of Hybrid
hybr I d Systems
Informatik 2

The present work was submitted to the LUFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

PARAMETER SYNTHESIS
FOR ALGEBRAIC PROBLEMS
WITH A BOOLEAN STRUCTURE

Nicolai Radke

Examiners:

Prof. Dr. Erika Abraham
Prof. Dr. Thomas Noll
Aachen, 17.03.2022

Abstract

The goal of regular satisfiability modulo theories (SMT) solving is to de-
termine whether a logical formula is satisfiable or not. However, for industry
purposes or to get a deeper understanding of the formula, it is helpful to look
at larger parts of the parameter space. Parameter synthesis is concerned with
finding regions of the parameter space satisfying the formula and regions which
do not. Using SMT solving, it is possible to address the parameter synthesis
problem with relatively simple algorithms. Such an algorithm is used by the
tool PaSyPy [Wie2l], which performs parameter synthesis for quantifier-free,
real arithmetic. In this thesis, we develop the tool and its algorithms further by
introducing sophisticated heuristics to improve running time.

iv

Erklarung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbststindig verfasst und noch
nicht anderweitig zu Priifungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wortliche und sinngeméfe Zitate wurden als solche gekenn-
zeichnet.

Nicolai Radke
Aachen, 17.03.2022

vi

Acknowledgements

I am grateful for having had the opportunity to spend time on this topic and at the
chair. I learned a lot and really enjoyed the time. Therefore, I want to first thank
Prof. Dr. Erika Abraham for the opportunity to write this thesis at her chair. She
always found time for discussions and was very supportive throughout the process.
Further, I thank Prof. Dr. Thomas Noll for being the second examiner. I also want
to thank Jasper Nalbach for the discussions and his technical support. Lastly, I want
to thank Jonathan Miiller for sharing his incredible C++ expertise with me.

Contents

1 Introduction

2 Preliminaries
2.1 SMT Solving

2.2 Parameter Synthesis Lo oL o
3 Parameter Synthesis
3.1 Base Algorithm
3.2 Sampling
3.3 Splitting
3.4 Incremental Solving o
3.5 Resulting Featureso oL
3.6 Handling Quantifiers
3.7 GUI Projection
4 Implementation
4.1 Overview e e e
4.2 Logical Encoding L
4.3 CLI
4.4 GUIL . ..o e
5 Experimental Evaluation
5.1 Setup
5.2 Strategy
5.3 Experimental Results and Running Time Analysis

6 Conclusion
6.1 Summary . .
6.2 Discussion . .
6.3 Future Work

Bibliography

11
11
14

17
17
22
24
25
26
26
30

33
33
34
35
37

41
41
41
44

53
33
93
54

55

viii Contents

Chapter 1

Introduction

Satisfiability modulo theories (SMT) is a technique to check the satisfiability of logical
formulas over different theories. One theory that is particularly important because of
its real world applications is quantifier-free nonlinear real arithmetic (NRA). While
NRA solvers can determine whether a formula is satisfiable or unsatisfiable, their goal
is not to find larger sets of satisfying or unsatisfying assignments. This problem is
covered by a process called parameter synthesis.

Given an initial parameter space, in NRA this could be a cross product of intervals
as domain for the (free) variables, parameter synthesis tries to classify as large areas
as possible of this parameter space as satisfying or unsatisfying. The formula ¢(z,y) =
z +y < 2, for example, is satisfied by all values within [0,1] x [0,1].

Related Work There have been different attempts to tackle the parameter syn-
thesis problem in different contexts. For example, in the context of verification, there
exist tools based on interval arithmetic. PROPhESY is a tool for parameter synthesis
on parametric Markov chains [Deh+15]. Although also further work on PROPhESY
by Junges et al. has parallels to algorithms and heuristics presented in this thesis,
PROPLESY is not directly comparable due to the specific domain [Jun+19]. To the
best of our knowledge, these previous approaches are only capable of handling con-
junctions of constraints. However, in other applications, using conjunctions only is
not expressive enough. It is therefore necessary, to address the parameter synthesis
problem for arbitrary Boolean combinations of constraints. Wiegel has presented and
implemented PaSyPy, a parameter synthesis tool tackling the parameter synthesis
problem for arbitrary Boolean combinations of constraints [Wie21]. This thesis takes
PaSyPy as a basis to improve it. This process of improvement includes eliminating
design flaws and developing heuristics to reduce running time.

Contributions One issue with PaSyPy is that it does not use exact arithmetic. A
focus of this thesis is therefore to switch to exact arithmetic. Because this implies
rewriting significant parts of the code anyway, this thesis uses C++ as programming
language to improve performance by a complete reimplementation of the Python-
based PaSyPy tool.

PaSyPy uses the Z3 solver for SMT solving [MBO08]. Since the number of solver
calls correlates strongly with the general running time, reducing this number is a main

10 Chapter 1. Introduction

objective of this thesis. To achieve this goal, we develop sampling heuristics, splitting
heuristics and other methods.

Furthermore, we implemented a GUI similar to the one in PaSyPy to visualize the
results of a parameter synthesis.

The contributions of this thesis include

e a complete reimplementation of the Python-based PaSyPy tool in C++ and a
switch from floating-point to exact arithmetic,

e improving scalability through advanced heuristics,

e extending previous algorithms by the capability of handling formulas with quan-
tifier alternation, and

e analyzing the computational effort.

Structure In the following Chapter 2, we provide the background necessary to un-
derstand the concepts of this thesis. In Chapter 3, we then explain the parameter
synthesis algorithm developed by Wiegel in [Wie21] as well as multiple novel ap-
proaches to reduce running time. Afterwards, in the same chapter, we suggest an
approach to handle quantifiers. In Chapter 4, we present the features implemented
during this thesis, which we then evaluate experimentally in Chapter 5. In Chapter 6,
we finally conclude this thesis through summarizing and discussing the work done and
giving an outlook on future work.

Chapter 2

Preliminaries

In this chapter, we provide definitions and explanations of concepts used in this thesis.
At the basis of the parameter synthesis problem lies satisfiability modulo theories
(SMT) solving, which is introduced first.

2.1 SMT Solving

SMT solving deals with satisfiability checking for formulas from extensions of proposi-
tional logic with theories. Therefore, we first give a short introduction to propositional
logic and first order logic, adapted from a 2020 lecture by Abraham [Abr20].

Propositional Logic

The atoms of propositional logic are propositions that can be either true or false. Con-
sequently the domain of propositions is B = {0,1}. An interpretation or assignment
a: AP — B assigns Boolean values (elements of the domain) to a set AP of (atomic)
propositions, also called variables. We assume in the following a fixed proposition set
AP and use Assign to denote the set of all assignments.

Definition 2.1.1 (Propositional Logic).
Syntax Let p € AP.
pi=pl (=) [(pA) (2.1)
We define PropForm to be the set of all propositional formulas.

Semantics We introduce the satisfaction relation |= C Assign x PropForm and say
that « satisfies p iff (o,) €. We use a = ¢ equivalently. We define
E recursively:

afEp iff a(p) = true
a - iff afEp
alEP AN iff aE¢andalE”

As syntactic sugar, we define ¢’ V ¢” = =((—¢') A (m¢")) as well as (¢/ — ¢" =
(=")Ve'). We may omit parentheses if it is possible to restore them through operator
binding. -, A,V and — bind decreasingly in this order. If a formula ¢ is satisfiable,
then we say "¢ is SAT" and otherwise that "¢ is UNSAT".

12 Chapter 2. Preliminaries

FO-Logic and NRA

For some purposes, propositional logic may not be expressive enough. Therefore, we
extend it in first-order logic (FO) with theories. FO is not a fixed logic but rather a
framework. Dependent on the specific elements put into the framework, the resulting
logic can take different forms. There are different syntactical constructs in FO.

Theory symbols: constants, variables, function symbols
Predicate symbols: lift the theory to the logical level
Logical symbols: logical connectives and quantifiers

While the logical symbols are fixed, varying the other two gives different FO instances.
In this thesis, we are only using the one specific FO instance of non-linear real arith-
metic (NRA). Using NRA as an example, we now show how to build a specific FO
logic.

Theory Symbols Theory symbols are constants, variables and function symbols.
NRA
Constants: 0,1
Variables: x,y, z, ...

Function symbols: +, - as binary function symbols

For constants ¢, variables v and an m-ary function symbol f, we define a term ¢
inductively by
t=cluv| f(t,..,1).

NRA 0’1, or (14 1) -0 are examples for terms.

Predicate Symbols Predicate symbols lift terms from the theory to the logical
level.

NRA Binary '<’ is the only necessary predicate symbol in NRA. However,
>0 =" "<’ "+’ could be added as syntactic sugar.

We define a constraint inductively by the following rule

e If P is an n-ary predicate symbol and ¢y, ...,t, are terms, then P(ty,...,t,) is a
constraint.

NRA ’1-1<0’is a constraint.

Logical Symbols As mentioned above, the logical symbols are the same for all FO
logics. The logical connectives are exactly the ones we already know from proposi-
tional logic in Definition 2.1.1, namely —, A, and ,if needed, V,—, Additionally,
FO introduces quantifiers 3 and V.

2.1. SMT Solving 13

Inductive Definition of FO Syntax We are now ready to define an FO formula
@ inductively. Let ¢ be a constraint and z a variable. Similar to Definition 2.1.1, we
define

p=cl(=p) | (@A)]| (Vop) | Fzp). (2.2)

In a formula ¢, we call a variable x free, if it is not bound by any quantifier. We say
that a formula ¢ is in prenex normal form (PNF) iff it has the form

Y= lel-"in‘n(p/(xlv“'vxn) (23)

with quantifiers Q1, ..., @, € {V,3} where ¢'(x1,...,x,) quantifier free. We then call
Q171...Qnx, the prefix of ¢ and ¢'(z1,...,z,) its matrix. Every formula ¢ has an
equivalent PNF formula ¢ [Gra2l].

NRA An example for a valid formula is ¢ = Vz((x > 0) — Jy(y - y = x)).
It is equivalent to the PNF formula ¢ = Vz3y((x > 0) — (y -y = x)), which
has prefix Y23y and matrix ((z > 0) — (y -y = x)).

We can fix the set of non-logical symbols using a signature X.

NRA The signature of NRA is ¥ = (0,1, +, -, <).

Semantics In order to give meaning to formulas, we define ¥-structures, for a given
signature X. It is given by

e a domain D and
e an interpretation I of the non-logical symbols in ¥ that maps each

— constant symbol to a domain element,
— n-~ary function symbol to a function of type D,, — D,

— n-ary predicate symbol to a predicate of type D,, — {0,1}.

