

Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Processes

Part A: Regular Languages

b-it Bonn; March 12-16, 2018

Erika Ábrahám Theory of Hybrid Systems Group RWTH Aachen University

Thanks to Thomas Noll for providing slides

https://ths.rwth-aachen.de/teaching/ws18/b-it-bridging-course/

Organisation

Schedule:

- lecture 9:00-10:30, 11:00-12:30 (Mon-Fri)

10:00-11:30, 11:45-13:15?

- exercises 14:00-14:45, 15:15-16:00 (Mon-Fri)

14:00-15:30?

Please ask questions!

Overview of Week 3

- 1. Regular Languages
 - Formal Languages
 - Finite Automata
 - Regular Expressions
 - Minimisation of Finite Automata
- 2. Context-Free Languages
 - Context-Free Grammars and Languages
 - Context-Free vs. Regular Languages
 - The Word Problem for Context-Free Languages
 - The Emptiness Problem for Context-Free Languages
 - Closure Properties of Context-Free Languages

Literature

J.E. Hopcroft, R. Motwani, J.D. Ullmann: *Introduction to Automata Theory, Languages, and Computation*, 2nd ed., Addison-Wesley, 2001

A. Asteroth, C. Baier: *Theoretische Informatik*, Pearson Studium, 2002 [in German]

http://www.jflap.org/

(software for experimenting with formal languages and automata)

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata

Operations on Languages and Automata

Nondeterministic Finite Automata

More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

Words and Languages

Computer systems transform data

Data encoded as (binary) words

⇒ Data sets = sets of words = formal languages, data transformations = functions on words

Words and Languages

Computer systems transform data

Data encoded as (binary) words

⇒ Data sets = sets of words = formal languages, data transformations = functions on words

Example A.1

 $Java = \{all \ valid \ Java \ programs\}$

Compiler : Java \rightarrow Bytecode

Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols ("letters").

```
\Sigma, \Gamma, \dots denote alphabets
```

a, b, ... denote letters

Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols ("letters").

```
\Sigma, \Gamma, \dots denote alphabets
```

a, b, ... denote letters

Example A.3

1. Boolean alphabet $\mathbb{B} := \{0, 1\}$

Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols ("letters").

```
\Sigma, \Gamma, \dots denote alphabets
```

a, b, ... denote letters

- 1. Boolean alphabet $\mathbb{B} := \{0, 1\}$
- 2. Latin alphabet $\Sigma_{\text{latin}} := \{a, b, c, \dots, z\}$

Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols ("letters").

```
\Sigma, \Gamma, \dots denote alphabets
```

a, b, ... denote letters

- 1. Boolean alphabet $\mathbb{B} := \{0, 1\}$
- 2. Latin alphabet $\Sigma_{\text{latin}} := \{a, b, c, \dots, z\}$
- 3. Keyboard alphabet Σ_{key}

Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols ("letters").

```
\Sigma, \Gamma, \dots denote alphabets
```

a, b, ... denote letters

- 1. Boolean alphabet $\mathbb{B} := \{0, 1\}$
- 2. Latin alphabet $\Sigma_{\text{latin}} := \{a, b, c, \dots, z\}$
- 3. Keyboard alphabet Σ_{key}
- 4. Morse alphabet $\Sigma_{\text{morse}} := \{\cdot, -, \sqcup\}$

Words

Definition A.4

A word is a finite sequence of letters from a given alphabet Σ .

 Σ^* is the set of all words over Σ .

Words

Definition A.4

A word is a finite sequence of letters from a given alphabet Σ .

 Σ^* is the set of all words over Σ .

|w| denotes the **length** of a word $w \in \Sigma^*$, i.e., $|a_1 \dots a_n| := n$.

The **empty word** is denoted by ε , i.e., $|\varepsilon| = 0$.

Words

Definition A.4

A word is a finite sequence of letters from a given alphabet Σ .

 Σ^* is the set of all words over Σ .

|w| denotes the **length** of a word $w \in \Sigma^*$, i.e., $|a_1 \dots a_n| := n$.

The **empty word** is denoted by ε , i.e., $|\varepsilon| = 0$.

The **concatenation** of two words $v = a_1 \dots a_m$ $(m \in \mathbb{N})$ and $w = b_1 \dots b_n$ $(n \in \mathbb{N})$ is the word

$$v \cdot w := a_1 \dots a_m b_1 \dots b_n$$

(often written as vw).

Thus: $\mathbf{w} \cdot \mathbf{\varepsilon} = \mathbf{\varepsilon} \cdot \mathbf{w} = \mathbf{w}$.

Words

Definition A.4

A word is a finite sequence of letters from a given alphabet Σ .

 Σ^* is the set of all words over Σ .

|w| denotes the **length** of a word $w \in \Sigma^*$, i.e., $|a_1 \dots a_n| := n$.

The **empty word** is denoted by ε , i.e., $|\varepsilon| = 0$.

The **concatenation** of two words $v = a_1 \dots a_m$ $(m \in \mathbb{N})$ and $w = b_1 \dots b_n$ $(n \in \mathbb{N})$ is the word

$$v \cdot w := a_1 \dots a_m b_1 \dots b_n$$

(often written as vw).

Thus: $\mathbf{w} \cdot \mathbf{\varepsilon} = \mathbf{\varepsilon} \cdot \mathbf{w} = \mathbf{w}$.

A **prefix/suffix** v of a word w is an initial/trailing part of w, i.e., w = vv'/w = v'v for some $v' \in \Sigma^*$.

Words

Definition A.4

A word is a finite sequence of letters from a given alphabet Σ .

 Σ^* is the set of all words over Σ .

|w| denotes the **length** of a word $w \in \Sigma^*$, i.e., $|a_1 \dots a_n| := n$.

The **empty word** is denoted by ε , i.e., $|\varepsilon| = 0$.

The **concatenation** of two words $v = a_1 \dots a_m$ $(m \in \mathbb{N})$ and $w = b_1 \dots b_n$ $(n \in \mathbb{N})$ is the word

$$v \cdot w := a_1 \dots a_m b_1 \dots b_n$$

(often written as vw).

Thus: $\mathbf{w} \cdot \mathbf{\varepsilon} = \mathbf{\varepsilon} \cdot \mathbf{w} = \mathbf{w}$.

A prefix/suffix v of a word w is an initial/trailing part of w, i.e., w = vv'/w = v'v for some $v' \in \Sigma^*$.

