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Abstract

A big advantage of Satisfiability Modulo Theories (SMT) solvers over tradi-
tional automated reasoning frameworks such as SAT solvers is its broad applica-
bility to a wide range of background theories [BT18]. A SMT solver can answer
mathematical questions about logic, arithmetic, bitvectors and other data struc-
tures which are combined by Boolean operators [DdM06][BB09]. Most modern
SMT solvers are based on the DPLL(T) algorithm which in turn is based on
the DPLL algorithm for SAT problems [GHN+04][DP60][DLL62]. DPLL(T) es-
sentially operates by guessing a solution to the given problem, guided by some
lookahead. If the guess of a variable assignment is not a solution, it then tries
to generalize this conflict to refine the next guess. The SMT-solver SMT-RAT
which is being developed at the Theory of Hybrid Systems Research Group at
RWTH Aachen University is also based on this premise [CLJÁ12]. In this thesis
we study the background theory of quadratic real-arithmetic formulas and, more
precisely, the step of generalizing a conflict.
For this we define a variation of the single-source single-destination shortest
path problem for node-colored graphs in which the distance or cost of a path
is given by the total cost of all edges and the cost of all colors of the traversed
nodes. This cost is non-local because nodes may share a color whose cost is only
accounted for once. Because well-known graph algorithms such as Dijkstra’s
algorithm [GF13] work on the premise that local and global optima coincide,
which is not the case here, we show that this problem is computationally hard,
but also present algorithms to mitigate some of its complexity and algorithms
to solve an easier variation of this problem efficiently.
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Chapter 1

Introduction

One of the best known problems in computer science is Boolean satisfiability, better
known as SAT. It is a decision problem which asks for a given Boolean formula
whether it has a solution, i.e. an assignment to its variables under which the formula
evaluates to true. Satisfiability Modulo Theories (SMT) is a generalization of this
problem [BT18]. The atoms of the examined formulas may not only consist of literals,
i.e. Boolean variables and their negation, as it is the case for SAT, but may also consist
of expressions of (arbitrary) background theories. Consider the formula xy2 = 2∧x ≥
1. It consists of two atoms xy2 = 2 and x ≥ 1 which are combined using the Boolean
operator ∧. This formula is not representable as an instance of SAT, however it is as
an instance of SMT. The interpretation and thus the possible solutions of this formula
depend on and change for different choices of a background theory. The expressions
xy2 = 2 and x ≥ 1 cannot be interpreted in isolation. For instance, we may choose
integer-arithmetic as the background theory in which each of the variables x and y
may only take on integer values. In this case, the formula does not have any solutions.
If we however interpret it as a real-arithmetic formula, where x and y may take on
real values, then the assignment 1 for x and

√
2 for y is an assignment that satisfies

this formula.
There are different algorithms which can solve SAT instances, one of them being the
Davis–Putnam–Logemann–Loveland (DPLL) algorithm, which was first proposed in
1960 by Martin Davis and Hilary Putnam [DP60] and later improved upon by Davis
as well as George Logemann and Donald W. Loveland in 1961 [DLL62]. DPLL(T), a
later adaption of DPLL, was proposed in 2004, which used the overall architectural
design of DPLL and expanded it so that SMT problems could be solved with it by
invoking theory backends for each of the supported background theories [GHN+04].
One key advantage of DPLL(T) is its incremental design: DPLL(T) analyzes the
Boolean skeleton of an SMT formula. The corresponding DPLL-SAT solver then
creates a Boolean variable assignment for the skeleton formula. This results in a set
of corresponding constraints, i.e. atoms of a formula of SMT, which are then handed
over to the theory backend. The backend tries to find a solution to these constraints
and informs the DPLL(T) framework if it was able to. Depending on the answer of
the backend, the DPLL(T) framework then adds and/or removes constraints from the
aforementioned set and invokes again the theory backend. It should be able to use
information gathered in earlier invocations to compute an answer, thus making use
of the incrementality of DPLL(T).
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Most modern SMT solver work based on a similar premise of incrementality. The SMT
solver SMT-RAT which is being developed at the Theory of Hybrid Systems Research
Group at RWTH Aachen had its first release in 2012 [CLJÁ12]. One of the motivations
for the work on the SMT-RAT project was that, at the time, although some of the
existing SMT solver supported non-linear arithmetic background theories, they often
lacked the option of combining different theory solvers. By using this approach it is,
for example, possible to reduce a formula which contains quadratic polynomials to
a linear formula. This linear formula may then be analyzed by theory solver which
are optimized for that specific task. This thesis aims to improve the above described
incrementality of SMT-RAT. We archive this by only considering a specialized case
for which we then can optimize our approach. We study the background theory of
real-arithmetic constraints (as Defined in Section 2.2) under the restriction that the
polynomials of these constraints are at most quadratic in a variable of interest. As
mentioned above, SMT-RAT, like DPLL(T), calls a theory backend with a set of
constraints and a partial variable assignment to those constraints. The backend is
then tasked with finding a solution for these constraints or to generate an explanation
as to why it has not come up with one. This explanation is then used to refine the
next guess for a (partial) variable assignment/solution to the original given problem.

The algorithms developed in this thesis take on one part of this process and are
specifically meant to be implemented into the SMT-RAT project. We study and
develop algorithms for so called conflict generalizations. In the context of this thesis, a
conflict is a set of real-arithmetic constraints whose polynomials are at most quadratic
in a variable y, together with an assignment α to all variables of the constraints (except
y), such that α cannot be extended to a full assignment of the constraints (by assigning
y as well) that is a solution to the constraints. A conflict generalization is a formula
that described why this is the case, i.e. why the conflict is a conflict, and thus allows
to rule out other (partial) assignments as (partial) solutions to the constraints which
were given. A formal definition of conflicts and their generalization can be found in
Section 2.6.

We will find algorithms for the generalizations of conflicts by following these steps:

• For a given conflict we consider R to be the assignment space to the unassigned
variable. Each full assignment which extends the given partial assignment then
corresponds to a unique real number and vice versa.

• We realize that for each of the given constraints the set of assignments under
which said constraint is not satisfied is equivalent to a union of intervals in R.
The reason why a set of constraints is not satisfiable under a partial assignment
lies in the fact that these intervals (corresponding to all constraints) cover every
point on the real number line.

• We introduce Virtual Substitution (VS ) and square root expressions (see Sec-
tion 2.5, [CÁ11][Cor10][Cor17]) with which the bounds of these intervals can be
expressed as formulas which depend on the given partial assignment.

• We find a sufficient and necessary condition under which an (ordered) collec-
tion of intervals cover R. This condition can easily be translated into a SMT-
compliant formula using VS and square root expressions.

• We rephrase the problem of finding a subset of intervals which cover R by check-
ing said condition into a graph problem where nodes correspond to intervals and
certain paths correspond to covers of R by the traversed intervals/nodes.



3

• We find heuristics to weigh the “goodness” of conflict generalizing formulas. We
use this heuristic to assign weights to both edges and to colors which are used
to color in the nodes of the graph.

• We then present an efficient algorithm that can eliminate nodes which are not
part of any path of interest and thus reduce the runtime of path-finding algo-
rithms. We present two such path-finding algorithms. One of which finds a
“close to optimal” path efficiently and one of which finds an optimal path in
exponential time. We further argue that there is no polynomial-time algorithm
that can archive the latter (unless P = NP) based on the fact that the cost of a
color is only accounted for once, even if a path traversed multiple nodes of the
same color.

In Chapter 2 we introduce the mathematical foundation underlying this thesis.
In particular, we introduce Virtual Substitution and square root expressions in Sec-
tion 2.5. Chapter 3 then presents the contributions of this thesis, specifically the
algorithms outlined above. Chapter 4 summarizes the contributions of this thesis.



Chapter 2

Foundations

In this chapter we introduce mathematical concepts underlying this thesis. The def-
initions are largely adopted from [Cor17], but may differ in some regards to better
suit this thesis.

2.1 Notation
In this thesis B = {true, false} denotes the set of Boolean constants. The set N denotes
the set of all positive integers and N0 denotes the set of all non-negative integers. R
and Z denote the real and whole numbers respectively. We define sgn : R→ {−1,0,1}
to assign 0 to 0, 1 to all positive and −1 to all negative real values. P(M) denotes
the power set of a set M . The set of all intervals is denoted by I. The closure of I
under ∪ is denoted by I =

⋃∞
n=1{I1 ∪ . . . ∪ In : I1, . . . ,In ∈ I}. Furthermore, in the

following, we use the notation f : A ⇀ B for a partially defined function f , i.e. for
f : A′ → B,A′ ⊆ A and write f(a) = ⊥ for a ∈ A \ A′ where we assume that ⊥ is a
fresh symbol in B, i.e. ⊥ /∈ B.

2.2 Syntax of propositional and arithmetic formulas
We define (arithmetic) formulas in this thesis as words in a formal language. Their
semantics are defined in Section 2.3. Formulas are built with variables. We differ-
entiate variables by their associated domain, which can be B, R or Z. A variable
may only take on values from their associated domains. We define VARB, VARR,
VARZ as the disjoint sets of all variables with the domain B, R or Z respectively.
Further, we define VARR,Z = VARR ∪ VARZ as the set of arithmetic variables and
VARB,R,Z = VARB∪VARR∪VARZ as the set of all variables. The domain associated
with a variable is given by Dom : VARB,R,Z → {B,R,Z}.

Formulas consist of propositions given by Boolean variables and constraints com-
bined using Boolean operators. In this thesis we restrict constraints to inequalities
between polynomials.

Definition 2.2.1 (Polynomiala). The set POL of polynomials is defined
inductively as the smallest set satisfying the following:
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• 0,1 ∈ POL

• VARR,Z ⊆ POL

• if p,q ∈ POL, then (p+ q),(p− q),(p · q) ∈ POL
asee Def. 4 on page 19 of [Cor17]

To define (in-)equalities over these polynomials, which in turn are used to define
formulas, we first define the set REL = {< , > , ̸=,≤ , ≥ , =} as the set of all relation
symbols. With that, we can define formulas as follows:

Definition 2.2.2 (Arithmetic Formulaa). The set FO of (arithmetic) formulas
is defined inductively as the smallest set satisfying the following:

• true, false ∈ FO

• VARB ⊆ FO

• if p,q ∈ POL and ∼∈ REL, then p ∼ q ∈ FO

• if φ ∈ FO, then (¬φ) ∈ FO

• if φ,ψ ∈ FO, then (φ ∨ ψ) ∈ FO and (φ ∧ ψ) ∈ FO

• if φ ∈ FO and x ∈ VARR,Z, then (∃x.φ) ∈ FO and (∀x.φ) ∈ FO

asee Def. 4 on page 19 of [Cor17]

Parentheses and the multiplication symbol are often omitted to improve readabil-
ity. The following order of operation is used:

·, −, +, ∼, ¬, ∧, ∨, ∀, ∃

for any ∼∈ REL (· is first and ∃ last).
Further, we use some syntactic sugar:

n ≡ 1 + . . .+ 1︸ ︷︷ ︸
n times

, for some n ∈ N

x0 ≡ 1, for some x ∈ VARR,Z

xn ≡ x · . . . · x︸ ︷︷ ︸
n times

, for some n ∈ N and x ∈ VARR,Z

We say for formulas which contain a sub-formula of the type (Qx. φ) for a quan-
tifier Q ∈ {∃,∀}, a variable x and a formula φ, that the variable x is bound to the
quantifier Q. If a variable is bound to a quantifier, it is assumed that it only occurs
within the scope of its quantifier. A variable which is not bound is called free. We
define Vars,FreeVars : (POL∪FO)→ VARB,R,Z to obtain the set of all variables and
the set of all free variables in a polynomial or formula.

We denote POL[x1, . . . ,xn] = {p ∈ POL : Vars(p) ⊆ {x1, . . . ,xn}} as the set of all
polynomials in variables x1, . . . ,xn.

An arithmetic formula φ ∈ FO is called real-arithmetic, integer arithmetic or mixed
integer-real-arithmetic if Vars(φ) ⊆ VARR, Vars(φ) ⊆ VARZ or Vars(φ) ⊆ VARR,Z
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respectively. It is called propositional or Boolean if Vars(φ) ⊆ VARB.
A formula φ ∈ FO is called real-arithmetic with Boolean values, integer arith-
metic with Boolean values or mixed integer-real-arithmetic with Boolean values if
Vars(φ) ⊆ VARR ∪VARB, Vars(φ) ⊆ VARZ ∪ VARB or Vars(φ) ⊆ VARB,R,Z respec-
tively.

We call relations <, > and ̸= strict and relations ≤, ≥ and = weak. A formula in
FO is called an arithmetic constraint, if it is of the form p ∼ q for some polynomial p
and q and for ∼∈ REL. It is called a strict constraint (weak constraint) for ∼ strict
(weak). The set of all constraints is denoted by CS. The set of all constraints in a
formula is obtained by CS∼ : FO → P(CS). We define rel : CS→ REL, (p ∼ q) 7→∼
to obtain the relation symbol of a constraint.

We define the following function for substituting arithmetic variables in polyno-
mials and arithmetic formulas:

Definition 2.2.3 (Substitutiona). We define

·[·/·] : (POL ∪ FO)× POL×VARR,Z → POL ∪ FO

such that it holds for polynomials p, p1, p2, variables x, y ∈ VARR,Z, x ̸= y,
b ∈ VARB, formulas φ1, φ2, ⋄ ∈ {+, · ,−} ∪ REL, ◦ ∈ {∨,∧} and Q ∈ {∃,∀}:

0[p/x] = 0

1[p/x] = 1

x[p/x] = p

y[p/x] = y

(p1 ⋄ p2)[p/x] = (p1[p/x] ⋄ p2[p/x])
b[p/x] = b

(¬φ1)[p/x] = (¬φ1[p/x])

(φ1 ◦ φ2)[p/x] = (φ1[p/x] ◦ φ2[p/x])

(Qx.φ1)[p/x] = (Qx.φ1)

(Qy.φ1)[p/x] = (Qy.φ1[p/x])

asee Def. 5 on page 21 of [Cor17]

2.3 Semantics of propositional and arithmetic formu-
las

Up until now we have only defined the syntax of polynomials and arithmetic formu-
las. The symbols in the languages FO and POL don’t have an inherit meaning. To
emphasize the difference between the symbols and their assigned semantics, in this
section we annotate operators and constants with the set they’re in or operate on.
For example we use 1R to denote the standard identity element of multiplication of
the real numbers (otherwise widely also known as the number “one”) and ∧B to denote
the standard Boolean and -operator.

To assign an arithmetic formula or a polynomial a truth- or number-value we have
to assign free variables to specific elements in R or B.
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Definition 2.3.1 (Assignmenta). An assignment is a partial function

α : VARB,R,Z ⇀ B ∪ R

where α(v) ∈ Dom(v). ASS denotes the set of all assignments. For a polynomial
or formula φ an assignment is called a (full) assignment for φ if

FreeVars(φ) ⊆ {x ∈ VARB,R,Z : α(x) ̸= ⊥}

and a partial assignment for φ otherwise. The set of full assignments for a
polynomial or formula φ is denoted by Assigns(φ). Furthermore we define

·[·/·] : ASS× (B ∪ R)×VARB,R,Z → ASS

such that

α[d/v](v′) =

{
d if v = v′,

α(v′) otherwise

for all α ∈ ASS, d ∈ B ∪ R, v,v′ ∈ VARB,R,Z.

asee Def. 6 on page 22 of [Cor17]

Given a polynomial or formula φ and a full assignment α for φ, we can now
evaluate φ under α.

Definition 2.3.2 (Evaluation of Polynomials and Formulasa). Let φ be a poly-
nomial or a formula and α be a assignment for φ. We call JφKα the evaluation
of φ under α where

J·K· : (FO ∪ POL)×ASS ⇀ (B ∪ R)

such that

J0Kα = 0R

J1Kα = 1R

JxKα = α(x)

JbKα = α(b)

Jp1 ⋄ p2Kα = Jp1K
α ⋄R Jp2K

α

Jp1 ∼ p2Kα = Jp1K
α ∼R Jp2K

α

J¬φ1K
α
= ¬BJφ1K

α

Jφ1 ◦ φ2K
α
= Jφ1K

α ◦B Jφ2K
α

JQz.φ1K
α
= Qv ∈ Dom(z).Jφ1K

α[v/z]

for x ∈ VARR,Z, b ∈ VARB, p1, p2 ∈ POL, φ1, φ2 ∈ FO, ⋄ ∈ {+, · ,−}, ∼∈ REL,
◦ ∈ {∧,∨} and Q ∈ {∃,∀} and assignment α which is a full assignment for the
respective inputs. For ξ ∈ FO∪POL and an assignment α ∈ ASS which is not a
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full assignment of ξ, the evaluation JξKα is undefined, i.e. JξKα = ⊥.
asee Def. 7 on page 23 of [Cor17]

For a polynomial p we call an assignment α for p a zero of p if JpKα = 0.

Convention 1. To increase readability we often omit a formal definition of an as-
signment as a (partially defined) function and use for an assignment

α : VARB,R,Z ⇀ B ∪ R, χ 7→


a if χ = x

b if χ = y

c if χ = z

. . .

the shorthand notation α = (x 7→ a, y 7→ b, z 7→ c, . . .) ∈ ASS. Further-
more, if an assignment assigns variables x = (x1, . . . ,xm) ∈ VARm

B,R,Z to val-
ues s = (s1, . . . ,sm) ∈ (R ∪ B)m and if those variables and their order are obvious
from the context we simply write x 7→ s. Thus, we may, for example, writeq
x1x2 + x22

yx 7→(−3,4)
= −3 · 4 + 42 = 4 or Jx1x2yK

x 7→(1,2),y 7→2
= 1 · 2 · 2 = 4.

Also note that we may use expressions of the form J·K· as atoms in Boolean
compositions if it is obvious from the context that the evaluation maps to a
Boolean value. For example we may write Jx ≥ 0Kx 7→0 ∧ Jx = 0Kx 7→0 instead of(
Jx ≥ 0Kx 7→0

= trueB
)
∧
(
Jx = 0Kx7→0

= trueB
)
.