For free variables we additionally need an assignment « that maps each free variable
to a domain element. Using the structure, we are now able to interpret terms. The
satisfiability relation is defined equivalently to the one for predicate logic in Defini-
tion 2.1.1.

NRA In NRA, the domain is R, and constants 0 and 1 are interpreted with
the respective numbers. +, - and < are interpreted as addition, multiplication
and strictly less than, respectively.

Fragment: Quantifier-Free Formulas If we do not allow quantifiers, we get the
quantifier-free fragment of NRA, short QF-NRA.

14 Chapter 2. Preliminaries

SMT and SMT-Solving

First order logics, as we have seen above, always require an underlying logic; in
this thesis, real arithmetic. The field concerning these logics, their decidability, al-
gorithms to find solutions of formulas and related problems is called Satisfiability
Modulo Theories (SMT), indicating its relation to solving formulas in predicate logic
(SAT-solving).

There exist multiple SMT solvers for QF-NRA whith sophisticated solving strate-
gies and features. One of these features is called incremental solving. Assume a solver
is checking a formula ¢ for satisfiability. To come to a solution, solvers deduce logical
implications called context. When the solver is then given an additional constraint
1 this context may still be useful when finding a solution for ¢ A ¥. Many solvers
therefore have an option to save the context in order to reuse it later. This technique
is called incremental solving.

To the best of our knowledge, there is currently no SMT solver capable of han-
dling arbitrarily quantified NRA formulas. However, there are SMT solvers capable
of handling arbitrary quantifier-free NRA formulas. Generally, given a formula con-
taining free variables, a solver will return "satisfiable" iff there exist values for the free
variables such that the formula evaluates to true. Free variables are thus implicitly
existentially quantified.

2.2 Parameter Synthesis

This section defines parameter synthesis — the problem this thesis addresses — and
related terms.

Orthotopes

An orthotope or hyperrectangle is the generalization of a rectangle to arbitrary dimen-
sions. Formally this means B is an orthotope iff it is a cartesian product of intervals.
In this thesis, we only use closed intervals and thus closed orthotopes in R, meaning

B= [ll,ul] X ... X [lmun] C R™.

For simplicity, we use the term boz as a synonym for orthotope. If a box B is split
into other boxes, we call each resulting box B, a child box of B. We further introduce
B as a formula with B(x) := z € B. This means B(z) holds iff « lies in B.

Defintions
Definition 2.2.1 (Parameter Synthesis Problem).
Input: — an NRA formula ¢(x1, ...,2,) and
— an initial box Bipit = [l1,u1] X ... X [ln, upn] CR™.

Goal: — to find S4,S_ with Sy US_ = B such that Vo (x € S4 — p(z)) and
Vr(x € S_ — —p(x)).

It is not immediately clear how S; and S_ should be specified. By definition, both
are already determined by . However, the goal is to have a representation that helps
understanding ¢. The representation we chose in this thesis are boxes. For humans

2.2. Parameter Synthesis 15

it is immediately clear whether a point lies in a box or not. Additionally, depicting
boxes is very easy if they have only one or two dimensions.

Having chosen boxes as an appropriate form of representation, it is obvious that
the problem defined above in Definition 2.2.1 is generally not solvable: S, and S_
are then unions of boxes, but the boundaries between the satisfying and unsatisfying
regions are not always axis parallel. Thus, we define the relaxed parameter synthesis
problem.

Definition 2.2.2 (Relaxed Parameter Synthesis Problem).

Input: — an NRA formula o(x1, ...,z,) and
— an initial box Bipit = [l1,u1] X ... X [ln, upn] CR™.
Goal: — to find Sy, S_ with S; C Binit, S— C Binit such that Va(x € Sy —
o(x)) and Ya(z € S_ — —p(x)), and

— to rate a solution S’ , S’ "better" iff the volume of their union S’, US”
is larger than the one of Sy US_.

For simplicity, we sometimes write B € Sy instead of B C S for a box B. We do
the same for S_.
Additionally, we introduce naming conventions.

Definition 2.2.3 (Satisfying Box). We call a box B satisfying (or safe) iff Vo(B(x) —
().

Definition 2.2.4 (Unsatisfying Box). We call a box B unsatisfying (or unsafe) iff
Va(B(z) = —e(x)).

Under consideration of Definitions 2.2.3 and 2.2.4, the relaxed parameter synthesis
problem (Definition 2.2.2) could be summarized as "splitting the initial box in satis-
fying and unsatisfying boxes".

16

Chapter 2. Preliminaries

Chapter 3

Parameter Synthesis

This chapter describes the theoretical work of this thesis, which aims to tackle the
relaxed parameter synthesis problem from Definition 2.2.2. First, in Section 3.1, we
describe the base algorithm as developed by Wiegel [Wie21]. In Sections 3.2 and 3.3,
we then focus on accelerating the base algorithm through integrating advanced split-
ting and sampling heuristics, respectively. In Section 3.4 we propose an idea on how
to use incremental solving to reduce running times before we give a comprehensive
list of all implemented features in Section 3.5. In Section 3.6, we go into the details
of quantifier handling. Finally, in Section 3.7, we explain the projection of a solution
to only two dimensions, which is necessary for the GUIL.

3.1 Base Algorithm

This section describes the base algorithm as developed by Wiegel [Wie21|. Algo-
rithm 3.1 shows its pseudocode, Figure 3.1 an equivalent flow-chart diagram. Below
the algorithm description, we show an example to help understanding.

The algorithm’s goal is to address the relaxed parameter synthesis problem from
Definition 2.2.2: Given an initial box Bipjt, split this box iteratively into satisfying
and unsatisfying boxes according to Definitions 2.2.3 and 2.2.4.

Definitions 2.2.3 and 2.2.4 contain universal quantifiers. However, as described in
Section 2.1, SMT solvers are currently not able to handle these. To compensate for
this shortcoming, we state the following theorem.

Theorem 3.1.1. Vz(B(z) — ¢(x)) = B(z) A —p(z) is UNSAT.
Proof. Using the implicit existential quantification of free variables by solvers as de-
scribed in Section 2.1 for the step labeled with (x), we get
Vr(B(z) = ¢(2)) = =V (B(r) — ¢(2))
=3z ~(=B(z) V ¢(x))
=3z (B(z) A —p(x))

© B(z) A —p(x) is UNSAT.

Analogously we formulate a theorem for unsatisfying boxes.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

18 Chapter 3. Parameter Synthesis

synthesize (Binit, ®)
{

// 1initialize structures

Binit.depth := 0
Q7 := (Binit);
S+ = q);

S_ = 0;

// while unknown queue 1s not empty
while (B := @7.pop())
{
// break if maximal depth reached
if (B.depth >= max_depth) break;

// 1f satisfying coordinate exists in box
if (solve (B(x) Ap(x)) = SAT)
{

// 1f unsatisfying coordinate exists in box

if (solve (B(z) A—¢(x)) = SAT)
{

// split box and increase depth if satisfying

// and unsatisfying coordinates exist
Quew := B.split();
Q? .append (Qnew) ;

}

// no unsatisfying coordinate exists in box

else

{
// box is satisfying
S+ = S+U{B};

}
// no satisfying coordinate exists in box
else
{
// box 1s unsatisfying

S_ := S_U{B};

return S, S_;
}

Algorithm 3.1: Parameter synthesis base algorithm. A flow-chart diagram for the this

algorithm is depicted in Figure 3.1.

8.1. Base Algorithm 19

start Q7 := (Binit)
In: Binit, @ S =0,8 =0
stop Yes ?
DRy | empty?
No
B := Q7 .pop ()

Ba)rpl) —20AT g g u{B} —

SAT

Bl A-o@) —AT L g g.u{B} —

SAT

N Qnew = split (B)
. Q? .append (Qnew)

Figure 3.1: Flow-chart diagram for Algorithm 3.1.

Theorem 3.1.2. Vz(B(z) — —p(z)) = B(x) A p(x) is UNSAT.

Proof. Using the implicit existential quantification of free variables by solvers as de-
scribed in Section 2.1 for the step labeled with (x), we get

Va(B(z) = ~p(z)) =~V (B(z) = —p(z))

—3xz ~(=B(z) V —p(x))
= —3Jz (B(z) A ¢(z))

= B(x) A p(z) is UNSAT.

O

It is thus sufficient to let the solver check B(z) A —p(z) and B(x) A ¢(x) in order to
label a box B satisfying or unsatisfying, respectively. This observation, leads directly
to the algorithm.

3.1.1 Algorithm Description

The central idea of the algorithm is the following: We check whether a box is satisfy-
ing, unsatisfying, or whether it contains both, satisfying and unsatisfying coordinates.
In the first two cases we are done, in the last case, we split the current box into mul-
tiple smaller child boxes and then repeat the process.

First, in lines 5-7, we initialize the three main structures of the algorithm: A
queue @7 of boxes for which it is not known whether they are satisfying, unsatisfying,
or neither. As we initially do not know anything about any point in the initial box

20 Chapter 3. Parameter Synthesis

Binis, which is passed as an input argument, ()7 is initialized with Bij,;. We also
initialize Sy and S_, two sets containing the boxes already identified as satisfying or
unsatisfying, respectively. Initially, we do not have any (un)satisfying boxes and thus
both sets are empty.

Line 10 marks the begin of the main loop. If all points of the initial box are
classified as either satisfying or unsatisfying, resulting in @ being empty, we can
break the loop and jump directly to the return statement.

Otherwise, B is set to the first box in ()2 and we check in line 13 whether it
reaches the maximal depth. We also break the loop in this case. The depth is a
simple attempt to measure progress in the algorithm. Let B.hjq be a box generated
by splitting B. Then Bepi1g.depth = B.depth + 1. The initial box Bjy;t always
has depth 0.

In line 16, we use an external solver to check whether B contains a point satisfying
©. If not, it is an unsatisfying box (see Theorem 3.1.2) and we add it to S_ in line 37.

If B does contain a point satisfying ¢, we again use an external solver to check
whether B also contains a point satisfying = in line 19. Analogously to the case
above, if B does not contain any such a point, it is a satisfying box (see Theorem 3.1.1)
and we add it to S in line 30.

In the remaining case, where B does contain (at least) one point satisfying ¢ and
one point satisfying -y, we cannot classify B as satisfying or unsatisfying. Thus, we
split B into multiple new boxes in line 23, which together form a new queue Qpew-
The new queue and thereby the new boxes, are then appended to @) in line 24 as
we do not know whether the new boxes are satisfying or unsatisfying (or neither).
Splitting the boxes can be done in arbitrary ways. In the base implementation, a box
is bisected in all dimensions. Given d dimensions, this results in 2¢ new boxes. In
Section 3.3 we have a detailed look at splitting heuristics.

Once Q- is empty or the maximal depth is reached, we break the loop in line 10
or 13, respectively. S; and S_ are then returned in line 41.

