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1. Introduction

”Living organisms are consummate problem solvers. They exhibit a versatility that
puts the best computer programs to shame.”2

Genetic Algorithms (GAs) mimic the evolutionary process we observe in nature and
are robust and powerful optimizers [13][16]. GAs perform very well in a great variety
of areas. A promising application of a genetic algorithm was implemented by Richter
[24]. The GA was used to improve an offshore wind park by optimizing the turbine
layout of the plant.

Although, known for their robustness, GAs are often not applicable in commercial
use due to their computational cost of evaluation. The algorithm usually needs to
evaluate hundreds or thousands of times per iteration,which is based on simulations
that can require a runtime of several minutes up to days. This might result in a runtime
of several months. The long runtime of the algorithm might not be an issue if applied
in the temporal context of power plant construction, but genetic algorithms have to
be tailored to the specific problem which they aim to optimize. Such a long runtime
can provide a huge problem in case the algorithm has to be fine tuned or adjusted
[3]. Especially considering the overwhelming amount of ways to set up and configure
a genetic algorithm. Optimizing the layout of offshore wind parks is becoming more
and more important as seen in Figure 1: There are more than 68 wind parks either in
design or applied in the German bay alone.

In this work, we analyze whether gene parameter discretization is a viable option
to speed up the algorithm in both run time and convergence behavior. We will com-
pare the findings with an algorithm relying on continuous gene parameter values. We
implement a dedicated plug-in for an existing genetic algorithm library and evaluate
the performance in simulations in relation to the discretization. A simulated offshore
wind park as well as several simple objective functions will be used to evaluate the
discretization effect in comparison to the usage of continuous values.

1.1. Thesis overview

In this thesis, we first introduce a general background of genetic algorithm based
optimization and the current state of the research on involved in the Section 2. In
Section 3, we present the model used in the simulations. In Section 4, we illuminate
the genetic algorithm and its operators that are implemented. Section 5 contains an
analysis on how given operators influence the convergence of the algorithm. In Section
6, we provide experimental results, followed by the evaluation and a conclusion in
Section 7.

2Prof. John Henry Holland, a pioneer in the field of Genetic Algorithms (John Holland)[1][16]
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Figure 1: Current Offshore wind parks in the German bay. Green areas indicate off-
shore wind parks that are in operation. Orange areas are parks, that are
in construction. Yellow, and gray areas represent planned wind parks. The
wind park we simulate HornsRev1 can be found in the top right on the map.
The platform that provided the wind data FINO3 can be found next to it.
Map created by Maximilan Dörrbecker (CC-BY-SA 2.0). Translated and
edited by Lukas Netz.
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2. Background

Genetic algorithms (GAs) have become more popular and efficient in recent years.
Progress in the topic has allowed more complex real-world problems in optimization,
search and also machine learning, to be solved by GAs. This chapter gives a brief
overview of the current state of research on the topics of this thesis. First we take a
look at research on improving the efficiency of GAs. Next, we highlight research on
methods to find optimal configurations for GAs.

2.1. Literature Review on
Efficiency Improvements on Genetic Algorithms

Currently, there exist many ways to improve the optimization process of a genetic
algorithm. Ghoshray and Yen succeed in improving accuracy and runtime by imple-
menting a modified genetic algorithm (MGA) by combining the genetic operators such
as selection, reproduction, crossover, mutation and simulated annealing [11]. Rivas-
Davalos and Irving lowered solution times, by improvements to the genetic operators
in order to overcome the problems of low heritability and topological infeasibility [25].
Other attempts were made to enable existing libraries to increase their abilities to run
on parallel processes [10][23]. This attempt however is limited by Amdahls law: The
speedup η(s) of an algorithm is limited by the runtime of the serial program sections,
where s is the amount of system resources (e.g. processor cores) and p is the portion
of the algorithm that is improvable by the increment of system resources.

η(s) =
1

(1− p) +
p

s

(1)

Despite the library we use in this thesis implements parallelization, we will not focus
on the resulting benefits in runtime. The configuration for the parallel setup remain
identical throughout all experimental set ups and is not part of this thesis.