Definition 2.3.3 (Satisfiability and Solution Spacea). We call a full assignment
α for an arithmetic formula φ a solution of φ if φ evaluates to trueB under α,
i.e. if JφKα = trueB. We define Θ(φ) as the set of all solutions of φ. If Θ(φ) ̸= ∅
we call φ satisfiable, otherwise unsatisfiable. If φ evaluates to trueB under every
full assignment of φ we say φ is a tautology.

We call formulas φ and ψ equisatisfiable if Θ(φ) ̸= ∅ if and only if Θ(ψ) ̸= ∅.
We call them equivalent if Θ(φ) = Θ(ψ).

asee Def. 8 on page 24 of [Cor17]

2.4 Normalization and Degree of a Variable in a Poly-
nomial

In oder to simplify some definitions, lemmas, theorems and proofs, we define a normal
form for formulas, constraints and polynomials. Consider for example the formulas
φ1 ≡ xyx ≥ 0 ∧ yx < 0 and φ2 ≡ x2y ≥ 0 ∧ xy < 0. Obviously φ1 and φ2 differ
in syntax, however they are semantically equivalent, i.e. Jφ1K

α
= Jφ2K

α for every
variable assignment α. Our goal then is to assign each formula/constraint/polynomial
a formula/constraint/polynomial which is equivalent and has a “nicer” form. Note that
the formula φ3 ≡ x < 0∧y > 0 is equivalent to the formulas φ1 (and φ2). It also more
or less solves the SMT-instance “Does there exist a satisfying variable assignment for
φ1”. This however is not the goal of normalizing formulas as we want to define normal
forms to ease up computation to solve such instances. We want a normal form to be
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easily computable on top of easy to compute with. Hence, we define normalized forms
by applying rules similar to the associative, commutative and distributive properties.

We adopt the normalized form of polynomials from Section 2.4 of [Cor17]. We
also define the normalized form of polynomials in one of their variables. For this we
first define the degree of variables in polynomials:

A variable x of a polynomial p has degree deg(p,x) := k if k > 0 is the biggest
exponent of x in the normal form of p in x and deg(p,x) := 0 if the variable x is
not contained in the normal form of p in x. Because normal forms are unique, the
degrees of (their) variables is well-defined. We have for example deg(p, x1) = 2 and
deg(p, x4) = 0 for p = (x2x3 + 2x3)x

2
1 + (3x2)x1 + 1. We say that a polynomial p is

linear or quadratic in a variable x if deg(p,x) ≤ 1 or deg(p,x) ≤ 2 respectively. 1

Then for each polynomial p and real-valued variable x there are unique polynomials
q0, . . . ,qdeg(p,x) in normalized forms as defined in [Cor17] such that

r = qdeg(p,x)x
deg(p,x) + · · ·+ q1x

1 + q0

is equivalent to p, i.e. JrKα = JpKα for every full assignment α of p. We call r the
normalized form of p in the variable x (or in x for short).

We define n ∼ 0 as the normal form (in a variable) of a constraint p ∼ q where n
is the normal form of the polynomial p− q (in a variable). We define

Pol : CS→ POL, p ∼ 0 7→ p

to obtain the (left-hand) polynomial of a normalized constraint. As every constraint
has a unique and equivalent normalized form, this function is well-defined. Further
we define

Pols : FO→ P(POL), φ 7→ {Pol(c) : c ∈ CS∼(φ)}
to obtain all polynomials in a formula.

The normal form of formulas (in a variable) can also be constructed by normalizing
their respectively included constraints (in a variable) while preserving the Boolean
structure.

2.5 Virtual Substitution
Virtual Substitution (VS) is a procedure for the elimination of variables and quan-
tifiers from quadratic real-arithmetic formulas [Cor10]. A normalized real-arithmetic
constraint as obtained in Section 2.4 is a polynomial compared to 0 by a relation in
REL. VS utilizes the fact, that two variable assignments α1 and α2 for a polynomial p,
for which the sign of the evaluated polynomial is equal, i.e. sgn(JpKα1) = sgn(JpKα2),
are either both a solution or both not a solution for a normalized constraint p ∼ 0.
The assignment space of a real-arithmetic polynomial p with n variables, which can
equivalently be thought of as Rn, can always be split into finitely many disjoint
connected2 subsets, in each of which the sign of the polynomial is constant under
evaluation by assignments in those respective subsets. It is then sufficient to check
only one test candidate of each of those sign-invariant regions to determine wether a
given normalized constraint p ∼ 0 is satisfiable.

1Note that this definition of the degrees of a polynomial differs from the definition of the degree
of a polynomial in [Cor17] (Def. 9, p. 25)

2For every pair of points of the set there is a continuos path between them that lies completely
within the set.
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Example 2.5.1. To illustrate this, let for example p1 ≡ 3x+1 and p2 ≡ x2−2x be two
polynomials. We consider R to be the set of all possible assignments of p1 and/or p2.
Then, because p1 and p2 are univariate polynomials, they have sign-invariant intervals
of their assignment-spaces for the variable x exactly at and in between their (finitely
many) zeros, since polynomials are continuous and thus the sign of the function can
only change at their zeros. See Figure 2.1 for an illustration of this example.

Consider the formula φ ≡ p1 ≥ 0 ∧ p2 ̸= 0. To determine whether φ is satisfiable,
we can now obtain the zeros of both constraints (see Figure 2.1) and check for each
interval I (of maximum length) in which both polynomials are sign-invariant one
representative, i.e. some arbitrary point s ∈ I, whether the formula is satisfied under
assignment x 7→ s, i.e. whether JφKx 7→s

= true.
All zeros of both p1 and p2 are − 1

3 , 0 and 2. Thus, p1 and p2 are both sign-
invariant in the intervals (−∞,− 1

3 ),[−
1
3 ,−

1
3 ],(−

1
3 ,0),[0,0],(0,2),[2,2],(2,∞). We then

take for each of these intervals a representative, e.g. −1, − 1
3 , −

1
6 , 0, 1, 2 and 3.

Therefore, the formula φ is satisfiable iff it is satisfied under at least one of those
representatives. We therefore get:

∃α ∈ ASS.JφKα ⇔
∨

s∈{−1,− 1
3 ,−

1
6 ,0,1,2,3}

JφKx7→s

Because of

JφKx7→
1
3

⇔
q
3x+ 1 ≥ 0 ∧ x2 − 2x ̸= 0

yx 7→ 1
3

⇔3 · 1
3
+ 1 ≥ 0 ∧

(
1

3

)2

− 2 · 1
3
̸= 0

⇔2 ≥ 0 ∧ −5

9
̸= 0

⇔true

we can thus derive that φ is satisfiable (with one solution being x 7→ 1
3).

As we allow for multivariate polynomials, the steps above are not directly trans-
ferable to the general case. Every zero of a multivariate polynomial over n variables
is a n-dimensional point in its assignment-space. Thus, those zeros cannot divide
the assignment space into sign-invariant intervals. To circumvent this issue we may
treat all but one variable as having a fixed assignment. Note that for a multivariate
polynomial p ∈ POL[x1, . . . ,xn] and any assignment α for x2, . . . ,xn, the function
pα : R → R, r 7→ JpKα[r/x1] defines a standardly defined univariate polynomial. We
have to be careful not to mix up the notion of polynomials as words in a formal lan-
guage and the notion of polynomials as functions as they are normally understood.
However, in the context of this explanation, we forgo this distinction. Note that, as it
was the case above, it is sufficient to check one representative from each sign-invariant
interval of pα to determine whether a constraint pα ∼ 0 is satisfiable. We want to
find a (parameterized) description of the zeros of pα which symbolically depends on
α, and exist under certain symbolic side conditions. We also want to describe sym-
bolically defined intervals whose bounds are given by those zeros. Furthermore, just
as in the steps taken above, we want to describe a test candidate of those (symbolic)
intervals. We find that we only have a small number of said symbolic side conditions
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(−∞,− 1

3 ) −1 +1
[− 1

3 ,−
1
3 ] 0 +1

(− 1
3 ,0) +1 +1

[0,0] +1 0
(0,2) +1 −1
[2,2] +1 0
(2,+∞) +1 +1

Figure 2.1: Illustration of Example 2.5.1

and intervals. Therefore a whole range of different assignments α can be checked
“simultaneously” by checking one of the said side conditions and its associated test
candidates. If we do this for every possible side condition, we have, in effect, checked
the unrestricted constraint p ∼ 0 as well.

For quadratic univariate polynomials the solution formula describing their zeros
contains square roots. Thus, to represent a parameterized description of the zeros of
pα we define square root expressions:

Definition 2.5.1 (Square Root Expressiona). For polynomial p,q,r,s ∈ POL we
call

p+ q
√
r

s

a square root expression. The set of all square root expressions is denoted by
SqrtEx. The set of all square root expressions in the variables x1, . . . ,xn is given
by

SqrtEx[x1, . . . ,xn] =
{
p+ q

√
r

s
: p,q,r,s ∈ POL[x1, . . . ,xn]

}
We may write p

s as a short-hand form for p+0
√
0

s .

asee Def. 20 on page 54 of [Cor17]

Definition 2.5.1 allows us to define square root expressions of the form p+q
√
r

0 where
we “divide” by 0. More generally, an assignment α may evaluate the “denominator”
of a square root expression to 0. Therefore we cannot sensibly define evaluations
of these terms (under those assignments). In practice we only evaluate square root
expressions (explicitly as in Definition 3.2.2 or implicitly using Definition 2.5.3) under
specific assignments when certain side conditions are met.

Square root expressions can be used to describe symbolic zeros of a multivariate
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polynomial viewed as an univariate polynomial with symbolic (polynomial) coeffi-
cients. As mentioned above, we also need a description for test candidates of the
symbolic intervals bound by these zeros. In the non-symbolic example from above
we simply chose a convenient value for each interval bound by the zeros of the exam-
ined polynomial. For the symbolic case, two symbolic zeros z1,z2 ∈ SqrtEx may lie
arbitrarily close to each other given arbitrary assignments. Thus, we simply define ϵ
as a placeholder for a sufficiently small positive value such that for any two symbolic
zeros z1,z2 ∈ SqrtEx the expression z1 + ϵ (or z2 + ϵ) represents a value in between
the zeros (again given an assignment). Furthermore we define −∞ as an arbitrarily
small value which is smaller than any zero in a given context. We do not need to
define +∞ equivalently because we may create a representative which is greater than
all zeros by using ϵ.

Definition 2.5.2 (Test Candidatea). The set of all (possible) test candidates is
given by:

TCS = SqrtEx ∪ {t+ ϵ : t ∈ SqrtEx} ∪ {−∞}

For a real-valued variable x and a real-arithmetic constraint c, in which x is
quadratic, the set of all test candidates for the variable x in the constraint c is
obtained by:

tcs : VARR × CS ⇀ P(TCS), (x, p1x
2 + p2x+ p3 ∼ 0)

7→

{−∞, −p3

p2
,
−p2−

√
p2
2−4p1p3

2p1
,
−p2+

√
p2
2−4p1p3

2p1
} if ∼ is weak

{−∞, −p3

p2
+ ϵ,

−p2−
√

p2
2−4p1p3

2p1
+ ϵ,

−p2+
√

p2
2−4p1p3

2p1
+ ϵ} if ∼ is strict

The set of all test candidates for the variable x in a formula φ in which a
x ∈ VARR only occurs at most quadratic is given by:

tcs : VARR × FO ⇀ P(TCS), (x,φ) 7→
⋃

c∈CS∼(φ)

tcs(x,c)

The side condition of a test candidate is given by:

sc : TCS→ FO, t 7→



sc(t′) if t is of the form t′ + ϵ, t′ ∈ TCS
s ̸= 0 ∧ r ≥ 0 if t is of the form p+q

√
r

s ,

q or r are not the polynomial 0
s ̸= 0 if t is of the form −p

s

true if t = −∞

asee Def. 21 on page 55 of [Cor17]

We have now defined test candidates and their side conditions for eliminating
variables in real-arithmetic formulas. Variables cannot be substituted directly by the
constructed test candidates. This would result in expressions that are not element of
FO, therefore, amongst other things, VS could not be applied again for the remain-
ing variables. Virtual Substitution defines transformation rules for a real-arithmetic
formula φ with a test candidate t for the variable x, such that it maps φ to ψ,
Vars(ψ) = Vars(φ) \ {x} and φ and ψ are equisatisfiable when substituting x by t.
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Definition 2.5.3 (Virtual Substitutiona). Virtual Substitution of a variable in
a real-arithmetic formula by a test candidate is defined by a function

·[· � ·] : FO× TCS×VARR → FO

that is specified by Substitution rules as shown in [Cor10].
asee Def. 22 on page 57 of [Cor17]; see [Cor10]

[Cor17] also states in Theorem 2 on page 58 that:

Theorem 2.5.1.

J∃x. φKα =

u

v
∨

t∈tcs(x,φ)

(sc(t) ∧ φ[t � x])

}

~

α

J∀x. φKα =

u

v
∧

t∈tcs(x,φ)

(sc(t)→ φ[t � x])

}

~

α

for any variable assignment α of ∃x.φ (or of ∀x.φ).

Example 2.5.2. Consider again Example 2.5.1 and formula

φ ≡ p1 ≥ 0 ∧ p2 ̸= 0 ≡ 3x+ 1 ≥ 0 ∧ x2 − 2x ̸= 0

We have already shown φ to be satisfiable and want to recheck this result by using VS
and Theorem 2.5.1.
As x is the only variable contained in φ, we get that φ is satisfiable iff J∃x.φKα for
any variable assignment α. It holds:

tcs(x,3x+ 1 ≥ 0) =

{
−∞, −1

3
,
−3 +

√
32 − 4 · 0 · 1
2 · 0

,
−3−

√
32 − 4 · 0 · 1
2 · 0

}
And thus −1

3 ∈ tcs(x,φ) = tcs(x,3x+1 ≥ 0)∪ tcs(x,x2−2x ̸= 0). Note that even tough
we “divide by zero”, the expressions above are well-defined as we are not considering
them as real-valued terms but as words in the formal language TCS.
We get sc(−1

3 ) ≡ (3 ̸= 0) and according to [Cor10]:

(3x+ 1 ≥ 0)

[
−1
3

� x
]
≡ (3 > 0 ∧ 3 · (−1) + 1 · 3 ≥ 0) ∨ (3 < 0 ∧ 3 · (−1) + 1 · 3 ≤ 0)

(x2 − 2x ̸= 0)

[
−1
3

� x
]
≡ ((−1)2 − 2 · (−1) · 3 ̸= 0)

Let α be an arbitrary assignment. It holds:
s
sc
(
−1
3

){α

⇔ 3 ̸= 0 ⇔ true
s
(3x+ 1 ≥ 0)

[
−1
3

� x
]{α

⇔ (3 > 0 ∧ 0 ≥ 0) ∨ (3 < 0 ∧ 0 ≤ 0) ⇔ true
s
(x2 − 2x ̸= 0)

[
−1
3

� x
]{α

⇔ 7 ̸= 0 ⇔ true
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And because of
s
sc
(
−1
3

)
∧ φ

[
−1
3

� x
]{α

⇔
s
sc
(
−1
3

)
∧ (3x+ 1 ≥ 0)

[
−1
3

� x
]
∧ (x2 − 2x ̸= 0)

[
−1
3

� x
]{α

⇔
s
sc
(
−1
3

){α

∧
s
(3x+ 1 ≥ 0)

[
−1
3

� x
]{α

∧
s
(x2 − 2x ̸= 0)

[
−1
3

� x
]{α

⇔true ∧ true ∧ true⇔ true

we get:

true⇔
s
sc
(
−1
3

)
∧ φ

[
−1
3

� x
]{α

⇒

u

v
∨

t∈tcs(x,φ)

(sc(t) ∧ φ[t � x])

}

~

α

⇔ J∃x.φKα

Thus, φ is satisfiable.

Theorem 2.5.1 allows us to eliminate quantifiers in a formula to construct an
equisatisfiable formula. Furthermore, because in the context of satisfiability checking
every formula φ with a free variable x can be thought of as the formula ∃x. φ,
Theorem 2.5.1 also allows us to reduce an real-arithmetic formula to a constant real-
arithmetic formula which can be checked for satisfiability relatively easily. However,
note that the number of terms of the reduced formula grows exponentially, thus this
approach is not feasible in many cases.

In the next chapter, we build upon the main idea underlying VS, namely the
idea of considering each variable separately (at first) and splitting the real number-
line into intervals in which the analyzed formula has some invariant property under
changes of a variable assignment of the respective variable. We also use the Virtual
Substitution 2.5.3 directly to encode expressions involving square root terms into
syntactically allowed formulas.

2.6 SMT solving
SAT solvers check satisfiability or even generate a solution of propositional (Boolean)
formulas. Due to their efficiency gains, modern SAT solvers have found a wide range
of applicability in academia and industry alike. Even though the number of possible
assignments for propositional formulas grows exponentially with the number of their
contained variables, propositional formulas have a limited expressiveness compared
to many naturally arising mathematical problems. Satisfiability Modulo Theories
(SMT) formulas extend the expressive power of SAT formulas by incorporating the
use of background theories. In the context of this thesis, we consider formulas as
defined in 2.2.2 as instances of SMT. The expressiveness of SMT formulas and in
particular formulas as defined in 2.2.2 is much stronger and thus offers an even wider
range of applicability, compared to SAT formulas. SMT solvers most often are based
on an underlying SAT solver, which is applied to Boolean abstractions of SMT formu-
las in which theory expressions are substituted by propositional variables. Decades of
research into SAT solvers, which improved them significantly, therefore also benefit
SMT solver directly. In the early 2000s lazy SMT solvers such as DPLL(T) began
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to emerge [BDS02][MR02]. Such solvers improve their efficiency even further by im-
proving the interplay between the incorporated SAT solver and theory solvers for
background theories. Whereas in previous designs, SAT solvers were treated as black
boxes, lazy SMT solvers enable communication of theory solvers and the SAT solver.
If a theory solver determines a set of predicates/constraints to be unsatisfiable it can
offer an explanation, also called a conflict generalization. These conflict generaliza-
tions can then be used by the underlying SAT solver to refine a next guess of a possible
solution. Figure 2.2 which can be found in [CÁ11] illustrates the basic composition
of lazy SMT solvers.