Interval Limitations Before going through the example, note that the current
implementation does only support closed intervals: Assume a box B = [—1,1] x [-1,1]
is bisected w.r.t. all dimensions. The resulting child boxes are then [—1,0] x [-1,0],
[—1,0] x [0,1], [0,1] x [—1,0], and [0,1] x [0,1]. Thus, the cuts themselves (x =0, -1 <
y < land y = 0,—1 < x < 1 are covered by at least two boxes, the point at
=0,y = 0 even by 4 boxes. Although this may seem like a drawback, this overlap
is used for a heuristic called "clever sampling", which is described in Section 3.2.

3.1.2 Example

Let the input to the algorithm be the formula

pla,y) = (x <0)V (y > 2%
and the initial box
Binit = [—1,].} X [—17 1]

We additionally assume the maximal depth to be five. The initialization (lines 5-7)
will be

Q7 = (([713 1] X [71, 1]30))7 S_ = ®v Sy = 0

8.1. Base Algorithm 21

where the 0 behind the box’s dimensions indicates the depth. This initialization
corresponds to Figure 3.2a. Now, we are entering the while loop with

B =@Q.pop () =([-1,1] x [-1,1],0).

As B does not reach the maximal depth (line 13), we go into the outer if-statement
(line 16). The solver is now checking the satisfiability of the formula

Ba)Ap(@)=((-1<a < DA (-1<y <)) A((z <0)V (y = 7)),

which is satisfiable, for example with x = 0,y = 0. We are thus entering the inner
if-statement (line 19); the solver will therefore check

Bla) A-p() = (-1 <e < DA (L <y < D) A-((z <0) V (y > o).

As this formula is satisfiable as well, e.g. through = 1,y = 0, we end up in line 23
where B is now going to be split. The bisection in all dimensions will result in

=)

1

Qnew = () —L UL 1),

—
—_

1
0,
-1,
0, 1

=)
—_

b b

jen] Oj—l >—~
= o= O O
X X X X

| x [=1,0], 1)
| > [0,1],1),
| > [=1,0], 1),
1[0, 1], 1)),

We then append Qpew to @2 (line 24) and as Q2 was empty before we have Q7 = Qnew-
Sy and S_ are still empty (Figure 3.2b).

Following the split, we begin a new iteration of the while loop (line 10), now with

B =Q;.pop() = ([_LO] X [—1,0],1).

The maximal depth of five is still not reached (line 13) and we enter the i£-statement
in line 16 where B(x) A () is checked for satisfiability. The formula is satisfiable, for
example with © = 0,y = 0. We thus enter the inner if-statement (line 19) where the
solver checks B(x) A—p(x). This formula is not satisfiable since no point in B satisfies
= and we can conclude that B is a satisfying box according to Definition 2.2.3. We
thus jump to line 27 where we add B to S4 (line 30). At the end of this iteration we
have

Q- _(([_17 O] X [0, 1]7 1)7
([07 1] X [*1’ O]v 1)7
([0,1 x[0,1],1))
S+ :{([_L O] X [_17 O]a 1)}
S_ =0,
depicted by Figure 3.2c.
In the following iteration, box (([—1,0] x [0,1],1) is assigned to S as well. Boxes

([0,1] x [-1,0],1) and ([0,1] x [0,1],1)) then get split in the preceding iterations. We

22 Chapter 3. Parameter Synthesis

get, corresponding to Figure 3.2d,

Q2 =(([0,0.5] x [-1, —0.5],2), ([0,0.5] x [~0.5, 0], 2),
([0.5, 1] x [~1,—0.5],2), ([0.5, 1] x [<0.5, 0], 2),
([0,05]x[0, 0.5],2),([0,05 %[0.5,1],2),
([0.5, 1]x[0, 0.5],2),([0.5 1] x[0.5,1],2))
Sp={(-1. 0x[-1, 0,1, (-1 0x[01],1)}
S_=0.

All boxes in Q72 now have depth 2. The further process up to depth five is depicted in
Figure 3.2. Additionally, Figure 3.2h shows the actual solution of the equation, which
is reached for depth — oo (borders of the boxes are omitted).

3.1.3 Correctness

Theorem 3.1.3. The base algorithm is correct.

Proof. To prove the correctness of the algorithm, we need to show that S, only
contains satisfying boxes and S_ only unsatisfying ones.
S, is altered only in line 30, where the current box B is added. As line 30 is part
of an else clause, it is only executed iff B(x) A —¢(x) is UNSAT. Theorem 3.1.1
shows that this is only the case iff B is a satisfying box. Thus, S, is correct.
Analogously, considering line 37 and Theorem 3.1.2, S_ is correct. 0

3.2 Sampling

In this and the following section, we describe our approaches to boost the perfor-
mance of the base algorithm above. The direction of our research was guided by
testing results. Thus, this section occasionally refers to the experimental evaluation
in Section 5 to motivate the research direction.

As we will see in Section 5, the most time consuming steps of the base algorithm
from Section 3.1 are the solver calls in lines 16 and 19. To reduce running time,
the main focus was thus to reduce the number of solver calls. One easy way to do
so is through taking samples within a box B before calling the solver. In the base
algorithm (Algorithm 3.1), this would mean adding a B.sample () in line 14.

For one or more 2 € B, we check whether ¢(z) holds. If it does, we know that
B(x) A ¢(x) is satisfiable, as x is a solution. As a result, we can skip the solver call
in line 16 and jump directly to line 19. If p(x) does not hold, then —¢(x) does and it
is possible to skip line 19 and jump directly to line 23. In case two samples and y
are found with ¢(x) and —¢(y) both being true, it is even possible to skip both solver
calls and directly jump from line 14 to 23.

Evaluating ¢(x) for a specific = is generally faster than a solver call on ¢, which
leads to overall better performance. However, due to implementation details (see
Section 4.2), this acceleration factor was not as fast as hypothesized.

Model Saving Whenever the solver is called and terminates with SAT), it can also
provide the model it has found. So, instead of taking a point and evaluating it, we
could also make use of these models: A model for the solver calls in lines 16 and 19

8.2. Sampling 23

(a) Depth: 0 (b) Depth: 1
1 1
0 0
-1 -1
-1 0 1 -1 0 1
(c) Depth: 1* (d) Depth: 2
1 1
0 0
-1 -1
-1 0 1 -1 0 1
(e) Depth: 3 (f) Depth: 4
1 1 T
]
0 0 T
1 -1 am
-1 0 1 -1 0 1
(g) Depth: 5 (h) Depth — oo
1 M 1
mmiii
0 ::; T 0
1] -1
-1 0 1 -1 0 1

Figure 3.2: Visualization of Algorithm 3.1, executed on the input formula ¢(z,y) :=
(x <0)V (y > 2®) and initial box Bju := [—1,1] x [-1,1]. The x-axis is depicted
horizontally, the y-axis vertically. The process is depicted up to depth 5. Figures 3.2a-
b and d-g represent the snapshot when for the first time all boxes in @7 have the
specified depth. Figure 3.2¢ corresponds to an intermediate stage further explained
in the text. Figure 3.2h shows the actual solution of the equation, which is reached
for depth — oo. Satisfying boxes are depicted in green (¢), unsatisfying boxes are
depicted in red (e), other, unknown boxes are depicted in white.

24 Chapter 3. Parameter Synthesis

is a coordinate z that satisfies p(x) or —¢(z), respectively. We can now store this
coordinate and whether it is satisfying or not. When splitting the respective box in
line 23, we assign the coordinate to the appropriate child box. For the child box, we
then may be able to skip solver calls. Although this method has the advantage of
getting samples without additional overhead, we have to carry these samples when
splitting the box (option two in the paragraph below) which does introduce overhead.

Sample Splitting When splitting a box in line 23, we have different options on
what to do with its samples. In this thesis, we implemented and analyzed the follow-
ing.

1. One option is to just omit all samples of the box. This has the advantage that we
do not need to check for each sample in which of the resulting boxes it belongs.
On the downside, we loose information and need to sample in each iteration of
the loop.

2. An opposing alternative is to iterate over all samples in a box and check for
each in which of the resulting boxes it belongs. We do not loose information in
this case, but therefore introduce significant overhead.

3. An option that has advantages of both previous points is to sample split depen-
dent or split sample dependent. This means that, when splitting, we already
know which samples will end up in which resulting box. To clarify this, assume
the following setting: We have a 2D box which is always going to be bisected in
both dimensions resulting in four new boxes. If we sample in the top left corner
of the initial box, we know that the sample is valid for the top left box after
splitting as well.

Note that in the first case it is not even necessary to store the exact coordinates of the
sample. It is sufficient to store the information whether the sample satisfies ¢ or its
negation. In the third case we also do not need to store the exact location, however
we need a method to derive which sample will end up in which box.

Clever Sampling As described in Section 3.1, the current implementation is only
able to handle closed intervals. However, together with sample splitting option three
from above, we can make use of this fact: If we sample x in the center of a box B
and use a splitting method that bisects B in an arbitrary number of dimensions, we
know for sure, that this sample x is a valid sample for all child boxes B. of B. Let
B :=[-1,1] x [-1,1]. We now sample in the center of B at = 0,y = 0. Now we
bisect B w.r.t. all dimensions, resulting in child boxes [—1,0] x [—1,0], [-1,0] x [0,1],
[0,1] x [—1,0], and [0,1] x [0,1]. The point x = 0,y = 0 is part of all child boxes,
making the sample taken for B a valid sample for all its children.

3.3 Splitting

When it comes to quickly finding better solutions according to Definition 2.2.2, one
option is to optimize the splitting of boxes: If we are able to find large classifiable
boxes, we need less solver calls to classify the same volume of the initial box. Or, the
other way around: Large boxes lead to more classified volume in the same time. It is

8.4. Incremental Solving 25

therefore important, to set the splits at good positions in order to prevent unnecessary
solver calls.

In the base algorithm, we simply bisect a box in every dimension, which results in
gdimension chilq hoxes and makes scaling difficult.

One idea to improve this method is to not bisect in all dimensions but to only
split in one dimension. Starting with the first dimension in the first iteration of the
while loop, we increase the dimension in every iteration until we have split in every
dimension once and use the first one again.

Both of the last two methods were zero-knowledge approaches, meaning that we
did not use any information to cleverly split the boxes. A different approach could
use samples to cleverly split boxes: given a set of points we would then try to split in
a way that gives us a relatively large box containing only SAT or UNSAT samples.
A condition for this method is having two or more samples. The more samples we
have, the better are the chances of finding a good split. However, as we are going
to see in Chapter 5, taking samples takes relatively much time. Taking one sample
for each box already increased running time substantially, which resulted in us not
researching further into more sophisticated splitting heuristics.