2.2. Literature Review on
Optimal Configurations of Genetic Algorithms

Configuring a genetic algorithm proves to be a difficult task, due to its long runtime
and variety of ways to configure it. Ironically, a lot of research on the configuration
of such complex optimizers relies itself on genetic algorithms to accomplish this task
[3][4]. It would be infeasible to use a genetic algorithm in order to optimize a fitting
configuration for our algorithm setup. Kucukkoc et. al. optimize the configuration by
using response surface design (RSM) [20]. Eiben and Smit developed a framework to
fine tune parameters of evolutionary algorithms [9]. Both approaches optimize the GA
as a whole. Eiben et. al. also published research on how to control the parameters
of evolutionary algorithms [8]. Although there has been a lot of research on the topic
of parameter configuration of genetic algorithms, finding fitting parameters is still a

3



very time consuming operation. All presented approaches require many iterations of
the genetic algorithm in order to optimize the parameters.

2.3. Literature Review on
Discretization of Genetic Algorithm parameters

There is not a lot of research done on the difference between a genetic algorithm using
continuous values and one using discrete ones, due to the fact that historically, genetic
algorithms only use bit strings to encode a solution. More complex encodings such
as floating point numbers are still not common. There is a study on discretization
scheduling and its benefits on the precision of the optimization [22].

2.4. Summary

In this chapter we gave an overview of the current state of art on research on ge-
netic algorithms. We highlighted that this thesis is involved in three research areas:
configuration, efficiency and discretization of genetic algorithms.

4



3. Model

The optimization algorithm implemented as part of this thesis is configured to optimize
layouts of Offshore Wind Farms. In this chapter we will introduce the characteristics
and the basic parameters of the model we use to simulate the power plant. We also
introduce four objective functions that we use to test our implementations.

3.1. Offshore Wind Farm Model

Wind farms are sets of wind turbines arranged in an efficient layout (Figure 2a). Off-
shore wind power refers to wind farms that are constructed in bodies of water. Unlike
the typical use, in this context the term ”offshore” also refers to inshore water areas,
such as lakes, fjords and sheltered coastal areas.

0 1,000 2,000 3,000 4,000 5,000 6,000

0

1,000

2,000

3,000

4,000

Easting [m]

N
or
th
in
g
[m

]

(a) Typical layout of an Offshore
Wind park (HornsRev1) (b) Offshore Wind park at the German coast

Figure 2: Wind turbine layout in a typical offshore wind park.

The model we use to simulate an offshore wind park was initially developed by
Heiming [15], and can be described by four components (Figure 3). At first the model
will convert raw wind data into a wind model. Next the wind model is used as an
input for the wake model, which simulates the interaction of wind turbines in the wind
park. The resulting data is used to compute the power generation at each wind turbine
(power generation model), which gives us the gross annual energy production (AEP).
Finally we pass the results to the cost model in order to consider different quantities
of interests.

5



wind model wake model power generation model cost model

position data power curvewake model economic data

net AEPLCOENPVIRR

Figure 3: Simplified structure of the offshore model. Rectangles represent the building
blocks of the model and represent the four main building blocks of our simu-
lation. Green ellipses represent inputs, red ellipses represent outputs for the
different objective functions (see Section 3.5).
Source: Adapted from Cakar [5]

3.2. Wind Model

The wind model we use as an input for our model describes the strength and direc-
tion of the wind as a probability distribution. Our model is based on thousands of
measurements over seven years at the FINO33 research platform.

3.2.1. Wind Direction

FINO3 is located 80 km west of Sylt and can be found next to the DanTysk wind park
(Figure 1). We can visualize the measured wind direction distribution as shown in
Figure 4. The wind directions are divided into 360 sectors, 32 sectors and 12 sectors.
The size of each sector translates to the probability that a wind direction from that
sector occurs. The distribution of the wind direction is not evenly divided among all
sections. A probable wind direction exists (northeast).