Figure 2.2: Lazy SMT solver

In this thesis, we are particulary interested in the step of generalization of a
conflict for a set of real-arithmetic constraints. For this we formalize such a conflict
(generalizations) as follows:

Definition 2.6.1 (Conflict Generalization). We say that real-arithmetic con-
straints c1, . . . ,cm in variables x1, . . . ,xn,y which are at most quadratic in y have
a conflict in a sample s ∈ Rn, if

¬∃t ∈ R.

t
m∧
i=1

ci

|x 7→s,y 7→t

A conflict generalization of this conflict is a formula φ in variables x1, . . . ,xn
such that (x 7→ s) ∈ Θ(φ) and

∀α ∈ Θ(φ).¬∃t ∈ R.

t
m∧
i=1

ci

|α[t/y]

In other words: A set c1, . . . ,cm of real-arithmetic constraints have a conflict in
sample s, if the partial assignment of their variables given by the sample cannot be
extended to a solution to all constraints. A conflict generalization is a description
of s and other samples for which a conflict also exists. Note that a formula φ that
only describes the sample s, i.e. Θ(φ) = {x 7→ s}, would be a conflict generalization.
However, this would not be very helpful as we ideally want to eliminate all samples
which are not part of a solution of ∧mi=1ci. We could, in theory, construct the conflict
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generalization so that it describes all conflicts and therefore decides if the input
constraints are satisfiable or not. However, in designing an algorithm which constructs
a conflict generalization, we have to balance between two requirements. As mentioned,
we want to describe as many conflicts as possible but we also want to do this as
efficient as possible. Therefore we construct the conflict generalization such that we
only describe samples for which a “similar” conflict exist to the given conflict of the
input constraints and the given sample. In the following chapter we formulate how
we define this similarity, describe a construction for conflict generalizations and a
heuristic to differentiate “good” and “bad” conflict generalizations. We then present
algorithms to find conflict generalizations under those considerations.

Convention 2. In the rest of this thesis, if not otherwise mentioned, all formulas
and variables are real-arithmetic in the variables x1 . . . ,xn,y and at most quadratic in
y.



Chapter 3

Generalizing conflicts in
real-arithmetic quadratic
formulas

3.1 Ordered covering of R
In this section we first consider univariate constraints to understand the main idea for
the proposed conflict generalization of this chapter. Of course, if a conflict is found for
univariate constraints (all constraints are only in the variable y), then we already know
that ∧mi=1ci is unsatisfiable. Therefore φ ≡ true would be the only reasonable conflict
generalization. Despite this, we construct φ differently so that this construction may
inform how to construct the conflict generalization for the multivariate case.

Example 3.1.1. Consider the unsatisfiable constraints c1 ≡ y2 − 2y ≤ 0 and
c2 ≡ −y − 1 > 0. Figure 3.1 shows the plot of their respective polynomials and also
indicates the intervals for assignments for y (−∞,0),(2,∞) in which c1 is not satisfied
and [−1,∞) in which c2 is not satisfied.

The reason why c1∧c2 is not satisfiable in Example 3.1.1 is because these intervals
for assignments for y, in which either c1 or c2 is not satisfied, cover R. In other words:
Under each assignment of y either c1 or c2 is not satisfied. We want to find an sufficient
and necessary condition under which a set of intervals cover R which then can easily
be encoded in a formula.

In order to do so, we first introduce a few notations and definitions. To increase
readability of formulas which depend on the bounds of intervals and on the fact wether
the bounds are closed or open we define:

R+ϵ = {r,r+ : r ∈ R} ∪ {−∞}

as the set of left interval bounds and

R−ϵ = {r,r− : r ∈ R} ∪ {+∞}

as the set of right interval bounds. We further define

R±ϵ = R+ϵ ∪ R−ϵ = {r,r − ,r+ : r ∈ R} ∪ {−∞,+∞}
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Figure 3.1: Univariate polynomials

and introduce the following notation which is used from now on instead of the standard
interval notation:

[−∞, b−] = (−∞,b)
[−∞, b] = (−∞,b]

[−∞,+∞] = (−∞,+∞)

[a+, b−] = (a,b)

[a+, b] = (a,b]

[a+,+∞] = (a,+∞)

[a, b−] = [a,b)

[a, b] = [a,b]

[a,+∞] = [a,+∞)

for a,b ∈ R, a < b, so that every interval ∅ ≠ I ∈ I can be written in the form I = [a,b]
for a,b ∈ R±ϵ. We also define

[aψa,bψb] = ∅ for a,b ∈ R, a > b or a = b ∧ (ψa = + ∨ ψb = −)

Using this notation we can define the functions leftBound and rightBound which
extract the bounds of intervals:

leftBound :I⇀ R+ϵ, ∅ 7→ ⊥, [a,b] 7→ a

rightBound :I⇀ R−ϵ, ∅ 7→ ⊥, [a,b] 7→ b

We call interval bounds x ∈ R closed and x ∈ R±ϵ \ R open. We also define

πR : R±ϵ ⇀ R, x 7→

{
⊥ for x ∈ {−∞,+∞}
r if x ∈ {r − , r, r+} for some r ∈ R
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as the real component of an interval bound. Furthermore we define an order < and
≤ on R±ϵ as follows:

aψa < bψb :⇔ a < b ∨ (a = b ∧ (ψa,ψb) ∈ {(−,∅), (−,+), (∅,+)})
aψa ≤ bψb :⇔ aψa < bψb ∨ (a = b ∧ ψa = ψb)

for a,b ∈ R, ψa,ψb ∈ {−,∅,+} where ∅ stands for the omission of a symbol + or −. Note
that ∅ does not denote an empty set in this context. Furthermore −∞ < a < +∞
and −∞ ≤ a ≤ +∞ for all a ∈ R±ϵ \ {−∞,+∞}.

Intuitively, we expand the real numbers so that r+ (r−) is a number greater
(smaller) than r ∈ R but smaller (greater) than any other real number which is
greater (smaller) than r.
Using the introduced notation we define:

Definition 3.1.1 (Gap-less Intervals). For two intervals I and J we define
I ⊂⊃ J such that:
If I = ∅ or J = ∅ or rightBound(I) = +∞ or leftBound(J) = −∞, then:

I ⊂⊃ J :⇔ false

If not first case and both rightBound(I) and leftBound(J) are open:

I ⊂⊃ J :⇔
(
πR(rightBound(I)) > πR(leftBound(J))

)
If not first case and one or both of rightBound(I) and leftBound(J) are closed:

I ⊂⊃ J :⇔
(
πR(rightBound(I)) ≥ πR(leftBound(J))

)

We also define the relation ⊂⊃ > on intervals I and J such that:

I ⊂⊃ > J :⇔ I ⊂⊃ J ∧ rightBound(J) > rightBound(I)

The case distinction for closed and open intervals bounds is necessary to ensure in
Definition 3.1.2 below, that the real-valued components of interval bounds is even then
covered by at least one of the intervals, if both of their respective bound are open and
thus do not include its bounds. The relations ⊂⊃ and ⊂⊃ > are not symmetrical. Also
note that neither the condition I ⊂⊃ J nor I ⊂⊃ > J are sufficient for two intervals I
and J to intersect. However this definition is useful to make the following definition
and observations, which we then use to formulate a conflict generalization:

Definition 3.1.2 (Ordered Covering). A list I1, . . . , Im is called an ordered
covering, if

• leftBound(I1) = −∞,

• rightBound(Im) = +∞ and

• Ii ⊂⊃ Ii+1 holds for every i = 1, . . . ,m− 1.
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The list is called a strong ordered covering, if

• leftBound(I1) = −∞,

• rightBound(Im) = +∞ and

• Ii ⊂⊃ > Ii+1 holds for every i = 1, . . . ,m− 1.

Lemma 3.1.1. For a (strong) ordered covering I1, . . . ,Im, it holds that
⋃m

i=1 Ii = R.

Proof. Let I1, . . . ,Im be an ordered covering. We proof by in-
duction that I1 ∪ . . . ∪ In = [−∞,maxi=1,...,n rightBound(Ii)] for all
n = 1, . . . ,m. Note that for non-strong ordered coverings, the equality
maxi=1,...,n rightBound(Ii) = rightBound(In) does not necessarily hold true for
all n = 1, . . . ,m.

Base Case

It holds I1 = [leftBound(I1),rightBound(I1)] = [−∞,maxi=1 rightBound(Ii)].

Induction Step

Let n ∈ {1, . . . ,m − 1} such that I1 ∪ . . . ∪ In = [−∞,maxi=1,...,n rightBound(Ii)].
Because In ⊂⊃ In+1 is not false we know that (at least) the weak relation
πR(rightBound(In)) ≥ πR(leftBound(In+1)) holds. If the strong relation holds, then
In ∩ In+1 ̸= ∅ and because I1 ∪ . . . ∪ In = [−∞,maxi=1,...,n rightBound(Ii)] it then
also holds that I1∪ . . .∪ In∪ In+1 = [−∞,maxi=1,...,n,n+1 rightBound(Ii)]. Otherwise
it holds that

b := πR(rightBound(In)) = πR(leftBound(In+1))

and at least one of rightBound(In) and leftBound(In+1) is closed.
Then

[−∞, rightBound(In+1)] = [−∞,b−] ∪ [b,b]︸︷︷︸
b∈In or b∈In+1

∪[b+ ,rightBound(In+1)]

⊆ (I1 ∪ . . . ∪ In) ∪ (In ∪ In+1) ∪ In+1

= I1 ∪ . . . ∪ In+1

Because already I1 ∪ . . . ∪ In = [−∞,maxi=1,...,n rightBound(Ii)] and
sup (I1 ∪ . . . ∪ In) = maxi=1,...,n rightBound(Ii) it then also holds that
I1 ∪ . . . ∪ In+1 = [−∞,maxi=1,...,n+1 rightBound(Ii)].
By induction we have thus shown, that

I1∪. . .∪Im = [−∞, max
i=1,...,m

rightBound(Ii)] = [−∞,rightBound(Im)] = [−∞,+∞] = R

Because a strong ordered covering is especially also an ordered covering, we have
shown both cases.

Theorem 3.1.2. A finite set U of intervals covers R, i.e.
⋃

I∈U I = R, if and only
if there exist m ∈ {1, . . . ,|U |} and an injective function I : {1, . . . ,m} 7→ U such that
I(1), . . . ,I(m) is an ordered covering.
This equivalence also holds for strong ordered coverings.
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Proof. Let U be a finite set of intervals which covers R. Let U ′ ⊆ U be a subset of U
that still covers R but such that no strict subset U ′′ ⫋ U ′ covers R. Then for every
I ∈ U ′ there exist a point x(I) ∈ R that is only covered by I and no other interval
in U ′. The function x : U ′ → R is thus injective. Let I : {1, . . . ,m} → U such that
{I(1), . . . ,I(m)} = U ′ and such that

x(I(1)) < x(I(2)) < . . . < x(I(m))

We show that I(1), . . . ,I(m) is a strong ordered covering.
For i > 1 it holds that x(I(1)) /∈ I(i). Thus, for leftBound(I(i)) = −∞ to hold,
it must follow that rightBound(I(i)) < x(I(1)). But then x(I(i)) < x(I(1)) which
is a contradiction. Therefore it holds for all i > 1 that leftBound(I(i)) ̸= −∞.
But because U ′ is a finite set of intervals which cover R for at least one J ∈ U ′ it
holds that leftBound(J) = −∞. Therefore it follows that leftBound(I(1)) = −∞.
Analogously it holds that rightBound(I(i)) = +∞⇔ i = m.
Assume there exist i = 1, . . . ,m− 1 such that I(i)��⊂⊃ I(i+ 1).
Then πR(rightBound(I(i))) ≤ πR(leftBound(I(i+ 1))) and there ex-
ists x ∈ [πR(rightBound(I(i))),πR(leftBound(I(i+ 1)))] such that
rightBound(I(i)) < x < leftBound(I(i+ 1)) and thus x /∈ I(i) ∪ I(i+ 1). Be-
cause however the intervals in U ′ cover R, there must be an j ∈ {1, . . . ,m} \ {i,i+ 1}
such that x ∈ I(j). W.l.o.g. assume j < i. Then we get

leftBound(I(j)) ≤ x(j) < x(i) ≤ rightBound(I(i)) < x ≤ rightBound(I(j))

and thus x(i) ∈ I(j) which is a contradiction. Our assumption is false and for all
i = 1, . . . ,m− 1 it holds that I(i) ⊂⊃ I(i+ 1). Because for i = 1, . . . ,m− 1 it also holds
that

leftBound(I(i)) ≤ x(I(i)) ≤ rightBound(I(i)) < x(I(i+ 1)) ≤ leftBound(I(i+ 1))

and especially rightBound(I(i)) < rightBound(I(i + 1)), it then also follows
I(i) ⊂⊃ >I(i+ 1) for all i = 1, . . . ,m − 1. Altogether we get that I(1), . . . ,I(m) is
a (strong) ordered covering of R. Together with proof for Lemma 3.1.1 we have
therefore shown Theorem 3.1.2 to be true.

We have shown an equivalent condition under which a set of intervals covers the
real numbers. In general, for a given set of (multivariate) constraints c1, . . . ,cm, we
find the intervals for assignments for y in which one of ci, . . . ,cm is not satisfied given
an assignment s for x. If those intervals cover R, shown by checking Theorem 3.1.2, we
know that x 7→ s is not part of a solution for c1, . . . ,cm. In case of Example 3.1.1, which
presents an univariate instance, this already proofs that it is unsatisfiable because
these intervals do not depend on variable assignments for other variables than y. In
general however, this is not the case and the bounds of those intervals and even their
“structure” or “type” might change.

Example 3.1.2. Consider the constraint c ≡ xy2 + 3y > 0. If we fix the assignment
x 7→ s we get for t ∈ R:

JcKx 7→s,y 7→t
= false⇔


t ∈ [−∞,− 3

s−] ∪ [0 + ,+∞] for s > 0

t ∈ [0 + ,+∞] for s = 0

t ∈ [0 + ,− 3
s−] for s < 0
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Note that the sets T (c,s) := {t ∈ R : JcKx 7→s,y 7→t
= false} can take on (only) three

different “types”, depending on sample s, namely [−∞,− 3
s−] ∪ [0 + ,+∞], [0 + ,+∞]

or [0 + ,− 3
s−]. This leads us to the following observation:

For a conflict in c1, . . . ,cm and sample s, we know that

¬∃t ∈ R.

t
m∧
i=1

ci

|x 7→s,y 7→t

⇔ R =

t ∈ R :

t
m∧
i=1

ci

|x 7→s,y 7→t

= false


=

m⋃
i=1

{
t ∈ R : JciK

x 7→s,y 7→t
= false

}
=

m⋃
i=1

T (ci,s)

We also observe that each set T (ci,s) can always be expressed as a union of three or
less intervals. (For details see Section 3.2.) When certain side conditions are met by
(other) samples s′, the formulas that describe T (ci,s′) or T (ci,s) do not change (see
example above). We therefore want to encode samples s′ for which the sets T (ci,s′)
covers R (based on the definition of an ordered covering). We also want to encode
said side conditions in a formula. This formulas is a conflict generalization.
In the following section, we first formalize the notion of formulas for the sets T (ci,s′)
and the “type” of these sets.

3.2 Type of a constraint and a sample
Consider a normalized constraint c ≡ p ∼ 0 ≡ ay2 + by + c ∼ 0 ∈ CS[x1, . . . ,xn,y],
∼∈ REL, a,b,c ∈ POL[x1, . . . ,xn] where we again fix a variable assignment
x 7→ s, s ∈ Rn. Let again

T (c,s) = {t ∈ R : JcKx 7→s,y 7→t
= false} ⊆ R

be the set of all assignments for y for which c is not satisfied (given the fixed assignment
x 7→ s). Note that

t ∈ T (c,s)⇔ ¬JcKx 7→s,y 7→t ⇔ sgn
(
JpKx 7→s,y 7→t

)
∈ S

for some fixed set S ⊂ {−1,0,+1} depending on the relation ∼. Because the function
f : R→ R, t 7→ JpKx 7→s,y 7→t is a polynomial and thus continuos, it holds that f is sign-
invariant in (some) intervals whose bounds are −∞, +∞ or a zero t0 ∈ R,f(t0) = 0
of f . It holds that T (c,s) is a union of intervals whose bounds are −∞, +∞ or a
zero t0 ∈ R,JpKx 7→s,y 7→t0 = 0 of p. As we have discussed in Section 3.1, we want
to describe the set T (c,s) using a formula that depends on the sample s. Zeros of a
quadratic polynomials can naturally be described by using square root expressions we
have introduced in Section 2.5. To define intervals whose bounds are parameterized
and evaluated by an assignment x 7→ s, we thus use elements from SqrtEx as defined
in Definition 2.5.1 as bounds of these intervals. We defined elements from SqrtEx
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as words in a formal language. We also define these intervals as such words. To
differentiate “proper” intervals from those parametrized intervals defined below, we
hereinafter call the latter symbolic intervals.

As we want to be able to describe open and closed intervals we define SqrtEx−ϵ,
SqrtEx+ϵ, SqrtEx±ϵ similarly to R−ϵ, R+ϵ, R±ϵ:

SqrtEx+ϵ = {s,s+ : s ∈ SqrtEx} ∪ {−∞}

SqrtEx−ϵ = {s,s− : s ∈ SqrtEx} ∪ {+∞}

SqrtEx±ϵ = SqrtEx+ϵ ∪ SqrtEx−ϵ

and with that:

Definition 3.2.1 (Symbolic Intervals). Let Isym denote the set of all symbolic
intervals:

Isym = {[a,b] : a ∈ SqrtEx+ϵ, b ∈ SqrtEx−ϵ} ∪ {∅}

We may notate R ∈ Isym instead of [−∞,+∞] ∈ Isym.
We also define

Isym =

∞⋃
n=1

{I1 ∪ . . . ∪ In : I1, . . . ,In ∈ Isym}

as the closure of symbolic intervals under the (symbolic) operator ∪. Note that
Isym ⊂ Isym.