In contrast, Junges et al. could impactfully improve their running times with more
sophisticated splitting heuristics [Jun+19].

3.4 Incremental Solving

In Section 2.1, we explained why incremental solving and therefore context preserva-
tion may be beneficial in SMT solving. We made use of this technique in this thesis
in two different ways.

In general, we made use of two different solvers and their contexts. One solver
for the satisfiability-checks in line 16 and one for the satisfiability-checks in line 19.
Before even checking satisfiability within boxes, we checked the satisfiability once for
¢ and = during the initialization phase to set meaningful contexts for both solvers.

To carry this idea forward, we also made use of the fact that a box B always
contains all of its child boxes. Let B, be a child box of B. Then, checking ¢(z) A
B(c) A B.(z) will have the same result as ¢(x) A B.(x), as B.(z) — B(z). As we have
already checked ¢(x) A B(x) previously, we can thus reuse this context when checking
© A Be.

Theoretically, we could use this idea to always reuse the context of a box for its
child. As a result, the solver handling box B at an arbitrary depth would always solve
in the context (or extensions of these contexts) of all its predecessors. However, this
is not necessarily helpful as larger contexts also contain more implications that are
not needed anymore.

In our code, we have thus implemented an option to always use one context for
two layers. A context created for a box B with even depth is used for all its children.
To prevent overhead from storing more than one context at a time, we altered the
base algorithm in the following way: For a box Beyen, with even depth, instead of
inserting its child boxes at the end of @), we insert them at the beginning. Their
respective child boxes are then again "normally" inserted at the end. Once all child
boxes of Beyen were handled, Beyen’s context is deleted.

26 Chapter 3. Parameter Synthesis

3.5 Resulting Features

The concepts implemented during this thesis have been explained above. Here, we
summarize the heuristical options we consider.

e Sampling heuristics (see Section 3.2)

1. no sampling
2. center (one sample is taken in the center of the current box)
3. clever sampling

4. additional features: model saving, sample splitting (The three options
above mutually exclude each other. In contrast, the additional features
can be enabled additionally)

o Splitting heuristics (see Section 3.3)

1. bisect in all dimensions

2. bisect in one dimension

e Incremental solving (see Section 3.4)

3.6 Handling Quantifiers

The algorithm described above would work for arbitrary ¢, including arbitrarily quan-
tified ¢. However, in lines 16 and 19, we rely on an external solver and, as mentioned
in Section 2.1, to the best of our knowledge, there does not exist any SMT solver
capable of finding solutions for arbitrarily quantified SMT formulas. Thus, the plain
implementation of our algorithm is only able to support quantifiers to the extent the
underlying solver is able to support quantifiers.

Despite this shortcoming, we were able to find ways in which it is possible to
support quantified formulas.

3.6.1 Native Support

Using the current algorithm for quantifier-free formulas, it is already possible to handle
quantified formulas to a limited extent.

Universal Quantification Let ¢ be quantifier-free with the semantical meaning
of being purely existentially quantified and

8.6. Handling Quantifiers 27

Considering Definition 2.2.3 for a satisfying box, then (similar to the proof of Theo-
rem 3.1.1):
Va(B(x) — ¢(x)) = Va (B(z) — Ya ¢¥(z,a))

=V (-B(z) VVa ¢(z,a))

= VaVva (-B(z) V ¢¥(z,a))

= ~—VaVa (—B(z) V ¥(z,a))

= —3zda ~(-B(x) V (z, a))
—3z3Ja (B(x) A (x,a))
= B(z) A ~¢(z,a) is UNSAT.

As 1 is quantifier free, it is thus sufficient to let the solver check B(z) A ¢ (z,a) in
order to label a box satisfying, given a universally quantified formula. Unfortunately,
we can not do the same in case of unsatisfying boxes: considering Definition 2.2.4 for
an unsatisfying box, then:

Va(B(z) = —p(x))

Vo (B(x) = —Va ¥(z,a))

=V (=B(z) V —Va ¢(z,a))

=V (=B(z) V 3a —¢(z, a))

=Vz3da (-B(z) V Y(z, a)).
The transformation results in alternating quantifiers for which there is no way of
handling it using a solver incapable of handling quantifiers. As a result, for universally

quantified formulas we are able to find satisfying regions but not unsatisfying regions.
As we will see next, this is inverse for existentially quantified formulas.

Existential Quantification Let ¢ be quantifier-free and

p(z) :=Je Y(x,e).

Considering the Definition 2.2.4 for an unsatisfying box, then (similar to the proof of
Theorem 3.1.2):

Vr(B(z) = —p(x))

Vo (B(x) — —Je ¢(z,e))

=Vz (-B(z) V —3e ¢(z,e))

= Vi (<B(z) v Ve ~(x,€))
Vave (~B(z) v —ij(z, €))

= ~VavVe (=B(z) V —i(z, €))

—3Jz3e ~(=B(z) V (z,e))

= —JzIe (B(z) A p(x,e))

B(x) A(x,e) is UNSAT.

As 9 is quantifier free, it is thus sufficient to let the solver check B(x) A ¥ (x,a) in
order to label a box unsatisfying, given an existentially quantified formula. Analo-
gously to the case for universal quantifiers from above, trying the same for satisfying
boxes according to Definition 2.2.3 would result in alternating quantifiers which the
underlying solver and thus the base algorithm may not be able to handle.

In conclusion, we are able to find unsatisfying regions for existentially quantified
formulas but are not able to provide information on satisfying regions.

10

11

12

13

14

15

16

17

18

19

20

28 Chapter 3. Parameter Synthesis

synthesize quantifiers (Bi,it, %)
{

// transform v into prenex normal form

Y = pnf (Y);

// get prefix and matrix of
pre = prefix (¢);
¢ = matrix (¢);

// add new dimensions to inital box Bji,it.
B! .. = extend(Binit, pre);

// perform synthesis

S, S, Q, = synthesize(p, Bj,.);

// derive actual result
Sy, S_ = derive_result (S, S, Q) pre);

return(S;, S_);
}

Algorithm 3.2: Parameter synthesis algorithm for handling quantifiers. A flow-chart
diagram for the this algorithm is depicted in Figure 3.3

3.6.2 General Support

The native support from above has clear limitations. It is nonetheless possible to
support arbitrarily quantified formulas through a slight adjustment of the algorithm.
In the rest of this section, we give a sketch on how to do so. Algorithm 3.2 provides
pseudocode of the adjustment, Figure 3.3 an equivalent flow-chart diagram.

The main idea is to treat initially quantified variables in the same way as free
variables through introducing new dimensions to the inital box. Each new dimension
corresponds to one quantifier. The boundaries of the modified initial box in the new
dimensions will be —oco and oco. Then, we use the base algorithm on the formula with
removed quantifiers and the modified initial box. In the end, we contract the added
dimensions of the base algorithm’s output to receive the actual result.

Let ¢ be the input formula and Bj, the initial box (line 1). First, in line 4, we
transform ¢ into an equivalent PNF formula ¢'. ¢’ has free variables z = (z1,...,2,)
and bounded variables y = (y1,...,ym) quantified by Q1,...,Qm in this order. o’
consists of a prefix pre (line 7) and a matrix ¢ (line 8) with free variables « and y.

The formula ¢ will later be used as an input for the base algorithm. Since the
dimension of the initial box input of the base algorithm is equal to the number of
free variables of the input formula ¢, we need to extend the initial box Bjuit. Since
quantified variables are not actually restricted, we add —oo and oo as new boundaries
for every quantified variable y;. Doing so, we get the extended initial box B, ;,. This
procedure is represented by the extend method in line 11.

In line 14, we then simply use the existing synthesize algorithm on ¢ and B
to get intermediate results S’ , S’ and Q5.

!
init

8.6. Handling Quantifiers 29

start pre =prefix(¢’)
—_— /= R ——
In: By, V' =pnf¥) ¢ =matrix(y’)
S4,S5",Q;F = synthesize(p, B ;) ¢+—— Bl .. = extend(Binit, pre)

l

t
S4,S_ = derive_result(S},S”,Q%, pre) stop

Out: Sy, 5_

Figure 3.3: Flow-chart diagram for algorithm 3.2.

All boxes in S ,5” and Q) now also have the additional dimensions from the
initially quantified variables. The last step is to derive the actual result through
removing these dimensions. This step is not trivial and we only sketch it in this
thesis.

The central idea is to begin with (n + m)-dimensional boxes B = Iy X ... X I,4m
and project out the additional dimensions, resulting in B* = I x ... x B, 4} for any
0 < k < m. We iteratively handle the quantifiers Q) in the order k = m,...,1 as
follows.

For Q. being 3, we define S¥~* := {B*!|B* € St} and S*™! := {B*1|3i €
N3Bf,..BF € S¥(BF' = M., B ™) A (B*! x R C U;_, BF)}. Intuitively, an
(n 4 k — 1)-dimensional box B*~! is satisfying if there exists an (n + k)-dimensional
satisfying box in its cylinder B*~! x R, and it is unsatisfying if the whole cylinder is
covered by unsatisfying (n + k)-dimensional boxes.

Analogously, for Q4 being V, we define S¥~! := {B*~!|B¥ € S¥} and S¥! =
{B*'3i € N.3B,...BF € Sk.(B*! = ,_,BI™") A (B*t xR € U, BN}
Intuitively, an (n + k — 1)-dimensional box B*~! is unsatisfying if there exists an
(n + k)-dimensional unsatisfying box in its cylinder B¥~! x R, and it is satisfying if
the whole cylinder is covered by satisfying (n + k)-dimensional boxes.

These computations are relatively easy to implement algorithmically if we assume a
cylindrical arrangement of the boxes, i.e. that for each pair of boxes BY, BY € S fﬁ usk
we have that either Bf ™' = BS=1 or B¥=' 0 B5~! = () hold true. Otherwise, the
sets S_kfl and S_’fr_l might contain overlapping boxes and their computation might
require box splitting; see notes below. (Note that we used "N" in this paragraph in a
way that only considers the interior of the boxes. This is necessary, because all boxes
have closed intervals, which might overlap only on their borders.)

Once we have projected out all m dimensions n + m down to n + 1, we end up
with S¢ = S, and S° = S_. This iterative reduction of dimensions to receive the
final result is represented by the method derive_result in line 17.

Finally, we return S; and S_ in line 19.

Correctness By construction of BY and therefore B, we know that a box is satis-
fying iff Va(B(z) — ¢/(z)) and unsatisfying iff Vz(B(x) — —¢’(z)). The algorithm
is therefore correct.

30 Chapter 3. Parameter Synthesis

Notes Without the cylindricity condition, it is necessary to split boxes in the pro-
cess. As the cylindricity condition is not ensured by our implementation because it
would be inefficient, an implementation would need to take care of this circumstance.