3http://www.fino3.de/
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Figure 4: Distributions of wind directions from 2010 to 2017 in three different dis-
cretizations. From left to right: 360 sections, 32 sections, 12 sections. The
wind direction αi = 220 is among the most likely ones.
Source: Heiming [15]

3.2.2. Wind Speed

The wind model we use employs a Weibull distribution (Equation 2) to approximate
the wind speed and direction. Heiming used a maximum likelihood estimation for the
parameters of the Wibull distrubution. Each wind section was estimated separately.
That means each wind section has its own probability and its own wind speed proba-
bility distribution. As examined by Heiming [15], the Weibull distribution provides a
good approximation of measured wind speed data. It is described by two parameters:
The scaling factor λ and the shape parameter κ.

hλ,κ(x) =
κ

λ

(x
λ

)κ−1

e−(x/λ)κ (2)

A typical distribution of wind speeds is displayed in Figure 5. It is important to note
that this set of distributions can only be used to simulate wind in the German bay,
as it is based on the measurements from that area. These approximations may not
apply to other locations such as offshore wind parks in the Chinese sea or the English
Channel.

3.3. Wake Model

Once a wind model is established, we need to approximate the interactions between
individual wind turbines. The wind turbine used in our simulation is a HAWT (hori-
zontal axis wind turbine) as depicted in Figure 6. The rotor has the diameter D and
can be rotated 360 degrees. The hight of the hub is defined as z. In this chapter we
will examine the turbulences caused by HAWT, and how theses turbulences affect near
by turbines.

In this work we use the PARK model to simulate the wake effect of wind turbines.
The PARK model developed by Jansen [19] approximates the wind speed reduction

7
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Figure 5: Weibull distribution with approximated values for both λ and k. The plot
represents the distribution for a wind direction sector αi ∈ [225o, 255o)
Source: Adapted from Cakar [5].

(a) Horizontal Axis Wind Turbine
Source: Heiming [15]

(b) Windmill CP-A4
Picture by Hans Hillewaert (CC-BY-SA 4.0)

Figure 6: HAWT wind turbines
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inside the stream behind a wind turbine. The model does not compute a flow field
for the exact wind velocity distribution, thus it ignores e.g. side streams effects. The
wake model, as implemented by Heiming, does not account for different wind speeds
in different heights. We used wind data that was measured 100 m above sea level.
We can assume that small differences in height will have negligible effect on the wind
speed. If we look at the wind turbines of HornsRev1 we notice that the height of their
mast is 70 m and its wing span is 100 m, hence we can use the measured data. The
implemented wake model is designed for long distances between the wind turbines, and
requires distances of at least three rotor diameters to be valid. Each turbine creates a
wake with a diameter dw (Figure 7). The diameter of this wake grows linearly by the
factor 2k. The wake decay factor k is defined as follows [27]:

k =
1

2
· ln z

z0

(3)

where z represents the height of the turbine mast (Figure 6a) and z0 is the surface
roughness of the site ground. Depending on the weather conditions z0 can change (e.g.
high waves). Heiming however assumes z0 = 0.03 as a constant value, as this is the
most common value. The PARK model only accounts for wind velocity decrements
inside the wake in stream direction. We define the wind decrementδu by a wind turbine
as:

δu =
u0 − uw
u0

= 1− uw
u0

(4)

Where uw represents the decremented windspeed behind a turbine, and u0 represents
the original wind speed in front of the turbine. As it only depends on the distance in
stream direction x, we can write:

δu = δu(x) (5)

Heiming computes the velocity deficit over the conservation of momentum. For an
isolated system the following has to hold:∑

mass · velocity =
∑

density · area · velocity = 0 (6)

We approximate by assuming incompressibility of our medium (air) and get:

−ρairπ
(
d

2

)2

ur − ρairπ

((
dw
2

)2

−
(
d

2

)2
)
u0 + ρairπ

(
dw
2

)2

uw = 0 (7)

Where ur represents the wind speed directly behind the rotor. We simplify to:

d2ur + (d2
w − d2)u0 = d2

wuw (8)

Next, we compute the wind speed deficit right behind the rotor using Equation 4 and
3:

u2

u0

= 1− δur
(

d

d+ 2kx

)
(9)
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Following, we have to replace the δur with the relative loss at the turbine, where Ct is
the thrust coefficient of the turbine:

a(u0) = 1−
√

1− Ct(u0) (10)

which gives us:

δu(x) = 1− uw(x)

u0

=
1−

√
1− Ct(u0)(

1 +
2kx

d

)2 (11)

Now that we have derived the wind speed deficit caused by a wind turbine in a free
stream, we have to compute how a second wind turbine either completely or in part
inside of the generated wake is affected by it. The first turbine that generates the wake
is called i and the turbine inside the wake is called j. The wind speed at turbine i is
called incedent wind speed uinc,i. In case turbine j is completely within the wake of i
we simply use the Equation 11. Otherwise we need to compute the part to which j is
affected. We do so by introducing the shadowing factor βk:

βk =
Aint

Aturbine
(12)

where Aint is the area of wake that intersects with the area of turbine j. We update
our equation to:

δu(x, uinc,i) = βk ·
1−

√
1− Ct(uinc,i)(

1 +
2kx

d

)2 (13)

The equation above is dependent on the incident velocity uinc,i of turbine i. We need
to generalize it and derive the dependency to the constant u0.

δui,j = 1− uw,i
w0

= 1− uinc,j
u0

=
u0

uinc,i

βk · 1−
√

1− Ct(uinc,i)(
1 +

2kx

d

)2

 (14)

We compute the interaction of wakes as follows:

δu2
j = δu2

1,j + δu2
2,j

⇔
(

1− uinc,j
u0

)2

=

(
1− uw,1

u0

)2

+

(
1− uw,2

u0

)2 (15)

The parameters uw,1 and uw,2 represent the velocity within the respective wakes. We
can generalize to an arbitrary number of N interacting wakes by computing:

δuj =

√√√√ N∑
i=0

δu2
i,j (16)

We successfully derived an equation, that approximates how turbines affect the wind
in case they are placed in proximity of each other.
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(a) Modeling of a wake behind a wind turbine.
The turbulence caused by a turbine influ-
ences the ones positioned behind it.

(b) Extraordinary weather conditions resulted
in condensation of the very humid air, re-
vealing the turbulence patterns behind the
wind turbines [6]
Picture by Christian Steiness (12.02.2008)

Figure 7: Wake turbulence created by a wind turbine
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(b) Power production P

Figure 8: Performance of the Vestas V80 wind turbine with a cut-in speed of 4 m/s
and cut-out speed of 25 m/s. Note that the power generation is not linearly
dependent on the wind speed.

3.4. Power Generation Model

The horizontal axis wind turbine is an electric power generator. In converts motion
power from the rotation of its wings into electric power. Thus creating electric energy
from wind. Each wind turbine has a range of wind speeds it operates in. The lower
bound of this range is called cut-in speed ucutin and the upper bound is called cut-out
speed ucutout. In case the wind speed is lower than the cut-in speed, there is not enough
wind to produce energy. In case the wind speed is greater than the cut-out speed, the
wind turbine is at risk to get damaged. Typically cut-in speed is at about 3 to 4 m/s
(14 km/h) and cut-out speed is about 25 m/s (90 km/h). The power generation is
highly dependent on the thrust of the wind. Figure 8 displays the performance of the
Vestas V80 wind turbine, which is used both in onshore as well as offshore applications.
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3.5. Cost Model

The cost model evaluates different quantities of interests for a given wind farm. Dif-
ferent objective functions are provided, that are based on the Gross Annual Energy
Production (AEP). We first take a look at gross AEP, and continue presenting the
objective functions we employed for the GA.

3.5.1. AEP

The AEP is computed by Heiming as the expected power value of a wind farm for
all wind speeds u in one wind direction αi. We use the Weibull distribution fαi to
compute the wind speed distribution at the wind direction αi (Section 3.2, Wind
Model). Additionally we use the Wake Model (Section 3.3) to calculate wind velocity
deficits δu behind turbines. The Power Generation Model (Section 3.4) is used to
compute the generated power P (u) at wind speed u. The gross AEP is computed as
follows:

AEPgross = (8760 h+ 6 h) · P

≈ (8760 h+ 6 h) ·
Ndirections∑

i=1

wαi ·
Nspeeds∑
j=1

wj ·Wαi(uj)

NT∑
k=1

P (uinc,αi,j,k)
(17)

Where uinc,αi,j,k represents the incident velocity at turbine k, with wind speed uj and
wind direction αi. 8760 h is the time that passes in a year. 6 h are added in order
to compensate for leap years. Next, we present the objective functions we use for the
genetic algorithm.

3.5.2. Net Annual Energy Production

In order to approximate a real world offshore wind park, we need to assume, that there
are energy losses due to technical issues, maintenance or grid downtime over the year.
The statistical value can be summarized to plant performance losses ploss. We compute
the net AEP as follows:

AEPnet = AEPgross · (1− ploss) (18)

When used as an objective function, we try to maximize AEPnet. The value is nor-
malized against AEPmax the maximum AEP possible. AEPmax is computed under the
assumption that there are no losses such as δu. Each turbine is simulated at its ideal
performance.

3.5.3. Levelized Cost of Electricity

The Levelized Cost of Electricity (LCOE) is a measurement for the cost per kWh
over the entire life cycle of a wind park. LCOE is a good measurement to evaluate
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amortization of the power plant. The implemented formula was developed by Lackner
and Elkinton [21]:

KLCOE =

Ccapital ·
(1 + rrate)

l · rrate
(1 + rrate)l − 1

+ Com

AEPnet
(19)

The parameter Ccapital represents the total cost for turbines, cabling, substations etc..
Com refers to the annual cost of operation and maintenance, rrate is the discount rate
including debt, taxes and insurance over an expected life cycle of l years.

3.5.4. Net Present Value

The Net Present Value (NPV) is a measurement for the current value of a project.
Gonzales et al. [14] compute the NPV as follows:

CNPV = Cprv − Ccapital +
l∑

t=1

AEPnet ·Kenergy − Com
(1 + rrate)t

(20)

The parameter Cprv represents the current value of the project after the lifetime l.
Similar to LCOE Ccapital represents the cost of the installation and Com the cost to
operate and maintain the project. Kenergy translates to the current price of energy on
the market. The parameters Kenergy, Com and AEPnet are time dependent. For our
model we approximated these parameters as constants and replaced them with the
respective average value.

3.5.5. Internal Rate of Return

Similar to NPV, the Internal Rate of Return (IRR) is a measure of profitability. The
Internal Rate of Return rIRR is defined to be the value of rrate in Equation 20 that
results in a NPV of zero.

CNPV = Cprv − Ccapital +
l∑

t=1

AEPnet ·Kenergy − Com
(1 + rIRR)t

!
= 0 (21)

If rIRR is greater than the real discount rate rrate (and additional risk deficits), then
the project is expected to be profitable.

3.6. Alternative Objective Functions

Using a simulation to evaluate a layout is very time consuming and is one of the
greatest contributers to the long run time of the genetic algorithm. As long as we are
analyzing the behavior of the genetic algorithm we will use simpler objective functions
to evaluate the layout. The following four methods are provided:
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• CORNER: This objective function pushes all turbines into the corners (Figure 9)

f(x, y) =
√

(40− x)2 + (40− y)2 (22)

Figure 9: Visualization of the objective function CORNER. Turbines that are closest to
the corners are evaluated with the highest fitness.

• MAX SIDE: This objective function promotes turbines with a high X value, push-
ing them to one side (Figure 10)

f(x, y) = |x| (23)
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Figure 10: Visualization of the objective function MAX SIDE. Turbines with a greater
X value get a higher fitness value.

• TRIANGLE: This objective function is similar to MAXSIDE but also maximizes the
Y value of a turbine (Figure 11)

f(x, y) = x+ y (24)

Figure 11: Visualization of the objective function TRIANGLE. Tubines with both a high
X Value and Y Value get a high fitness.

• RHOMBUS: This objective function aims to fit all turbines within a rhombus at the
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center (Figure 12)

f(x, y) =
5 ·XMax

8
− |XMax

2
− x| − |XMax

2
− y| (25)

Figure 12: Visualization of the objective function RHOMBUS. Turbines close to the center
get a high fitness value.

The objective functions introduced above present a viable alternative to test the per-
formance of the genetic algorithm without the need to simulate the entire model.

3.7. Placement Restrictions

The purpose of the simulation however is first to determine where a turbine can be
placed. Turbine locations are subject to three restrictions which need to be considered
in the placement decision.