We still need a way to evaluate square root expressions and symbolic interval
bounds and symbolic intervals under a given assignment. For that we extend Defini-
tion 2.3.2 which defines the evaluation of polynomials and formulas:

Definition 3.2.2 (Evaluation of Square Root Expressions and Symbolic Inter-
vals). We call JξKα the evaluation of ξ ∈ (FO ∪ POL ∪ SqrtEx±ϵ ∪ Isym) under
assignment α ∈ ASS where

J·K· : (FO ∪ POL ∪ SqrtEx±ϵ ∪ Isym)×ASS ⇀ (B ∪ R±ϵ ∪ I)

such that for every assignment α:

• JξKα is defined as in Definition 2.3.2 for ξ ∈ (FO ∪ POL)

• J−∞Kα = −∞

• J+∞Kα = +∞

•
r

p+q
√
r

s

zα

=
JpKα+JqKα

√
JrKα

JsKα ∈ R ∪ {⊥},

where
r

p+q
√
r

s

zα

= ⊥ when JsKα = 0 or JrKα < 0.

• JaKα = JsKαψ for a = sψ ∈ SqrtEx±ϵ, a ∈ SqrtEx, ψ ∈ {−,∅,+},
where JaKα = ⊥ when JsKα = ⊥
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• J[a,b]Kα = [JaKα,JbKα] for [a,b] ∈ Isym \ {∅},
where J[a,b]Kα = ⊥ when JaKα = ⊥ or JbKα = ⊥

• J∅Kα = ∅

• JI1 ∪ . . . ∪ InKα = JI1K
α ∪ . . . ∪ JInKα for (I1 ∪ . . . ∪ In) ∈ Isym,

where JI1 ∪ . . . ∪ InKα = ⊥ when JIiK
α
= ⊥ for a i = 1, . . . ,n

Similarly to non-symbolic intervals we define:

leftBound : Isym ⇀ SqrtEx+ϵ, ∅ 7→ ⊥, [a,b] 7→ a
rightBound : Isym ⇀ SqrtEx−ϵ, ∅ 7→ ⊥, [a,b] 7→ b

πSqrtEx : SqrtEx±ϵ ⇀ SqrtEx, x 7→

{
⊥ for x ∈ {−∞,+∞}
e if x ∈ {e− ,e,e+} for some e ∈ SqrtEx

With that we can formalize the sets denoted by T from above as unions of symbolic
intervals.

Definition 3.2.3 (Type of a Constraint). Let c ≡ ay2+by+c ∼ 0 ∈ CS[x1, . . . ,xn,y]
be a normalized constraint. Let z = − c

b , z
′
1 = −b−

√
b2−4ac
2a and z′2 = −b+

√
b2−4ac
2a .

We then define:

• T∅(c) = ∅

• TR(c) = [−∞,+∞]

• T(1,1)(c) = [z,z]

• T(1,2)(c) = [−∞,z−] ∪ [z + ,+∞]

• T(1,3)(c) = [−∞,z−]

• T(1,4)(c) = [−∞,z]

• T(1,5)(c) = [z + ,+∞]

• T(1,6)(c) = [z,+∞]

• T(2,1)(c) = [z′1,z
′
1] ∪ [z′2,z

′
2]

• T(2,2)(c) = [−∞,z′1−] ∪ [z′1 + ,z′2−] ∪ [z′2 + ,+∞]

• T(2,3)(c) = [−∞,z′1−] ∪ [z′2 + ,+∞]

• T(2,4)(c) = [−∞,z′1] ∪ [z′2,+∞]

• T(2,5)(c) = [z′1 + ,z′2−]

• T(2,6)(c) = [z′1,z
′
2]
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We say that a pair (c,s), where c is a constraint and s a sample, has type TX
if {t ∈ R : JcKx 7→s,y 7→t

= false} = JTX(c)Kx7→s. Note that the above indices may
indicate in some cases whether the polynomial is linear or quadratic but otherwise
have no inherit function or meaning other than to differentiate between different
types.

Lemma 3.2.1. Every constraint/sample-pair (c,s) has at a type as defined in Defi-
nition 3.2.3.

The proof of Lemma 3.2.1 is a direct result of Lemma 3.2.2 (see below).
Given a conflict in constraints c1, . . . ,cm and sample s, we want to assign each pair

(ci,s) a type T (ci,s) ∈ {T∅, . . . ,T(2,6)}. This type shall be a description of assignments
y 7→ t for which JciK

x 7→s,y 7→t
= false. This collection of types is then used to construct

a conflict generalization. As mentioned previously we also want to find a side condition
sc(ci,s) for which this description T (ci,s) does not change, i.e.

(∀s′ ∈ Θ(sc(ci,s)).(ci,s′) has type T (ci,s)) and s ∈ Θ(sc(ci,s))
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Table 3.1 shows for a normalized constraint
c ≡ p ∼ 0 ≡ ay2 + by + c ∼ 0 ∈ CS[x1, . . . ,xn,y] and a sample s ∈ Rn an assignment
of a type and a side condition to (c,s) which fulfills the above stated requirement.
Assign the unique type t and side condition sc from the row corresponding to the
relation symbol ∼∈ REL to (c,s) such that JscKx 7→s

= true. Then (c,s) has type t.
Here D is defined as the discriminant b2 − 4ac.

Lemma 3.2.2. Let c ≡ p ∼ 0 ≡ ay2 + by + c ∼ 0, a,b,c ∈ Pol[x1, . . . ,xn] be a (nor-
malized) constraint and s ∈ Rn a sample.

(i) Exactly one side condition sc in the row of Table 3.1 corresponding to ∼ is
satisfied by assignment x 7→ s.

(ii) For every (x 7→ s′) ∈ Θ(sc) (especially s = s′) it holds, that (c,s′) has the type
TX corresponding to the column of ∼ and sc

For any p ∈ {a,b,c,D} (see Table 3.1) obviously exactly one of Jp ∼ 0Kx 7→s for
∼ ∈ {< , = , >} (or ∼ ∈ {≤ , >} etc.) holds. Thus, (i) holds true. Informally
speaking, because (univariate) polynomials are continuous, their graph must cross
the x-Axis for them to change their sign. Thus, in studying the zeros of univariate
polynomials of degree at most two by applying simple algebraic rearrangements and
formulas for solving linear and quadratic equations as they are taught in highschool,
one can derive the entries of Table 3.1 easally (albeit somewhat tedious). We omit a
formal proof of lemma 3.2.2 here.

Note that in some cases the constraint takes on the same type for very different
“reasons”. For example if ∼ is ̸= it takes on type T∅ if either p is constant and non-zero
in y or if p is quadratic and has no zeros (D < 0). As discussed in the introduction of
this chapter we ultimately want to construct a conflict generalization that generalizes
to different samples for which a “similar” conflict exists. As mentioned above, the
restriction to descriptions of “similar” conflicts is useful for finding a balance between
the size of the set of the described samples and the algorithmic complexity of the
construction of the generalization. Moreover, by reducing the complexity of these side
conditions we also reduce the complexity of conflict generalizations which depend on
them. Any algorithm analyzing them thus gains efficiency doing so. Therefore, while
we could use the whole formula in the cell corresponding to ̸= and T∅, we choose only
one of the disjuncts, namely the one that is satisfied by the given pair (c,s). Therefore
we get for c ≡ p ∼ 0 ≡ ay2+ by+ c ̸= 0 and a sample s ∈ Rn the following assignment
to a type t and a side condition:

(T (p ̸= 0,s),sc(p ̸= 0,s)) :=



(T∅,a = 0 ∧ b = 0 ∧ c ̸= 0) if Ja = 0 ∧ b = 0 ∧ c ̸= 0Kx 7→s
= true

(T∅,a ̸= 0 ∧D < 0) if Ja ̸= 0 ∧D < 0Kx7→s
= true

(TR,a = 0 ∧ b = 0 ∧ c = 0) if Ja = 0 ∧ b = 0 ∧ c = 0Kx 7→s
= true

(T(1,1),a = 0 ∧ b ̸= 0) if Ja = 0 ∧ b ̸= 0Kx 7→s
= true

(T(2,1),a ̸= 0 ∧D ≥ 0) if Ja ̸= 0 ∧D ≥ 0Kx 7→s
= true

where D = b2 − 4ac ∈ POL[x1, . . . ,xn]. We define T (c,s) and sc(c,s) analogously for
all other relation symbols ∼. T (c,s) and sc(c,s) are always well-defined and

(∀s′ ∈ Θ(sc(ci,s)).(ci,s′) has type T (ci,s)) and s ∈ Θ(sc(ci,s))



28 Generalizing conflicts in real-arithmetic quadratic formulas

Convention 3. For a constraint c and sample s, T (c,s) ∈ {T∅, . . . ,T(2,6)} defines a
type of (c,s). Therefore (T (c,s))(c) defines the (symbolic) union of the corresponding
symbolic intervals as they are “generated” by the type and the constraint. To increase
readability we hereinafter often shorten (T (c,s))(c) to simply T (c,s) if it is obvious
from the context if either the type or the symbolic intervals are meant to be represented.

3.3 Conflict generalization
In Section 3.1 we defined relations ⊂⊃ (and ⊂⊃ >) to define (strong) ordered coverings
of R by intervals. In this section we define for symbolic intervals I and J the formula
I ⊂⊃ sym J with which we construct a formula whose solution encodes a ordered
covering by the evaluated symbolic intervals used to construct it.

Definition 3.3.1 (Gap-less Symbolic Intervals). For two symbolic intervals I
and J we define the formula I ⊂⊃ sym J such that:
If I = ∅ or J = ∅ or rightBound(I) = +∞ or leftBound(J) = −∞, then:

I ⊂⊃ sym J :≡ false

If not first case and both rightBound(I) and leftBound(J) are open:

I ⊂⊃ sym J :≡ (r > l)[πSqrtEx(rightBound(I)) � r][πSqrtEx(leftBound(J)) � l]

If not first case and one or both of rightBound(I) and leftBound(J) are closed:

I ⊂⊃ sym J :≡ (r ≥ l)[πSqrtEx(rightBound(I)) � r][πSqrtEx(leftBound(J)) � l]

Lemma 3.3.1. Let I1, . . . ,Im be symbolic intervals such that leftBound(I1) = −∞
and rightBound(Im) = +∞. It then holds for any full assignment α of I1, . . . ,Im that

t
m−1∧
i=1

(Ii ⊂⊃ sym Ii+1)

|α

⇔ JI1K
α
, . . . ,JImKα is an ordered covering

For the proof of this lemma we use the fact that for square root expressions s and
t and an assignment α for s and t it holds that

J(r ≥ l)[s � r][t � l]Kα ⇔ JsKα ≥ JtKα and
J(r > l)[s � r][t � l]Kα ⇔ JsKα > JtKα

We omit a formal proof of this fact here, however this result can be shown by applying
substitution rules found in [Cor10], some algebraic rearrangements, simple transfor-
mations by equivalences and the fact that the Virtual Substitution, although not
formally but effectively, allows us to change the order of (i) evaluation of square root
expressions and (ii) combination of those with relations.
From this equivalence it also follows for symbolic intervals I and J and an assignment
α for I and J that

JI ⊂⊃ sym JKα ⇔ JIKα ⊂⊃ JJKα

Utilizing this fact, we proof Lemma 3.3.1:
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Proof. Let I1, . . . ,Im be symbolic intervals such that leftBound(I1) = −∞ and
rightBound(Im) = +∞ and an assignment α such that

r∧m−1
i=1 (Ii ⊂⊃ sym Ii+1)

zα

.
It then follows:

t
m−1∧
i=1

(Ii ⊂⊃ sym Ii+1)

|α

⇔
m−1∧
i=1

JIi ⊂⊃ sym Ii+1K
α ⇔

m−1∧
i=1

JIiK
α ⊂⊃ JIi+1K

α

Because leftBound(JI1K
α
) = JleftBound(I1)K

α
= J−∞Kα = −∞ and

rightBound(JImKα) = JrightBound(Im)Kα = J+∞Kα = +∞, it then follows that
JI1K

α
, . . . ,JImKα is an ordered covering iff

r∧m−1
i=1 (Ii ⊂⊃ sym Ii+1)

zα

(see Defini-
tion 3.1.2).

With the theoretical foundations laid out, we can now construct for a conflict in
constraints c1, . . . ,cm and a sample s a conflict generalization φ as follows:
Let I(i,1), . . . ,I(i,ki) ∈ Isym, ki ≤ 3 so that T (ci,s) = I(i,1) ∪ . . . ∪ I(i,ki) for i = 1, . . . ,m.
First we show that

⋃m
i=1

⋃ki

j=1

q
I(i,j)

yx7→s
= R. By definition of a conflict, it holds

that ¬∃t ∈ R. J
∧m

i=1 ciK
x 7→s. Let t ∈ R be arbitrary. Then there is a i = 1, . . . ,m such

that JciK
x7→s,y 7→t

= false. Thus, t ∈ JT (ci,s)K
x7→s

=
r⋃ki

j=1 I(i,j)

zx 7→s

and especially

t ∈
⋃m

i=1

⋃ki

j=1

q
I(i,j)

yx 7→s (see Section 3.2). Because choice of t ∈ R was arbitrary, we
get
⋃m

i=1

⋃ki

j=1

q
I(i,j)

yx 7→s
= R. From Theorem 3.1.2 we then know, that there exist an

injective function π : {1, . . . ,o} 7→ {(1,1), . . . ,(1,k1),(2,1), . . . ,(2,k2), . . . ,(m,km)} such
that

q
Iπ(1)

yx 7→s
, . . . ,

q
Iπ(o)

yx 7→s is an strong ordered covering.
Then we construct a conflict generalization as follows:

φ ≡

 m∧
i=1

∃t.∃r.(i,r)=π(t)

sc(ci,s)

 ∧
(

o−1∧
i=1

Iπ(i) ⊂⊃ sym Iπ(i+1)

)

The formula φ only includes those side conditions associated with one or more of its
included symbolic intervals via their respective constraint.

Theorem 3.3.2. φ is a conflict generalization, i.e. (x 7→ s) ∈ Θ(φ) and

∀α ∈ Θ(φ).¬∃t ∈ R.

t
m∧
i=1

ci

|α[t/y]

Proof.

First step: show (x 7→ s) ∈ Θ(φ)

Because
q
Iπ(1)

yx 7→s
, . . . ,

q
Iπ(o)

yx7→s is a (strong) ordered covering, it

holds according to Lemma 3.3.1, that
s
o−1∧
i=1

Iπ(i) ⊂⊃ sym Iπ(i+1)

{α

. Also

note that leftBound(Iπ(1)) = −∞ and leftBound(Iπ(o)) = +∞. It also holds
(x 7→ s) ∈ Θ(sc(ci,s)) for every i = 1, . . . ,m and especially for every i = 1, . . . ,m such
that ∃t.∃r.(i,r) = π(t) (see Lemma 3.2.2 and Section 3.2).
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Thus:

(x 7→ s) ∈ Θ


 m∧

i=1
∃t.∃r.(i,r)=π(t)

sc(ci,s)

 ∧ (o−1∧
i=1

Iπ(i) ⊂⊃ sym Iπ(i+1)

) = Θ(φ)

Second step: show ∀α ∈ Θ(φ).¬∃t ∈ R.J
∧m

i=1 ciK
α[t/y]

Let α ∈ Θ(φ) be arbitrary. Because Vars(φ) ⊆ {x1, . . . ,xn} we may assume with-
out loss of generality, that α = (x 7→ s′) for some s′ ∈ Rn. Because α ∈ Θ(φ) holds, it
especially holds that α = (x 7→ s′) ∈ Θ(sc(ci,s)) for all i = 1, . . . ,m, ∃t.∃r.(i,r) = π(t).
Lemma 3.2.2 then states that (ci,s

′) has type T (ci,s). Also, because α ∈ Θ(φ), it es-
pecially holds

t
o−1∧
i=1

Iπ(i) ⊂⊃ sym Iπ(i+1)

|α

⇒
q
Iπ(i)

yα ⊂⊃
q
Iπ(i+1)

yα

for i = 1, . . . ,o− 1.
As we have mentioned above, it holds that leftBound(Iπ(1)) = −∞
and rightBound(Iπ(o)) = +∞. Therefore, according to Theorem 3.1.2,q
Iπ(1)

yα
, . . . ,

q
Iπ(o)

yα is an ordered covering and
⋃o

i=1

q
Iπ(i)

yα
=

q⋃o
i=1 Iπ(i)

yα
= R.

Then especially J
⋃m

i=1 T (ci,s)K
α
= R. Because we have shown above that (ci,s

′) has
type T (ci,s) for i = 1, . . . ,m, ∃t.∃r.(i,r) = π(t), i.e.

{t ∈ R : JciK
x7→s′,y 7→t

= false}

={t ∈ R : JciK
α[t/y]

= false}

and because J
⋃m

i=1 T (ci,s)K
α
= R, it then follows that ¬∃t ∈ R.J

∧m
i=1 ciK

α[t/y].
Because the choice of α ∈ Θ(φ) was arbitrary, we get
∀α ∈ Θ(φ).¬∃t ∈ R.J

∧m
i=1 ciK

α[t/y] thus proving Theorem 3.3.2.

Because some of the terms sc(ci,s) and Iπ(i) ⊂⊃ sym Iπ(i+1) of φ may be constant
and because Θ(φ) ̸= ∅, we can refine the construction of the proposed conflict gener-
alization as follows:

φ ≡

 m∧
i=1

∃t.∃r.(i,r)=π(t)
Vars(sc(ci,s)) ̸=∅

sc(ci,s)

 ∧
 o−1∧

i=1
Vars(Iπ(i) ⊂⊃ symIπ(i+1))̸=∅

Iπ(i) ⊂⊃ sym Iπ(i+1)


Also note that the terms Iπ(i) ⊂⊃ sym Iπ(i+1) are comprised of multiple constraints (see
substitution rules in [Cor10]) and thus we may refine φ even further by eliminating
constant constraints.

Theorem 3.3.2 only ensures that there exist a conflict generalization of the form from
above. In the next sections we discuss an heuristic for the complexity of (those)
formulas and how to find one conflict generalization with optimal, or at least “close”
to optimal, complexity as given by our heuristic.
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Convention 4. In the following sections and chapters, if not otherwise mentioned,
all referrals to conflict generalizations refer to conflict generalizations of the (refined)
form as given by the construction above.

3.4 Heuristics on complexity
In the previous section we have shown a construction of a conflict generalization.
This construction depends on a selection of some constraints and some symbolic
intervals corresponding to those constraints and is therefore not (necessarily) a unique
conflict of this form. Because this conflict generalization is further analyzed, there is
an incentive to choose a conflict generalization which minimizes the time spend on
analyzing it.

The complexity of the framework, in which our conflict generalization algorithm
operate in, necessitates such a selection to be based on a model for the complexity
or the cost of a conflict generalization as it would be practically infeasible, not to
mention computationally expensive by itself, to generate a conflict generalization
which is guaranteed to minimize this computing time. Therefore we have to make
some assumptions and simplifications, which may be to some degree inaccurate or at
least approximative, in order to derive a sensible model:

Let F be the closure of constraints under ∧ and ∨. Note that a conflict general-
ization lies in F . We will only define costs for formulas in F and not for all formulas
in FO.

A model or a heuristic for the complexity of formulas in F is then a function cost
that maps from formulas in F to some set of possible costs C on which a total order
is defined as to ascertain a conflict generalization φ∗ such that

cost(φ∗) = min
confl.gen.φ

cost(φ)

Because there is only a finite number of conflict generalizations, minconfl.gen.φ cost(φ)
is then well defined.

In computer science, the “costs” of mathematical objects are traditionally repre-
sented or modelled as numbers, more specifically often as (non-negative) integers.
This has some advantages:

• Computers and programming languages are optimized for the representation of
and calculations with numbers.

• It represents in many cases the most obvious and most easily understandable
model of costs.

• For most problems, there is a sensible way to combine sub-solutions or candi-
dates for parts of a solution such that the assigned cost of those parts may be
added to get the costs of the combined solution. The order axiom a ≤ b =⇒
a+ c ≤ b+ c holds, which enables said partition.

We show below that the assumptions we make for our heuristic are not compatible
with a cost model based on integers or, even more generally, numbers in R. However,
because preserving the last of the aforementioned advantages is especially reasonable
in order to partition the resulting problem, for now we “relax” the condition that cost
maps to C = R and only require the set C of costs to be a totally ordered commutative
monoid (see “tomonoid” in [Whi99]) of which R is a special case.
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Definition 3.4.1 (Totally Ordered Commutative Monoid). A totally ordered
commutative monoid is a set M together with a binary operation + on M and a
binary relation ≤ on M such that:

• ( associativity) (a+ b) + c = a+ (b+ c) for all a,b,c ∈M

• ( identity element) There is an element 0 ∈M such that 0 + a = a+ 0 = a
for all a ∈M .

• ( commutativity) a+ b = b+ a for all a,b ∈M

• ( reflexivity) a ≤ a for all a ∈M

• ( transitivity) a ≤ b ∧ b ≤ c =⇒ a ≤ c for all a,b,c ∈M

• ( anti-symmetry) a ≤ b ∧ b ≤ a =⇒ a = b for all a,b ∈M

• ( strong connectivity) a ≤ b ∨ b ≤ a for all a,b ∈M

• ( order axiom/ translational invariance) a ≤ b =⇒ a + c ≤ b + c for all
a,b ∈M

Note that the corresponding strict order <

a < b :⇔ a ≤ b ∧ a ̸= b

is implicitly defined.

We also define for a monoid element m and n ∈ N:

0 ·m = 0

n ·m = m+ . . .+m︸ ︷︷ ︸
n times

3.4.1 Assumptions on the heuristic
It is self-evident that a formula f ∈ F should not be associated with negative costs.
Moreover, it should be assigned no costs, i.e. cost(f) = 0, when the truth value of f
is constant for any given assignment and if this can be ascertained easily:

Assumption 1. For f ∈ F it holds cost(f) ≥ 0 and cost(f) = 0 if f is a constraint
with normalized form p ∼ 0 where p is a constant polynomial.

Since a constraint is eventually converted to its normal form and because the
relation of a constraint does have an insignificant impact on its costs compared to the
importance of its polynomial, we state this assumption:

Assumption 2. For two constraints c1 and c2 which have the same polynomial in
their normalized form, i.e. p ∼i 0 is the normalized form of ci, i = 1,2 for a (fixed)
polynomial p, it holds cost(c1) = cost(c2).

Consider a conflict generalization φ. Note that φ is a conjunction of side condi-
tions and comparisons of symbolic interval bounds both of which may be considered
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“atomic” parts of a any and especially of the optimal conflict generalization of this
form. Given the advantages of the use of numbers as the base of a cost model, as stated
above, it is therefore reasonable to make the following assumption on our heuristic:

Assumption 3. For f1,f2 ∈ F it holds cost(f1 ∧ f2) = cost(f1) + cost(f2).

It is not obvious as to how cost(f1∨f2) should be evaluated when already requiring
Assumption 3. There are certain properties both cost(f1∧f2) and cost(f1∨f2) should
have that might inform a choice, them being:

• cost(f1 ⊕ f2) = cost(f2 ⊕ f1) for all f1,f2 ∈ F , ⊕ ∈ {∧,∨}

• For ⊕ ∈ {∧,∨} there should be a function h⊕ : C × C → C such that cost(f1 ⊕
f2) = h⊕(cost(f1), cost(f2)) for all f1,f2 ∈ F

Also, informally, cost(f1 ∨ f2) should be computationally easy to compute, just
as cost(f1 ∧ f2) is computationally easy to compute. Note that we assume here the
addition to be easily computable. Moreover, for any f1,f2,g ∈ F it should hold that
cost(g) is much greater than cost(f1 ∨ f2) if and only if cost(g) is much greater than
cost(f1∧f2). Below we show what “much greater” means in this context. In conclusion
it is therefore not unreasonable to simplify our model with this following assumption:

Assumption 4. For f1,f2 ∈ F it holds cost(f1 ∨ f2) = cost(f1) + cost(f2).

As mentioned above, the most determining factor for the complexity of formulas
are the (normalized) polynomials they contain, mainly their degree. This has such
an impact on their complexity that we require for f1,f2 ∈ F that if f1 contains a
polynomial of higher degree than any polynomial contained in f2, that cost(f1) >
cost(f2) no matter what other properties f1 and f2 might have, e.g. number of
constraints or Boolean structure. However, a degree of a (multivariate) polynomial
depends on a choice of a variable (see Section 2.4). Moreover, the maximum degree(s)
of a polynomial is not the only factor determining its cost (cost(p) := cost(p ∼ 0) for
any relation ∼). Also the number of variables in each degree and also the order of
elimination of variables (in the context of this chapter assumed to be y,xn, . . . ,x1) are
relevant, if only to a lesser significance. We codify the above considerations in the
notion of ranks:

Definition 3.4.2 (Rank). For a polynomial p and k ∈ N0 define

#deg (p,k) := |{i : deg(p,xi) = k}|

We say that a polynomial p is of higher rank than a polynomial q (written
p >rnk q) if

• ∃k. #deg (p,k) > #deg (q,k) ∧ ∀k̂ > k. #deg
(
p,k̂
)
= #deg

(
q,k̂
)

or

• ∀k. #deg (p,k) = #deg (q,k)∧
(∃j. deg(p,xj) > deg(q,xj) ∧ ∀ĵ > j. deg(p,xĵ) = deg(q,xĵ))

Furthermore we say that a polynomial p is of higher rank-class than a polynomial
q (written p≫rnk q) if
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• ∃k. #deg (p,k) > #deg (q,k) = 0 ∧ ∀k̂ > k. #deg
(
p,k̂
)
= #deg

(
q,k̂
)
= 0

or

• ∀k. #deg (p,k) = #deg (q,k) ∧
(∃j. deg(p,xj) > 0 = deg(q,xj) ∧ ∀ĵ > j. deg(p,xĵ) = deg(q,xĵ) = 0)

Note that p ≫rnk q implies p >rnk q. For a formula f define Poly(f) as the set
of all polynomials contained in f , i.e.:

• Poly(p ∼ q) = {r : r is the normalized form of p − q} for polynomials p,q
and relation ∼

• Poly(g1 ⊕ g2) = Poly(g1) ∪ Poly(g2) for g1,g2 ∈ F , ⊕ ∈ {∧,∨}

Then define >rnk and ≫rnk for formulas f1,f2 ∈ F as follows:

f1 >
rnk f2 :⇔ ∃p ∈ Poly(f1).∀q ∈ Poly(f2).(p >rnk q)

f1 ≫rnk f2 :⇔ ∃p ∈ Poly(f1).∀q ∈ Poly(f2).(p≫rnk q)

We then require the following:

Assumption 5. For polynomials p1, p2 with p1 <
rnk p2 it holds

cost(p1 ∼1 0) < cost(p2 ∼2 0) for every relation ∼1 and ∼2.
For f1,f2 ∈ F with f1 ≪rnk f2 it holds cost(f1) < cost(f2).

Lemma 3.4.1. Let f1,f2 ∈ F . If f1 contains a polynomial which has one variable
whose degree is higher than the degree of every variable in every polynomial contained
in f2, then f1 ≫rnk f2:(

∃p ∈ Poly(f1).∃i.∀q ∈ Poly(f2).∀j.deg(p,xi) > deg(q,xj)
)
⇒ f1 ≫rnk f2

Then especially for polynomials p1 and p2 with maxi deg(p1,xi) > maxi deg(p2,xi), it
follows p1 ≫rnk p2.

Proof. Let f1,f2 ∈ F , p ∈ Poly(f1) and i such that for all q ∈ Poly(f2) and j it holds
that k := deg(p,xi) > deg(q,xj). Then #deg (p,k) ≥ 1 > 0 = maxq∈Poly(f2) #deg

(
q,k̂
)

for every k̂ ≥ k. Thus, p≫rnk q for every q ∈ Poly(f2). Therefore f1 ≫rnk f2.

Assumptions 1 to 5 all seem to be reasonable restrictions and simplifications to
inform a choice of a cost model. As mentioned above, these assumptions are not
compatible with C ⊆ R:

Lemma 3.4.2. Let cost : F → C be a cost-model. C is the set (the totally ordered
commutative monoid) of cost-values. Then C ⊈ R.

Proof. Assume C ⊆ R. Let f1 ≡ (x1 > 0), f2 ≡ (x21 > 0). By Assumption 1 it holds
mi := cost(fi) > 0 for i = 1,2. By Assumption 3 it holds for n ∈ N:

cost

(
n∧

i=1

f1

)
=

n∑
i=1

cost(f1) =
n∑

i=1

m1 = nm1
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By Assumption 5 and Lemma 3.4.1 it then holds for all n ∈ N:

nm1 = cost

(
n∧

i=1

f1

)
< cost(f2) = m2

But because m1,m2 > 0 this is a contradiction. Thus, our assumption stated above
is false and C ⊈ R.

Informally speaking, this proof works analogously to rule out any commutative
monoid C which doesn’t allow for some sort of “infinities” in respect to its ordering,
i.e. it rules out every totally ordered monoid C for which no two elements m1,m2 > 0
exist such that

∑n
i=1m1 < m2 for every n ∈ N. To be more precise: For every cost

model which satisfies Assumption 1 to 5, the underlying totally ordered commutative
monoid must satisfy the following definition:

Definition 3.4.3 (Infinity-Class-System). Let (M, + , ≤) be a totally ordered
commutative monoid for which we define [·] :M → P(M) such that for m ∈ M
it holds that [m] is the smallest set (intersection of all sets) T such that:

• m ∈ T

• ∀a ∈M. ∀b ∈ T.
(
∧ a ≤ b ∧ (∃n ∈ N. n · a ≥ b ∨ a ≥ n · b)⇒ a ∈ T
a ≥ b ∧ (∃n ∈ N. n · a ≤ b ∨ a ≤ n · b)⇒ a ∈ T

)
We call [m] the infinity-class for m ∈ M . We call (M, + , ≤) an infinity-class-
system if for every m ∈M there exist m′ ∈M such that m′ ≥ m and [m′] ̸= [m].

Let in this section (M,+ , ≤) be an arbitrary infinity-class-system.

Lemma 3.4.3. [·] partitions M in equivalence classes, i.e. For m′,m ∈M :

m′ ∈ [m]⇔ [m′] = [m]

Proof. Let m′ ∈ [m] for m ∈ M . Then there exist ∼1,∼2∈ {≤,≥}, ∼1 ̸=∼2 and
n ∈ N such that m′ ∼1 m and n ·m′ ∼2 m or m′ ∼2 n ·m. But exactly then it also
holds m ∈ [m′]. Then both [m] and [m′] are the smallest sets T such that m ∈ T
and m′ ∈ T and such that the second condition from Definition 3.4.3 holds. Thus,
[m] = [m′].

Now let m′,m ∈ M such that [m′] = [m]. By definition m′ ∈ [m′] and thus
m′ ∈ [m] = [m′] holds.

Lemma 3.4.4. infinity-classes are sign-invariant.

Proof. Let m ∈M and assume there exist a,b ∈ [m] such that a ≤ 0 ≤ b. Then there
exist n ∈ N such that n · a ≥ b or a ≥ n · b. But from the order axiom and it follows
a ≤ 0 ≤ b that n · a ≤ b and a ≤ n · b. Thus, this is a contradiction.

Lemma 3.4.5. infinity-classes are intervals, i.e. for a,b ∈ [m] and a ≤ m′ ≤ b it
holds that m′ ∈ [m].

Proof. Let m,m′ ∈ M , a,b ∈ [m] such that a ≤ m′ ≤ b. There exist n ∈ N such that
n · a ≥ b or a ≥ n · b. From the order axiom and from the transitivity of ≤ it then
also follows n ·m′ ≥ b or m′ ≥ n · b respectively. Thus, m′ ∈ [m] by second condition
from Definition 3.4.3.
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Lemma 3.4.6. infinity-classes are closed under addition.

Proof. Let m ∈ M , a,b ∈ [m]. Because ≤ is strongly connected we may assume
w.l.o.g. that a ≤ b. From the order axiom we know c := a + b ≤ b + b =: b′ and
c := a+ b ≥ a+ a =: a′.
case 1: a ≥ 0
Then also b ≥ 0 by Lemma 3.4.4. it holds 2 · c = a+ a+ b+ b ≥ 0 + 0+ b+ b = b′ by
the order axiom. Thus, by the second condition in Definition 3.4.3 it holds c ∈ [b′].
Because 0 ≤ b ≤ 2 · b =: b′ and 3 · b ≥ 2 · b = b′ it also holds b ∈ [b′]. Thus, by
Lemma 3.4.3 it holds [b′] = [b] = [m] and thus a+ b = c ∈ [m].
case 1: a ≤ 0
Then also b ≤ 0 by Lemma 3.4.4. it holds 2 · c = a+ a+ b+ b ≤ a+ a+0+0 =: a′ by
the order axiom. Thus, by the second condition in Definition 3.4.3 it holds c ∈ [a′].
Because 0 ≥ a ≥ 2 · a = a′ and 3 · a ≤ 2 · a = a′ it also holds a ∈ [a′]. Thus, by
Lemma 3.4.3 it holds [a′] = [a] = [m] and thus a+ b = c ∈ [m].

Lemma 3.4.7. Let m1,m2 ∈M , [m1] ̸= [m2]. It either holds for all a1 ∈ [m1], a2 ∈
[m2] that a1 < a2 or it holds for all a1 ∈ [m1], a2 ∈ [m2] that a1 > a2. We notate
this with [m1] < [m2] or [m1] > [m2] respectively.

Proof. Let m1,m2 ∈ M . Let a1, a2 ∈ [m1], a2, b2 ∈ [m2]. Assume a1 ≤ a2 and
b1 ≥ b2.
case 1: a2 ≤ b1
Then a1 ≤ a2 ≤ b1 and thus by Lemma 3.4.5 it holds a2 ∈ [m1]. By Lemma 3.4.3 it
then holds [m1] = [m2].
case 2: a2 ≥ b1
Then b2 ≤ b1 ≤ a2 and thus by Lemma 3.4.5 it holds b1 ∈ [m2]. By Lemma 3.4.3 it
then holds [m1] = [m2].

Definition 3.4.4 (Valid Cost Model). A cost-model which satisfies all Assump-
tions 1 to 5 is called valid.

Lemma 3.4.8. Let cost : F → C be a valid cost model. Then C is an infinity-class-
system.

Proof. Let cost : F → C be a valid cost model and assume C not to
be an infinity-class-system. Then there exist finitely many pairwise different
M1, . . . ,Mn ∈

⋃
m∈C{[m]} such that [0] =M1 < . . . < Mn (see Lemma 3.4.7). There

thus exist T ∈ {1, . . . ,n} such that maxf∈F [cost(f)] = MT . Let f ∈ F such that
cost(f) ∈ MT . W.l.o.g. we assume f not to be constant and define polynomial
p and variable x such that deg(p,x) = maxp′∈Poly(f) maxx′∈Vars(f) deg(p

′,x′). Let
p′ := p+xdeg(p,x)+1 and f ′ ≡ (p′ > 0). Because of our assumption [cost(f ′)] ̸> [cost(f)]
holds. However, because p′ ≫rnk p (see Lemma 3.4.1) and thus cost(f ′) > cost(f)
(by Assumption 5), it follows from Lemma 3.4.7 that [cost(f ′)] ̸< [cost(f)]. Thus,
[cost(f ′)] = [cost(f)].
Because all costs in a valid cost model are positive and because cost(f ′) > cost(f),
it then follows from [cost(f ′)] = [cost(f)], from the order axiom and from the second
condition in Definition 3.4.3 that there exist k ∈ N such that k · cost(f) ≥ cost(f ′).
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Let g =
∧k

i=1 f . By Assumption 3 it holds cost(g) = n · cost(f) ≥ cost(f ′). But be-
cause f ≪rnk f ′ (see Lemma 3.4.1), also g ≪rnk f ′ thus implying cost(g) < cost(f ′) by
Assumption 5. This is a contradiction. Therefore C has to be an infinity-class-system.