It would probably be beneficial to use distinct splitting heuristics for the treatment
of quantified dimensions and free dimensions: If, for example, a dimension would
be universally quantified and an unsatisfying box B_ is found, it is not necessary
to further split other boxes that only differ from B_ in this universally quantified
dimension.

Due to the scope of this thesis, we were not able to implement the general support
for quantifiers. As this would be a useful feature, it may be a possible subject for
future work on this topic.

3.7 GUI Projection

As part of this thesis, we implemented a graphical user interface (GUI) to depict the
outcome of the parameter synthesis. For details, read Section 4.4. A challenge of the
GUTI is the number of dimensions: while the problem dimension can be arbitrarily large
in theory, a representation of the output on a screen can only have two dimensions.
Thus, information is necessarily going to be lost during the visualization process. We
address this issue in the same way as Wiegel does [Wie2l]|: trough an existential
projection.

Assume an input formula ¢ with d > 2 free variables. Let S;, S_ and Q- further
be the output of a parameter synthesis performed on ¢. Without loss of generality,
we assume that the first two dimensions are chosen to be depicted. We depict a box
B = [l1,u1] x [l2,uz] as satisfying, if there exists a box B’ € S; with B C B'|; 5. If
such a box B does not exist in S, but there exists one in)7, then B is depicted as
unknown. If such a box B’ only exists in S_, the box is depicted as unsatisfying.

As a consequence, a point (aj,a2) lies in an area depicted as satisfying if the pa-
rameter synthesis found an extension (as,...,aq) such that ¢(aq, as, as, ..., aq) evaluates
to true. If (a1,az2) lies in an area depicted as unknown, there might exist an exten-
sion (as,...,aq) such that ¢(ay,as,as, ..., aq) evaluates to true, however, the synthesis
did not find one. If (aj,as) lies in an area depicted as unsatisfying, for all extension
(as,...,aq) within the initial box, ¢(a1, az, as, ..., aq) evaluates to false.

Technically, this is realized using the following process: first, each box of the solu-
tion is projected to the two chosen dimensions through omitting all other dimensions.
Then, unsatisfying, unknown and satisfying boxes are drawn in this order (where a
later drawing overwrites previous ones at the same position).

Correctness Through plotting the satisfying and unknown areas after the unsat-
isfying ones, we ensure that only those regions are actually depicted as unsatisfying,
for which it is guaranteed that there does not exist a satisfying extension within the
initial box. Plotting satisfying areas last ensures that all regions for which there does
exist an extension are marked satisfying. Consequently, for all remaining regions the
following holds: (1) No box has been found that satisfies . (2) There exist boxes for
which it is unknown whether they satisfy the formula or not. It is thus justified to
mark them unknown.

8.7. GUI Projection 31

Implications Taking this projection into account, the GUI implementation is actu-
ally able to handle bounded existential quantifiers. Bounded means that the quantifi-
cation only considers a restricted interval. So the implementation is still not capable
of handling a formula 3z (a,z). However, it can handle ¢’ := Jz(x € [lu] — ¢(a,x)).
To do so, parameter synthesis is performed on ¢(a,x) as usual. The initial box is ex-
tended by an additional dimension with a lower bound [and an upper bound . If z is
not chosen to be depicted, the existential projection will ensure that x is existentially
quantified within the given boundaries.

32

Chapter 3. Parameter Synthesis

Chapter 4

Implementation

In this chapter, we provide details about the implementation. We present the program
that resulted from this thesis, justify selected design choices and describe some issues
encountered during the implementation process. The implementation is uploaded on

GitHub [Rad].

4.1 Overview

CLI GUI

1)

Logical encoding

)

73

Figure 4.1: Visualization of the code struc-
ture. The logic of the code is implemented
using the Z3 solver. On top of the logi-
cal encoding, our implementation provides
two user interfaces: a command line inter-
face (CLI) and a graphical user interface
(GUI). Code implemented by us is blue (o),
existing code green (¢).

Programming Language Choice
This thesis is based on the work
done by Wiegel [Wie21]. Conse-
quently, one option was to use their
implementation, PaSyPy, which is
written in Python. However, a main
issue of this implementation is its
lack of supporting exact arithmetic.
Instead, it uses floating point arith-
metic. Since fixing this issue re-
quires rewriting a significant part of
the code anyway, we therefore de-
cided to switch programming lan-
guage and use C++ instead, aiming
for performance gains. A short com-
parison in Section 5.3.2 justifies the
switch.

SMT Solver Regarding the SMT
solver used, we initially planned to
write the code in such a way that
we would be able to use different

solvers, including Z3 [MBO08|, which was used by Wiegel [Wie21|. To make the code
compatible with arbitrary solvers, it would have been necessary to use a library provid-
ing an independent arbitrary-precision datatype, such as GMP [Gra]. Z3, however,
uses its own datatype, z3::expr. This makes conversions between the indepen-
dent datatype and z3::expr necessary, but Z3 only supports conversions from a

34 Chapter 4. Implementation

z3::expr to a char-array. As a result, we get the following conversion sequence:
z3::expr <> char-array <> GMP-datatype. These conversions would be necessary
when the boundaries for a box are added to the solver, during sampling, and when
using model saving. As the support of multiple solvers was not the main goal of this
thesis, we thus chose to only support Z3. This enabled us to use z3: :expr as the
native datatype and thereby prevent conversions.

SMT Language Support Z3 supports the SMT-LIB language standard [MBOS;
BST10]. As this standard is very suitable for parameter synthesis and to minimize
parsing efforts, our implementation uses the standard too. The standard also specifies
an input file standard for SMT solvers. It requires the extension .smt2.

Code Structure The algorithm, datastructures needed, and a programming inter-
face in order to run a parameter synthesis are all written in of the logical encoding
part of the code. We offer two different user-interfaces: First, a very thin command-
line interface (CLI) for evaluation and development purposes. Second, a graphical
user interface similar to the one in [Wie21]. An overview of this structure is depicted
in Figure 4.1.

4.2 Logical Encoding

The very base of the implementation is the class polytope. An instance of this class
represents a single polytope. The current implementation only supports boxes (ortho-
topes), meaning a subset of all polytopes. Consequently, boxes are implemented as a
subclass of polytope. polytope is then used by the programming interface class
parameter_synthesis, which implements the algorithms presented in Chapter 3.
It provides a simple interface for creating, executing or resuming a parameter synthe-
sis. During the instantiation, it is possible to pass the formula, define an initial box,
set the maximal depth, and choose between implemented features.

Because the interface class parameter_synthesis does only use polytope,
the code is ready for an extension to polytopes other than boxes, possibly even arbi-
trary polytopes.

One detail that needed a sophisticated approach was evaluating the formula during
the sampling process. An easy way to evaluate a formula ¢ with one free variable at
point x is to replace every occurrence of the free variable with x and then evaluate
the resulting formula, which has no free variables anymore. Z3 provides a substitute
function for the replacing process. The only way to now safely get the evaluation
result is to call a solver on the substituted formula. However, calling the solver just
to sample the formula introduces overhead. In fact, this overhead is too large to
implement a sampling feature that reduces running time. Another way to evaluate
a formula without free variables is using the simplify function Z3 provides. Our
own tests have shown that calling a solver on simple instances is slower than calling
simplify on the same instance by a factor of around 1000. The problem with the
simplify function is that it does not give any guarantees. A formula v/4 = 2 may
be simplified to the Boolean value true, but it may also, theoretically, be simplified to
the formula 2 = 2. To ensure an error-free result, we therefore implemented a sanity
check to prevent that formulas have not been completely simplified.

4.8. CLI 35

4.3 CLI

The command line interface (CLI) has been built using the Boost library Program
Options [Boo]. It provides an extensive set of functions for building CLIs. Our CLI
has one required parameter: an SMT-LIB file containing the function the param-
eter synthesis should be performed on. The example from Section 3.1.2 could be
reproduced with a file formula.smt2 containing the following lines:

(declare-const x Real)
(declare—-const y Real)
(assert (or (>= 0 x) (>=y (* x (*x x x)))))

All other parameters are optional and can be viewed through executing with the help
option.

$./build/cli --help
Allowed options:

-h [——help 1]
produce help message

——boundaries-file arg
Text file containing a list of all
variables and their boundaries. The
file should contain lines of the from
"<variable—-name> <lower-bound>
<upper-bound>’ .

—-—default-boundaries arg (=10)
Set default ’'radius’ of the inital
orthotope.

——-splitting-heuristic arg (=bisect_all)
Select a splitting heuristic. Options
are ’'bisect_all’ and ’bisect_single’

——-sampling-heuristic arg (=no_sampling)
Select a sampling heuristic. Options
are ’'no_sampling’, ’‘center’, and
"clever’.

—-—max-depth arg (=10)
Set maximal depth.

——save-model
Save models found by solver. Only
useful if ’split-samples’ enabled.

——incremental
Enable incremental solving.

——split-samples
Also carry samples when splitting
orthotopes.

—-—splits—-needed
Returns true if splits are needed to
process this formula.

36 Chapter 4. Implementation

—-—print-orthotopes
Prints all (SAFE, UNSAFE and UNKNOWN)
resulting orthotopes.

The rest of this section will explain the optional arguments.

Meta Parameters

Initial Box In order to provide the parameters of the initial box, it is possible to pro-
vide an additional file containing the initial boundaries using the boundaries-file
option. Each line of this file needs to have the following structure:

<variable—-name> <lower-bound> <upper-bound>

If the file is not specified correctly (variable missing, invalid path, ...), an error mes-
sage will help finding the issue. In order to specify [—1,1]? as initial box like in the ex-
ample from Section 3.1.2, execute with ——boundaries—-file=boundaries.txt,
where the file boundaries.txt contains

x -1 1
y -1 1

If no file is specified, the initial box is defaulted with [—10,10]", where n is automat-
ically determined from the formula passed. It is also possible to change this default
value with the ——default-boundaries option; ——default-boundaries=x, will
lead to an initial box [—z,z]™.

Maximal Depth The maximal depth until which the synthesis should run can be
specified by the max—depth argument, which defaults to 10. A reproduction of the
example in Section 3.1.2 would require ——max-depth=5.

Heuristics

Most optional arguments concern the heuristics listed in Section 3.5.

The sampling heuristic can be chosen via the sampling-heuristic option.
Possible choices are no_sampling, center, and clever, which have been ex-
plained in detail in Section 3.2.

Further, it is possible to enable model saving and sample splitting as described
in Section 3.2 through setting the flags save-model and split—-samples, respec-
tively.

Equivalently it is possible to specify a splitting heuristic through the option
splitting-heuristic.

Incremental solving can be enabled through incremental.

