o n = ’ ’ ;

10 f o r (i n t i = 0 ; i < t h i s . m u l t i S e l e c t i o n ! . l ength ; i++) {
11 i f (i == t h i s . m u l t i S e l e c t i o n ! . l ength − 1) {
12 m u l t i S e l e c t i o n =
13 m u l t i S e l e c t i o n ! + t h i s . m u l t i S e l e c t i o n ! [i] ;
14 } e l s e {
15 m u l t i S e l e c t i o n =
16 ’ ${m u l t i S e l e c t i o n !} ${ t h i s . m u l t i S e l e c t i o n ! [i] } ; ’ ;
17 }
18 }
19 }
20
21 i n t ? a s s i gnD i so rde r ;
22 switch (t h i s . a s s i gnD i so rde r) {
23 case Ass ignDisorder . yes :
24 a s s i gnD i so rde r = 1 ;
25 break ;
26 case Ass ignDisorder . no :
27 a s s i gnD i so rde r = 2 ;

26

28 break ;
29 case Ass ignDisorder . notSure :
30 a s s i gnD i so rde r = 3 ;
31 break ;
32 de fau l t :
33 a s s i gnD i so rde r = nu l l ;
34 }
35
36 Str ing ? moodCurveString ;
37 i f (moodCurvePoints != nu l l) {
38 moodCurveString =
39 convertMoodCurvePointsToString (moodCurvePoints !) ;
40 }
41
42 return {
43 ’ answerID ’ : answerID ,
44 ’ fk Interv iewID ’ : fkInterv iewID ,
45 ’ fkQuestionID ’ : fkQuestionID ,
46 ’ yesNo ’ : yesNo ,
47 ’ d e s c r i p t i o n ’ : d e s c r i p t i o n ,
48 ’ dropdownValue ’ : dropdownValue ,
49 ’ m u l t i S e l e c t i o n ’ : mu l t i S e l e c t i on ,
50 ’ number ’ : number ,
51 ’ timeOrHours ’ : timeOrHours ,
52 ’ a s s i gnD i so rde r ’ : a s s i gnDi so rde r ,
53 ’ moodCurvePoints ’ : moodCurveString ,
54 } ;
55 }

Listing 8: Presents a function which converts objects of type Answer into a map. This
makes it easier to write them into the database.

3.4.5 Data Model: Disorder and Diagnosis

The system distinguishes between disorders and diagnoses, so there is a data model for
each. Disorders primarily indicate the result of the respective section during the inter-
view. In contrast, diagnoses represent the actual clinical decision of the interviewer.
Both disorders and diagnoses are non-static.

Listing 9 shows the properties of the database table for the DisorderModel. Appropri-
ate foreign key relationships are used for a unique mapping between Disorder, section,
and interview (see Listing 9, lines 4, 5, and 9-12). The property assignDisorder stores
the result of the section, whether the disorder was assigned, unassigned or marked with
not sure. The decision happens explicitly at the end of the section by the interviewer

27

or implicitly by the interviewer if a jump rule is fulfilled. Consequently, the section
is left (see lines 6-7). Since a disturbance can also occur in the past, the section can
be queried in the past tense. The property disorderPast makes clear whether it is a
current or a past disorder.

1 Future<void> createTable (Database database) async {
2 await database . execute (’ ’ ’CREATE TABLE d i s o r d e r (
3 d i sorder ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
4 fk Inte rv iewID INTEGER NOT NULL,
5 fkSect ionID INTEGER NOT NULL,
6 a s s i gnD i so rde r INTEGER NOT NULL
7 CHECK (as s i gnD i so rde r BETWEEN 1 AND 3) ,
8 d i so rde rPas t INTEGER NOT NULL DEFAULT 0 ,
9 FOREIGN KEY (fkSect ionID) REFERENCES

10 SECTION(sec t ionID) ,
11 FOREIGN KEY (fkInterv i ewID) REFERENCES
12 in t e rv i ew (interv iewID) ON DELETE CASCADE
13) ; ’ ’ ’) ;
14 }

Listing 9: This function creates the table disorder in the database.

On the other hand, some diagnoses that are created exclusively and consciously
by the interviewer at the end of the interview. Listing 10 shows the function of the
DiagnosisModel that creates the corresponding table in the database. For a unique
assignment, the foreign key relationship to interviewID is used (see Listing 10, lines
11-12). A diagnosis can be selected via a dropdown (see line 6). However, the list of
possible diagnoses is extremely long, so an additional free text field is provided (see
line 7). In addition to the name, diagnoses also differ in their type. There is exactly
one primary diagnosis and any number of additional and previous diagnoses. The type
of diagnosis is mapped by SQL using integer values and by Dart using an enumeration
(see line 5). In addition, diagnoses have a severity level (see line 8). Since previous
diagnoses are already completed, two further properties are necessary to store the start
and end times (see lines 9-10). An exact date is unnecessary, but the age in months is
sufficient.

1 s t a t i c Future<void> createTable (Database database) async {
2 await database . execute (’ ’ ’CREATE TABLE d i a g n o s i s (
3 d iagnos i s ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
4 fk Inte rv iewID INTEGER NOT NULL,
5 diagnos isType INTEGER NOT NULL,
6 name TEXT NOT NULL,
7 other TEXT,
8 s e v e r i t y INTEGER CHECK(s e v e r i t y >= 0 AND s e v e r i t y <= 8) ,
9 s t a r t INTEGER,

10 end INTEGER,

28

11 FOREIGN KEY (fkInterv i ewID) REFERENCES
12 in t e rv i ew (interv iewID) ON DELETE CASCADE
13) ; ’ ’ ’) ;
14 }

Listing 10: This function creates the table diagnosis in the database.

3.5 Major Software Components

The application’s core task is conducting structured interviews and assisting in making
the clinical diagnosis. In order to be able to use the interview guideline optimally with
the help of the application, an interaction of different components is necessary. These
components are explained below. It is assumed that a user has successfully registered
or logged in, created a patient document and started an interview.

3.5.1 InterviewManager

An interview may be accessed either by the interview card, i.e. the interview already
exists, or by starting a new interview, or the InterviewManager. It serves as an orches-
tration of all functionalities needed during an interview process. It is a stateful widget
since its content will change (see 2.1.2). This widget requires a couple of arguments
to work, as Listing 11 shows. First, the information about the current patient must
be passed, represented by an instance of PatientDocument. This information is mainly
used to present patient data in the top bar and is passed down to child widgets to
assign future data to the correct patient. Furthermore, the interview itself is an argu-
ment. Here information is included, such as the creation date, the interview duration,
the interviewer’s name or the interview’s status. In line 4 a nullable variable section
is defined. This variable is not needed initially, but once the InterviewManager calls
itself when a new section is entered. Similarly, the variable stopWatchWasRunning is
defined below it.

1 c l a s s InterviewManager extends State fu lWidget {
2 f i n a l PatientDocument patientDocument ;
3 f i n a l In te rv i ew in t e rv i ew ;
4 f i n a l Sect i on ? s e c t i o n ;
5 f i n a l bool ? stopWatchWasRunning ;
6 . . .
7 }

Listing 11: The arguments of the stateful widget InterviewManager.