3.4.2 The cost model

Building upon the rank of polynomials as defined by <rnk in the previous subsection,
we define in this subsection a cost model which is compliant with Assumptions 1 to 5,
i.e. valid.

For any two polynomials p and q in variables x1, . . . ,xn their relative order with
respect to <rnk is equivalent to the relative order of the tuples

tr = (#deg (r,K) , #deg (r,K − 1) , . . . , #deg (r,0) , deg(r,xn), deg(r,xn−1), . . . , deg(r,x1))

for r ∈ {p,q} where K = min{k ∈ N0 : ∀l > k.#deg (p,l) = #deg (q,l) = 0} with
respect to a lexicographic ordering.

Note that the length of the tuples, which are constructed as above corresponding
to polynomials, varies. Also note that #deg (p,k) = 0 for all polynomials p and
sufficiently big k ∈ N. Thus, we can modify this representation by using sequences
(ai)i∈N ⊂ N0 with finitely many non-zero entries as shown below. Using tuples or
sequences to represent costs also naturally gives rise to an addition of them, namely
element-wise addition:

Definition 3.4.5 (The Cost Model). Let

C := {sequence (ai)i∈N ⊂ N0 : (ai)i∈N has finitely many non-zero entries}

Let the length of (ai)i∈N ∈ C be defined as

len ((ai)i∈N) = max ({0} ∪ {i ∈ N : ai ̸= 0})

Define addition on C as element-wise addition. We also define an order on C
such that

(ai)i∈N < (bi)i∈N :⇔ ∃i ∈ N. ai < bi ∧ ∀j > i. ai = bi

(ai)i∈N ≤ (bi)i∈N :⇔ (ai)i∈N < (bi)i∈N ∨ (ai)i∈N = (bi)i∈N

The cost of a polynomial p (over variables x1, . . . ,xn) is then defined as
cost(p) := (ai)i∈N ∈ C such that

• ai = deg(p,xi) for i ∈ {1, . . . ,n} and

• an+i+1 = #deg (p,i) for i ∈ N0.

The cost of a formula in F is then inductively defined as follows:

• cost(p ∼ q) = cost(r) where r is the normalized form of p − q, for all
polynomials p and q

• cost(f1 ∧ f2) = cost(f1 ∨ f2) = cost(f1) + cost(f2)



38 Generalizing conflicts in real-arithmetic quadratic formulas

Theorem 3.4.9. Definition 3.4.5 defines a valid cost model.

Proof.

In the context of this proof we use a ∈ C as short-hand notation for (ai)i∈N ∈ C.

C is a totally ordered commutative monoid

The properties of element-wise addition, namely associativity, commutativity and
the existence of a zero element (0 = (0)i∈N), can be derived from the respective
counterpart of the standard addition on N0. Obviously the relation ≤ as defined
above is reflexive. Let a, b, c ∈ C such that a ≤ b ∧ b ≤ c. If a = b or b = c then
clearly a ≤ b. Otherwise a < b ∧ b < c. Then there exist i,j ∈ N such that

ai < bi ∧ ∀k > i. ak = bk

and
bj < cj ∧ ∀k > j. bk = ck

Thus
amax{i,j} < cmax{i,j} ∧ ∀k > max{i,j}. ak = ck

and therefore a < c. Thus, < and ≤ are transitive.
Let a,b ∈ C such that a ≤ b ∧ b ≤ a. Assume a ̸= b. Then a < b ∧ b < a. Thus, there
exist i,j ∈ N such that

ai < bi ∧ ∀k > i. ak = bk

and
bj < aj ∧ ∀k > j. bk = ak

which is a contradiction. Thus, a = b. Therefore ≤ is anti-symmetric.
Let a,b ∈ C, a ̸= b. let I = {i ∈ N : ai ̸= bi}. Because both a and b only have finitely
many non-zero entries, I must have a maximum imax. Thus,

aimax
̸= bimax

∧ ∀k > imax. ak = bk
⇒ aimax < bimax ∧ ∀k > imax. ak = bk

∧ aimax > bimax ∧ ∀k > imax. ak = bk
⇒ a < b ∨ a > b

Thus, ≤ is strongly connected.
≤ inherits the order axiom from the standard relation ≤ on N0: Let a,b,c ∈ C.
Because ai ∼ bi if and only if ai + ci ∼ bi + ci for ∼∈ {<,=} and every i ∈ N and
because addition on C is defined element-wise, the order axiom holds for the relation
≤ on C.
Thus, C is a totally ordered commutative monoid.

Assumptions 1 to 4

The proofs for Assumptions 1 to 4 are either a direct result from the definition of
the cost function or are fairly obvious and will not expanded upon here.

Assumption 5
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Let p, q be polynomials such that p <rnk q. Then let
K = min{k ∈ N0 : ∀l > k. #deg (p,k) = #deg (q,l) = 0}. Let

tr = (#deg (r,K) , . . . , #deg (r,0) , deg(r,xn), . . . , deg(r,x1))

for r ∈ {p,q}. Then tp is smaller than tq w.r.t. a lexicographic order. Thus, by
construction of cost and relation < on C, it also holds that cost(p) < cost(q).
Let f1,f2 ∈ F such that f1 ≪rnk f2. Let p2 ∈ Poly(f2) such that q ≪rnk p for all
q ∈ Poly(f1). Let c(1) := maxq∈Poly(f1) cost(q) and some p1 ∈ Poly(f1) such that
c(1) = cost(p1). Because C defines a totally ordered abelian monoid, c(1) is well-
defined. Let n be the number of constraints in the formula f1. Because f1 might
contain two constraints whose normalized forms have the same polynomial, it holds
that n ≥ |Poly(f1)|. Then, by the additive property of costs and the order axiom, we
get cost(f1) ≤ n ·maxq∈Poly(f1) cost(q) = n · c(1). We also get because p2 ∈ Poly(f2),
that cost(f2) ≥ cost(p2) =: c(2).

Because p1 ≪rnk p2 there exist, by construction of cost, a j ∈ N such that

c
(2)
j > 0 = c

(1)
j ∧ ∀l > j. c

(2)
l = c

(1)
l = 0

and thus

c
(2)
j > 0 = (n · c(1))j ∧ ∀l > j. c

(2)
l = (n · c(1))l = 0

Therefore we have

cost(f1) ≤ n · c(1) < c(2) ≤ cost(f2)

thus proving Assumption 5 to hold for this cost model.

Altogether it then holds that this cost model is valid. From Lemma 3.4.8 we can
derive further that C is an infinity-class-system.

Note that we have so far only discussed the cost of formulas in the context of the
computational complexity of analyzing it further. A good heuristic for the overall cost
of a conflict generalization should however also include considerations about the size,
e.g. the volume as defined by the Lebesgue-measure, of the space of assignments for the
variables x1, . . . ,xn which are excluded from any possible solution to the conjunction
of the given constraints by the conflict generalization. What constitutes a “good”
conflict generalization should consider both its complexity as done by our model and
this space of assignments. Even tough we did not mention it explicitly, our cost model
takes the latter consideration into account. A polynomial with lower degrees in its
variables also has less zeros, thus (in most cases) bigger sign-invariant regions. As
we are optimized for low degrees, we, in effect, optimize (heuristically) also for bigger
such regions. Any other more accurate method of estimation for the size of this (high-
dimensional) space would in practice be very difficult, that is to say computationally
expensive. Thus, the use of the cost model defined in this section may, in extreme
cases, result in conflict generalizations which only cover a single point, the sample
which was given. This however should be fairly rare.



40 Generalizing conflicts in real-arithmetic quadratic formulas

3.5 Conflict generalization as an optimization prob-
lem

In the following sections we want to mathematically describe the algorithmic problem
of finding a conflict generalization given a valid cost model (over an infinity-class-
system) and a conflict in constraints c1, . . . ,cm in sample s and propose algorithms to
do so. We consider three kinds of problems: decision problems, search problems and
optimization problems. A decision problem is a problem in which a yes/no question is
stated about specific input instances. A search problem’s goal is to find a substructure
of a given structure that satisfies certain properties. An optimization problem is a
search problem in which each solution is assigned a cost or a weight. The goal of an
optimization problem is then to find an optimal solution, meaning a solution to its
underlying search problem which has minimal costs. In Section 3.4 we have defined an
infinity-class-system as the base for a cost model. We also use infinity-class-systems as
the base for the optimization problems in the following sections. We therefore further
define for an optimization problem a relaxed version whose goal it is to find a solution
to its underlying search problem such that the cost of the solution is class-optimal,
meaning in the same infinity-class as the cost obtained by an optimal solution.

Complexity classes such as P and NP, which represent the notion of the “hard-
ness” of problems, are normally only applied to decision problems. In the context of
this thesis we define an optimization problem to be hard, if its corresponding decision
problem “Given an instance and a cost c, does a solution exist with costs c∗ ≤ c?” is
NP-hard. Furthermore we define an optimization problem to be efficiently computable
or easy if a polynomial time algorithm exist that generates an optimal solution to a
given instance. Likewise we define the relaxed optimization problem to be hard if
the corresponding decision problem “Given an instance and a cost c, does a solution
exist with costs c̄ such that [c̄] ≤ [c]?” is NP-hard and efficiently computable or
easy if a polynomial time algorithm exist that generates a class-optimal solution to
a given instance. Unless P = NP, easy and hard are mutually exclusive terms. We
can proof a (relaxed) optimization problem to be hard, if we can show that there is
a reduction from a know NP-hard decision problem to the decision version of the
(relaxed) optimization problem.

With those terms introduced we want to describe the problem of conflict general-
ization.

In Section 3.3 we found a description of possible conflict generalizations for which
we defined a cost function in Section 3.4. Hence, our goal is to find a conflict general-
ization of this form which minimizes said cost. We want to define this problem more
precisely:

Definition 3.5.1 ((relaxed)-ConflictGeneralization). ConflictGen-
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eralization is an optimization problem. Given an instance

c1, . . . ,cm; s : conflict in constraints c1, . . . ,cm and sample s
with elimination variable y
(C,+ , ≤) : infinity-class-system
cost : F → C a valid cost model

a solution to ConflictGeneralization is a conflict generalization of the form
as described in Section 3.3. An optimal solution is a conflict generalization φ∗

such that
cost(φ∗) = min

confl.gen.φ
cost(φ)

A class-optimal solution is a conflict generalization φ̄ such that

cost(φ̄) ∈
[

min
confl.gen.φ

cost(φ)
]

The problem of finding a class-optimal solution to ConflictGeneralization
is called relaxed-ConflictGeneralization.

Theorem 3.5.1. ConflictGeneralization is hard. ConflictGeneralization
is even then hard, if we fix a valid cost-model or only allow a subset of all valid
cost-models as parts of instances.

Theorem 3.5.1 shows us that even a clever choice of a cost-model does not make
the problem easy (unless P = NP).

In the remainder of this section, Theorem 3.5.1 is proven. In Section 3.6 algorithms
to both the relaxed and the non-relaxed version of ConflictGeneralization are
presented, the second of which operates in polynomial time, thus proving relaxed-
ConflictGeneralization to be easy.

We proof Theorem 3.5.1 by reducing a known NP-hard problem to the deci-
sion problem of ConflictGeneralization (with arbitrary cost-model). For this
reduction we use a variant of SAT:

Definition 3.5.2 (At-most-3SAT(2L)). At-most-3SAT(2L) is a decision
problem. Given a Boolean formula f in conjunctive normal form such that each
clause has at most three literals and each literal appears at most twice in f , it
asks whether f is satisfiable, i.e. whether an assignment to its variables exist
such that f evaluates to true under this assignment.

By applying [LO1] on page 259 of [MRG79] we know At-most-3SAT(2L) to
be NP-hard. For an instance f of At-most-3SAT(2L) and an arbitrary valid
cost-model we want to construct in polynomial time an instance I of ConflictGen-
eralization and a cost w such that

f is satisfiable ⇔ ConflictGeneralization has a solution to I with costs ≤ w

thus proving the reduction.
Before we present the proposed reduction, we first present some proofs and defi-

nitions that simplify the proof for the proposed reduction:
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Let cost be an arbitrary (allowed) cost-model over an infinity-class-system (W,+ , ≤).
Let x and y be real-arithmetic variables. Let

L : Z× {≤,≥} → CS, (α, ∼) 7→ (y − α ∼ 0)

Q : Z× Z× N0 × {≤,≥} → CS, (α,β,k, ∼) 7→ (xk(y − α)(y − β) ∼ 0)

L = L(Z× {≤,≥}) ⊂ CS
Q = Q(Z× Z× N0 × {≤,≥}) ⊂ CS
C = L ∪Q

Let sample s = 1 ∈ R1. Because we only use the sample s = 1 in this section, we omit
it in formulas (e.g. we write J·K instead of J·Kx7→s or T (c) instead of T (c,s) to get the
type of a constraint). We construct an instance of ConflictGeneralization only
using constraints in C and sample s = 1. Let

TL =
⋃
c∈L
{I1, . . . ,Ik ∈ Isym : T (c) = I1 ∪ . . . ∪ Ik}

TQ =
⋃
c∈Q
{I1, . . . ,Ik ∈ Isym : T (c) = I1 ∪ . . . ∪ Ik}

T = TL ∪ TQ

Lemma 3.5.2. For all I,J ∈ T it holds cost(I ⊂⊃ sym J) = 0

Proof. Let L := L(α, ∼) ∈ L be arbitrary. Obviously T (L) = [−∞,α] or T (L) =
[α,+∞]. Thus, all symbolic interval bounds in TL are constant.

Let Q := Q(α,β,k, ∼) ∈ Q be arbitrary. As mentioned in Section 3.2 the bounds
of the symbolic intervals of T (Q) must be an (on x dependant) assignment for y such
that the polynomial xk(y − α)(y − β) of Q evaluates to 0. The normalized forms of
the zeros of this polynomial must be α and β (since we have sample s = 1 ̸= 0 for
x). Thus, all symbolic interval bounds in TQ must have a constant normalized form.
Therefore I ⊂⊃ sym J = πSqrtEx(rightBound(I)) (≥) πSqrtEx(leftBound(J)) must have a
constant normalized form for I,J ∈ T = TL ∪TQ. By applying Assumption 1 to 4 we
then get cost (I ⊂⊃ sym J) = 0 for all I,J ∈ T .

Therefore if we construct an instance of ConflictGeneralization only using
constraints in C, we don’t have to account for the cost of the terms · ⊂⊃ sym · in any
solution. The cost of a solution is thus fully given by the cost of the side condition
terms. Note that the cost of side conditions of constraints in L must be constant and
thus have 0 cost. Lets define cost(p) := cost(p ∼ 0) for every polynomial p and an
arbitrary relation ∼ (see Assumption 2). Let ωk = cost(xk) for k ∈ N0. Note that by
Assumption 1 w0 = 0 holds. By Assumption 2 it holds cost(αxk) = cost(xk) = ωk for
all k ∈ N0 and all constant α ∈ Z. Note that by Assumption 5 [ω0] < [ω1] < . . . must
hold.

Lemma 3.5.3. For Q := Q(α,β,k, ∼) ∈ Q it holds that cost(sc(Q)) = ω2k + ωk.

Proof. Let Q := Q(α,β,k, ∼) ∈ Q. We use notation p ↔ q for polynomials p and q
to indicate that they have the same normalized form. For formulas f and g we use
notation f ↔ g to indicate that g can be constructed out of f by replacing polynomials
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and constraints with other polynomials or constraints which have the same normalizd
form. E.g.: xyx− 1 > 0 ∧ yx < 0↔ x2y > 1 ∧ xy < 0. Then it holds:

Q = Q(α,β,k, ∼)
= xk(y − α)(y − β) ∼ 0

↔
(
xk
)
y2 +

(
−xk(α+ β)

)
y +

(
xkαβ

)
∼ 0

Let a(x)y2 + b(x)y + c(x) ∼ 0 be the normalized form of Q. Then

a(x)↔ xk ∧ b(x)↔ −xk(α+ β) ∧ c(x)↔ xkαβ

For D(x) := b(x)
2 − 4a(x)c(x) it holds

D(x) = b(x)
2 − 4a(x)c(x)

↔
(
−xk(α+ β)

)2 − 4xkxkαβ

↔ x2k
(
α2 + 2αβ + β2

)
− 4x2kαβ

↔ x2k
(
α2 − 2αβ + β2

)
↔ x2k(α− β)2

Hence

cost(D(x)) = cost
(
x2k(α− β)2

)
= cost

(
x2k
)
= ω2k

and

cost(a(x)) = cost
(
xk
)
= ωk

Depending on ∼ {≠, >,≥}, Q has either type T(2,1), T(2,5) or T(2,6). Therefore we get
for some relation ∼′ (see Table 3.1, Assumption 3):

cost(sc(Q)) = cost(a(x) ∼′ 0 ∧D(x) ≥ 0)

= cost(a(x) ∼′ 0) + cost(D(x) ≥ 0)

= cost(a(x)) + cost(D(x))

= ωk + ω2k

Now we present the proposed reduction:
Let f be an instance of At-most-3SAT(2L) over Boolean variables z1, . . . ,zn. Let
C1, . . . ,Cm be the clauses of f represented as sets of literals z1, . . . ,zn,z̄1, . . . ,z̄n, i.e.
f =

∧m
i=1

∨
l∈Ci

l.
For each clause Ci define

pCi
= −i ∈ Z
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For each variable zi define

pzi = 7i

p(zi,1) = 7i− 6

p(zi,2) = 7i− 5

p(zi,3) = 7i− 4

p(z̄i,1) = 7i− 3

p(z̄i,2) = 7i− 2

p(z̄i,3) = 7i− 1

q(zi,1) =

{
0 if literal zi appears in no clause
pCj

Cj is the clause with the lowest index j in which literal zi appears

q(zi,2) =

{
0 if literal zi appears at most once in a clause
pCj Cj is the clause with the highest index j in which literal zi appears

q(zi,3) = pzi

q(z̄i,1) =

{
0 if literal z̄i appears in no clause
pCj

Cj is the clause with the lowest index j in which literal z̄i appears

q(z̄i,2) =

{
0 if literal z̄i appears at most once in a clause
pCj

Cj is the clause with the highest index j in which literal z̄i appears

q(z̄i,3) = pzi

Also define for each literal l constraints

c(l,1) = Q(p(l,1), q(l,1), 1, ̸=)

c(l,2) = Q(p(l,2), q(l,2), 1, ̸=)

c(l,3) = Q(p(l,3), q(l,3), 1, ̸=)

c(l,4) = Q(p(l,1), p(l,3), 2, >)

Let

M =

n⋃
i=1

{pzi} ∪ 3⋃
j=1

{
p(zi,j), p(z̄i,j), q(zi,j), q(z̄i,j)

} \ {0}
Note that {pC1 , . . . ,pCm} ⊂ M . Let γmin = minM , γmax = maxM . Define cmin =
L(γmin,≥) and cmax = L(γmax,≤). Let {v1, . . . ,v|M |} = M be an enumeration of M
such that γmin = v1 < v2 < . . . < v|M | = γmax. Then define for i = 1, . . . ,|M | − 1:
ci = Q(vi,vi+1, 0,≥). Let I be the instance of ConflictGeneralization with
all constraints as described above and a given (valid) cost-model. this instance is
constructable in polynomial time.