Other Arguments

The remaining two arguments are mainly for development and evaluation purposes.
When splits—-needed is set, a parameter synthesis is not actually being performed.
Instead, it is only checked whether there exist satisfying and unsatisfying coordinates

J4. GUI 37

cppasy x
File Synthesis

(declare-const x Real)
(declare-consty Real)
(assert (or (>=0x) (>=y (* x (*x x)}))

Welcome to cppasy

Figure 4.2: Screenshot of the main window. It can be used to enter and SMT-LIB
formula on which the parameter synthesis can be performed. Using the "Synthesis"
tab of the navigation bar, it is possible to open the preferences window or to execute
the synthesis.

in the initial box, which implies that splits are needed to further analyze the given
region. The return value is 1, iff splits are needed. This feature was added because a
notable number of benchmarks used to evaluate the algorithms are not satisfiable at
all. These benchmarks are not suitable for evaluating purposes, as the calculation will
be finished after the first iteration in the main loop. Using this feature we eliminated
these "uninteresting" benchmarks.

The option print-orthotopes is almost self-explanatory as it simply prints
all resulting boxes (their dimension and whether they are classified as safe, unsafe or
unknown) in the console. As, depending on the depth, the number of these ortho-
topes quickly exceeds 100, the output may not be very helpful for anything else then
development purposes.

4.4 GUI

One focus of this thesis was to provide a suitable visualization of the results similar to
the one by Wiegel [Wie21]. Our GUI has been built using wxWidgets, a cross-platform
GUI library [wxW]|.

The GUI consists of three windows. First, a main window to enter the formula
(Figure 4.2). Second, a window to set parameters concerning the synthesis (Fig-
ure 4.3). Third, a window presenting the plot (Figure 4.4).

Main Window In the main window, a user can enter the formula on which the
parameter synthesis should be performed. The input must comply with the SMT-LIB
standard. From the main window, the user is able to (1) open the preferences window
or (2) start the parameter synthesis. Both is possible via the "Synthesis" tab in the
navigation bar. If a user executes the parameter synthesis, the plot window is opened
automatically after the execution has been performed. The file tab provides an option
to close the window. Figure 4.2 is a screenshot of the main window.

Preferences Using the preferences window, the user is able to specify the initial
box, the maximal depth and which dimensions to plot. They can further decide which
of the features listed in Section 3.5 are used during the executing of the parameter
synthesis. The preferences dialog is generated dynamically in dependence of the

38 Chapter 4. Implementation

Preferences x

Variable Upper Bound Lower Bound

b 4 1

y -1 1
X-Axis X
y-Axis vy~
Depth 10
Split bisect all w
Sample no_sampling ¥
Split Samples no -
Save Model no v
Incremental no w

Save

Figure 4.3: Screenshot of the preferences window.

formula entered in the main window. This is necessary, because the names and
number of variables may change. Invalid values (upper bound > lower bound, ...)
are rejected and the user is requested to change them through a pop-up dialog. If no
preferences are specified before the execution, all options are defaulted with the ones
appearing when opening the preferences window. Figure 4.3 is a screenshot of the
preferences window.

Plot As mentioned above, the plot window opens automatically after performing the
parameter synthesis. The window is resizable and the axis labeling changes dynam-
ically with the window size. It is further possible to resume the parameter synthesis
using the "Resume"-button. For each click on the button, the maximal depth is in-
cremented by one and the execution is resumed, reusing previous execution results.
Figure 4.4 is a screenshot of the plot window.

4. GUI 39

Plot x

1.00
0.50
y 0.00
0.50
-1.00
-1.00 -0.50 0.00 0.50 1.00
X
Resume

Figure 4.4: Screenshot of the plot window. It is used to depict the result of the
parameter synthesis performed on the formula entered in the main window.

40

Chapter 4. Implementation

Chapter 5

Experimental Evaluation

In this chapter, we experimentally evaluate the implementation described in Chap-
ter 4. The evaluation is done only using the CLI for two main reasons: First, using the
GUI, we noticed that functions provided by the GUI, in particular the plotting, are
done almost instantly once the parameter synthesis has been performed. Evaluating
running times of the GUI would thus not be meaningful. Second, evaluating the CLI
alone is sufficient for a comparison of the proposed features.

In Section 5.1, we describe the setup of the experiments. We shortly explain
the evaluation strategy in Section 5.2 before presenting and analyzing the results in
Section 5.3.

5.1 Setup

The evaluation was performed on the SMT-LIB QF-NRA benchmark collection of
11552 quantifier free NRA formulas [SMT]. The running time analysis has been
performed on a cluster with 4x 2.1 GHz AMD Opteron processors, each consisting
of 12 cores. The cluster has 192 GB of RAM. However, the current implementation
does not have a parallelization option. As a consequence, only a single of all 48 cores
was used at a time.

In Section 4.2, we described why it was theoretically necessary to implement a
sanity check when using Z3’s simplify function. The sanity check results in a
slowdown of factor 2 in the evaluation process of formulas. However, we observed
that the sanity check was not necessary for any benchmark used. For running time
measurements, we thus disabled sanity checks. Note that this does not affect the
soundness of the approach.

5.2 Strategy

Benchmark Filtering

Not all of the 11552 benchmarks are suitable for evaluation: Some of the formulas
may not be satisfiable. Running the synthesis on them would not be valuable for
the evaluation process as the synthesis would be finished after a single iteration of
the main algorithm described in Section 3.1. Other formulas are just too hard to

42 Chapter 5. Experimental Fvaluation

Splitting Heuristic Save Model Split Samples
0 bisect_all 0 no 0 no
1 bisect_single 1 yes 1 yes

0 2 1 0 1

Sampling Heuristic Incremental Solving
0 no_sampling 0 no
1 center 1 yes

2 clever

Figure 5.1: Description of the 5 digits notation used to express a specific setting of a
parameter synthesis.

solve. To measure the influence of the implemented features, a certain depth has to
be reached. If this depth is not reached in a feasible amount of time, the benchmark
is not suitable for evaluating the implementation too.

Furthermore, choosing a depth that is high enough to give meaningful results on
the one hand, but not too deep to eliminate too many benchmarks through timeouts
on the other hand, is not a clear process. Choosing boundaries for an initial box gives
a similar challenge.

To address these challenges, we proceeded in the following way. Through taking a
look at multiple benchmarks, we found that if a formula was satisfiable, the satisfying
area was in nearly all cases within the box B = [—4,4]". We thus chose B = [—4,4]
as the initial box for the whole evaluation process. As a maximal depth that is
high enough to give meaningful results we chose 6. Due to the incremental solving
(Section 3.4), it was sensible to chose an even depth and choosing 8 would have
eliminated too many benchmarks. We additionally chose 15 seconds as a timeout
value due to time constraints on the whole evaluation process.

Out of the 11552 benchmarks, we eliminated 9179 using the above parameters,
leaving 2373 benchmarks for the evaluation. Around 90% were eliminated through
timeouts because they were not able to calculate up to depth 6 within 15 seconds.
Another around 10% were eliminated because they did not have satisfying and un-
satisfying coordinates within the initial box. Interestingly, only 13 benchmarks are
not part of the meti-tarski directory in the SMT-LIB benchmark collection.

5.2. Strategy 43

Choosing Setting Combinations

To measure the impact of one specific feature from the list in Section 3.5, each of
them needs to be evaluated by itself, meaning all other features need to be disabled.
Additionally, combinations of features are compared in the evaluation.

Figure 5.1 introduces a notation that allows abbreviating chosen settings in a
convenient way. The base setting is 00000, meaning that bisect_all is chosen as
the splitting heuristic and all other features are disabled. Using this notation, we can
immediately see that there are 2-3 -2 -2 -2 = 48 different settings. However, not all
of these settings are sensible. The right most digit is often implied by the other ones.
Under these restrictions, 32 sensible combinations are left. As this is still too much to
evaluate all of them on all benchmarks, we proceeded in the following way: First, we
picked 10 out of the 2373 benchmarks to run all 32 sensible combinations. We then
preselected a smaller set of suitable combinations to run all benchmarks on them.

Section 5.3 will give more details on this process through presenting and analyzing
its results.

Comparability of Runs

In general, it is not possible to compare the running time of two runs with different
settings: Assume two runs have used a different splitting heuristic. Then, for a given
depth, the combined volume of the boxes which are still labeled unknown may be
larger in one of the runs than for the other. Just comparing running times would
thus not be fair, as a solution in which this volume is smaller is considered better.
Fixing one of the two splitting heuristics, running times become comparable, as all
other features do not lead to differences in the area covered at a certain depth. They
are only able to influence the time needed to get to this depth.

As a consequence, when only comparing running times of different settings, we
handle the two different splitting heuristics separately. To compare them we need
diagrams with running time on one axis and the share of classified area on the other.

Compensating Depth Differences The splitting heuristic bisect_single only
splits a box w.r.t. one dimension per iteration. This means that the size of the smallest
boxes in a specific run is larger than if bisect_all would have been used. This
has multiple effects: On the one hand, the unknown area can not be smaller than
when bisect_all would have been used because the resolution is not as fine. On
the other hand, far less solver calls are made when using bisect_single because
far less splits and thus far less boxes are checked.

To compensate for this, before the execution, we multiply the maximal depth of
a run using bisect_single with the dimension of the respective formula. With
other words, we allow bisect_single to iteratively split boxes until the minimum
box size achievable under bisect_all is reached. As a result, the size of the small-
est boxes which are still labeled unknown is then the same for bisect_single
and bisect_all for all depths. When naming a specific depth in context of a
bisect_single run in the following, we actually used this depth scaled with the
dimension of the respective formula in order to ensure similar running times for the
same depth.

44 Chapter 5. Experimental Fvaluation

Depth Depth
4 5 6 4 5 6
02101 0.76 0.90 | 0.80 12101 0.68 0.63 | 0.58
02000 0.88 0.94 | 0.96 12111 0.77 - 0.65
02111 0.79 - 0.97 11101 0.85 0.83 | 0.80
00000 1.00 1.00 | 1.00 10111 1.04 - 0.81
01111 0.99 - 1.03 12000 1.11 0.93 | 0.82
01101 0.96 1.05 | 1.06 12010 1.21 - 0.84
00111 0.98 - 1.06 11000 0.91 0.89 | 0.87
01000 0.98 0.98 | 1.08 11111 0.92 - 0.87
00101 095 1.11 | 1.11 10101 1.14 1.03 | 0.89
01001 1.12 1.11 | 1.12 11010 1.00 - 0.89
01100 1.20 1.17 | 1.23 10010 1.07 - 0.91
02010 1.96 - 1.29 10000 1.00 1.00 | 1.00
00010 2.11 - 1.36 11001 1.08 1.06 | 1.02
01011 2.27 - 1.46 11011 1.18 - 1.07
01010 2.13 - 1.46 11100 1.16 1.12 | 1.09
01110 2.30 - 1.62 11110 1.26 - 1.12

Table 5.1: Average relative running times in the preselection runs. The columns
represent different depths. As described in Section 5.3.1, the two splitting heuristics
are handled separately. The rows of both tables are sorted ascending by the values in
the column for depth 6. The relative running times are calculated in comparison to
the respective base-settings 00000 and 10000, which are marked blue (#). For each
splitting heuristic, the setting with the best average relative running time is marked
green (©). Note that incremental solving is applicable at even depths; we denote
non-applicability by "-".