The first step of a stateful widget is to initialize its state by executing initState().
It is a function of the Flutter State class and is overridden in the corresponding state
class of a stateful widget. It is called when the widget is first inserted into the widget
tree and allows for initialization tasks. First, the case is considered when the Interview-
Manager was opened the first time. The first step is to load the chapters, sections and

29

their questions from the database. This action is performed only once, i.e. if the man-
ager is opened the first time. This avoids unnecessary database calls and saves some
resources. Then the current section is determined by selecting the first section from
the previously loaded data. At the end, the stopwatch is initialized and started. In
this case, section and stopWatchWasRunning do not influence the manager. However,
whenever the section changes, for example, due to a jump rule, a new InterviewMan-
ager is placed on the navigation stack. Then both arguments are relevant to display
the correct content. In case of a jump rule, the system calculates which section follows.
Usually, this is the following section, but rarely a section even further back. Also, the
status of the stopwatch is passed. If the user has stopped the time, it will be stopped
on the next page. As soon as a new instance of the manager is created, the variable
interview is also updated. Among other things, the duration is overwritten with the
current time or the status is changed. Always putting a new InterviewManager on the
navigation stack allows easy navigation between pages without any additional effort.
As mentioned, the InterviewManager loads all chapters, sections and questions exactly
once. This data is then passed to the child widget ChapterOverview. The chapter
overview is opened as a drawer from the left by clicking on the left icon in the bottom
bar. It is primarily used to provide an overview and enables quick navigation within
the interview. Furthermore, the InterviewManager controls the notepad via another
drawer on the right side. The notepad enables the user to take notes during the inter-
view.
The most important task is the navigation between the sections. The function push-
NextSection(...) is responsible for this, which considers various scenarios such as the
drawer, jump rules and the floating action button (FAB). Listing 12 presents the sim-
plified function, which takes a nullable ID of a section and a boolean indicating the
origin of the function call. It does return nothing. Instead, it pushes a new instance
of the InterviewManager onto the navigation stack resulting in an updated UI (see
Listing 12, lines 13 et sqq.). First, the ID of the next section is determined by check-
ing some conditions within if else-if statements (see Listing 12, line 3). Either the
call comes from the drawer, chosenNextSectionID is set to ID of the clicked section.
Alternatively, the call originates from the child widget InterviewPage due to an ap-
plied jump rule containing the appropriate section. The last option is that the FAB is
clicked, setting chosenNextSectionID to the next available section. Next, all sections
are searched to find the correct section based on the previously determined chosen-
NextSectionID. If successful, the drawer may be removed from the navigation stack
(i.e. closed; see lines 9-11). Afterwards, the stopwatch is stopped and the current
duration of the stopwatch overwrites the interview’s duration. Finally, a new instance
of InterviewManager is placed on the navigation stack (see lines 13 et sqq.). The new
instance of InterviewManager contains updated arguments, such as the section and
the interview, but also the status of the stopwatch (see lines 20 et sqq.). The time is
stopped or continued on the next page, depending on the status (see line 24).

1 void pushNextSection (i n t ? nextSectionID , bool fromDrawer) {
2 . . .

30

3 i n t chosenNextSectionID = . . . ;
4 . . .
5
6 f o r (var s e c t i o n in InterviewManagerHelper . a l l S e c t i o n s) {
7 i f (s e c t i o n . s ec t i onID == chosenNextSectionID) {
8 // c l o s e the drawer
9 i f (fromDrawer) {

10 Navigator . pop (context) ;
11 }
12
13 Navigator . push (
14 context ,
15 MaterialPageRoute (
16 b u i l d e r : (context) {
17 stopwatchSubscr ipt ion ? . cance l () ;
18 updateInterviewStopwatchTimer () ;
19
20 return InterviewManager (
21 patientDocument : widget . patientDocument ,
22 in t e rv i ew : widget . in te rv i ew ,
23 s e c t i o n : s e c t i on ,
24 stopWatchWasRunning : timerOn ,
25) ;
26 } ,
27) ,
28) ;
29 . . .
30 }
31 }
32 }

Listing 12: An excerpt of a function that handles the navigation between sections
within the interview.

3.5.2 InterviewPage

The actual content, i.e. the questions and answers, are not controlled by the Inter-
viewManager, but by the InterviewPage. The InterviewPage needs the arguments to
display the correct section’s questions and answers, as shown in Listing 13. In the first
place, this is the current section, which contains all the questions (see Listing 13, line
2). Also, interview is needed to display the answers to the correct interview (see line
3). Furthermore, the function pushNextSection(...) is required in line 4 because the
jump rules are evaluated in this widget. Lastly, the variable patientDocument is used,
e.g. to hide questions if the age is exceeded or not reached (see line 5).

31

1 c l a s s InterviewPage extends State fu lWidget {
2 f i n a l Sect i on s e c t i o n ;
3 f i n a l In te rv i ew in t e rv i ew ;
4 f i n a l Function pushNextSection ;
5 f i n a l PatientDocument patientDocument ;
6 . . .
7 }

Listing 13: The arguments of the stateful widget InterviewPage.

The InterviewPage is a stateful widget, so its state is initialized first. For this, the
jump rules of the section are fetched. In addition, all questions in the section are
run through to find special questions and assign them to appropriate variables. These
are, for example, questions marked as criterionPresent or criterionPast (see 3.4.2).
Moreover, the different categories of the scale questions are collected, which are later
used to evaluate them. Identifying these questions and categories is important as it
determines how the section behaves in certain situations. At the same time, the vari-
able visibleQuestions is initialized with key-value pairs. The keys are the questions’
identifiers and the values correspond to a boolean that controls whether the question
is shown or hidden. Furthermore, it is checked whether a database entry already exists
in Disorder (see 3.4.5). In addition, it is checked whether the patient is of the rec-
ommended age. Otherwise, a dialog appears that allows the user to skip the section.
Finally, it is determined whether the section’s past should be asked. In this case, the
section with questions in the past tense is added below the section (with questions in
the present).

1 void updateInterviewPageContent () async {
2 await toggleModePast () ;
3 await executeJumpRules () ;
4 await checkShowQuest ionSuffer ingImpairment () ;
5 await checkShowQuestionAssignDisorder () ;
6 await checkShowQuestionAboutPast () ;
7 . . .
8 }

Listing 14: A function that executes a set of other functions whenever an answer is
entered.

The most important function is shown in Listing 14 and controls several functions.
It is called inside QuestionManager (see 3.5.3) whenever a response is given or already
present.
The first function is the same one described in the previous paragraph and handles
adding or removing the section with its questions in the past tense. Precisely, there are
two possibilities when the past is activated. On the one hand, all criterion questions A
must be answered with no and at least one criterion question V must be answered with

32

yes. On the other hand, the disorder is not fulfilled in the present, but the user wants
to ask for the past explicitly and answers the special question with the corresponding
flag with yes.
After the current mode is defined, all jump rules are executed (see Listing 14, line 3)
that were fetched within the initState(). With the help of the jump rules, it is en-
sured that the correct questions are always visible or hidden. Jump rules are divided
into static and dynamic ones and can be assigned to the past (see 3.4.3). The func-
tion executeJumpRules() in Listing 15 always executes the jump rules of the present
(seeListing 15, lines 25 et sqq.) since this part of the section is always visible. Only if
the past mode is enabled the jump rules of the past are executed as well (see lines 32 et
sqq.). The jump rules are executed and their results are stored in executedJumpRules in
line 2. Afterwards, some conditions, each representing a static jump rule, are checked.
If a condition is met, the corresponding jump rule is executed and appended to the
executedJumpRules list with its result (see lines 5 et sqq.). Here, the special questions
found inside initState() matters. Finally, the individual jump rules are applied to the
questions in a specific order. For this, the boolean of the corresponding question in
visibleQuestions is set to the result of the skip rule. The order is important because the
jump rules are not mutually exclusive. For example, one jump rule hides all questions
up to the first question in the past section, but another jump rule would display one
of the hidden questions again. Some jump rules would have the effect of displaying a
dialog because the disorder may no longer be satisfied due to the input made. Then
the user can decide if he wants to stay in the current section or jump to the next one.
The forwarded function of the parent widget pushNextSection(...) is then called as a
result.

1 Future<void> executeJumpRules () async {
2 Lis t<JumpRule> executedJumpRules = . . . ;
3
4 // e x e c u t e s t a t i c jump r u l e s
5 i f (f i r s t Q u e s t i o n I n P r e s e n t != nu l l &&
6 c r i t e r i o n Q u e s t i o n s P r e s e n t . isNotEmpty) {
7 executeJumpRules . add (. . .) ;
8 }
9

10 i f (f i r s tQuest ionInModePast != nu l l &&
11 c r i t e r i o n Q u e s t i o n s P a s t . isNotEmpty) {
12 executeJumpRules . add (. . .) ;
13 }
14
15 i f (c r i t e r i o n Q u e s t i o n s P r e s e n t . isNotEmpty &&
16 c r i t e r i o n Q u e s t i o n s P a s t . isNotEmpty) {
17 executeJumpRules . add (. . .) ;
18 }

33

19
20 i f (aboutPastQuestion != nu l l) {
21 executeJumpRules . add (. . .) ;
22 }
23
24 // app ly jump r u l e s r e s u l t s
25 i f (executedJumpRules . isNotEmpty) {
26 f o r (var jumpRule in executedJumpRules) {
27 . . .
28 }
29 }
30
31 // app ly jump r u l e s o f pas t
32 i f (modePast) {
33 f o r (var jumpRule in executedJumpRules) {
34 . . .
35 }
36 }
37 }

Listing 15: An excerpt of the function that applies the results of the jump rules to the
UI.