Lemma 3.5.4. f is satisfiable iff, given instance I, there exist a solution to Con-
flictGeneralization with cost n((w3 + w6) + 2(w1 + w2)) + n(w2 + w4) (or less).

Proof. Each interval [vi + ,vi+1−] is covered by (only) by constraint ci. Furthermore
intervals [−∞, v1] = [−∞, γmin] and [v|M |,+∞] = [γmax, + ∞] are covered (only)
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by constraints cmin and cmax respectively. Note that point 0 may be covered by
other constraints as well. Moreover the cost of constraints cmin,c1, . . . ,v|M |−1,cmax

are constructed to be zero. Therefore any solution to ConflictGeneralization to
the given instance I and its cost differs only to any other solution in the way how
points in M = {v1, . . . ,v|M |} are covered. It holds for all literals l (l = z or l = z̄ for
variable z) by construction:

T (c(l,1)) = [p(l,1),p(l,1)] ∪ [p(l,1),p(l,1)]

cost(sc(c(l,1))) = ω2 + ω1 ∈ [ω2]

T (c(l,2)) = [p(l,2),p(l,2)] ∪ [p(l,2),p(l,2)]

cost(sc(c(l,2))) = ω2 + ω1 ∈ [ω2]

T (c(l,3)) = [p(l,3),p(l,3)] ∪ [p(l,3),p(l,3)]

= [p(l,3),p(l,3)] ∪ [pz,pz]

cost(sc(c(l,3))) = ω6 + ω3 ∈ [ω6]

T (c(l,4)) = [p(l,1),p(l,3)]

cost(sc(c(l,4))) = ω4 + ω2 ∈ [ω4]

We show that every optimal solution to ConflictGeneralization encodes an as-
signment of variables z1, . . . ,zn of f and has costs of at least w∗ := n((w3 + w6) +
2(w1+w2))+n(w2+w4) and that a solution of ConflictGeneralization has costs
of exactly w∗ iff its corresponding assignment of variables z1, . . . ,zn is a solution to f .

Consider any variable zi and the point pzi . pzi is only covered by constraints c(zi,3)
and c(z̄i,3), therefore at least one of these constraints must be used to cover point pzi .
All other points which are covered by either c(zi,3) or c(z̄i,3), namely p(zi,3) and p(z̄i,3),
are also covered by other constraints, namely c(zi,4) and c(z̄i,4) respectively, which
have lower cost associated with them. Thus, in an optimal solution to Conflict-
Generalization exactly one of the constraints c(zi,3) or c(z̄i,3) is used to cover point
pzi at cost ω6 + ω3, thus encoding a variable assignment for variable zi. Hence every
optimal solution corresponds to an unique variable assignment of variables z1, . . . ,zn.
All points pz1 , . . . ,pzn are covered at cost n(ω6 + ω3) in an optimal solution.

Now consider a literal l of a variable zi. If c(l,3) is used to cover point pzi , then it
also covers point p(l,3) (at no “additional” cost).
Then it is always cheaper to cover points p(l,1) and p(l,2) by constraints c(l,1) and c(l,2)
respectively at cost 2(ω2 + ω1) instead of covering them by constraint c(l,4) at cost
ω4 + ω2. If however c(l,3) is not used to cover point pzi , then constraint c(l,4) must
be used to cover point p(l,3) which then also covers points p(l,1) and p(l,2).
Thus, any optimal solution has cost of at least n((w3+w6)+2(w1+w2))+n(w2+w4) =
w∗.
Let for an assignment Z ∈ Bn for variables z1, . . . ,zn:

S(Z) ={c(l,1),c(l,2),c(l,3) : literal l is true under assignment Z}
∪ {c(l,4) : literal l is false under assignment Z}
∪ {cmin,c1, . . . ,c|M |−1, cmax}

As shown above, any solution to ConflictGeneralization which uses all con-
straints in S(Z) (for an assignment Z ∈ Bn) already covers all points R\ (

⋃m
i=1{pCi

})
at cost w∗ = n((w3 + w6) + 2(w1 + w2)) + n(w2 + w4).
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Let f be satisfiable. Let Z ∈ Bn be a solution to f . Then for each clause Ci at least
one literal l ∈ Ci must evaluate to true under assignemnt Z, thus

∀i = 1, . . . ,m. ∃l ∈ Ci. ∃j = 1,2.
(
c(l,j) ∈ S ∧ c(l,j) covers point pCi

)
Thus, a solution to ConflictGeneralization which uses all constraints in S(Z)
for a solution Z ∈ Bn of f already covers every point on the number-line and because
we assume f to be satisfiable, there exist a solution to the constructed instance of
ConflictGeneralization with costs of exactly∑

c∈S(Z)

cost(sc(c))

=
∑

literal l

{
0 if literal l is false under Z
cost(sc(c(l,1))) + cost(sc(c(l,2))) + cost(sc(c(l,3))) otherwise

}
+
∑

literal l

{
0 if literal l is true under Z
cost(sc(c(l,4))) otherwise

}

+ cost(sc(cmin)) +

|M |−1∑
i=1

cost(sc(ci)) + cost(sc(cmax))︸ ︷︷ ︸
=0

=n((w3 + w6) + 2(w1 + w2)) + n(w2 + w4) = w∗

Note that the cost of terms of the form I ⊂⊃ sym J is zero as we have shown above,
thus the cost of these terms is not included in the calculation above! Thus, we have
shown that, if f is satisfiable, then there exist a solution to our constructed instance
of ConflictGeneralization with cost of at most (exactly) w∗.
Now let there exist a solution to ConflictGeneralization with cost of at most
(exactly) w∗. We derive that f is then satisfiable: Let φ be a solution to Con-
flictGeneralization with cost of at most (exactly) w∗. Note that the cost of any
solution to ConflictGeneralization isat leat w∗ as we have shown above, thus φ
must be an optimal solution. As such it encodes a variable assignment Z ∈ Bn which
we also have demonstrated above. As previously mentioned, any optimal solution
which encodes Z ∈ Bn must use at least all constraints in S(Z) to cover all points in
R \ (

⋃m
i=1{pCi}) at cost of at least w∗. But because the cost of φ is exactly w∗ and

because there is no contraint we have constructed which can cover points
⋃m

i=1{pCi
}

at no cost, we already know, that the constraints in S(Z) cover all points on the
real-number line, especially points pC1

, . . . ,pCm
. For that to be the case, each clause

Ci must have one literal l ∈ Ci which evaluates to true under assignment Z, so that
point pCi is already covered by a constraint. In other words: f is satisfiable and has
solution Z.
Altogether we have shown that f is satisfiable iff there is a solution to instance I of
cost of at most n((w3 + w6) + 2(w1 + w2)) + n(w2 + w4).

With this proof we have shown that an instance of At-most-3SAT(2L) can
be reduced to an instance of the decision problem of ConflictGeneralization.
To reiterate: Because At-most-3SAT(2L) is known to be NP-hard [MRG79], we
therefore have proven ConflictGeneralization to be hard (see Theorem 3.5.1).
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3.6 Non-local shortest path

In this section we want to rephrase, i.e. reduce, ConflictGeneralization to a
shortest path problem in a graph. However because ConflictGeneralization is
hard, we cannot reduce it to a “standard” shortest path problem that can be solved,
for example by Dijkstra’s algorithm[Dij59], in polynomial time. We therefore define
the following variation of the shortest path problem:

Definition 3.6.1 ((relaxed-)NonLocalIcsShortestPath). NonLocalIc-
sShortestPath is an optimization problem. Given an instance

P = (V,E,s,t,C,c,W,+ , ≤ ,wE ,wC)

where

• (V,E) is a finite directed acyclic graph (DAG) with vertices V and edges
E ⊆ V × V [BJG09]

• ς,τ ∈ V, ς ̸= τ such that there is a path from ς to τ

• C is a set of colors

• c : V → C is a color-label function for vertices

• (W,+ , ≤) is an infinity-class-system (ICS)

• wE : E →W assigns costs to edges

• wC : C →W assigns costs to colors

A solution to NonLocalIcsShortestPath is a path from ς to τ in (V,E).
A path p = (v1, . . . ,vk) in (V,E) is assigned the combined cost of its edges and of
the set of colors of its nodes:

w(p) =

(
k−1∑
i=1

wE(vi,vi+1)

)
+

 ∑
κ∈{c(v1),...,c(vk)}

wC(κ)


An optimal solution p∗ is an optimal path from ς to τ with respect to its cost, i.e.

w(p∗) = min
path p from ς to τ

w(p)

A class-optimal solution p̄ is a solution such that

w(p̄) ∈
[

min
path p from ς to τ

w(p)

]
The problem of finding a class-optimal solution to NonLocalIcsShortestPath
is called relaxed-NonLocalIcsShortestPath.

Theorem 3.6.1. ConflictGeneralization can be reduced to NonLocalIcsShort-
estPath. A solution p to NonLocalIcsShortestPath corresponds to a solution
φ to ConflictGeneralization. p is (class-)optimal iff φ is (class-)optimal in the
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reduction proposed below.

Proof. First we show how to find for a set of intervals an ordered covering by trans-
lating the problem into an instance of NonLocalIcsShortestPath. This approach
then can be used similarly for the purpose of reducing ConflictGeneralization:
Let U ⊂ I be a finite set of intervals which cover R. Let V = U ∪ {ς,τ} be nodes of a
graph where we define ς and τ to be some fresh symbols, i.e. ς,τ /∈ U . Now we create
a set of edges such that the resulting node encodes all ordered coverings which are
possible using intervals from U . Thus, let

E ={(I,J) ∈ U × U : I ⊂⊃ > J}
∪ {(ς,I) : I ∈ U, leftBound(I) = −∞}
∪ {(I,τ) : I ∈ U, leftBound(I) = +∞}

Note that every path from ς to τ in the Graph G = (V,E) corresponds to a unique
strong ordered covering and vice versa. Also note that because I ⊂⊃ > J implies
rightBound(J) > rightBound(I) for intervals I and J , that the graph G = (V,E) is a
directed acyclic graph. Thus, if we choose an arbitrary infinity-class-system, assign
arbitrary colors to all nodes and set all color- and edge-weights arbitrarily, we get
an instance of NonLocalIcsShortestPath where every strong ordered covering of R by
intervals in U corresponds to a unique solution of the problem and vice versa.
This technique is essentially the same for the reduction of an instance of Conflict-
Generalization to an instance of NonLocalIcsShortestPath. Let

c1, . . . ,cm; s : conflict in constraints c1, . . . ,cm and sample s
in variables x1, . . . ,xn,y and with elimination variable y
(C,+ , ≤) : infinity-class-system
cost : F → C a valid cost model ( (C,+ , ≤) is an infinity-class-system)

be an instance of ConflictGeneralization.
Define the set {c1, . . . ,cm} of constraints as a set of colors. For each constraint

ci obtain its unsatisfied symbolic intervals I1, . . . ,Ik under sample s, i.e. T (ci,s) =
I1 ∪ . . . ∪ Ik, as defined in Section 3.2 (see Table 3.1). Each of these intervals defines
a node in our constructed graph which we color according to their constraint. The
cost of a color is set to the cost of the side condition corresponding to the constraint
as obtained by Table 3.1. The nodes ς and τ are assigned a fresh color which has no
cost. Two symbolic intervals I and J share an edge if JIKx 7→s ⊂⊃ > JJKx 7→s is true.
Those edges can trivially be checked by an quadratic algorithm which iterates over
all pairs of intervals. Below we present a more efficient way of creating these edges,
but in the context of this proof this trivial method suffices. The cost of such an edge
is set to the cost of the formula I ⊂⊃ sym J . We also add two more nodes ς and τ
and edges (ς,I) for symbolic intervals I with leftBound(I) = −∞ and edges (I,τ) for
symbolic intervals I with rightBound(I) = +∞. These nodes and edges are assigned
zero cost.
Similarly to above, every path from ς to τ (and thus every solution to NonLocal-
IcsShortestPath) corresponds to a unique strong ordered covering of R by the
evaluated intervals from above (by sample s) and thus to a unique conflict general-
ization of the form as in Theorem 3.3.2 and vice versa. We can translate a solution
to NonLocalIcsShortestPath back to a solution of ConflictGeneralization
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by creating a conjunction of all side conditions to all constraints, i.e. colors, of nodes
traversed in the solution and also of all ⊂⊃ sym-formulas encoded in the edges of the
traversed path.

The overall cost of a solution to NonLocalIcsShortestPath is by design the
exact same cost of the corresponding solution to ConflictGeneralization. Thus,
a solution to ConflictGeneralization is (class-)optimal iff its corresponding solu-
tion to NonLocalIcsShortestPath is (class-)optimal, thus proving our theorem.

As mentioned in the proof above we want to find a more efficient way of finding
wether two nodes, i.e. symbolic intervals, in the constructed graph used for the
reduction share an edge than simply to just check every possible pair of symbolic
intervals. To do so we make the following observation for (non-symbolic) intervals I
and J :

I ⊂⊃ > J ⇒ leftBound(J) ≤ rightBound(I) < rightBound(J)

To find for a set M of intervals all pairs (I,J) ∈M ×M with I ⊂⊃ > J , we thus only
have to check pairs that obey this order. We therefore put all interval bounds in a list
and order them such that left bounds are always ordered before right bounds if they
are equal. We may then iterate though this list and by remembering over which left
bounds and which right bounds was iterated we find all candidates for these pairs.
This technique has worst-case time complexity which is quadratic, same as the trivial
technique described in the proof above. However its average time complexity should
be significantly less.
Altogether we sumerize the proposed reduction in Algorithm 1 and Algorithm 2.

Theorem 3.5.1 states that ConflictGeneralization is a hard optimization
problem. Thus, NonLocalIcsShortestPath must be hard as well as shown by The-
orem 3.6.1. However we show relaxed-NonLocalIcsShortestPath and therefore
also relaxed-ConflictGeneralization to be easy:

Theorem 3.6.2. relaxed-NonLocalIcsShortestPath is easy.

Proof. To proof Theorem 3.6.2 we make the following observation: Assume we can
construct a polynomial time algorithm that calculates for an instance of NonLocal-
IcsShortestPath a sub-graph of the given graph such that every path from ς to
τ , i.e. every solution, is class-optimal. Then trivially we can find a solution in this
sub-graph in polynomial time, e.g. by utilizing Dijkstra’s algorithm[Dij59], setting all
edge and vertex weights to zero. Furthermore, we know for any given path from ς to τ
with summed-up cost c in the problem graph that it is either a class-optimal solution
or that there exist a (class-optimal) path from s to t which traverses no edge and
no vertex whose associated (color-)cost is in [c] or greater than c. Therefore we may
construct such a subgraph by (1) creating a list of all edges and vertices and sorting
them according to their associated cost and (2) iteratively adding another edge or
vertex of minimal cost until there exist at least one solution which we may check
by utilizing Dijkstra’s algorithm as described above. Because sorting and Dijkstra’s
algorithm can be done in polynomial time, we can find a sub-graph with the desired
properties in polynomial time, thus proving our theorem.

Obviously the proposed algorithm in the above proof is not optimal in terms of its
runtime as it requires Dijkstra’s Algorithm[Dij59] to be run in each step. Therefore
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Algorithm 1: SolveConflictGeneralization
Input :

• Instance of ConflictGeneralization:

c1, . . . ,cm; s : conflict in constraints c1, . . . ,cm and sample s
with elimination variable y
(W,+ , ≤) : infinity-class-system
cost : F →W a valid cost model

• An Algorithm Algo which produces a solution to
NonLocalIcsShortestPath

Output: A conflict generalization
/* Define set C of colors (constraints and a “non-color”) */

1 C ← {c1, . . . , cm, 0C}
/* Define set V of nodes */

2 V ← {ς,τ}
3 for constraint ci do

/* Retreive intervals of the type of the constraint */

4 I(i,1) ∪ . . . ∪ I(i,ki) ← T (ci,s)
5 V ← V ∪ {I(i,1), . . . , I(i,ki)}
/* Assign nodes a color */

6 c[ς]← 0C , c[τ ]← 0C
7 for symbolic interval I(i,j) do
8 c[I(i,j)]← ci

/* Assign colors a cost */

9 wC [0C ]← 0
10 for constraints ci do
11 wC [ci]← cost(sc(ci,s))

/* Define edges from the start node and edges to the end node */

12 E ← {(ς,I(i,j)) : leftBound(I(i,j)) = −∞}
13 E ← E ∪ {(I(i,j),τ) : rightBound(I(i,j)) = +∞}

/* Define every pair of symbolic intervals which should constitute an

edge */

14 for ((
q
I(i1,j1)

yx 7→s
,
q
I(i1,j1)

yx 7→s
) ∈ FindPairs(V \ {s,t}) do

15 E ← E ∪ {(I(i1,j1),I(i2,j2))}
/* Assign each edge a cost */

16 for e = (ς,I(i,j)) ∈ E or e = (I(i,j),τ) ∈ E do
17 wE [e]← 0

18 for (I(i1,j1),I(i2,j2)) ∈ E do
19 wE [(I(i1,j1),I(i2,j2))]← cost(I(i1,j1) ⊂⊃ sym I(i2,j2))

/* Now we can construct an instance G of NONLOCALICSSHORTESTPATH for

which we produce a solution using ALGO */

20 G← (V,E,ς,τ,C,c,W,+ , ≤ ,wE ,wC)
21 p := (ς, I(i1,j1), . . . , I(iK ,jK), τ)← Algo(G)

/* Now we translate this path back to generate a conflict

generalization φ */

22 φ←

 m∧
i=1

∃j.I(i,j) in path p

sc(ci,s)

 ∧ (K−1∧
l=1

I(il,jl) ⊂⊃ sym I(il,jl+1)

)
23 return φ



Non-local shortest path 51

Algorithm 2: FindPairs
Input : Intervals I1, . . . ,In ∈ I
Output: Set P of all pairs (Ii1 , Ii2) such that Ii1 ⊂⊃ > Ii2
/* Create list off all interval bounds (and mark wether it is a left

interval bound or a right interval bound) */

1 L← (leftBound(I1), . . . ,leftBound(In), rightBound(I1), . . . ,rightBound(In))
/* Sort L in-place. Then left bounds are always ordered before right

bounds if they are otherwise equal */

2 inPlaceSort(L)
/* Initialize set of all found pairs */

3 P ← ∅
/* Initialize set of all “opened” and not yet “closed” intervals */

4 O ← ∅
/* iterate through bounds in ascending order */

5 for bound b in L in ascending order do
6 if b is left bound of some interval Ii then

/* “open” interval Ii */

7 O ← O ∪ {Ii}
8 if b is right bound of some interval Ii then

/* “close” interval Ii */

9 O ← O \ {Ii}
/* Every pair in the set O × {Ii} is a candidate */

10 for Ij ∈ O do
11 if Ij ⊂⊃ > Ii then
12 P ← P ∪ {(Ij ,Ii)}

13 return P
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we present Algorithm 3 which also reduces the graph of an instance of NonLocal-
IcsShortestPath so that every solution in the reduced graph is class-optimal and
it contains at least one solution.
For reasons we explore below, alltough finding an optimal solution to NonLocal-
IcsShortestPath cannot be done in polynomial time, it may be advantageous to
calculate an optimal solution. Therefore we can reduce the overall runtime, albeit
not making it polynomial, of an algorithm which finds an optimal solution by first
reducing the graph with Algorithm 3.

In this case we have another requirement for Algorithm 3, namely that it produces
a reduced graph in which not only every path is class-optimal, but which contains
every class-optimal solution of the original graph. Depending on the use-case we may
choose to execute or ignore Lines 21-24. This part of the algorithm ensures that the
reduced graph contains every class-optimal solution.

The main difference between the simple algorithm proposed in the proof to Theo-
rem 3.6.2 and Algorithm 3 lies in the way how we detect that a solution exists. Instead
of executing Dijkstra’s algorithm in each step, we store and continuously update a
set of all reachable nodes (starting from ς). This is done by recursively calling the
subroutine updateR (see Line 4) for each (newly) reachable node. Note that updateR,
when called on a node v, marks this node and that updateR is only ever called on
unmarked nodes. Thus, the recursion adds only linearly many calculation steps and
the runtime of Algorithm 3 is polynomial.
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Algorithm 3: ShrinkGraph
Input : Instance P = (V,E,ς,τ,C,c,W,+ , ≤ ,wE ,wC) of NonLocalIcsShortestPath
Output: Shrunk down Instace P ′ = (V ′,E′,ς,τ,C,c,W,+ , ≤ ,wE ,wC)
/* Create the (empty) subgraph (V ′,E′) */

1 V ′ ← ∅
2 E′ ← ∅
/* Also create a set R of all reachable nodes (all nodes v for which there exist

a path starting from ς to v in subgraph (V ′, E′ ∩ (V ′ ∩ V ′))) */

3 R← ∅
/* We define the following subroutine to update the set of all reachable nodes

*/

4 Subroutine updateR(node v):
5 R← R ∪ {v}
6 for (v,w) ∈ E′, w ∈ V ′, w /∈ R do
7 updateR(w)

/* Create a list of all nodes and edges of the original graph sorted by their

(color-)weight */

8 L← sortedList (V ∪ E)
/* Now add nodes and edges to V ′ and E′ until there is a path from ς to τ in the

graph (V ′, E′ ∩ (V ′ × V ′)) */

9 for l ∈ L (in ascending order) do
10 if l is an edge l = (v1,v2) then
11 E ← E ∪ {l}

/* Update reachable nodes */

12 if v1 ∈ R, v2 ∈ V ′, v2 /∈ R then
13 updateR(v2)

14 if l is a node then
15 V ′ ← V ′ ∪ {l}

/* Update reachable nodes */

16 if (∃v. v ∈ R and (v,l) ∈ E′) or l = ς then
17 updateR(l)

/* Is τ reachable? */

18 if τ ∈ R then
/* save current cost of l as the (current) maximum cost of any color or

edge added */

19 m← w(l) // w = wC ◦ c or w = wE depending on l ∈ V or l ∈ E

20 break

/* Now add all remaining edges and nodes to V ′ and E′ whose cost are in the same

infinity-class as m (or below in the case of m = wC(c(s))). This ensures that

the reduced graph not only contains only class-optimal solutions, but every

class-optimal solution. Depending on whether we want to find an optimal or

just a class-optimal solution, we thus may choose to ignore Lines 21-24 */

21 Resume iteration of l ∈ L from Line 9
22 if w(l) /∈ [m] and w(l) > m then // w = wC ◦ c or w = wE depending on l ∈ V or

l ∈ E

23 break

24 Apply steps 10 to 17 to l
/* We further restrict the generated subgraph to reachable nodes only */

25 V ′ ← R
26 E′ ← E′ ∩ (R×R)
27 return (V ′,E′,ς,τ,C,c,W,+ , ≤ ,wE ,wC)
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Because we have shown that a class-optimal solution of NonLocalIcsShort-
estPath is equivalent to a class-optimal solution to ConflictGeneralization and
because we have shown that relaxed-NonLocalIcsShortestPath is easy, we have
shown that relaxed-ConflictGeneralization is easy: A class-optimal solution
to MinimalOrderedCover can be computed efficiently in polynomial time.

As mentioned before, once we have reduced the graph we still have to find a path from
the start node to the end node. A naïve approach to this problem is simply to traverse
an arbitrary edge, beginning with the start node, until we have reached the end. If
we arrive at a dead-end we backtrack and try again with a different edge. However
the worst-case runtime of such an algorithm is exponential, thus rendering the whole
reduction step from above somewhat useless in terms of the desired (polynomial) run-
time. In another approach we might use Dijkstra’s algorithm to find a path as we have
described above. However we may use the actual costs associated with the nodes and
edges rather than setting them to zero. This has the added benefit that it searches
heuristically for less than arbitrary costly paths. Of course local and global optima
do not generally coincide in the given graph which is the base of greedy algorithms
such as Dijkstra’s algorithm, so this strategy might improve average costs while not
guaranteeing minimal costs. Because we know that the given (shrunk down) graph is
a DAG, we can modify Dijkstra’s Algorithm to optimize for this circumstance. We
use the fact that we can find a topological sorting [Knu97] of the nodes of any finite
directed acyclic graph:

Definition 3.6.2 (Topological Sorting). Let G = (V,E) be a finite directed
acyclic graph with vertices V and edges E ⊆ V × V . A topological sorting of
the nodes of G is an enumeration σ = (v1, . . . ,v|V |) of its nodes such that for
every edge (u,v) ∈ E it holds that u is listed before v in σ.

Lemma 3.6.3. Every finite directed acyclic graph has a topological sorting.

Proof. Let G = (V,E) be a finite directed acyclic graph. W.l.o.g. let V ̸= ∅. Assume
G has no node without an incoming edge. Let v1 ∈ V be arbitrary. By iteratively
traversing edge (vi+1,vi) ∈ E, which is always guaranteed to exist, backwards, we can
construct a path p = (vn, . . . ,v1) of arbitrary length n. Then either G has a cycle
or V is infinite, which is a contradiction. Thus, G has a node v1 ∈ V which has
no incoming edges. Let G′ = (V ′,E′) be the maximal subgraph of G which does not
contain node v1, i.e. remove node v1 and every edge adjacent to v1 from G to construct
G′. If σ′ = (v2, . . . ,v|V |) is a topological sorting of G′ then σ = (v1,v2, . . . ,v|V |) is a
topological sorting of G. Because an empty graph trivially has a topological sorting
and because G′ has exactly one node less than G we can derive by induction that G
has a topological sorting.

Kahn’s Algorithm (Algorithm 4) computes a topological sorting of finite DAGs
in polynomial time [Kah62]. We can thus modify Dijkstra’s algorithm as shown in
Algorithm 5 to find a path from ς to τ that is heuristically better than arbitrary paths
from ς to τ .

As we have mentioned above, there are good reasons to generate an optimal solu-
tion to NonLocalIcsShortestPath rather than just a class-optimal solution, and
subsequently an optimal solution to ConflictGeneralization despite the added
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Algorithm 4: KahnsAlgorithm [Kah62]
Input : finite DAG G = (V,E) with vertices V and edges E
Output: A topological sorting (v1, . . . ,v|V |) of the nodes of G

1 Initialize empty list L;
2 while V ̸= ∅ do
3 Let v be a vertex in V with no incoming edges;
4 Remove every edge adjacent to v from E;
5 Remove v from V ;
6 Append v to end of L;

7 return L;

computational cost. The algorithms proposed in this thesis are not running in iso-
lation but rather just represent one of many steps in the overall algorithm which
determines wether a given formula is satisfiable or not. The conflict generalization
we compute is used in turn to further advance the overall computation. The benefit
of finding a class-optimal solution in less time than is needed for finding an optimal
solution might be dwarfed by the resulting computational overhead if we consider the
overall performance.

Thus, we also present another algorithm (Algorithm 6) which can find for a (re-
duced) instance of NonLocalIcsShortestPath the optimal path (in exponential
time). Here, Algorithm 6 traverses each possible path from ς to τ and returns the
shortest.

To sum up: We have presented two procedures by which an instance of Con-
flictGeneralization can be solved, one of which produces a class-optimal solution
in polynomial time and one of which produces an optimal solution in exponential time
(see Algorithms 7 and 8 respectively).



56 Generalizing conflicts in real-arithmetic quadratic formulas

Algorithm 5: GreedyNlspSolver
Input : (reduced) instance P = (V,E,ς,τ,C,c,W,+ , ≤ ,wE ,wC) of

NonLocalIcsShortestPath
Output: path from ς to τ
/* Calculate a topological sorting of nodes V */

1 T ← KahnsAlgorithm(V,E);
/* Initialize distance map */

2 dist[ς]← 0;
3 dist[v]← ⊥ for v ∈ V \ {ς};
/* Initialize predecessors */

4 pred[v]← ⊥ for v ∈ V ;
/* Initialize color map (colors used in implicit predecessor path

including respective node itself) */

5 clrs[v]← ⊥ for v ∈ V \ {ς};
6 clrs[ς]← {c(ς)};
/* Update distance and predecessor values in topoligical order */

7 for v ∈ T in topological order do
/* dist[v] = ⊥ can only occur, when ς has incoming edges */

8 if dist[v] ̸= ⊥ then
9 for (v,w) ∈ E do

/* Calculate distance of source to w if we traverse over v */

10 if c(w) ∈ clrs[v] then
11 cost(w over v) ← dist[v] + wE(v,w);
12 clrs(w over v) ← clrs[v];
13 else
14 cost(w over v) ← dist[v] + wE(v,w) + wC(c(w));
15 clrs(w over v) ← clrs[v] ∪ {c(w)};
16 /* update predecessor/distance/color-set of node if

neccessary */

17 if dist[w] = ⊥ or dist[w] > cost(w over v) then
18 dist[w]← cost(w over v);
19 clrs[w]← clrs(w over v);
20 pred[w]← v;

/* Now a path from ς to τ is encoded by pred (in reverse order) */

/* Extract path p */

21 p← empty list;
22 v ← pred[τ ];
23 while v ̸= ς do
24 Push v in front of p;

25 return p
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Algorithm 6: OptimalNlspSolver
Input : (reduced) instance P = (V,E,ς,τ,C,c,W,+ , ≤ ,wE ,wC) of

NonLocalIcsShortestPath
Output: path from ς to τ of minimal cost, i.e. an optimal solution of P
/* Initialize current best path */

1 opt← ⊥;
/* Define a recursive function which traverses the graph */

2 Subroutine traverse(path v0, . . . ,vn from v0 = ς to vn):
/* Abort this route if the current optimum is already better than

the (prefix-)path which is given here */

3 if opt ̸= ⊥ and w(v0, . . . ,vn) ≥ w(opt) then
4 return;

/* Update optimal path */

5 if vn = t then
6 opt← (v0, . . . ,vn);
7 else

/* Traverse all descendants */

8 for (vn,vn+1) ∈ E do
9 traverse(v0, . . . ,vn,vn+1);

10 ;
/* Now we can calculate an optimal path by traversing, starting with ς

*/

11 traverse(ς);
/* opt now is an optimal path from ς to τ */

12 return opt

Algorithm 7: FindClassOptimalConflictGeneralization
Input : Instance I of ConflictGeneralization
Output: Class-optimal solution of instance I

1 Subroutine SolveNLSP(Instance P of NonLocalIcsShortestPath):
2 P ← ShrinkGraph(P );
3 return GreedyNlspSolver(P );

4 return SolveConflictGeneralization(I,SolveNLSP)

Algorithm 8: FindOptimalConflictGeneralization
Input : Instance I of ConflictGeneralization
Output: Class-optimal solution of instance I

1 Subroutine SolveNLSP(Instance P of NonLocalIcsShortestPath):
2 P ← ShrinkGraph(P );
3 return OptimalNlspSolver(P );

4 return SolveConflictGeneralization(I,SolveNLSP)



Chapter 4

Conclusion

4.1 Summary

The aim of this thesis was to develop algorithms for the generalization of conflicts
for quadratic real-arithmetic constraints in the SMT Solver SMT-RAT. To do so we
first identified a connection between conflicts and covers of the real number line by
intervals. We found a sufficient and necessary condition under which intervals cover R.
The advantages of this condition were twofold: It could easily be encoded into a SMT
compliant formula. Furthermore, we found a natural way to encode every possible
atom of said formula in a graph in which certain paths correspond to said covers
and thus to conflict generalizations and vice versa. Thus, we reduced the problem
of finding a conflict generalization to a path-finding problem. We also developed a
heuristic with which the conflict generalizations could be assigned a cost. We started
by stating some assumptions the cost function should reasonably uphold and derived a
naturally arising cost model based on them. Using this cost-model we weighted edges
and nodes of the aforementioned graph. Each node of the graph was also assigned a
color and the total weight of a path was the sum of all costs of its traversed edges
and nodes so that the cost of nodes of the same color were only accounted for once.
Doing so, the resulting path-finding problem could not simply make use of algorithms
such as Dijkstra’s algorithm which runs in polynomial time, but which only works
under the assumption that local and global optima coincide. The cost of a newly
added node to a path however does depend on the previous state of the path. We
therefore found this path-finding algorithm not to be solvable in polynomial time
(unless P = NP). We could remedy this by reducing the graph to a subgraph which
contains all optimal solutions and by relaxing the optimization problem of finding an
optimal path to finding a class-optimal path which could be interpreted as “close to
optimal”. Overall, we presented two algorithms to generate conflict generalizations.
One of which could produce a class-optimal solution in polynomial time and one of
which could produce an optimal solution in exponential time.

4.2 Future work

The most obvious and interesting question arising from this thesis is how the proposed
algorithms compete with existing algorithms for conflict generalizations implemented
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in SMT-RAT. As we have taken steps to optimize our proposals for a specific case,
namely for conflicts in constraints in which a variable of interest is only at most
quadratic, it is very likely that the proposed algorithms run much faster, especially
the algorithm which finds class-optimal conflict generalizations in polynomial time.
More importantly however is the question as to how well the overall runtime of SMT-
RAT differs when using the standard strategy or one of the strategies proposed here.
A comparison of all three possibilities is therefore of interest and could yield some
interesting results.

The results of this thesis could in principle be adopted to cubic and quartic real-
arithmetic conflicts. Our work heavily relied on the fact that there exists a closed
formula for zeros of (at most) quadratic polynomials. This is even the case for cubic
and quartic polynomials, but no such closed formulas exist for quintic polynomials or
polynomials of even higher degrees[Ayo80]. Therefore, we could extend the definitions
of a type of a constraint (and a partial variable assignment) and their side conditions
for at most quartic constraints and thus make use of other results of this thesis
to derive a conflict generalization, but with one caveat. We relied on square root
expressions and Virtual Substitution as defined by [CÁ11][Cor10][Cor17] to express
formulas which use the zeros of quadratic polynomials. The definition of these however
cannot express nested roots or roots of higher order which are part of the formulas for
zeros of cubic and quartic polynomials. To extend the results of this thesis to those
cases then would fist require generalizing VS and (square) root expressions. Even
then, this extension might face some difficulties by the sheer amount of different side
conditions and the length of the formulas for zeros of cubic and quartic polynomials.
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