5.3 Experimental Results and Running Time Anal-
ysis

5.3.1 Preselection Process

We first evaluated all sensible setting combinations on 10 selected benchmarks. As
explained in Section 5.2, we handle the different splitting heuristics separately. To
ensure comparability, results of all benchmarks that have not reached depth 6 for
all settings are discarded. For bisect_all we did not have to discard results, for
bisect_single, however, we discarded results from two benchmarks. Runs with
depth 0-3 are discarded as well because the running times were regularly below five
milliseconds and thus too short to give meaningful results. Due to the low number of
benchmarks which reached depth 7 or higher, we discarded these depths too.

Table 5.1 depicts the results of the preselection runs. There are two interesting
phenomena to observe.

First, the standard setting for bisect_all performs relatively good (fourth best)
compared to other settings using the bisect_all splitting heuristic. In contrast,

5.8. Experimental Results and Running Time Analysis 45

Depth

4 5 6 7 8 9 10 11 12

1910 1910 | 1910 | 1843 1319 922 732 448 306

02000 0.85 0.96 | 091 | 0.98 091 1.04 0.95 1.03 0.97
00000 1.00 1.00 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00
02101 1.7 1.33| 1.01 | 1.03 093 1.04 091 0.88 0.78
01000 1.02 101 | 1.03 | 1.03 1.05 1.10 1.10 1.09 1.09
01001 1.12 112 | 117 | 115 1.17 1.23 1.23 1.17 1.17
00101 1.92 1.39| 1.22 | 119 116 1.13 1.09 0.92 0.89
00010 1.39 - 1.48 - 1.1 - 1.07 - 1.03

Table 5.2: Average relative running times in the final evaluation runs. The columns
represent different depths. The rows are sorted ascending by the values in the column
for depth 6. The relative running times are calculated in comparison to the base-
setting 00000, which is marked blue (o). The setting with the best average relative
running time is marked green (). Note that incremental solving is applicable at even
depths; we denote non-applicability by "-". The number below each depth indicates
the number of benchmarks which have reached this depth for all combinations and
are thus used to calculate the respective relative running time.

the standard setting for bisect_single performs quite bad compared to other
settings using the bisect_single splitting heuristic. Consequently, the imple-
mented features have a much more positive impact on the running times when using
bisect_single compared to bisect_all.

Second, independent of the splitting heuristic, the x2101 setting performed best.
As explained in Figure 5.1, x2101 means that the clever sampling heuristic was
chosen, and model saving and sample splitting were enabled. We thus decided to
further evaluate settings 02101 and 12101 in addition to the settings evaluating a
single feature. As a result, we evaluate the following settings on all benchmarks:

e 00000 e 01000 e 02101
e 00010 e 01001 e 10000
e 00101 e 02000 e 12101

5.3.2 Extensive Evaluation

In this section, we evaluate the results from running all 2373 benchmarks on the
preselected combinations. However, to improve comparability, we further removed
all benchmarks which did not reach depth 6 for all combinations, which left 1910
benchmarks.

General Running Time

Equivalently to Table 5.1, we calculated the average relative running times for all
1910 benchmarks. Tables 5.2 and 5.3 depict the results. As in Table 5.1, runs with
depth 0-3 are discarded due to very short running times.

46 Chapter 5. Experimental Fvaluation

Depth
4 5 6 7 8 9 10 11 12
1910 1910 | 1910 | 1578 1008 763 568 290 201
12101 0.79 077 | 0.83 | 0.71 0.64 0.61 0.59 0.53 0.44
10000 1.00 1.00 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.3: Average relative running times in the final evaluation runs. The columns
represent different depths. The rows are sorted ascending by the values in the column
for depth 6. The relative running times are calculated in comparison to the base-
setting 10000, which is marked blue (o). The setting with the best average relative
running time is marked green (©). The number below each depth indicates the number
of benchmarks which have reached this depth for all combinations and are thus used
to calculate the respective relative running time.

In general, the implemented features performed better in the preselection runs
than in the evaluation runs on all benchmarks. For the bisect_all splitting heuris-
tic, only combination 02000 performed better than the base setting on average. All
other combinations performed comparable to or worse than the base setting. For the
splitting heuristic bisect_single, combination 12101 did outperform the base
setting. Also, the relative running times for combination 12101 are significantly bet-
ter than all observed relative running times for the bisect_all splitting heuristic.

For a specific combination, relative running times do vary over the depth, however,
these variations are mostly negligible. Additionally, from depth 6 onward, relative
running times were calculated using a decreasing number of benchmarks, as slow
benchmarks did not reach this depth. Comparison of different depths is thus only
possible to a limited extent.

Additionally to the relative running times, Figures 5.2 and 5.3 show box-plots of
the relative running times for depth 6. Remarkably, the relative running times have
a wide range for a given combination. For over 50% of the benchmarks, combinations
00010, 02000, 02101, and 12101 outperform their respective base setting.

It is unjustified to simply say that the implemented features did not improve
running times in general. Whether the features improve running time or not is very
dependent on the input formula.

In the following sections, the different heuristics and their performance are evalu-
ated in detail.

Sampling Heuristics

To further investigate running times of different combinations, Figures 5.4 and 5.5
depict the running time distribution of all evaluated combinations. Additionally,
Tables 5.4 and 5.5 list the share of solver calls that are potentially preventable and
the share of solver calls that have actually been prevented (through a sample).

In general, Figures 5.4 and 5.5 clearly show that independent of the combination,
the time spent on solving accounts for the majority of the running time.

In the base case, additionally to the solving time, a relatively small share is spent
splitting the boxes. When using bisect_single as a splitting heuristic, a box is
split in less dimensions. As a consequence, the share of time spent splitting boxes is
lower for the base case in Figure 5.5 than for the base case of Figure 5.4.

5.8. Experimental Results and Running Time Analysis 47

A
2.0 o
g 1.5
£ —
o>
C
c
5
= 1.0 - — o r__j
E L1 e T -
: L]
¢ T
0.5
0.0

00010 00101 01000 01001 02000 02101

Figure 5.2: Box-plots of the relative running time for depth 6 and splitting heuristic
bisect_all. The whiskers mark the 5th and 95th percentile. The base setting is
indicated by the blue (o) line.

00000 00010 00101 01000 01001 02000 02101
Preventable 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Prevented 0.00 0.00 0.17 0.29 0.31 0.29 0.39

Table 5.4: Solver call prevention statistics for depth 6. The table lists the share of
solver calls that are potentially preventable and the share of solver calls that have
actually been prevented (through a sample). The base-setting is marked blue (o),
the setting which was able to prevent the the largest share of solver calls is marked

green (o).

The unspecified time includes initializations, if-cases, switches and more, which
are inevitable overhead introduced through the algorithm itself. As a consequence,
this share of time is similar for all tested feature combinations.

Tables 5.4 and 5.5 show another notable phenomenon: When using bisect_all,
on average, only 55% of the solver calls were preventable; using bisect_single
made 83% of the calls preventable. A call is not preventable, if it classifies a box as
satisfying or unsatisfying, as this classification is impossible using only samples.

Center Taking a closer look at the sampling heuristic center (combinations 01000
and 01001), we can immediately see in Figure 5.4, that sampling introduces a signif-
icant amount of overhead. However, Table 5.4 shows the benefit of doing so: Around
30% of all solver calls are prevented, which leads to a decrease in solving time. How-
ever, it is also clearly visible that this decrease is not the 30% one might have hoped
for.

Dividing the samples between child boxes when splitting a box (sample splitting)

48 Chapter 5. Experimental Fvaluation

A
2.0
g 1.5
£
o>
C
Z
C
: 1
® 1.0
2
®
[
05
0.0

12101

Figure 5.3: Box-plot of the relative running time for depth 6 and splitting heuristic
bisect_single. The whiskers mark the 5th and 95th percentile. The base setting
is indicated by the blue (o) line

10000 12101
Preventable 0.83 0.83
Prevented 0.00 0.72

Table 5.5: Solver call prevention statistics for depth 6. The table lists the share of
solver calls that are potentially preventable and the share of solver calls that have
actually been prevented (through a sample). The base-setting is marked blue (o),
the setting which was able to prevent the the largest share of solver calls is marked

green ().

does only prevent 2 additional percent of solver calls (Table 5.4), but introduces
significant overhead when splitting.

Clever Clever sampling (combination 02000) introduces much less overhead than
center sampling through a simple trick: Because the cuts made to split a box are all
going through the sample, we know that all resulting boxes contain this sample. For
these resulting boxes, we thus do not introduce additional splitting time. Additionally,
we already know one sample for every child box. We make use of this through taking
samples only every other depth. For d given dimensions, this means that instead of
taking 1 sample for a box and 2¢ for its child boxes, we only take 1 for this box and
its child boxes. Table 5.4 shows that this is enough to prevent almost 30% of the
solver calls.

5.8. Experimental Results and Running Time Analysis 49

A

1.4 4

1.2 4
g 1.0
£
o>
£
c 0.8 1
c
2 [|
[
2 0.6 1
fo
S

0.4 { ™= Unspecified

Splitting
5 mmm - Sampling
0. s Model Saving
mmm - Solving
0.0

00000 00010 00101 01000 01001 02000 02101

Figure 5.4: Relative running time distributions for depth 6 and splitting heuristic
bisect_all.

Model Saving Table 5.4 shows that, on average, 17% of the solver calls can be
prevented through saving the models of all solver calls returning "satisfiable" when
using bisect_all (combination 00101). However, model saving does introduce a
substantial amount of overhead through the model saving itself but also through the
then necessary sample splitting (Figure 5.4). Although, on average, this leads to a
substantial increase in running time, Figure 5.2 shows that model saving does improve
running time for a notable number of benchmarks.

Combination 02101 also uses model saving. As (compared to 00101) less solver
calls are made through clever sampling (Figure 5.4), the introduced splitting and
model saving overhead is lower than in 00101. On average, model saving is nonethe-
less not beneficial when using clever sampling (Table 5.2); however, Figure 5.2 also
indicates a lower mean relative running time for 02101 than for 02000.