Besides showing and hiding questions, there are also special questions that are ini-
tially not rendered at all but only in certain cases. These are the questions about
suffering and impairment, assigning the disorder, and whether the section should be
asked in the past tense again. Each question is checked separately inside updateInter-
viewPageContent() (see Listing 14, lines 4-6).
The function checkShowQuestionSufferingImpairment() (see Listing 14, line 4) does
not take any arguments or return any result. It performs an asynchronous task due
to database calls and uses a SQL statement to validate whether the question about
suffering and impairment should be displayed. First, the function checks if this ques-
tion is in this section, both for the present and the past. This assignment is done
in the initState() of the InterviewPage widget. The question exists only if suffering
and impairment are a criterion. If so, the DiagnosticToolHelper is used to check if
the correct answers are given. The same eight questions always query suffering and
impairment. These questions are answered on a scale from zero to three, except for
two. Suffering and impairment are fulfilled if at least one question is answered with at
least two. As soon as the past is active, the same test is performed for the questions
in the past tense as well.
As the answers are entered into the app, the app constantly checks whether the disor-
der is fulfilled. If this is the case, a question is displayed at the end, which informs the
user that the disorder is fulfilled and also asks to decide whether the disorder should
be assigned, not assigned or marked as not sure. The function checkShowQuestionAs-
signDisorder() is used for this purpose (see Listing 14, line 5). It takes no arguments

34

and returns nothing. Instead, it shows or hides a question in the UI. The function
always checks on the one hand if the disorder is fulfilled in the present and on the
other hand if the past mode is active and also if the criteria for a previous disorder are
fulfilled. The DiagnosticToolHelper does the actual calculations. There the following
conditions are checked in the form of guards. If a guard is fulfilled, the function is
left directly. This saves unnecessary operations. The first condition is whether all
visible criterion questions are fulfilled, i.e. answered with yes. ”visible” refers to the
variable visibleQuestions, which contains key-value pairs of all questions of the current
section (See 3.5.2). This ensures that skipped criterion questions are irrelevant when
evaluating the section. Next, the criterion questions for the present are tested. Of
these, at least one must be answered with yes. This condition is only tested if the past
is not active. Third, it is tested whether the interviewer explicitly assigned suffering
and impairment. Last, the optional scale questions are validated using the appropriate
skip rule. If the skip rule is met, the section is left and consequently, the section is not
met. If all conditions are met, the section and, hence, the disorder is fulfilled. Finally,
the question for assigning the disorder can be displayed.
The last special question is the question about the past, which is evaluated by the func-
tion checkShowQuestionAboutPast() (see Listing 14, line 6). It takes no arguments and
instead of returning a result, the corresponding question about the past is displayed.
It is asynchronous due to database calls. The function is split into two parts. The
first part is only executed if suffering and impairment are a criterion since the ques-
tion about assigning suffering and impairment is checked. If the user did not assign
suffering and impairment, i.e. answered the question with no, the function will display
the question about the past. The second part is only executed if the first part is not
executed. The second part is only executed if the first part was not executed. Here
the question about assigning the disorder is considered. The user must answer this
question with no or not sure. Only then the question about the past appears.

3.5.3 QuestionManager

Each question on the InterviewPage is controlled by its own QuestionManager (see
Listing 16). Its main task is to display the questions and their answers. It takes several
arguments to perform all its tasks. For the QuestionManager to display the correct
question and answer, a corresponding object of Question (see 3.4.2) is needed. Also,
the state of visibility of the question is passed from InterviewPage, i.e. only a teaser or
the full question is displayed. Since updateInterviewPageContent() is always executed
as soon as an answer is entered or already present, the function is an argument of this
widget (see Listing 16, line 4). The already introduced function pushNextSection() and
the section identifier are necessary for one specific purpose, such that they are optional
arguments. Last, the interviewID is needed to fetch the correct data.

1 c l a s s QuestionManager extends State fu lWidget {
2 f i n a l Question ques t i on ;
3 f i n a l bool i s V i s i b l e ;
4 f i n a l Function updateInterviewPageContent ;

35

5 f i n a l Function ? pushNextSection ;
6 f i n a l i n t ? sec t ionID ;
7 f i n a l i n t interv iewID ;
8 . . .
9 }

Listing 16: The arguments of the stateful widget QuestionManager.

The QuestionManager is a stateful widget that initializes its state at the beginning.
It checks if there is an answer in the database table Answer (see 3.4.4) for this question
and interview. If there is an answer, the answer object is populated accordingly and
passed to an appropriate child widget. Otherwise, answer will remain initialized with
the default values.
The widget consists of a static and a dynamic component. The question text is static
and is the same for all possible types of questions. Below the question are the input
options, which depend on the type of question. If there is an answer to this question,
it will be displayed according to the input fields. The correct child widget must be
rendered for the correct input fields to be displayed. Each question type has a sep-
arate widget (yes-no questions, descriptions, dropdowns, multi selection, and more).
Listing 17 shows the snippet of the switch statement within the widget’s build(...)
function. The switch statement takes the InterviewPage object passed by the question
and evaluates the question type (see Listing 17, line 1). Then the appropriate case is
executed. Assuming it is a yes-no question, the case in lines 2 to 6 would take effect.
The QuestionTypeYesNo widget gets the answer object and an onChangeYesNo(...)
function. The QuestionManager has a separate onChange(...) function for each input
option. This gives the child widgets only the purpose of displaying the answers and the
QuestionManager takes over controlling the answers. Listing 17, lines 8 et sqq. show
the special question type where the interviewer decides whether to assign the disorder.
If he assigns the disorder, pushNextSection(...) opens the next section (see 3.5.1).

1 switch (widget . ques t i on . questionType) {
2 case QuestionType . yesNo :
3 return QuestionTypeYesNo (
4 answer : answer ,
5 onChangeYesNo : onChangeYesNo ,
6) ;
7 . . .
8 case QuestionType . a s s i gnD i so rde r :
9 return QuestionTypeAssignDisorder (

10 answer : answer ,
11 onChangeAssignDisorder : onChangeAssignDisorder ,
12 pushNextSection : widget . pushNextSection ! ,
13 sec t ionID : widget . s ec t i onID ! ,
14) ;
15 . . .

36

16 }
Listing 17: An excerpt of the build() function inside the QuestionManager. It uses a

switch statement to determine the correct child widget depending on the
questionType.

In Listing 18 two functions of the QuestionManager are shown. Line 1 et sqq.
show the onChange function passed to the child widget. It is executed whenever the
user enters an answer. It also triggers upsertAnswer(...), which writes the entered
answers to the database or deletes them from the database. The call of the function
is connected with a previous evaluation (see Listing 18, line 3). This checks if the
given answer is null, i.e., empty. This evaluated expression is passed as an argument
to upsertAnswer(...) (see Listing 18, lines 6 et sqq.). If the expression evaluates to
true, the answer will be deleted from the database (see lines 10-15). In addition, the
current answer object must be reset. Otherwise, future database operations will be
performed on an answerID that no longer exists. If the answer is not empty, it must be
evaluated by prepending the answerID whether a new database entry is created or an
existing entry is updated (see Listing 18, lines 15 et sqq.). If a new entry is created, the
returned answerID by the database operation is stored in the current answer object.
So that a database call is not triggered for every keystroke (e.g. for an input field for
text), the calls just described are inside a Timer object. The timer runs for one second
and only then executes the corresponding database operation. After the operations are
called, the updateInterviewPageContent() function obtained from the parent widget is
executed. This will then run the functions and adjust the interview content according
to the answers (see Listing 14).
Another purpose of the QuestionManager is to hide or show questions if they are
skipped due to applied jump rules. This behaviour depends on its argument isVisible,
passed down by the parent widget InterviewPage. As soon as the variable changes,
the appearance of QuestionManager changes accordingly. If isVisible is false, then the
second part, i.e. the input options with the answers, is hidden. Additionally, only the
question’s first line is visible and gets a light grey, still readable font colour.

1 void onChangeYesNo (bool ? va lue) {
2 answer . yesNo = value ;
3 upsertAnswer (va lue == nu l l) ;
4 }
5 . . .
6 Future<void> upsertAnswer (bool d e l e t e) async {
7 . . .
8 timeHandle = Timer (const Duration (seconds : 1) , () async {
9 // entered answer i s empty

10 i f (d e l e t e) {
11 await AnswerModel . deleteAnswer (answer . answerID !) ;
12 // r e s e t answer by d e l e t i n g answerID
13 answer = Answer (widget . interviewID ,
14 widget . ques t i on . quest ionID) ;

37

15 } e l s e {
16 // e x i s t i n g answer
17 i f (answer . answerID != nu l l) {
18 await AnswerModel . updateAnswer (answer) ;
19 }
20 // c r e a t e new answer
21 e l s e {
22 i n t newAnswerID =
23 await AnswerModel . createAnswer (answer) ;
24 answer . answerID = newAnswerID ;
25 }
26 }
27 widget . updateInterviewPageContent () ;
28 }) ;
29 }

Listing 18: Two functions that show the interaction between user input and database
calls.

3.5.4 DiagnosticToolHelper

The DiagnosticToolHelper has already been mentioned several times. This is not a
widget but a pure helper class that computes various calculations. These are mainly
calculations needed by the InterviewPage, for example, to decide whether certain ques-
tions should be displayed. Another large part takes care of the static jump rules (see
3.4.3), which differ from the dynamic jump rules in that they follow the same pattern
for all sections (with a few exceptions). As mentioned in 3.4.3, one pattern represents
one static jump rule. Each pattern is executed by one function. The execution of these
functions is always done by executeJumpRules() inside updateInterviewPageContent()
(see Listing 14, line 3). Listing 15 already indicates that the static jump rules are
appended to the already executed jump rules (see Listing 15, lines 4 et sqq.). Each if
block represents a static jump rule and executes one of the following four functions of
DiagnosticToolHelper.
The first static skip rule checks whether at least one criterion question A is answered
with yes. If this is the case, the criterion questions V are skipped. Listing 19 shows
the simplified procedure of this function. The function gets a set of arguments: all
criterion questions A and V, and the first question after the criterion questions, i.e.
the first question of the present. First, a new object jumpRule is created with the
properties from Listing 4. Here sqlStatement is empty, startQuestionID is the ID of
the last question of the criterion question A, and nextQuestionID is the ID of the first
question in the present. Then the individual criterion questions A and V answers are
still retrieved from the database. Listing 19, lines 6 to 12 show the default case: once
at least one criterion question A is satisfied, the function sets queryResult to true and
returns the jumpRule object. If it is an exception case, all criterion questions A must

38

be satisfied (see Listing 19, lines 12-18).

1 s t a t i c Future<JumpRule> executeStat icJumpRule 1 (. . .) async {
2 Lis t<bool?> r e s u l t C r i t e r i o n P r e s e n t = [] ;
3 Lis t<bool?> r e s u l t C r i t e r i o n P a s t = [] ;
4 . . .
5
6 i f (! except i ons . conta in s (s e c t i o n . name)) {
7 // at l e a s t one c r i t e r i o n P r e s e n t Q u e s t i o n : yesNo = 1
8 i f (r e s u l t C r i t e r i o n P r e s e n t . conta in s (true)) {
9 jumpRule . queryResult = true ;

10 return jumpRule ;
11 }
12 } e l s e {
13 // f o r a l l c r i t e r i o n P r e s e n t : yesNo = 1
14 i f (r e s u l t C r i t e r i o n P r e s e n t . every ((element) =>
15 element == true)) {
16 jumpRule . queryResult = true ;
17 return jumpRule ;
18 }
19 }
20
21 return jumpRule ;
22 }

Listing 19: Presents the function that executes the first static jump rule.

The functions for the remaining static jump rules are very similar in structure and
differ only in their conditions to be checked. The function of the second static jump
rules receives the same arguments and checks whether all criterion questions A are
answered with no and whether there is at least one criterion question V with yes.
There are no possible exceptions to handle.
The third static jump rule is satisfied if all criterion questions A and V are answered
with no. Here, instead of nextQuestionID, the variable nextSectionID is set. Usually,
this is the next section in the sequence. However, some sections have well-defined
successor sections. If the current section is in the list of exceptions, the ID stored in
the list is used. As a result of a fulfilled third static jump rule, the current section is
left and continues with the specified section.
The next case involves the criterion questions A and V and the question about the past.
Therefore, the function for executing the fourth static jump rule receives an additional
argument. The default case is that at least one criterion question A is answered with
yes. The criterion questions V are skipped, so their answers are irrelevant. Instead,
the answer to the question about the past is checked to see if it is answered no. If
it is, it means that the disorder is not fulfilled in the present and the past does not
want to be queried. Then the jump rule is fulfilled and the next section is opened.
The exceptions are the same as for the first static jump rule. That means, for some

39

sections must be all criterion questions A must be fulfilled.

4 App Solution

Figure 4 shows a simplified version of the application’s navigation tree focusing on the
most important stages. Red circles represent the most significant pages or, rather,
widgets. Dialogs, i.e. windows that do not cover the entire screen and have action
buttons, are symbolized by blue circles. Drawers are orange, i.e., elements that slide in
from the edge of the screen to provide navigation options or additional content to the
user. At the same time, other less important pages are green. Based on Figure 4, the
final implementation of the application is presented by showing screenshots of multiple
pages to explain their functionality. The order of the pages corresponds to typical
usage, starting with registration, moving on to the creation of patient documents and
the entry of patient-specific data, followed by interviews and diagnosis.

4.1 Home

The very first visible screen is the splash screen when the user starts the application.
It shows the FBZ logo next to the DIPS’s name. When the application is ready, the
home screen (see Figure 5) shows the FBZ logo and all users created on this device.
Each user is represented by one card, including an icon and the username. Although,
there is one card that has a different icon. This belongs to the admin. Cards create
closed regions, suggesting their elements belong together (see 2.2.2). In addition, the
shadows of the cards create a three-dimensional effect, which engages the user to click.
Using the concept of knowledge in the head (see 2.2.7), a big plus sign on one card
communicates, adding more users.
Figure 4 indicates three possible navigation paths. First, the imprint can be accessed
by clicking the text button in the lower right corner. Second, clicking on a user card
opens the login dialog. Moreover third, the registration dialog is opened by clicking on
the plus sign.

4.1.1 Registration and Login

Clicking on the registration card opens the registration dialog (see Figure 6b). This
dialog has three different text input fields for username, password and e-mail, where
e-mail and password must be entered twice to avoid typos. The e-mail is important
because it is needed to reset the password if it is forgotten. In addition to a label, the
input fields have a leading icon to indicate their contents. For the text fields of the
passwords, there is an option to display the input by clicking the trailing icon. If the
user is an admin and there is no admin yet, a checkbox can be selected to create an
admin instead of a user. The user is created after the input is complete and the button
”Benutzer erstellen” is clicked. For this purpose, a password-protected connection to
the database is established. The hashed password and all other relevant information

40

Home
Document

Cabinet
Patient

Document

Overview
Tab

Interview
Tab

UserRegis

tration

User

Login

Interview
Manager

Interview
Page

Chapter

Overview

toggle on/off

Family

Situation

Settings

Profile

User

Manage

ment

Requires role ADMIN

Notepad

Imprint

Patient

Overview

U-Heft

Living

Situation

Pregnancy
AndBirth

Housing

Situation

Figure 4: A simplified widget tree showcases the basic navigation. Red circles represent
the most significant pages or, rather, widgets. Dialogs are represented by a
blue circles. Drawers are orange circles. The basic pages are green.

Figure 5: The first page after launching the app.

41

(a) (b)

Figure 6: (a) The login dialog to enter e-mail and password.
(b) If no account has been created yet, a new one can be created within the
registration dialog.

are stored in the database. Finally, the user gets to his document cabinet. This is also
the case if the user exists and has entered the correct password via the login dialog (see
Figure 6a). Nevertheless, in addition, the login dialog offers two more functionalities.
First, the user can request to reset his password by entering the correct e-mail associ-
ated with this user. The user will receive an e-mail with a code to enter for verification
and can set a new password afterwards. The second function is to delete the user and
all data attached to him.
Proper alignment creates visual balance and a professional look and feel. The con-
sistent design of the login and registration dialog further strengthens this. (see 2.2.8)
Additionally, informative feedback is provided when the password is incorrect, com-
municating the user to retry (see 2.2.6). The border of the input field is red and red
information text is displayed below it.
As seen in Figure 4, both login and registration dialog arrive at the document cabinet
after data is entered successfully.

4.2 Document Cabinet and Profile

The document cabinet (see Figure 7a) lists all patient documents, or in case of a fresh
account, a hint explaining how to create a new one. A text input field allows quick
searching for specific patients. In the top app bar, the currently logged-in user and
an icon for logging out are displayed at the right end. The bottom navigation bar
offers two or four (as admin) icon buttons to navigate between pages. In the first
place is the document cabinet. In the profile, personal data can be changed. The
next two icons representing settings and document management are only visible to the
admin. A floating action button with the burger menu icon indicates further actions.
By clicking, the button expands into three smaller ones. The icons pen, plus, and cross

42

(a) (b)

Figure 7: (a) The document cabinet shows all created patient documents.
(b) In the profile, personal data can be edited.

represent the actions edit, add and close. By using the concept of knowledge in the
head, no further labels are needed keeping the design clear and simple (see 2.2.7). In
the edit mode, patient documents can be deleted or archived. Therefore, a trash can
and an archive icon replace the list tile icon removing the functionality to navigate
to the patient document by clicking the entry. This prevents accidental navigation to
the patient file, although it should be deleted or archived. In addition, the icons have
precise colors. The trash can icon is red and uses the principle of cultural constraints
(see 2.2.5), which makes users immediately suspect a dangerous action. The action
must be confirmed in a subsequent dialog by clicking a button to prevent the user from
unintentionally deleting this file. Similarly, the icon for archiving has a green colour,
suggesting a non-dangerous and reversible action. The plus icon allows creating new
patient documents and the cross icon closes the floating action button and changes
into the initial slightly larger button with the burger menu icon.
The profile page (see Figure 7b) can be accessed without being an admin. Here user
can change his personal data. The page is divided into two areas. By providing
slightly more space between the areas than between the elements within them, they
are perceived as a group due to the Gestalt law of proximity (see 2.2.2). The left side
concerns the username and the e-mail. Moreover, on the right, the password can be
changed. The same elements ensure a consistent design, as in the registration or login
dialog. Additionally, the steps to reset the password are also the same. If the user
clicks the save button, a progress indicator replaces the button until the system call is
executed. The system provides feedback by showing a snackbar with an appropriate
message at the bottom.

43

(a) (b)

Figure 8: (a) This view is only visible to the admin and is responsible for setting up a
server.
(b) This view is also only visible to the admin, who can reassign patient
documents to another user.

4.2.1 Settings and Document Management

As presented in Figure 4 by the black-bordered rectangle, the settings and document
management view are only accessible by the admin. The admin can set the required
server information on the settings page (see Figure 8a) to enable all users using this
device to export their interview data. After entering the server data, the admin can
test the connection. Again, the button is replaced by a progress indicator until the
action is completed. Then a snackbar with a matching message appears. So far, only
export to an ownCloud server16 has been tested.
There may be times when an interviewer leaves the practice. To ensure the data is not
lost, the admin can view and manage all data by reassigning patient documents. As
shown in Figure 8b, the administrator can access all patient documents and view their
owners. In order to reassign a patient document, he can select a new user by using the
dropdown menu at the corresponding entry.

4.3 Patient Document

If the user selects an entry, e.g. Max Muster, in the document cabinet (see Figure 7a),
the user is navigated to the overview of the patient document (see Figure 9b). This page
is divided into two parts and contains several functionalities. In the first view, the user
has an overview of the patient data sorted by categories represented by corresponding
cards, as presented in Figure 4 by the black-bordered rectangle containing six different
green circles. In the second view, the user can access interview-related information like
creating new interviews or viewing existing ones (see Figure 10b).

16https://owncloud.com/

44

(a) (b)

Figure 9: (a) On this page, the user can create or edit a patient document.
(b) This view shows all patient-related data ordered by categories.

4.3.1 Overview Tab

The user is on the overview tab and can access to all patient-relevant data (see Fig-
ure 9b). If the user wants to change information about the patient, this is possible via
the first slightly larger card (see Figure 9a). Here, optional data can be entered in ad-
dition to the mandatory data. A title and alignment of the different input fields create
individual groupings for the different contexts (see 2.2.8). In addition, the individual
groups are placed below each other if a smaller display is used, such as on a mobile
phone. When data has been changed, but the user clicks on the back arrow at the
top left of the header, a dialog warns of data loss. Either the user confirms the action
and his changes are lost and returns to the previous page, or he cancels the action and
can continue editing or saving the data by clicking the text button at the top right of
the header. This input mask is also displayed when a new patient is created via the
plus icon button (see Figure 7a). The user enters the patient data overview only after
entering the mandatory data.
The information from the examination booklet is also relevant to the interview. It is
possible to take photos of the examination booklet to save time. For this, the user
clicks on the card U-Heft and is taken to a photo gallery. There is an expandable
floating action button. When expanded, the first one shows a pencil icon and activates
the edit mode, similar to the Document Cabinet in 4.2. In edit mode, the photos get
a trash can icon in the top right corner and can be deleted. The captured photos
can be viewed in enlarged versions by clicking on them in the gallery. The camera
icon activates the photo mode, where the user can take photos of the U-book. With
regard to Fitts’ Law, the floating action button is quickly accessible because its size is
appropriate for touchscreens and it is easy to reach because there is enough distance
from other interaction elements (see 2.2.1). If the user selects Familiensituation, he
will get to the view from Figure 10a. In addition to information about the patient, i.e.

45

(a) (b)

Figure 10: (a) If the patient has siblings, the user can add, remove, or edit this infor-
mation on this page.
(b) Each interview created is listed here.

the infant, information about the family is also important. For this, on the one hand,
reference persons such as parents or grandparents can be entered. For this purpose,
there are two plus icons in the expandable floating action button. Each icon has a
signifier to clarify which plus is for custodians or siblings (see 2.2.3). After selecting
the plus icon, a page for entering the information appears. Finally, each custodian
is represented by a card. If changes need to be made to the people, the card can be
clicked. Afterwards, the user is taken to the same page when creating the person, with
the difference that the data of the selected person is pre-filled in the corresponding
fields. The pencil icon activates the editing mode and behaves in the same way as the
gallery in the examination booklet.
As for the already explained cards, information corresponding to the category can be
entered in the remaining cards.

4.3.2 Interview Tab

As indicated in Figure 4, the user can switch the tab on the patient document view
between overview and interview. In Figure 10b the interview tab is shown. Just like
the other pages, there is an expandable floating action button. The pen activates the
edit mode. The plus opens a dialog and starts a new interview. The info icon opens
a bottom sheet, i.e., a window extending over the whole screen width and about half
the screen height. Here, information on how to conduct the interview is described.
For each interview that exists for this patient, there is a card. A Card indicates the
status by an icon in the upper left corner and text in the last line in the lower left
corner. In Figure 10b, there is an interview in progress on the left and an interview
completed on the right. An Export icon button is at the right corner of the card. This

46

exports the corresponding interview and the patient data from the overview. When the
export starts, the icon is replaced by a progress indicator until the action is completed.
Afterwards, a snackbar is displayed on the bottom, indicating either the success or
failure of the action. The export is only available if the admin has already created
a server on this device. Exporting the interview data creates a CSV file containing
all information about the patient and the interview. A timestamp shows the creation
date in the interview card’s first line. Below that, there is quick access to the clinical
assessment and diagnosis. At the right end of the last line, the text button Mehr opens
the same dialog box as when creating a new interview, but in edit mode. The meta
information entered when creating the interview can be edited and saved.
When a new interview is created via the plus icon, meta information can be entered
within a dialog. The interviewer’s name is mandatory and pre-filled with the name of
the logged-in user. All other information is optional, so an interview can be started
without user input and only with a click on Start.

4.4 Interview and assign Disorder

Once a new interview is created, the user is in the InterviewManger (see Figure 4).
In Figure 11a, there is already an advanced section Nichtorganische Insomnie. The
section’s title and additional patient information can be seen in the header. Further-
more, if the dialog for creating the interview is open, the custodians are also displayed
here. On the far right, is it possible to exit the interview anytime and return to the
interview tab. The page content shows the individual questions (see 3.5.2, 3.5.3). For
example, yes-no questions are shown, which additionally allows a description. Fig-
ure 11a shows how the interview content behaves when a static jump rule (see 3.4.3)
is satisfied. In this case, questions 1.1 and 1.2 are marked as criterion question present
and past, respectively. The user can only tell that they are criterion questions by the
bold numbering and letter. The markings for criterion question A and V are only
used for internal calculations. Since at least one (or in this case all) criterion question
present is fulfilled, i.e. answered with yes, a static jump rule is applied and the criterion
questions past are greyed out. The user thus recognizes that question 1.2 is no longer
relevant and continues with question 1.3.
The user continues the interview and finally reaches the end of the section (see Fig-
ure 11b). In this case, all criterion questions have been answered with yes and in
addition, suffering and impairment have been fulfilled and explicitly assigned by the
user (see the second last question in Figure 11b). The question for assigning the dis-
order is then displayed. Initially, all three buttons are white and unchecked. The user
then selects whether the disruption should be assigned, unassigned, or marked as not
sure. This functionality was created because users must be explicitly asked to decide
on assigning the disorder. This originates from the fact that the application is not (yet)
a medical product, and therefore it is not allowed to make an independent diagnosis.
The user is then redirected to the next section.
Apart from this situation, the user may want to change the section independently. The
floating action button with the arrow pointing to the right is used for this purpose.

47

(a) (b)

Figure 11: (a) An interview section where a jump rule is applied to hide an unnecessary
question.
(b) If the disorder is fulfilled, the user must decide whether to assign the
disorder.

If this is clicked, the next section opens. The concept of perceptual mappings (see
2.2.4) helps here. The user clicks the button (action) and perceives the section change
(effect).

4.4.1 Chapter Overview and Notepad

Figure 4 shows that the InterviewManager has two drawers; one is the ChapterOverview
and the other is the Notepad. Both drawers can be opened and closed at any time dur-
ing the interview. The ChapterOverview can be controlled via the left icon button.
An overview of the sections opens from the left (see Figure 12a). These are divided
into chapters and subchapters for a better overview. Furthermore, all chapters and
subchapters can be expanded and collapsed by the corresponding plus or minus. If a
section is selected, the application navigates to the corresponding section (see push-
NextSection(...) in 3.5.1). The icon button on the bottom bat at the right opens the
Notepad. Experiences with the paper-based version of the interview show that many
notes are written on the sheets during the interview. Because there is no collected place
for all notes, chaos quickly occurs. The implemented Notepad is supposed to help by
offering to attach a note to a question or section. Figure 12b shows a dropdown to
select whether it is a general note or a note linked to a specific question. Below is an
input field to fill the note with the actual content. Once the data is filled in, clicking on
the top right saves the note. In the lower half of the Notepad all notes of the section
are listed. The title will then contain either the corresponding question number or
Allgemein if it is a general note of the section. The edit mode is activated here by
selecting a note. It will be highlighted with the primary colour and a trash can icon
will appear in the upper right corner. In addition, the input fields are filled with the

48

(a) (b)

Figure 12: (a) The chapter overview helps with fast navigation.
(b) Notes can be written down to a specific question or the current section.

data of the selected note. The user can edit the content of the selected note. Changes
are then applied with Save. Selecting the same note again deactivates the edit mode.
Compared to ChapterOverview, the open Notepad does not obscure the rest of the
interview. This is intentional and is to allow for writing down the note and reading
the interview content at the same time. Also, the drawer can be resized by dragging
the left border according to the desired size.
In the middle of the bottom bar is a stopwatch, which automatically records the time
of the interview. The user can stop and restart the time by clicking the stopwatch
icon.

4.4.2 Clinical Assessment

After the interview, the interviewer must determine the clinical diagnosis. As soon
as the user gets to the clinical evaluation and assessment page, the stopwatch stops
automatically. First, the user sees the list of (processed) disorders (see Figure 13a). It
shows the disorders and their markings, i.e. whether the disorder has been assigned,
unassigned (Nicht erfüllt) or marked as unsafe. The horizontally scrollable table also
displays other information. The third column contains the severity of the disorder
calculated by the application or a dialog for determining the severity. Next to it,
dialogs open in the two other columns containing information about the differential
and exclusion diagnoses. This information is different for each section.
Below the disorder overview is the diagnosis input mask (see Figure 13b). The clinical
diagnosis is divided into primary, additional and previous diagnoses. Only name and
severity are needed for the primary diagnosis. There are predefined names of possible
disorders. However, the option Andere allows the user to input an individual name
into a new text input field. A number from 0 to 8 has to be selected for the severity
level. Here the concept of mapping has been applied. The numbers are arranged from

49

(a) (b)

Figure 13: (a) A list of disorders helps the user to make a clinical diagnosis.
(b) This excerpt shows the input mask to enter the clinical diagnosis.

top to bottom, from 8 to 0. Thus, 8, since it is at the top, is mapped with a lot and 0,
since it is at the bottom, is mapped with a little (see 2.2.4). A plus icon is next to the
subtitle of the tables for the additional diagnoses as well as previous diagnoses. With
a click, another line is added accordingly. Next to each entry, the entry can be deleted
by clicking on the trash can icon. If it is the last entry, only the content is deleted, not
the complete entry. For the earlier diagnoses, in addition to the name and severity,
there are two more entries for the age at the start and end time.
Once the user completes with the clinical diagnosis and assessment, the user can click
on the Interview beenden text button in the upper right corner. Consequently, the
interview is closed and its status changes from in progress to done. Back on the
interview list in the interview tab (see 4.3.2), the icon changes to a checkmark and the
user has successfully completed the interview.

5 Comparison

The following pages describe the setup of the user study and its evaluation. First, it is
described how the user study is built, followed by a description of its execution. Then,
the results are divided into two parts and analyzed. The results of the first part refer
to the System Usability Scale questionnaires. The second part compares the actual
value of the app-based interviews and the target values of the comparison interview.

5.1 Setup

The user study tests the two different systems, the paper-based interview guideline
and the newly developed application. Fourteen testers participated in the user study.
They are students from postgraduate training to become a psychotherapist and most

50

of them were already trained in the paper-based version of a DIPS for older children.
For the user study, an interview between the interviewer and patient was simulated and
videotaped. A female psychologist simulated the mother of the five-year-old patient
suffering from sleeping problems and anxiety. The symptoms were scripted before the
interview, adapted from an actual interview. The interviewer did not know the content
beforehand.
The user study follows the Between-Groups design. This means that each tester tests
both systems. On the one hand, this requires fewer testers and, on the other hand,
reduces individual differences between the testers. However, a certain learning effect
can occur between the execution of the test using different systems. This effect can
be counteracted by ensuring that the order of the used system differs from tester to
tester. [1]
After using one system, testers complete the System Usability Scale (SUS) question-
naire. With the help of this questionnaire, a UI can easily be evaluated in terms of
usability. The questions are standardized and can be answered using a Likert scale.
The Likert scale consists of five answer options, with a value of five corresponding to
I completely agree and a value of 1 corresponding to I completely disagree. A user
interface can score between 0 and 100 points in the evaluation. Values of 85 and more
describe excellent usability. In contrast, systems with values of less than 70 can only
be used poorly. The SUS questionnaire is a recognized tool for quick and rough assess-
ment of systems. [7]
In addition, the testers using the mobile application exported their interview data.
These exported CSV files are compared with the target values of the test interview.

5.2 Execution

First, testers receive an introduction to the use of DIPS in general. Then they are
introduced to the paper-based interview guideline and the app. After the theoretical
part, the testers are divided into two groups since all testers watch the recorded test
interview together. The first group uses the paper-based interview guideline and the
second group uses the application on iPads while watching the test interview the first
time. Subsequently, the testers of both groups completed the SUS questionnaire. Af-
terwards, the test interview is watched again, but the groups exchanged their systems.
This means that now the first group uses the app on the iPads and the second group
uses the paper-based interview guideline.

5.3 Evaluation System Usability Scale

Since the recorded test interview has a fixed length, there is no comparison between
the systems in terms of their duration of use. Instead, the focus of this comparison is
on the degree of usability. Figure 14 presents the results of the SUS questionnaire by
calculating the average values per question of all testers per system. On the left are
the results from the app and on the right are those from the paper-based interview
guideline. Bar chart values range from 1 to 5, with 1 being the best value for even

51

(grey) questions and 5 being the best value for odd (blue) questions.
Testers would like to use the paper-based interview guideline less often than the app.
With a value of 4.3 out of 5, the app is 0.9 points higher in reuse. The testers’
comments reflect this. Among other things, the paper-based interview guideline was
perceived as more confusing and harder to understand. This is also demonstrated
in the next question about how (unnecessarily) complex the system is perceived to
be. The app scored very well at 1.4, whereas the paper-based system was rated more
complicated on average at 2.5. The next question asks whether the system was easy to
use. The app has an almost full score of 4.1. Nevertheless, the paper-based interview
guideline also scored well at 3.4. Still, there is a clear trend toward the app. The fourth
question is about 2 for both systems and shows that both systems are usable without
help. Next, the 5th question addresses the integration and coherence of the system’s
functions. Testers perceived the app’s various functions as seamlessly connected and
working together effectively (4.2). For the paper-based system, the value is exactly
3. Consequently, the integration of the functions appears less well. Next, design,
terminology, and functionality are rated for inconsistency. Here, the app is consistent
at 1.5. The other system is also consistent overall at 2.2. Question 7 assesses the
learnability of the system, showing that learning the app (4.3) is easier than learning
the paper-based interview guideline (3.3). Using the app (1.6) was more effortless than
using the paper-based system (2.5). For the last two questions, the scores for both
systems are nearly the same. Question 9 asks how confident users feel about using the
system. In both systems (app 3.2, paper-based system 3.4), the feeling of security is
in the middle range. This score is probably due to the inherent complexity of DIPS.
The 10th question assesses how much effort needs to be invested in understanding and
using the system effectively and fully. The ratings are similar for both the app (2.3)
and the paper-based interview guideline (2.5). The amount of learning required to use
the system effectively seems low for both systems.
In addition to comparing the values for each question, an overall score can be calculated
for the respective system. For this, a user’s input is normalized by subtracting the
input value from 5 for even questions and decreasing the input value by one for odd
questions. These values are summed, resulting in the SUS score. The SUS score of a
system is the average of all SUS scores of that system. For the app, this results in an
average SUS score of 78.3. A score of 85 to 100 represents excellent usability and a
score below 70 represents poor usability [7]. So the testers perceive the app as good
in terms of usability, but it has individual areas for improvement. The paper-based
interview guideline achieved an average SUS score of 61.4. Thus, the threshold value
of 70 is not reached. Consequently, the perceived usability is significantly worse.

5.4 Evaluation of Actual and Target Values

There is a completed paper-based interview guideline of the recorded test interview,
the entries of which are regarded as target values. The exported interview data of the
application correspond to the actual values. Certain conclusions can be drawn based

52

Figure 14: Results of the System Usability Scale questionnaire. On the left the results
of the app and on the right, the results of the paper-based interview guide-
line are shown. For even (grey) questions is 1 the best value and 5 is the
best value for odd (blue) questions.

on the exported data.
The exported answers almost match the target values at the section level. Some small
differences exist between testers. For example, only the corresponding criterion ques-
tions A and V are answered regarding the skipped sections. As a result, the section
is left and the next one is opened. This means that this kind of jump rule works.
Furthermore, it can be seen that the other static jump rules also work correctly. In
addition to the static one, the dynamic jump rules, e.g. to hide follow-up questions,
can be validated properly.

When evaluating the diagnoses of the interviews, everything seems right at first glance.
After all, the app users had all made the correct diagnosis compared to the comparison
interview. However, the exported data show no disorders (see 4.4.2 and Figure 13a).
The data suggest that the fulfilled sections still needed to be completed. There is no
justified reason for this. It is reasonable to assume that the questions about assigning
the disorder and the question about suffering and impairment were not seen. Conse-
quently, the system cannot decide whether the disorder is fulfilled.
In order to evaluate whether the system displays the questions at all, the answers of
the two sections were entered manually into the application for each exported data
set. It was found that both questions were displayed. When these two questions were
subsequently answered appropriately, the list of disorders at the end of the interview
also indicated the correct disorders.

53

6 Conclusion

The primary objective of this research was to investigate the feasibility of replacing
traditional paper-based diagnostic interviews with an Android/iOS application. The
study aimed to assess whether an app can effectively replicate the functionalities of
paper-based interviews while offering additional advantages in accessibility, efficiency,
and accuracy. By comparing the app’s performance with the conventional paper-based
interview method, this thesis evaluated its potential to simplify the interview process,
improve data collection and analysis (by exporting to a statistics-friendly format),
and enhance the overall quality of diagnostic assessments. Through the evaluation
and feedback of the user study, the thesis aimed to provide valuable insights into the
viability and usability of app-based diagnostic interviews in the context of therapeutic
practices.
The key findings of this research demonstrate that the mobile application to conduct
structured interviews shows promising potential as a replacement for the traditional
paper-based method. The testers reported that the app was useful in facilitating the
interview process. The system usability scale (SUS) score further supported these
observations, with the app receiving a higher score of 78.3 compared to the paper-
based interview guideline’s score of 61.4.
Although the system did not display the two entries in the list of disorders in the user
study, it was still possible to make the same diagnosis as the comparison interview. In
addition, a review of the exported data revealed that the entries in the list of disorders
would be present if the two initially hidden questions were completed. Overall, the
clinical assessment conducted through the app yielded comparable results.
It is worth noting that some users expressed uncertainty while conducting the interview,
possibly due to the unfamiliarity and perceived difficulty of DIPS. However, when the
app was used, the interview was perceived as less difficult and a slight reduction in
uncertainty was observed.
These findings highlight the viability of replacing the paper-based interview guideline
with an accurate app.

6.1 Future Work

The most crucial area that needs to be adjusted is the visibility of the initially invisible
questions that appear under certain conditions. The user study clearly shows that the
questions were not seen, so the system assigned no disorders. An appropriate solution
is needed so users are aware of these questions. There are several possible methods
to improve this: On the one hand, a snackbar could be used to inform the user that
something has happened further down the page. On the other hand, it is also possible
to scroll automatically to the new question. However, this would be highly immersive
and, therefore, might negatively impact usability. Perhaps a combination is a better
solution, in which an icon button acts as a hint and, with a click, then scrolls to the
desired content. Additionally, it would be possible to shift the decision from being
questions to dialog windows. These will catch the user’s attention. Furthermore, it

54

can be set that these dialogs cannot be clicked away, but a user action is required. This
can ensure that the user makes a decision. These ideas need to be further evaluated
by users of the target group.
As introduced in 3.1, the diagnostic criteria are based on the DSM-5. However, there
are two more important classification manuals: ICD-10 and DC:0-5. It is helpful if
the diagnoses can be sorted according to the different classification manuals. Some
criterion questions vary in content between the manuals or are not criteria at all.
The system can also be further developed regarding of diagnosis and its severity. It is
possible to automatically determine the severity of a few disorders based on answers
to certain questions. It is worth validating whether the remaining sections’ severity
can also be determined automatically, perhaps by intentionally involving severity ques-
tions.
In addition to DIPS for infants (Kleinkind-DIPS), there are also the Kinder-DIPS
(6-18 years), Mini-DIPS (from 16 years) and DIPS (from 16 years) [14]. Since main-
tainability, scalability, and reusability were all considered during the whole develop-
ment process, the app may be expanded with these additional DIPS without damaging
any already-existing components and instead probably benefit from these components.
This is because the other DIPS differ from the Kleinkind-DIPS mainly in terms of
content. There are many ways to integrate another DIPS into the app. It is only
necessary to place another instance in a suitable place, making it possible to choose
between the DIPS. For example, this can be already on the home page before the user
logs in. The user would first decide which system he wants to log into through a selec-
tion menu. After logging in, he can then always use only the corresponding DIPS. The
advantage is that the content would be separated according to the DIPS. On the other
hand, switching between the systems would always mean logging out and logging in
again. Additionally, there would be one patient record list per DIPS. Option two would
expand the current system to offer a choice of available DIPS when the interview is
created. The user then selects the desired DIPS. Thus, there would be only one list of
patient records. Then it would have to be evaluated whether marking the patient files
would be necessary so that it would be recognized faster to which DIPS the respective
entry belongs. Switching between the possible DIPS would be easier, as there would
be no need to log out and log in.
Many other possible ideas can be implemented. In any case, the users of the target
group should be sufficiently involved to meet their needs in the best possible way.

55

References

[1] Bernard C Beins. Within-groups design. The Encyclopedia of Cross-Cultural
Psychology, 3:1355–1356, 2013. doi: https://doi.org/10.1002/9781118339893.
wbeccp570.

[2] Chunyue Bi. Research and application of sqlite embedded database technology.
WSEAS Trans. Comput, 8(1):83–92, 2009. URL http://wseas.us/e-library/

transactions/computers/2009/31-846.pdf.

[3] Katrin Bruchmüller, Jürgen Margraf, Andrea Suppiger, and Silvia Schneider.
Popular or unpopular? therapists’ use of structured interviews and their es-
timation of patient acceptance. Behavior therapy, 42(4):634–643, 2011. doi:
https://doi.org/10.1016/j.beth.2011.02.003.

[4] S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J.D. Bolter, and M. Gandy. Wizard of
oz support throughout an iterative design process. IEEE Pervasive Computing, 4
(4):18–26, 2005. doi: https://doi.org/10.1109/MPRV.2005.93.

[5] John D. Gould and Clayton Lewis. Designing for usability: Key principles and
what designers think. Commun. ACM, 28(3):300–311, mar 1985. ISSN 0001-0782.
doi: https://doi.org/10.1145/3166.3170.

[6] Lisa Graham. Gestalt theory in interactive media design. Journal of Humanities
& Social Sciences, 2(1), 2008. doi: https://doi.org/10.33140/JHSS.

[7] Rebecca A Grier, Aaron Bangor, Philip Kortum, and S Camille Peres. The
system usability scale: Beyond standard usability testing. In Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, volume 57, pages
187–191. SAGE Publications Sage CA: Los Angeles, CA, 2013. doi: https:
//doi.org/10.1177/1541931213571042.

[8] ROGER R HALL. Prototyping for usability of new technology. International
Journal of Human-Computer Studies, 55(4):485–501, 2001. ISSN 1071-5819. doi:
https://doi.org/10.1006/ijhc.2001.0478.

[9] Andreas Holzinger and Stephen Brown. Low cost prototyping: part 2, or how
to apply the thinking-aloud method efficiently. In Proceedings of the 22nd
British HCI Group Annual Conference on HCI 2008: People and Comput-
ers XXII: Culture, Creativity, Interaction - Volume 2, BCS HCI 2008, Liv-
erpool, United Kingdom, 1-5 September 2008, pages 217–218, 01 2008. doi:
http://dx.doi.org/10.1145/1531826.1531897.

[10] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain.
A survey and comparison of relational and non-relational database. International
Journal of Engineering Research & Technology, 1(6):1–5, 2012.

56

http://wseas.us/e-library/transactions/computers/2009/31-846.pdf
http://wseas.us/e-library/transactions/computers/2009/31-846.pdf

[11] Thomas E Joiner Jr, Rheeda L Walker, Jeremy W Pettit, Marisol Perez, and
Kelly C Cukrowicz. Evidence-based assessment of depression in adults. Psycho-
logical assessment, 17(3):267, 2005. doi: https://psycnet.apa.org/doi/10.1037/
1040-3590.17.3.267.

[12] Janin Koch and Antti Oulasvirta. Computational layout perception using gestalt
laws. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, pages 1423–1429, 2016. doi: https://doi.org/10.
2214/AJR.07.3268.

[13] I. Scott MacKenzie. Fitts’ law as a research and design tool in human-computer
interaction. Human–Computer Interaction, 7(1):91–139, 1992. doi: https://doi.
org/10.1207/s15327051hci0701 3.

[14] Jürgen Margraf, Jan Christopher Cwik, Verena Pflug, and Silvia Schneider. Struk-
turierte klinische interviews zur erfassung psychischer störungen über die lebenss-
panne. Zeitschrift für Klinische Psychologie und Psychotherapie, 2017. doi:
https://doi.org/10.1026/1616-3443/a000430.

[15] Tina Matuschek, Sonia Jaeger, Stephanie Stadelmann, Katrin Dölling, Steffi Weis,
Kai Von Klitzing, Madlen Grunewald, Andreas Hiemisch, and Mirko Döhnert. The
acceptance of the k-sads-pl–potential predictors for the overall satisfaction of par-
ents and interviewers. International Journal of Methods in Psychiatric Research,
24(3):226–234, 2015. doi: https://doi.org/10.1002/mpr.1472.

[16] Murielle Neuschwander, Tina In-Albon, Andrea H Meyer, and Silvia Schneider.
Acceptance of a structured diagnostic interview in children, parents, and inter-
viewers. International journal of methods in psychiatric research, 26(3):e1573,
2017. doi: https://doi.org/10.1002/mpr.1573.

[17] Donald A. Norman. The design of everyday things. Basic Books, [New York],
2002. ISBN 0465067107 9780465067107.

[18] Jean M Twenge and Thomas E Joiner. Mental distress among us adults during
the covid-19 pandemic. Journal of Clinical Psychology, 76(12):2170–2182, 2020.
doi: https://doi.org/10.1002/jclp.23064.

[19] Robert A. Virzi, Jeffrey L. Sokolov, and Demetrios Karis. Usability problem
identification using both low- and high-fidelity prototypes. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’96, page
236–243, New York, NY, USA, 1996. Association for Computing Machinery. ISBN
0897917774. doi: https://doi.org/10.1145/238386.238516.

[20] Robin Williams. The non-designer’s design book: Design and typographic princi-
ples for the visual novice. Pearson Education, 2015. ISBN 9780321193858.

57

	Introduction
	Related Work
	Paper-based Interview Guideline
	DGPPN
	Online Survey
	testbox

	Contribution
	Outline

	Tools and Principles
	Tools
	Figma
	Flutter
	Visual Studio Code
	Device Simulators
	SQLite

	User Interface and User Experience Design Principles
	Fitts' Law
	Gestalt Laws
	Affordances and Signifiers
	Mappings
	Constraints
	Feedback
	Knowledge in the World and in the Head
	C.R.A.P.

	User-centred Design
	Iterations

	Software Construction
	Structured Interviews
	Requirements
	Project Structure
	Data Model
	SQLHelper
	Data Model: Question
	Data Model: Jump Rule
	Data Model: Answer
	Data Model: Disorder and Diagnosis

	Major Software Components
	InterviewManager
	InterviewPage
	QuestionManager
	DiagnosticToolHelper

	App Solution
	Home
	Registration and Login

	Document Cabinet and Profile
	Settings and Document Management

	Patient Document
	Overview Tab
	Interview Tab

	Interview and assign Disorder
	Chapter Overview and Notepad
	Clinical Assessment

	Comparison
	Setup
	Execution
	Evaluation System Usability Scale
	Evaluation of Actual and Target Values

	Conclusion
	Future Work

	References