If $w = a_1 ... a_n$ then $w^R := a_n ... a_1$.

Formal Languages I

Definition A.5

A set of words $L \subseteq \Sigma^*$ is called a **(formal) language** over Σ .

Formal Languages I

Definition A.5

A set of words $L \subseteq \Sigma^*$ is called a **(formal) language** over Σ .

Example A.6

1. over $\mathbb{B} = \{0, 1\}$: set of all bit strings containing 1101

Formal Languages I

Definition A.5

A set of words $L \subseteq \Sigma^*$ is called a **(formal) language** over Σ .

- 1. over $\mathbb{B} = \{0, 1\}$: set of all bit strings containing 1101
- 2. over $\Sigma = \{I, V, X, L, C, D, M\}$: set of all valid roman numbers

Formal Languages I

Definition A.5

A set of words $L \subseteq \Sigma^*$ is called a **(formal) language** over Σ .

- 1. over $\mathbb{B} = \{0, 1\}$: set of all bit strings containing 1101
- 2. over $\Sigma = \{I, V, X, L, C, D, M\}$: set of all valid roman numbers
- 3. over Σ_{kev} : set of all valid Java programs

Formal Languages II

Seen:

Basic notions: alphabets, words

Formal languages as sets of words

Formal Languages II

Seen:

Basic notions: alphabets, words

Formal languages as sets of words

Open:

Description of computations on words?

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata

Operations on Languages and Automata Nondeterministic Finite Automata More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

Example: Pattern Matching

Example A.7 (Pattern 1101)

- 1. Read Boolean string bit-by-bit
- 2. Test whether it contains 1101
- 3. Idea: remember which (initial) part of 1101 has been recognised
- 4. Five prefixes: ε , 1, 11, 110, 1101
- 5. Diagram: on the board

Example: Pattern Matching

Example A.7 (Pattern 1101)

- 1. Read Boolean string bit-by-bit
- 2. Test whether it contains 1101
- 3. Idea: remember which (initial) part of 1101 has been recognised
- 4. Five prefixes: ε , 1, 11, 110, 1101
- 5. Diagram: on the board

What we used:

finitely many (storage) states
an initial state
for every current state and every input symbol: a new state
a successful state

Deterministic Finite Automata I

Definition A.8

A deterministic finite automaton (DFA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$

where

Q is a finite set of states

Σ denotes the **input alphabet**

 $\delta: Q \times \Sigma \to Q$ is the transition function

 $q_0 \in Q$ is the **initial state**

 $F \subseteq Q$ is the set of **final** (or: **accepting**) **states**

Deterministic Finite Automata II

Example A.9

Pattern matching (Example A.7):

$$Q = \{q_0, \ldots, q_4\}$$

$$\Sigma=\mathbb{B}=\{0,1\}$$

 $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ on the board

$$F = \{q_4\}$$

Deterministic Finite Automata II

Example A.9

Pattern matching (Example A.7):

$$Q = \{q_0, \ldots, q_4\}$$

$$\Sigma = \mathbb{B} = \{0, 1\}$$

 $\delta: Q \times \Sigma \to Q$ on the board

$$F = \{q_4\}$$

Graphical Representation of DFA:

states \Longrightarrow nodes

$$\delta(q, a) = q' \implies q \stackrel{a}{\longrightarrow} q'$$

initial state: incoming edge without source state

final state(s): double circle

Acceptance by DFA I

Definition A.10

Let $\langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. The **extension** of $\delta : Q \times \Sigma \to Q$,

$$\delta^*: Q \times \Sigma^* \to Q$$
,

is defined by

 $\delta^*(q, w) :=$ state after reading w starting from q.

Formally:

$$\delta^*(q, w) := \begin{cases} q & \text{if } w = \varepsilon \\ \delta^*(\delta(q, a), v) & \text{if } w = av \end{cases}$$

Thus: if $w=a_1\ldots a_n$ and $q\stackrel{a_1}{\longrightarrow} q_1\stackrel{a_2}{\longrightarrow}\ldots \stackrel{a_n}{\longrightarrow} q_n$, then $\delta^*(q,w)=q_n$

Acceptance by DFA I

Definition A.10

Let $\langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. The **extension** of $\delta : Q \times \Sigma \to Q$,

$$\delta^*: Q \times \Sigma^* \to Q$$
,

is defined by

 $\delta^*(q, w) :=$ state after reading w starting from q.

Formally:

$$\delta^*(q, w) := \begin{cases} q & \text{if } w = \varepsilon \\ \delta^*(\delta(q, a), v) & \text{if } w = av \end{cases}$$

Thus: if $w=a_1\ldots a_n$ and $q\stackrel{a_1}{\longrightarrow} q_1\stackrel{a_2}{\longrightarrow}\ldots \stackrel{a_n}{\longrightarrow} q_n$, then $\delta^*(q,w)=q_n$

Example A.11

Pattern matching (Example A.9): on the board

Acceptance by DFA II

Definition A.12

 \mathfrak{A} accepts $w \in \Sigma^*$ if $\delta^*(q_0, w) \in F$.

The language recognised (or: accepted) by $\mathfrak A$ is

$$L(\mathfrak{A}) := \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}.$$

A language $L \subseteq \Sigma^*$ is called **DFA-recognisable** if there exists some DFA $\mathfrak A$ such that $L(\mathfrak A) = L$.

Two DFA $\mathfrak{A}_1, \mathfrak{A}_2$ are called **equivalent** if

$$L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$$

Acceptance by DFA III

Example A.13

1. The set of all bit strings containing 1101 is recognised by the automaton from Example A.9.

Acceptance by DFA III

Example A.13

- 1. The set of all bit strings containing 1101 is recognised by the automaton from Example A.9.
- 2. Two (equivalent) automata recognising the language

```
\{w \in \mathbb{B}^* \mid w \text{ contains 1}\}:
```

on the board

Acceptance by DFA III

Example A.13

- 1. The set of all bit strings containing 1101 is recognised by the automaton from Example A.9.
- 2. Two (equivalent) automata recognising the language

```
\{w \in \mathbb{B}^* \mid w \text{ contains } 1\}:
```

on the board

3. An automaton which recognises

```
\{w \in \{0, \dots, 9\}^* \mid \text{value of } w \text{ divisible by 3}\}
```

Idea: test whether sum of digits is divisible by 3 – one state for each residue class (on the board)

Deterministic Finite Automata

Seen:

Deterministic finite automata as a model of simple sequential computations Recognisability of formal languages by automata

Deterministic Finite Automata

Seen:

Deterministic finite automata as a model of simple sequential computations Recognisability of formal languages by automata

Open:

Composition and transformation of automata?

Which languages are recognisable, which are not (alternative characterisation)?

Language definition \mapsto automaton and vice versa?

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata

Operations on Languages and Automata

Nondeterministic Finite Automata More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let \mathfrak{A}_1 , \mathfrak{A}_2 be two DFA with $L(\mathfrak{A}_1) = L_1$ and $L(\mathfrak{A}_2) = L_2$. Can we construct automata which recognise

$$\overline{L_1}$$
 (:= $\Sigma^* \setminus L_1$), $L_1 \cap L_2$, and $L_1 \cup L_2$?

Language Complement

Theorem A.14

If $L \subseteq \Sigma^*$ is DFA-recognisable, then so is \overline{L} .

Language Complement

Theorem A.14

If $L \subseteq \Sigma^*$ is DFA-recognisable, then so is \overline{L} .

Proof.

Let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA such that $L(\mathfrak{A}) = L$. Then:

$$w \in \overline{L} \iff w \notin L \iff \delta^*(q_0, w) \notin F \iff \delta^*(q_0, w) \in Q \setminus F.$$

Thus, \overline{L} is recognised by the DFA $\langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$.

Language Complement

Theorem A.14

If $L \subseteq \Sigma^*$ is DFA-recognisable, then so is \overline{L} .

Proof.

Let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA such that $L(\mathfrak{A}) = L$. Then:

$$w \in \overline{L} \iff w \notin L \iff \delta^*(q_0, w) \notin F \iff \delta^*(q_0, w) \in Q \setminus F.$$

Thus, \overline{L} is recognised by the DFA $\langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$.

Example A.15

on the board

Language Intersection I

Theorem A.16

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cap L_2$.

Language Intersection I

Theorem A.16

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cap L_2$.

Proof.

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_1 and \mathfrak{A}_2 accept w

Idea: let \mathfrak{A}_1 and \mathfrak{A}_2 run in parallel

use pairs of states $(q_1, q_2) \in Q_1 \times Q_2$

start with both components in initial state

a transition updates both components independently

for acceptance **both** components need to be in a final state

Language Intersection II

Proof (continued).

Formally: let the product automaton

$$\mathfrak{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F_1 \times F_2 \rangle$$

be defined by

$$\delta((q_1,q_2),a):=(\delta_1(q_1,a),\delta_2(q_2,a))$$
 for every $a\in\Sigma$.

Language Intersection II

Proof (continued).

Formally: let the product automaton

$$\mathfrak{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F_1 \times F_2 \rangle$$

be defined by

$$\delta((q_1,q_2),a):=(\delta_1(q_1,a),\delta_2(q_2,a))$$
 for every $a\in\Sigma$.

This definition yields (for every $w \in \Sigma^*$):

$$\delta^*((q_1, q_2), w) = (\delta_1^*(q_1, w), \delta_2^*(q_2, w))$$
 (*)

Language Intersection II

Proof (continued).

Formally: let the product automaton

$$\mathfrak{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F_1 \times F_2 \rangle$$

be defined by

$$\delta((q_1,q_2),a):=(\delta_1(q_1,a),\delta_2(q_2,a))$$
 for every $a\in\Sigma$.

This definition yields (for every $w \in \Sigma^*$):

$$\delta^*((q_1, q_2), w) = (\delta_1^*(q_1, w), \delta_2^*(q_2, w)) \qquad (*)$$

Thus: \mathfrak{A} accepts $w \iff \delta^*((q_0^1, q_0^2), w) \in F_1 \times F_2$

$$\stackrel{(*)}{\iff} (\delta_1^*(q_0^1, w), \delta_2^*(q_0^2, w)) \in F_1 \times F_2$$

$$\iff \delta_1^*(q_0^1, w) \in F_1 \text{ and } \delta_2^*(q_0^2, w) \in F_2$$

 $\iff \mathfrak{A}_1 \text{ accepts } w \text{ and } \mathfrak{A}_2 \text{ accepts } w$

Example A.17

on the board

Language Union

Theorem A.18

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cup L_2$.

Language Union

Theorem A.18

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cup L_2$.

Proof.

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_1 or \mathfrak{A}_2 accepts w.

Language Union

Theorem A.18

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cup L_2$.

Proof.

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_1 or \mathfrak{A}_2 accepts w.

Idea: reuse product construction

Construct \mathfrak{A} as before but choose as final states those pairs $(q_1, q_2) \in Q_1 \times Q_2$ with $q_1 \in F_1$ or $q_2 \in F_2$. Thus the set of final states is given by

$$F:=(F_1\times Q_2)\cup (Q_1\times F_2).$$

Language Concatenation

Definition A.19

The **concatenation** of two languages $L_1, L_2 \subseteq \Sigma^*$ is given by

$$L_1 \cdot L_2 := \{ v \cdot w \in \Sigma^* \mid v \in L_1, w \in L_2 \}.$$

Abbreviations: $w \cdot L := \{w\} \cdot L, L \cdot w := L \cdot \{w\}$

Language Concatenation

Definition A.19

The **concatenation** of two languages $L_1, L_2 \subseteq \Sigma^*$ is given by

$$L_1 \cdot L_2 := \{ v \cdot w \in \Sigma^* \mid v \in L_1, w \in L_2 \}.$$

Abbreviations: $w \cdot L := \{w\} \cdot L, L \cdot w := L \cdot \{w\}$

Example A.20

1. If
$$L_1=\{101,1\}$$
 and $L_2=\{011,1\}$, then
$$L_1\cdot L_2=\{101011,1011,11\}.$$

Language Concatenation

Definition A.19

The **concatenation** of two languages $L_1, L_2 \subseteq \Sigma^*$ is given by

$$L_1 \cdot L_2 := \{ v \cdot w \in \Sigma^* \mid v \in L_1, w \in L_2 \}.$$

Abbreviations: $w \cdot L := \{w\} \cdot L, L \cdot w := L \cdot \{w\}$

Example A.20

- 1. If $L_1 = \{101, 1\}$ and $L_2 = \{011, 1\}$, then $L_1 \cdot L_2 = \{101011, 1011, 11\}.$
- 2. If $L_1 = 00 \cdot \mathbb{B}^*$ and $L_2 = 11 \cdot \mathbb{B}^*$, then $L_1 \cdot L_2 = \{ w \in \mathbb{B}^* \mid w \text{ has prefix 00 and contains 11} \}.$

DFA-Recognisability of Concatenation

Conjecture

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cdot L_2$.

DFA-Recognisability of Concatenation

Conjecture

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cdot L_2$.

Proof (attempt).

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff a prefix of w is recognised by \mathfrak{A}_1 , and if \mathfrak{A}_2 accepts the remaining suffix.

Idea: choose $Q := Q_1 \cup Q_2$ where each $q \in F_1$ is identified with q_0^2

But: on the board

DFA-Recognisability of Concatenation

Conjecture

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognisable, then so is $L_1 \cdot L_2$.

Proof (attempt).

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff a prefix of w is recognised by \mathfrak{A}_1 , and if \mathfrak{A}_2 accepts the remaining suffix.

Idea: choose $Q := Q_1 \cup Q_2$ where each $q \in F_1$ is identified with q_0^2

But: on the board

Conclusion

Required: automata model where the successor state (for a given state and input symbol) is **not unique**

Language Iteration

Definition A.21

The *n*th power of a language $L \subseteq \Sigma^*$ is the *n*-fold concatenation of L with itself $(n \in \mathbb{N})$:

$$L^n := \underbrace{L \cdot \ldots \cdot L} = \{w_1 \ldots w_n \mid \forall i \in \{1, \ldots, n\} : w_i \in L\}.$$

Inductively: $L^0 := \{\varepsilon\}, L^{n+1} := L^n \cdot L$

The **iteration** (or: **Kleene star**) of *L* is

$$L^* := \bigcup_{n \in \mathbb{N}} L^n = \{ w_1 \dots w_n \mid n \in \mathbb{N}, \forall i \in \{1, \dots, n\} : w_i \in L \}.$$

Language Iteration

Definition A.21

The *n*th power of a language $L \subseteq \Sigma^*$ is the *n*-fold concatenation of *L* with itself $(n \in \mathbb{N})$:

$$L^n := \underbrace{L \cdot \ldots \cdot L} = \{w_1 \ldots w_n \mid \forall i \in \{1, \ldots, n\} : w_i \in L\}.$$

Inductively: $L^0 := \{\varepsilon\}, L^{n+1} := L^n \cdot L$

The **iteration** (or: **Kleene star**) of *L* is

$$L^* := \bigcup_{n \in \mathbb{N}} L^n = \{ w_1 \dots w_n \mid n \in \mathbb{N}, \forall i \in \{1, \dots, n\} : w_i \in L \}.$$

Remarks:

```
we always have \varepsilon \in L^* (since L^0 \subseteq L^* and L^0 = \{\varepsilon\})
```

 $w \in L^*$ iff $w = \varepsilon$ or if w can be decomposed into $n \ge 1$ subwords v_1, \ldots, v_n (i.e.,

 $w = v_1 \cdot \ldots \cdot v_n$) such that $v_i \in L$ for every $1 \leq i \leq n$

again we would suspect that the iteration of a DFA-recognisable language is DFA-recognisable, but there is no simple (deterministic) construction

Operations on Languages and Automata

Seen:

Operations on languages:

- complement
- intersection
- union
- concatenation
- iteration

DFA constructions for:

- complement
- intersection
- union

Operations on Languages and Automata

Seen:

Operations on languages:

- complement
- intersection
- union
- concatenation
- iteration

DFA constructions for:

- complement
- intersection
- union

Open:

Automata model for (direct implementation of) concatenation and iteration?

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata

Operations on Languages and Automata

Nondeterministic Finite Automata

More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

Nondeterministic Finite Automata I

Idea:

for a given state and a given input symbol, **several transitions** (or none at all) are possible an input word generally induces **several state sequences** ("runs") the word is accepted if **at least one** accepting run exists

Nondeterministic Finite Automata I

Idea:

for a given state and a given input symbol, **several transitions** (or none at all) are possible an input word generally induces **several state sequences** ("runs") the word is accepted if **at least one** accepting run exists

Advantages:

simplifies representation of languages

– example: $\mathbb{B}^* \cdot 1101 \cdot \mathbb{B}^*$ (on the board)

yields direct constructions for concatenation and iteration of languages more adequate modelling of systems with nondeterministic behaviour

- communication protocols, multi-agent systems, ...

Nondeterministic Finite Automata II

Definition A.22

A nondeterministic finite automaton (NFA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$

where

Q is a finite set of states

 Σ denotes the **input alphabet**

 $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation

 $q_0 \in Q$ is the **initial state**

 $F \subseteq Q$ is the set of **final states**

Nondeterministic Finite Automata II

Definition A.22

A nondeterministic finite automaton (NFA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$

where

Q is a finite set of states

Σ denotes the **input alphabet**

 $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation

 $q_0 \in Q$ is the **initial state**

 $F \subseteq Q$ is the set of **final states**

Remarks:

 $(q, a, q') \in \Delta$ usually written as $q \stackrel{a}{\longrightarrow} q'$ every DFA can be considered as an NFA $((q, a, q') \in \Delta \iff \delta(q, a) = q')$

Acceptance by NFA

Definition A.23

Let $w = a_1 \dots a_n \in \Sigma^*$.

A w-labelled \mathfrak{A} -run from q_1 to q_2 is a sequence

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots p_{n-1} \xrightarrow{a_n} p_n$$

such that $p_0 = q_1$, $p_n = q_2$, and $(p_{i-1}, a_i, p_i) \in \Delta$ for every $1 \le i \le n$ (we also write: $q_1 \xrightarrow{w} q_2$).

 $\mathfrak A$ accepts w if there is a w-labelled $\mathfrak A$ -run from q_0 to some $q \in F$

The language recognised by $\mathfrak A$ is

$$L(\mathfrak{A}) := \{ w \in \Sigma^* \mid \mathfrak{A} \text{ accepts } w \}.$$

A language $L \subseteq \Sigma^*$ is called **NFA-recognisable** if there exists a NFA $\mathfrak A$ such that $L(\mathfrak A) = L$. Two NFA $\mathfrak A_1, \mathfrak A_2$ are called **equivalent** if $L(\mathfrak A_1) = L(\mathfrak A_2)$.

Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)

```
Input: NFA \mathfrak{A}=\langle Q,\Sigma,\Delta,q_0,F\rangle, w\in\Sigma^*
```

Question: $w \in L(\mathfrak{A})$?

Procedure: Computation of the reachability set

$$R_{\mathfrak{A}}(w) := \{ q \in Q \mid q_0 \stackrel{w}{\longrightarrow} q \}$$

Iterative procedure for $w = a_1 \dots a_n$:

- 1. *let* $R_{\mathfrak{A}}(\varepsilon) := \{q_0\}$
- 2. for i := 1, ..., n: let

$$R_{\mathfrak{A}}(a_1 \ldots a_i) := \{ q \in Q \mid \exists p \in R_{\mathfrak{A}}(a_1 \ldots a_{i-1}) \colon p \stackrel{a_i}{\longrightarrow} q \}$$

Output: "yes" if $R_{\mathfrak{A}}(w) \cap F \neq \emptyset$, otherwise "no"

Remark: this algorithm solves the word problem for NFA

Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)

```
Input: NFA \mathfrak{A}=\langle Q,\Sigma,\Delta,q_0,F\rangle, w\in\Sigma^*
```

Question: $w \in L(\mathfrak{A})$?

Procedure: Computation of the reachability set

$$R_{\mathfrak{A}}(w) := \{ q \in Q \mid q_0 \stackrel{w}{\longrightarrow} q \}$$

Iterative procedure for $w = a_1 \dots a_n$:

- 1. *let* $R_{\mathfrak{A}}(\varepsilon) := \{q_0\}$
- 2. for i := 1, ..., n: let

$$R_{\mathfrak{A}}(a_1 \ldots a_i) := \{ q \in Q \mid \exists p \in R_{\mathfrak{A}}(a_1 \ldots a_{i-1}) \colon p \stackrel{a_i}{\longrightarrow} q \}$$

Output: "yes" if $R_{\mathfrak{A}}(w) \cap F \neq \emptyset$, otherwise "no"

Remark: this algorithm solves the word problem for NFA

Example A.25

on the board

NFA-Recognisability of Concatenation

Definition of NFA looks promising, but... (on the board)

NFA-Recognisability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ε as transition label

ε -NFA

Definition A.26

A nondeterministic finite automaton with ε -transitions (ε -NFA) is of the form

 $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ where

Q is a finite set of states

Σ denotes the **input alphabet**

 $\Delta \subseteq Q \times \Sigma_{\varepsilon} \times Q$ is the transition relation where $\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$

 $q_0 \in Q$ is the **initial state**

 $F \subset Q$ is the set of **final states**

Remarks:

every NFA is an ε -NFA

definitions of runs and acceptance: in analogy to NFA

ε -NFA

Definition A.26

A nondeterministic finite automaton with ε -transitions (ε -NFA) is of the form

 $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ where

Q is a finite set of states

Σ denotes the **input alphabet**

 $\Delta \subseteq Q \times \Sigma_{\varepsilon} \times Q$ is the transition relation where $\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$

 $q_0 \in Q$ is the **initial state**

 $F \subset Q$ is the set of **final states**

Remarks:

every NFA is an ε -NFA

definitions of runs and acceptance: in analogy to NFA

Example A.27

on the board

Concatenation and Iteration via ε -NFA

Theorem A.28

If $L_1, L_2 \subseteq \Sigma^*$ are ε -NFA-recognisable, then so is $L_1 \cdot L_2$.

Concatenation and Iteration via ε -NFA

Theorem A.28

If $L_1, L_2 \subseteq \Sigma^*$ are ε -NFA-recognisable, then so is $L_1 \cdot L_2$.

Proof (idea).

on the board

Concatenation and Iteration via ε -NFA

Theorem A.28

If $L_1, L_2 \subseteq \Sigma^*$ are ε -NFA-recognisable, then so is $L_1 \cdot L_2$.

Proof (idea).

on the board

Theorem A.29

If $L \subseteq \Sigma^*$ is ε -NFA-recognisable, then so is L^* .

Proof.

see Theorem A.47

Syntax Diagrams as ε -NFA

Syntax diagrams (without recursive calls) can be interpreted as ε -NFA

Example A.30

decimal numbers (on the board)

Types of Finite Automata

- 1. DFA (Definition A.8)
- 2. NFA (Definition A.22)
- 3. ε -NFA (Definition A.26)

Types of Finite Automata

- 1. DFA (Definition A.8)
- 2. NFA (Definition A.22)
- 3. ε -NFA (Definition A.26)

From the definitions we immediately obtain:

Corollary A.31

- 1. Every DFA-recognisable language is NFA-recognisable.
- 2. Every NFA-recognisable language is ε -NFA-recognisable.

Types of Finite Automata

- 1. DFA (Definition A.8)
- 2. NFA (Definition A.22)
- 3. ε -NFA (Definition A.26)

From the definitions we immediately obtain:

Corollary A.31

- 1. Every DFA-recognisable language is NFA-recognisable.
- 2. Every NFA-recognisable language is ε -NFA-recognisable.

Goal: establish reverse inclusions

From NFA to DFA I

Theorem A.32

Every NFA can be transformed into an equivalent DFA.

From NFA to DFA I

Theorem A.32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states ("powerset construction")

Initial state of DFA := {initial state of NFA}

 $P \stackrel{a}{\longrightarrow} P'$ in DFA iff there exist $q \in P, q' \in P'$ such that $q \stackrel{a}{\longrightarrow} q'$ in NFA

P final state in DFA iff it contains some final state of NFA

From NFA to DFA II

Proof (continued).

Let
$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$
 a NFA. Powerset construction of $\mathfrak{A}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$: $Q' := 2^Q := \{P \mid P \subseteq Q\}$ $\delta' : Q' \times \Sigma \to Q'$ with $q \in \delta'(P, a) \iff$ there exists $p \in P$ such that $(p, a, q) \in \Delta$ $q'_0 := \{q_0\}$ $F' := \{P \subseteq Q \mid P \cap F \neq \emptyset\}$

This yields

$$q_0 \stackrel{w}{\longrightarrow} q \text{ in } \mathfrak{A} \iff q \in \delta'^*(\{q_0\}, w) \text{ in } \mathfrak{A}'$$

and thus

 \mathfrak{A} accepts $w \iff \mathfrak{A}'$ accepts w

From NFA to DFA II

Proof (continued).

Let
$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$
 a NFA. Powerset construction of $\mathfrak{A}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$: $Q' := 2^Q := \{P \mid P \subseteq Q\}$ $\delta' : Q' \times \Sigma \to Q'$ with $q \in \delta'(P, a) \iff$ there exists $p \in P$ such that $(p, a, q) \in \Delta$ $q'_0 := \{q_0\}$ $F' := \{P \subseteq Q \mid P \cap F \neq \emptyset\}$

This yields

$$q_0 \stackrel{w}{\longrightarrow} q \text{ in } \mathfrak{A} \iff q \in \delta'^*(\{q_0\}, w) \text{ in } \mathfrak{A}'$$

and thus

 \mathfrak{A} accepts $w \iff \mathfrak{A}'$ accepts w

Example A.33

on the board

From ε -NFA to NFA

Theorem A.34

Every ε -NFA can be transformed into an equivalent NFA.

From ε -NFA to NFA

Theorem A.34

Every ε -NFA can be transformed into an equivalent NFA.

Proof (idea).

Let $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ be a ε -NFA. We construct the NFA \mathfrak{A}' by eliminating all ε -transitions, adding appropriate direct transitions: if $p \stackrel{\varepsilon}{\longrightarrow}^* q$, $q \stackrel{a}{\longrightarrow} q'$, and $q' \stackrel{\varepsilon}{\longrightarrow}^* r$ in \mathfrak{A} , then $p \stackrel{a}{\longrightarrow} r$ in \mathfrak{A}' . Moreover $F' := F \cup \{q_0\}$ if $q_0 \stackrel{\varepsilon}{\longrightarrow}^* q \in F$ in \mathfrak{A} , and F' := F otherwise.

From ε -NFA to NFA

Theorem A.34

Every ε -NFA can be transformed into an equivalent NFA.

Proof (idea).

Let $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ be a ε -NFA. We construct the NFA \mathfrak{A}' by eliminating all ε -transitions, adding appropriate direct transitions: if $p \stackrel{\varepsilon}{\longrightarrow}^* q$, $q \stackrel{a}{\longrightarrow} q'$, and $q' \stackrel{\varepsilon}{\longrightarrow}^* r$ in \mathfrak{A} , then $p \stackrel{a}{\longrightarrow} r$ in \mathfrak{A}' . Moreover $F' := F \cup \{q_0\}$ if $q_0 \stackrel{\varepsilon}{\longrightarrow}^* q \in F$ in \mathfrak{A} , and F' := F otherwise.

Example A.35

on the board

From ε -NFA to NFA

Theorem A.34

Every ε -NFA can be transformed into an equivalent NFA.

Proof (idea).

Let $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ be a ε -NFA. We construct the NFA \mathfrak{A}' by eliminating all ε -transitions, adding appropriate direct transitions: if $p \stackrel{\varepsilon}{\longrightarrow}^* q$, $q \stackrel{a}{\longrightarrow} q'$, and $q' \stackrel{\varepsilon}{\longrightarrow}^* r$ in \mathfrak{A} , then $p \stackrel{a}{\longrightarrow} r$ in \mathfrak{A}' . Moreover $F' := F \cup \{q_0\}$ if $q_0 \stackrel{\varepsilon}{\longrightarrow}^* q \in F$ in \mathfrak{A} , and F' := F otherwise.

Example A.35

on the board

Corollary A.36

All three types of finite automata recognise the same class of languages.

Nondeterministic Finite Automata

Seen:

Definition of $(\varepsilon$ -)NFA

Determinisation of $(\varepsilon$ -)NFA

Nondeterministic Finite Automata

Seen:

Definition of $(\varepsilon$ -)NFA

Determinisation of $(\varepsilon$ -)NFA

Open:

More decidablity results

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata

More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

The Word Problem Revisited

Definition A.37

The word problem for DFA is specified as follows:

Given a DFA \mathfrak{A} and a word $w \in \Sigma^*$, decide whether

$$w \in L(\mathfrak{A}).$$

The Word Problem Revisited

Definition A.37

The word problem for DFA is specified as follows:

Given a DFA \mathfrak{A} and a word $w \in \Sigma^*$, decide whether

$$w \in L(\mathfrak{A}).$$

As we have seen (Def. A.10, Alg. A.24, Thm. A.34):

Theorem A.38

The word problem for DFA (NFA, ε -NFA) is **decidable**.

The Emptiness Problem

Definition A.39

The **emptiness problem for DFA** is specified as follows:

Given a DFA \mathfrak{A} , decide whether $L(\mathfrak{A}) = \emptyset$.

The Emptiness Problem

Definition A.39

The **emptiness problem for DFA** is specified as follows:

Given a DFA \mathfrak{A} , decide whether $L(\mathfrak{A}) = \emptyset$.

Theorem A.40

The emptiness problem for DFA (NFA, ε -NFA) is **decidable**.

Proof.

It holds that $L(\mathfrak{A}) \neq \emptyset$ iff in \mathfrak{A} some final state is reachable from the initial state (simple graph-theoretic problem).

The Emptiness Problem

Definition A.39

The **emptiness problem for DFA** is specified as follows:

Given a DFA \mathfrak{A} , decide whether $L(\mathfrak{A}) = \emptyset$.

Theorem A.40

The emptiness problem for DFA (NFA, ε -NFA) is **decidable**.

Proof.

It holds that $L(\mathfrak{A}) \neq \emptyset$ iff in \mathfrak{A} some final state is reachable from the initial state (simple graph-theoretic problem).

Remark: important result for formal verification (unreachability of bad [= final] states)

The Equivalence Problem

Definition A.41

The **equivalence problem for DFA** is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

The Equivalence Problem

Definition A.41

The **equivalence problem for DFA** is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Theorem A.42

The equivalence problem for DFA (NFA, ε -NFA) is **decidable**.

$$L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$$

The Equivalence Problem

Definition A.41

The **equivalence problem for DFA** is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Theorem A.42

The equivalence problem for DFA (NFA, ε -NFA) is **decidable**.

$$L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$$

 $\iff L(\mathfrak{A}_1) \subseteq L(\mathfrak{A}_2) \text{ and } L(\mathfrak{A}_2) \subseteq L(\mathfrak{A}_1)$

The Equivalence Problem

Definition A.41

The **equivalence problem for DFA** is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Theorem A.42

The equivalence problem for DFA (NFA, ε -NFA) is **decidable**.

$$L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$$

 $\iff L(\mathfrak{A}_1) \subseteq L(\mathfrak{A}_2) \text{ and } L(\mathfrak{A}_2) \subseteq L(\mathfrak{A}_1)$
 $\iff (L(\mathfrak{A}_1) \setminus L(\mathfrak{A}_2)) \cup (L(\mathfrak{A}_2) \setminus L(\mathfrak{A}_1)) = \emptyset$

The Equivalence Problem

Definition A.41

The **equivalence problem for DFA** is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Theorem A.42

The equivalence problem for DFA (NFA, ε -NFA) is **decidable**.

$$L(\mathfrak{A}_{1}) = L(\mathfrak{A}_{2})$$

$$\iff L(\mathfrak{A}_{1}) \subseteq L(\mathfrak{A}_{2}) \text{ and } L(\mathfrak{A}_{2}) \subseteq L(\mathfrak{A}_{1})$$

$$\iff (L(\mathfrak{A}_{1}) \setminus L(\mathfrak{A}_{2})) \cup (L(\mathfrak{A}_{2}) \setminus L(\mathfrak{A}_{1})) = \emptyset$$

$$\iff (L(\mathfrak{A}_{1}) \cap L(\mathfrak{A}_{2})) \cup (L(\mathfrak{A}_{2}) \cap L(\mathfrak{A}_{2})) \cup (L(\mathfrak{A}_{2}) \cap L(\mathfrak{A}_{1})) = \emptyset$$

$$DFA-recognisable (Thm. A.14) \qquad DFA-recognisable (Thm. A.14)$$

$$DFA-recognisable (Thm. A.16) \qquad DFA-recognisable (Thm. A.16)$$

$$DFA-recognisable (Thm. A.18)$$

$$decidable (Thm. A.40)$$

Finite Automata

Seen:

Decidability of word problem

Decidability of emptiness problem

Decidability of equivalence problem

Finite Automata

Seen:

Decidability of word problem

Decidability of emptiness problem

Decidability of equivalence problem

Open:

Non-algorithmic description of languages

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata

Operations on Languages and Automata

Nondeterministic Finite Automata

More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

An Example

Example A.43

Consider the set of all words over $\Sigma := \{a, b\}$ which

- 1. start with one or three *a* symbols
- 2. continue with a (potentially empty) sequence of blocks, each containing at least one *b* and exactly two *a*'s
- 3. conclude with a (potentially empty) sequence of b's

An Example

Example A.43

Consider the set of all words over $\Sigma := \{a, b\}$ which

- 1. start with one or three *a* symbols
- 2. continue with a (potentially empty) sequence of blocks, each containing at least one *b* and exactly two *a*'s
- 3. conclude with a (potentially empty) sequence of b's

Corresponding regular expression:

$$(a + aaa)(\underline{bb^*ab^*ab^*} + \underline{b^*abb^*ab^*} + \underline{b^*ab^*abb^*})^*b^*$$

Syntax of Regular Expressions

Definition A.44

The set of **regular expressions** over Σ is inductively defined by:

```
\emptyset and \varepsilon are regular expressions
```

every $a \in \Sigma$ is a regular expression

if α and β are regular expressions, then so are

- $-\alpha + \beta$
- $-\alpha \cdot \beta$
- $-\alpha^*$

Syntax of Regular Expressions

Definition A.44

The set of **regular expressions** over Σ is inductively defined by:

```
\emptyset and \varepsilon are regular expressions every \mathbf{a} \in \Sigma is a regular expression if \alpha and \beta are regular expressions, then so are -\alpha + \beta -\alpha \cdot \beta -\alpha^*
```

Notation:

```
\cdot can be omitted * binds stronger than \cdot, \cdot binds stronger than + \alpha^+ abbreviates \alpha \cdot \alpha^*
```

Semantics of Regular Expressions

Definition A.45

Every regular expression α defines a language $L(\alpha)$:

$$L(\emptyset) := \emptyset$$
 $L(\varepsilon) := \{\varepsilon\}$
 $L(a) := \{a\}$
 $L(\alpha + \beta) := L(\alpha) \cup L(\beta)$
 $L(\alpha \cdot \beta) := L(\alpha) \cdot L(\beta)$
 $L(\alpha^*) := (L(\alpha))^*$

Semantics of Regular Expressions

Definition A.45

Every regular expression α defines a language $L(\alpha)$:

$$L(\emptyset) := \emptyset$$
 $L(\varepsilon) := \{\varepsilon\}$
 $L(a) := \{a\}$
 $L(\alpha + \beta) := L(\alpha) \cup L(\beta)$
 $L(\alpha \cdot \beta) := L(\alpha) \cdot L(\beta)$
 $L(\alpha^*) := (L(\alpha))^*$

A language L is called **regular** if it is definable by a regular expression, i.e., if $L = L(\alpha)$ for some regular expression α .

Regular Languages

Example A.46

1. {aa} is regular since

$$L(a \cdot a) = L(a) \cdot L(a) = \{a\} \cdot \{a\} = \{aa\}$$

Regular Languages

Example A.46

1. {aa} is regular since

$$L(a \cdot a) = L(a) \cdot L(a) = \{a\} \cdot \{a\} = \{aa\}$$

2. $\{a, b\}^*$ is regular since

$$L((a+b)^*) = (L(a+b))^* = (L(a) \cup L(b))^* = (\{a\} \cup \{b\})^* = \{a,b\}^*$$

Regular Languages

Example A.46

1. {aa} is regular since

$$L(a \cdot a) = L(a) \cdot L(a) = \{a\} \cdot \{a\} = \{aa\}$$

2. $\{a, b\}^*$ is regular since

$$L((a+b)^*) = (L(a+b))^* = (L(a) \cup L(b))^* = (\{a\} \cup \{b\})^* = \{a,b\}^*$$

3. The set of all words over $\{a, b\}$ containing abb is regular since

$$L((a+b)^* \cdot a \cdot b \cdot b \cdot (a+b)^*) = \{a,b\}^* \cdot \{abb\} \cdot \{a,b\}^*$$

Regular Languages and Finite Automata I

Theorem A.47 (Kleene's Theorem)

To each regular expression there corresponds an ε -NFA, and vice versa.

Regular Languages and Finite Automata I

Theorem A.47 (Kleene's Theorem)

To each regular expression there corresponds an ε -NFA, and vice versa.

Proof.

```
\Rightarrow: using induction over the given regular expression \alpha, we construct an \varepsilon-NFA \mathfrak{A}_{\alpha} with exactly one final state q_f without transitions into the initial state
```

without transitions leaving the final state

(on the board)

by solving a regular equation system (details omitted)

Regular Languages and Finite Automata II

Corollary A.48

The following properties are equivalent:

L is regular

L is DFA-recognisable

L is NFA-recognisable

L is ε -NFA-recognisable

Implementation of Pattern Matching

Algorithm A.49 (Pattern Matching)

```
Input: regular expression \alpha and \mathbf{w} \in \mathbf{\Sigma}^*
```

Question: does w contain some $v \in L(\alpha)$?

Procedure: 1. *let*
$$\beta := (a_1 + \ldots + a_n)^* \cdot \alpha$$
 (for $\Sigma = \{a_1, \ldots, a_n\}$ *)*

- **2**. determine ε -NFA \mathfrak{A}_{β} for β
- 3. eliminate ε -transitions
- 4. apply powerset construction to obtain DFA 31
- 5. let \mathfrak{A} run on w

Output: "yes" if a passes through some final state, otherwise "no"

Remark: in UNIX/LINUX implemented by grep and lex

Regular Expressions in UNIX (grep, flex, ...)

Syntax	Meaning
printable character	this character
\n, \t, \123, etc.	newline, tab, octal representation, etc.
•	any character except \n
[Chars]	one of <i>Chars</i> ; ranges possible ("0-9")
[^Chars]	none of <i>Chars</i>
\ \., \[, etc.	., [, etc.
"Text"	<i>Text</i> without interpretation of ., [, etc.
$\hat{\alpha}$	lpha at beginning of line
α \$	lpha at end of line
α ?	zero or one $lpha$
$\alpha*$	zero or more $lpha$
α +	one or more $lpha$
α { n , m }	between n and m times α (", m " optional)
(α)	α
$\alpha_1\alpha_2$	concatenation
$\alpha_1 \mid \alpha_2$	alternative

Regular Expressions

Seen:

Definition of regular expressions

Equivalence of regular and DFA-recognisable languages

Outline of Part A

Formal Languages

Finite Automata

Operations on Languages and Automata Nondeterministic Finite Automata

Regular Expressions

More Decidability Results

Minimisation of DFA

Outlook

Motivation

Goal: space-efficient implementation of regular languages

Given: DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$

Wanted: DFA $\mathfrak{A}_{min} = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ such that $L(\mathfrak{A}_{min}) = L(\mathfrak{A})$ and |Q'| minimal

State Equivalence

Example A.50

NFA for accepting $(a + b)^*ab(a + b)^*$:

State Equivalence

Example A.50

NFA for accepting $(a + b)^*ab(a + b)^*$:

Powerset construction yields DFA 21:

State Equivalence

Example A.50

NFA for accepting $(a + b)^*ab(a + b)^*$:

Powerset construction yields DFA 21:

Observation: $\{q_0, q_2\}$ and $\{q_0, q_1, q_2\}$ are **equivalent**

State Equivalence

Example A.50

NFA for accepting $(a + b)^*ab(a + b)^*$:

Powerset construction yields DFA 21:

Observation: $\{q_0, q_2\}$ and $\{q_0, q_1, q_2\}$ are **equivalent**

Definition A.51

Given DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$, states $p, q \in Q$ are **equivalent** if $\forall w \in \Sigma^* : \delta^*(p, w) \in F \iff \delta^*(q, w) \in F$.

Minimisation

Minimisation: merging of equivalent states

Example A.52 (cf. Example A.50)

DFA after state merging:

Minimisation

Minimisation: merging of equivalent states

Example A.52 (cf. Example A.50)

DFA after state merging:

Problem: identification of equivalent states

Approach: iterative computation of inequivalent states by refinement

Corollary A.53

 $p, q \in Q$ are **inequivalent** if there exists $w \in \Sigma^*$ such that

$$\delta^*(p,w) \in F$$
 and $\delta^*(q,w) \notin F$

(or vice versa, i.e., p and q can be distinguished by w)

Computing State (In-)Equivalence

Lemma A.54

Inductive characterisation of state inequivalence:

```
w = \varepsilon: p \in F, q \notin F \implies p, q inequivalent (by \varepsilon)

w = av: p', q' inequivalent (by v), p \stackrel{a}{\longrightarrow} p', q \stackrel{a}{\longrightarrow} q'

\implies p, q inequivalent (by w)
```

Computing State (In-)Equivalence

Lemma A.54

Inductive characterisation of state inequivalence:

```
w = \varepsilon: p \in F, q \notin F \implies p, q inequivalent (by \varepsilon)

w = av: p', q' inequivalent (by v), p \stackrel{a}{\longrightarrow} p', q \stackrel{a}{\longrightarrow} q'

\implies p, q inequivalent (by w)
```

Algorithm A.55 (State Equivalence for DFA)

```
Input: DFA \mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle
```

Procedure: Computation of "equivalence matrix" over Q × Q

- 1. mark every pair (p, q) with $p \in F, q \notin F$ by ε
- 2. for every unmarked pair (p, q) and every $a \in \Sigma$: if $(\delta(p, a), \delta(q, a))$ marked by v, then mark (p, q) by av
- 3. repeat until no change

Output: all equivalent (= unmarked) pairs of states

Minimisation Example

Example A.56

Given DFA:

Equivalence matrix: on the board

Minimisation Example

Example A.56

Given DFA:

Equivalence matrix: on the board

Resulting minimal DFA:

Correctness of Minimisation

Theorem A.57

For every DFA \mathfrak{A} ,

$$L(\mathfrak{A}) = L(\mathfrak{A}_{min})$$

Correctness of Minimisation

Theorem A.57

For every DFA 21,

$$L(\mathfrak{A}) = L(\mathfrak{A}_{min})$$

Remark: the minimal DFA is **unique**, in the following sense:

$$\forall \mathsf{DFA}\ \mathfrak{A}, \mathfrak{B}: \mathit{L}(\mathfrak{A}) = \mathit{L}(\mathfrak{B}) \implies \mathfrak{A}_{\mathit{min}} \approx \mathfrak{B}_{\mathit{min}}$$

where \approx refers to automata isomorphism (= identity up to naming of states)

Outlook

Outline of Part A

Formal Languages

Finite Automata

Deterministic Finite Automata

Operations on Languages and Automata

Nondeterministic Finite Automata

More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook

Outlook

Outlook

Pumping Lemma (to prove non-regularity of languages)

– can be used to show that $\{a^nb^n \mid n \geq 1\}$ is not regular

More **language operations** (homomorphisms, ...)

Construction of **scanners** for compilers