Solver Calls and Solving Time Dependency Throughout the evaluation of all
features, one very notable phenomenon can be observed: Tables 5.4 and 5.5 also show
that the features were able to prevent a substantial share of all solver calls, in the case
of 12101 even over 70%. However, Figures 5.4 and 5.5 clearly show that although the
number of solver calls was reduced substantially, the total solving time is not reduced
by the same portion.

In the scope of this thesis, we were not able to find the reason for this phenomenon
with absolute certainty. Nonetheless, the following paragraph provides a possible
explanation.

The solving times of the solver calls that have been prevented could be much
smaller than the ones which could not be prevented. As mentioned above, a solver
call is preventable only if the call is preventable through a sample, meaning if the
formula is satisfiable. Consequently, only these solver calls are prevented. All solver

50 Chapter 5. Experimental Fvaluation

1.4
1.2 A
Q
£ 1.04
L
§ 0.8 A -
; I
2 0.6 1]
©
[
0.4 4 ™== Unspecified
Splitting
mmm Sampling
021 s Model Saving
mmm Solving
0.0

10000 12101

Figure 5.5: Relative running time distributions for depth 6 and splitting heuristic
bisect_single.

calls for which the result is "unsatisfiable", can not be prevented. Assuming a solver
is terminating faster on satisfiable instances, the above phenomenon becomes explain-
able.

Splitting Heuristics

As described in Section 5.2, it is impossible to directly compare running times of
combinations with different splitting heuristics, as, even for the same depth, the
classified area can differ. Therefore it is necessary to use a diagram that considers
both, running time and the classified area. Figure 5.6 does exactly that.

When looking at the base settings, bisect_single seems to be outperformed
by bisect_all. However, as already observed in Section 5.3.2; the relative running
time for 12101 is significantly better than all observed relative running times for the
bisect_all splitting heuristic. This is also clearly visible in Figure 5.6. In general,
setting 12101 does seem to be the best performing setting overall.

As a consequence, it is not possible to conclude that one splitting heuristic is
better than the other. Although the base setting of bisect_single is performing
worse in the base setting, it is responding better to other implemented features than
bisect_all. In the end, it is dependent on these other features which splitting
heuristic is performing better.

The fact that the bisect_single is reacting better to other implemented fea-
tures, may be explained by comparing Table 5.4 with Table 5.5: The share of pre-
ventable solver calls is much higher using bisect_single. In case these solver calls
are prevented, also the solving time and thus running time is able to drop by a higher
amount compared to using bisect_all.

5.8. Experimental Results and Running Time Analysis 51

100 A
90 A
S
< 80
o
©
©
2
2701
©
(]
00000
60 - 02101
10000
12101
Other
50 —
0 200 400 600 800 1000 1200

time (ms)

Figure 5.6: Development of the classified area over time. The classified area is the
share of the combined area of all boxes which are not marked unknown. One data
point is calculated through averaging running time and classified area for a specific
depth and feature combination.

Incremental Solving

Table 5.2 shows that the average running time does not benefit from using incremental
solving, in particular for depth 6. Although the average slowdown decreases for higher
depths, incremental solving did not improve the average running time for any depth.
In contrast, Figure 5.2 shows, that in over 50% of the cases the running time did
decrease using incremental solving. It is thus very dependent on the benchmark,
whether using incremental solving is sensible.

Comparison to PaSyPy

Unfortunately, the evaluation of PaSyPy has only been done through a case study.
Additionally, the computer use by Wiegel to perform the case study has much better
specifications than the one used in this work. Comparing both implementations is thus
no really possible without significant effort. Nonetheless, on very simple examples,
our implementation was up to 50 times faster. On more complex examples, where
less boxes were created and checked for satisfiability, this factor dropped, because the
pure Z3 solving time is probably comparable in both implementations. This implies
that the Python overhead in PaSyPy is large and the switch to C++ was a sensible
decision.

Other Notable Findings

A small case study indicated that, the number of free variables and thus the dimension
has an enormous impact on the resulting running time. In Section 3.6.2, we explained

52 Chapter 5. Experimental Fvaluation

that general quantifier handling would be achievable through removing the quantifier
and treat the variable as free variable. As this would result in an increase of the
dimension, it should be noted that the idea described in Section 3.6.2 would thus
most probably result in a serious increase in running time and is thus only feasible
for a very limited number quantifiers. An approach that might be more scalable is an
extended support of quantifiers by the underlying solver.

Chapter 6

Conclusion

In this chapter, we conclude the work done in this thesis. First, in Section 6.1, we
summarize the work done before we shortly discuss it in Section 6.2. In Section 6.3,
we finally give an outlook on open problems and possible topics for future work.

6.1 Summary

In Chapter 1, we gave a brief introduction to the topic, explained how this theses was
built on the work of Wiegel, and shortly sketched related work [Wie21]. In Chapter 2,
we then provided the prior knowledge necessary to understand the theoretical part of
this thesis from Chapter 3. In this chapter, we explained in detail the base algorithm,
implemented heuristics to improve the running time of this algorithm, and also solved
the issue of quantifier handling on a theoretical level. In Chapter 4, we gave an
overview of the implementation, which we evaluated experimentally in Chapter 5.

6.2 Discussion

Through the reimplementation of the base algorithm, this thesis was able to resolve
the major flaws of PaSyPy. In particular, the implementation described in this thesis
uses exact arithmetic. For formulas on which Z3 has a good performance, this the-
sis presented a well performing program for parameter synthesis, whose results are
accessible through a GUL

The experimental evaluation in Chapter 5 made very clear, that the performance
of the implemented heuristics is very benchmark dependent. While some of the im-
plemented heuristics introduce too much overhead to be useful in most cases, other
heuristics are improving the running time for the majority of benchmarks. Combin-
ing different heuristics did further decrease the running time for most benchmarks. A
brief running time comparison to PaSyPy justified the switch from Python to C++.

Unfortunately, it was not possible to also implement quantifier handling in the
scope of this thesis.

54 Chapter 6. Conclusion

6.3 Future Work

As the quantifier handling presented in Section 3.6 has not been implemented, one
possible topic for future work is implementing the suggested method.

Also, as explained in Section 4.1, only Z3 is supported as underlying SMT solver by
the current implementation. It may also be interesting to test other solvers. However,
this would require altering a substantial part of the code.

In Section 5.3.2, the experimental evaluation showed that the reduction of solver
calls is not correlating linearly with the reduction of solving time. This can set a focus
for future work on this topic: First, is it possible to confirm the assumption that in
our case the prevented solver calls on satisfiable instances were taking less time than
the unprevented ones on unsatisfiable instances? If so, is this a property of the solver,
the benchmarks, both, or something completely different? If it turns out, that sat-
isfying instances generally perform better, the focus on more sophisticated sampling
heuristics can only help to a very limited extent. Our implementation was already
able to prevent over 85% of the preventable solver calls (Table 5.5). Additionally,
the sampling or model saving necessary to do so introduced a non-negligible amount
of running time overhead. Future work would thus have to focus on reducing the
number of non-preventable solver calls. This directly implies optimizing the splitting
heuristic. In order to find a reasonable cutting axis, it is necessary to take samples.
We have seen in Figure 5.4, that taking one sample per box already introduces sig-
nificant overhead. A necessary condition for finding good splitting heuristics would
thus be that they are only using a very low number of samples, at best only two or
three. Although these observations clarify that further research into this topic needs
complex approaches, it is most probably worth the effort.

Bibliography

[Abr20]

[Boo]

[BST10]

[Deh-+15]

[Gra]

[Gra21]

[Jun+19]

[MBOS]|

[Rad]
[SMT]

[Wie21]

[wxW]|

Erika Abraham. Lecture Notes in Satisfiability Checking. Theory of Hybrid
Systems Group, RWTH Aachen University, https://ths.rwth-aach
en.de/teaching/wsl9/lecture—-satisfiability—-checking/.
2020.

Boost. Boost C++ Libraries. Retrieved Febuary 20, 2022 from http :
//www.boost .org/.
Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB Stan-

dard: Version 2.0”. In: Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories. Vol. 13. 2010, p. 14.

Christian Dehnert et al. “PROPhESY: A PRObabilistic ParamEter SYn-
thesis Tool”. In: International Conference on Computer Aided Verification
(CAV’15). Springer. 2015, pp. 214-231.

Torbjorn Granlund. The GNU Multiple Precision Arithmetic Library. Re-
trieved Febuary 20, 2022 from http://gmplib.org/.

Erich Gréadel. Lecture Script in Mathematische Logik. Lehr- und Forschungs-
gebiet Mathematische Grundlagen der Informatik (Logik und Komplex-
itat), RWTH Aachen University, https://logic.rwth-aachen.de/
Teaching/MaLo-SS21/index.html.de. 2021.

Sebastian Junges et al. Parameter Synthesis for Markov Models. arXiv
preprint arXiv:1903.07993. 2019.

Leonardo de Moura and Nikolaj Bjgrner. “Z3: An Efficient SMT Solver”.
In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08). Springer. 2008, pp. 337-340.
Nicolai Radke. cppasy. https://github.com/nicolai9135/cppas
y.

SMT-LIB. SMT-LIB QF-NRA Benchmarks. https://clc-gitlab.
cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA.

Alexander Wiegel. A python-based tool using parameter synthesis to find
safe and unsafe regions of the parameter space. RWTH Aachen University,
https://ths.rwth-aachen.de/wp-content/uploads/sites/
4/wiegel_bachelor.pdf. Master’s Thesis. 2021.

wxWidgets. wrWidgets. https://github.com/wxWidgets/wxWidg
ets.

https://ths.rwth-aachen.de/teaching/ws19/lecture-satisfiability-checking/
https://ths.rwth-aachen.de/teaching/ws19/lecture-satisfiability-checking/
http://www.boost.org/
http://www.boost.org/
http://gmplib.org/
https://logic.rwth-aachen.de/Teaching/MaLo-SS21/index.html.de
https://logic.rwth-aachen.de/Teaching/MaLo-SS21/index.html.de
https://github.com/nicolai9135/cppasy
https://github.com/nicolai9135/cppasy
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/wiegel_bachelor.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/wiegel_bachelor.pdf
https://github.com/wxWidgets/wxWidgets
https://github.com/wxWidgets/wxWidgets

	Introduction
	Preliminaries
	SMT Solving
	Parameter Synthesis

	Parameter Synthesis
	Base Algorithm
	Sampling
	Splitting
	Incremental Solving
	Resulting Features
	Handling Quantifiers
	GUI Projection

	Implementation
	Overview
	Logical Encoding
	CLI
	GUI

	Experimental Evaluation
	Setup
	Strategy
	Experimental Results and Running Time Analysis

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography

