Exercises (Regular Languages)

1 Finite Automata

Exercise: Construct a DFA over $\Sigma := \{a, b\}$ that accepts the following language:

 $\{w \in \Sigma^* \mid \text{each } a \text{ followed by exactly } 1 \text{ or } 3 \text{ } b\text{'s}\}$

Solution:

Exercise: Construct a DFA over $\Sigma := \{0, 1\}$ that accepts the following language:

 $\{w \in \Sigma^* \mid \text{decimal value of } w \text{ divisible by } 4\}$

Solution: Equivalent: w of the form ε , 0, or v00 ($v \in \Sigma^*$). Thus:

Exercise: Let \mathfrak{A} be the following NFA over $\Sigma := \{a, b\}$.

Determine the reachability sets $R_{\mathfrak{A}}(\varepsilon)$, $R_{\mathfrak{A}}(b)$, $R_{\mathfrak{A}}(ba)$, and $R_{\mathfrak{A}}(baa)$.

Solution:

$$\begin{array}{rcl} R_{\mathfrak{A}}(\varepsilon) & = & \{q_0\} \\ R_{\mathfrak{A}}(b) & = & \{q_0, q_1\} \\ R_{\mathfrak{A}}(ba) & = & \{q_0, q_2, q_3\} \\ R_{\mathfrak{A}}(baa) & = & \{q_0, q_2, q_3\} \end{array}$$

Exercise: Apply the powerset construction to transform the following NFA \mathfrak{A} over $\Sigma := \{a, b, c\}$ into an equivalent DFA.

1

Solution:

Exercise: Eliminate all ε -transitions of the following ε -NFA $\mathfrak A$ over $\Sigma := \{a,b\}$ to obtain an equivalent NFA.

Solution:

2 Regular Expressions

Exercise: Give regular expressions that describe the following languages.

1. $L := \{ w \in \{a, b\}^* \mid |w| \text{ divisible by } 3 \}$

2. $L := \{w \in \{a, b, c\}^* \mid w \text{ does not contain } a, b, \text{ or } c\}$

3. $L := \{w \in \{a,b\}^* \mid \text{substring } ab \text{ occurs exactly twice in } w, \text{ but not at the end} \}$

Solution:

1.
$$((a+b)\cdot(a+b)\cdot(a+b))^*$$

2.
$$(a+b)^* + (a+c)^* + (b+c)^*$$

3.
$$b^*a^+b^+a^+b(b^+a^*+b^*a^+)$$

Exercise: Show that regular languages are closed under the reversal operation.

Solution: Alternative proofs:

• For $L = L(\alpha)$ with regular expression α , $L^R = L(rev(\alpha))$ where

$$- rev(\emptyset) = \emptyset$$

$$- rev(\varepsilon) = \varepsilon$$

$$- rev(a) = a$$

$$- rev(\alpha_1 + \alpha_2) = rev(\alpha_1) + rev(\alpha_2)$$

$$- rev(\alpha_1 \cdot \alpha_2) = rev(\alpha_2) \cdot rev(\alpha_1)$$

$$- rev(\alpha_1^*) = rev(\alpha_1)^*$$

• For $L = L(\mathfrak{A})$ with DFA $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$, ε -NFA $\mathfrak{A}^R = \langle Q', \Sigma, \Delta', q'_0, F' \rangle$ with $\mathfrak{A}^R = L^R$ can be obtained as follows:

$$-Q' = Q \cup \{q_0'\}$$

– whenever
$$p \xrightarrow{a} q$$
 in Δ , $q \xrightarrow{a} p$ in Δ'

– additionally, for all $q \in F$ we let $q'_0 \stackrel{\varepsilon}{\longrightarrow} q$ in Δ'

$$-F' = \{q_0\}$$

Remark: resulting automaton can be non-deterministic

Example: $\{w \in \{0,1\}^* \mid \text{decimal value of } w \text{ divisible by } 4\}$ (see previous exercise)

3 Minimisation of DFA

Exercise: Minimise the following DFA.

Solution:

	l					
	q_0		q_2		q_4	q_5
q_0	_	ε	$\frac{a}{\varepsilon}$		ε	ε
q_1	_	_	ε	ε	b	aa
q_2 q_3	_	_	_ _	a	ε	ε
q_3	_	_	_	_	ε	ε
q_4	_	_	_	_	_	
q_5	_	_	_	_	_	_

4 Pumping Lemma

Exercise: Show that the following languages are *not* regular:

- 1. $L = \{a^p \mid p \text{ prime number}\}$
- 2. $L = \{a^{n^2} \mid n \ge 1\}$

Solution:

- 1. pumping argument: let $w = xy^{p-k}z \notin L$ for $p \ge n$ prime and k = |y|
- 2. If L regular, then there exists $n \ge 1$ such that every $w \in L$ with $|w| \ge n$ can be decomposed as w = xyz where $y \ne \varepsilon$ and $xy^iz \in L$ for every $i \ge 0$.

4

Given n, let $w = a^{n^2} \in L$ (such that $|w| = n^2 \ge n$). Hence w is decomposable as w = xyz with k := |y| > 0.

Now for i := 2n + k and $v := xy^iz$ we have:

$$|v| = |xy^{2n+k}z|$$

$$= |xz| + (2n+k)|y|$$

$$= (n^2 - k) + (2n+k)k$$

$$= n^2 + 2nk + k^2 - k$$

$$= (n+k)^2 - k$$

which cannot be a square number since the next lower one is

$$(n+k-1)^{2} = (n+k)^{2} - 2(n+k) + 1$$
$$= |v| - 2n - k + 1$$
$$< |v|$$