1. Every wind turbine has a position (xi, yi). It has to be placed within the desig-
nated plant site.

∀i(Xmin ≤xi ≤ Xmax)

∀i(Ymin ≤yi ≤ Ymax)
(26)

2. No turbine may be placed within a restricted area, such as a nature reserve or
cabling routes

∀i(pi 6∈ Arestricted) (27)

Where pi = (xi, yi) is the position of a turbine, and Arestricted denotes the re-
stricted area.
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3. The minimal distance between two turbines has to be greater than its wingspan.

∀i, j
(√

(xi − xj)2 + (yi − yj)2 < R

)
(28)

where R represents the minimal distance between two turbines.

3.8. Summary

In this section we introduced the model for optimization with the genetic algorithm.
We presented the four major building blocks of the model (Wind Model, Wake Model,
Power Generation Model and Cost Model) and their interaction. We also presented the
four smaller test functions, used to test and analyze the algorithm in a time efficient
manner. Finally, we pointed out the placement restrictions every turbine has to obey,
both in simulation as well as in any of the test functions.
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4. Genetic Algorithms

This thesis analyzes the behavior of a genetic algorithm. In this section we will intro-
duce the major building blocks of the GA, which are also known as genetic operators.
First, we present the genetic algorithm library we used, followed by the two different
chromosome encodings we employed. Next, we will present the eight components that
define the genetic algorithm set-up we used. The operations are presented in the order
as they are executed in the algorithm (see Figure 13).

1. Chromosome Factory

2. Stopping Criteria

3. Selection Operation

4. Coupling Operation

5. Crossover Operation

6. Choosing Operation

7. Mutation Operation

8. Replacement Operation

There are many ways to configure the GA, as every genetic operator can be instan-
tiated in several ways. In this section, we will highlight the common operators and
illuminate why we chose a specific one.

Genetic Algorithms are local search algorithms that are based on the mechanics
of natural selection and evolution [17][26]. A set of solutions Γ is optimized by the
principles of survival of the fittest. Solutions are ranked, get selected to form couples
and produce new solutions (offspring), which in part, get mutated and form the next
generation with the remaining set. The set of solutions is always treated as one group.
Thus the algorithm is able to evolve towards multiple optima in parallel. The set is
called population, each solution γ within the population Γ is called chromosome. Each
population is assigned to one generation, which refers to the amount of iterations the
algorithm has performed. Each chromosome within the population is unique and can
be ranked based on its fitness :

f(γi) ∈ [0, 1]

The goal in each iteration is to find a chromosome that is better than the best of the
previous iteration.
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Figure 13: Simplified iteration of an evolutionary algorithm. The algorithm starts at
the top with the current generation. Following a test for the Stopping Crite-
ria, each chromosome is evaluated and ranked. Based on the ranking chro-
mosomes are selected (Selection Operation) and copied to the next genera-
tion (Elitism). Only the selected chromosomes are paired to couples (Cou-
pling Operation) and recombined to form new Chromosomes (Crossover
Operation). A part of the offspring is chosen (Choosing Operation) to get
mutated (Mutation Operation). All offspring and the elite is added to the
old generation. The best chromosomes and some randomly generated ones
(Chromosome Factors) form the new generation.
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4.1. Genetic Algorithms Library

In this work, we use an extensible genetic algorithms library called GeneiAL [10][23].
The library is designed to be highly flexible. It permits the user to specify own chro-
mosome types, genetic operators and fitness functions. It is multi-threading capable
and provides several tools for analysis and diagnostics of the algorithm’s performance.
In order to compare both discrete- and contiuous-value based chromosomes, several
operators are implemented in form of a plug-in.

4.2. Genotype Phenotype Mapping

The Genotype Phenotype Mapping defines within the context of genetic algorithms
the method used to encode a solution for a given problem as the genetic information
of a chromosome. We use two different encodings for the chromosomes. One encoding
allowing the encoding of Continuous Value Chromosomes (CVC) and one allowing
the encoding of Discrete Value Chromosomes (DVC). Therefore we have to provide
adapted methods for all operations that work directly on values that are contained in a
chromosome. This effects the Chromosome Factory (Section 4.3), Crossover Operation
(Section 4.7) and Mutation Operation (Section 4.9). Other operations like the Selection
Operation (Section 4.5) or the Replacement Operation (Section 4.10) are not affected,
as they manage chromosomes as a population independent from the encoding.

4.2.1. Continuous Value Mapping

In this case we encode a layout L consisting of Ngene positions. Each position has an
x-value xi and an x-value yi. In case we encode solutions for a special case of a three
position parameter model4, a position also contains a rotation value ri. A chromosome
γ is defined as the set of positions that are part of the layout (Figure 14a, Figure 14b).

xci ∈ [xmin, xmax], y
c
i ∈ [ymin, ymax]

γcOffshore = {{xc1, yc1}, {xc2, yc2}, · · · , {xcn, ycn}}
γcSolar = {{xc1, yc1, rc1}, {xc2, yc2, rc2}, · · · , {xcn, ycn, rcn}}

4.2.2. Discrete Value Mapping

The layout can be encoded as a binary string by dividing the available area, into ρ2

many cells, where ρ defines the density of the discretization. Each bit in the chro-
mosome represents a cell and indicates whether a turbine is occupying it (Figure 15a,

4This algorithm is implemented to be capable to handle a simulation of a Solar Power Plant as well.
A special case of that model requires a rotation value. Due to time shortage this model was not
included.
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(a) Continuous X and Y values only
(b) Continuous X,Y values and continuous ro-

tation

Figure 14: The chromosome consists of a list of position tuples or triplets4. The length
of the chromosome depends on the amount of turbines (Ngene = NT ).

Figure 15b). In consequence the resulting string has the length ρ2. A continuous
position can be mapped to a cell i as follows:

i =
⌊xc · ρ
xmax

⌋
+
⌊yc · ρ
ymax

⌋
· ρ

Note that the algorithm ensures that there is always only one turbine placed within
one cell.

Example: Let xmin = ymin = 0 and xmax = ymax = 1000. Let us choose a resolution
ρ = 5, resulting in 25 cells. The following positions are given:

p1 = {248; 183}
p2 = {572; 301}
p3 = {893; 520}
p4 = {312; 621}
p5 = {741; 952}

γBinaryOffshore = {0,1,0,0,0, 0,0,1,0,0, 0,0,0,0,1, 0,1,0,0,0, 0,0,0,1,0}

This method of mapping is very intuitive, but also very inefficient. In case we
increase the resolution in order to approximate the continuous mapping, the algorithm
might exceed available memory resources: Using a resolution of ρ = 10.000 yields in
a 100.000.000 character long chromosome, which, depending on the operating system
can be up to 400 MegaByte in size. A typical population size of Npop = 1000 causes
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(a) List of boolean values indicating, if a tur-
bine is placed in a cell.

(b) List of discrete values indicating, if and
with which rotation a heliostat4 is placed
in a cell.

Figure 15: Discrete Value Mapping: A chromosome consists either of a list of boolean
values, or a list of discrete values (e.g. integer). Each index in the list
represents a cell in the available field. If a value at an index i is true, a
Turbine is placed at cell i. If a value at index i is a positive discrete number
ri , a Heliostat4 is placed in the center of cell i with the discretized rotation
ri.

the algorithm to require at least 400 GigaBytes of physical memory. In order to cope
with these requirements a different mapping has to be used:

Similar to the continuous mapping we encode positions into the chromosome γ.
Instead of using continuous values for a position, both xi and yi are discretized as
follows:

xdi = a · xmax − xmin
ρ

+
xmax − xmin

2 · ρ
with a ∈ [0, ρ− 1] ∧ a, ρ ∈ N

ydi = b · ymin − ymin
ρ

+
ymax − ymin

2 · ρ
with b ∈ [0, ρ− 1] ∧ b, ρ ∈ N

rdi = c · rmax − rmin
ρ

+
rmax − rmin

2 · ρ
with c ∈ [0, ρ− 1] ∧ b, ρ ∈ N

γdOffshore = {{xd1, yd1}, {xd2, yd2}, · · · , {xdn, ydn}}
γdSolar = {{xd1, yd1 , rd1}, {xd2, yd2 , rd2}, · · · , {xdn, ydn, rdn}}

We can approximate the size required for the different encoding. A chromosome
consists of Ngene genes that each contain two Double parameters. There are Npop

many chromosomes in the population. For a 64-Bit operation system and Npop = 1000,
Ngene = 50, it follows:

size(Double) ·Npop ·Ngene · 2 = 800.000 Byte (29)
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Employing the non-binary encoding results in a population that requires less physical
memory by a factor of 500.000. In order to conserve resources, and to enable us to
optimize complex simulations, we will rely on the latter encoding for DVCs.

4.3. Chromosome Factory

The genetic algorithm starts by obtaining a current population (Current Generation
Genome Pool, Figure 13). The Chromosome Factory provides a strategy to create a
set of random, but also sound, chromosomes. It is also possible to start the algorithm
with a predefined set of chromosomes [10].

The genetic algorithm has to work with chromosomes containing viable solutions.
All members of the population need to be evaluatable. In our set up, a chromosome
is evaluable if it can serve as a template for a simulation. As introduced in Section
3.7, there are three basic conditions that must hold for each chromosome at any time.
All contained positions must be within the limits of the simulation site, all contained
positions must stay clear of restricted areas; and finally, all contained positions must
keep a defined distance from each other. In order to create a chromosome that fulfills
these conditions, random positions are added to the layout individually. After each
insertion the validity of the layout is verified. In case the resulting layout is flawed
the insertion is reverted and a new position is added. In order to be able to insert
positions into dense layouts, a fall back method was implemented. In case too many
attempts fail, a position and a direction is generated randomly, creating a sequence of
steps, that iterate over the simulation site. The chromosome factory will try to add
a position on this path until it reaches its originally generated position. In case this
happens the algorithm assumes that the layout is too dense to add further positions
and will terminate.

4.3.1. Differences between CVC and DVC creation

The method to resolve conflicts within a chromosome is identical for both value types.
However the method to generate the position parameters themselves differ. A position
for a CVC is randomly generated as a tuple of two random parameters that are within
the limits of the simulation site. A position for a DVC is computed as follows: We
divide the simulation site into ρ× ρ cells. There are Nposition = ρ2 many cells. A new
cell index is randomly picked ri ∈ [0, ..., Nposition−1], ri ∈ N. Next we can convert the
cell index ri into a tuple (xi, yi).

xi =
|xmax − xmin|

ρ︸ ︷︷ ︸
horizontal cellsize

· ri − (rimod ρ)

ρ︸ ︷︷ ︸
row

+
|Xmax −Xmin|

2 · ρ︸ ︷︷ ︸
horizontal midpoint

yi =
|ymax − ymin|

ρ︸ ︷︷ ︸
vertical cellsize

· (rimod ρ)︸ ︷︷ ︸
column

+
|Ymax − Ymin|

2 · ρ︸ ︷︷ ︸
vertical midpoint

(30)

23



4.4. Stopping Criteria

The Stopping Criteria defines a global objective that has to be reached by the algorithm
to terminate. A common stopping criteria is the achievement of a certain fitness
value. In case a chromosome with the desired quality could be evolved, the algorithm
terminates. There is always the possibility that the GA will not reach the optimum
under the current configuration, or the fitness of the global optimum is simply unknown.
Therefore it is common to add a second criteria that terminates the algorithm after
a defined amount of iterations. There are further, more complex criteria, that are
able to determine whether the algorithm has stagnated, or whether no further progress
is possible. In our set-up, we use a combination of the first two criteria (maximum
amount of generations and achievement of fitness) mentioned above.

The genetic algorithm, used in our simulation set-up, terminates the algorithm if a
fitness of 1 is reached or if more than 2000 generations were created.

4.5. Selection Operation

At the beginning of an iteration each chromosome is evaluated and ranked within the
population. The result of this evaluation is called fitness. The evaluation of a chromo-
some is based on the objective function of the optimizer, and is often determined by
simulation of a specific optimization problem. Each chromosome represents a possible
solution for a specific problem. Thus its fitness provides a measurement how well this
solution compares to other individuals. Once a ranking has been established a strategy
is used to select chromosomes for the next generation. The selected chromosomes will
be used for recombination (crossover operation). In order to enhance diversity among
the selected chromosomes, it is recommended, not only to select chromosomes with a
high fitness, but also to select a few ’bad’ chromosomes. The diversity is needed to
break free from local maxima of the objective function and reach the global one (Se-
lection Pool, Figure 13). Elitism can be used at this point to prevent degradation of
the overall population fitness. Elitism is an operation where the chromosomes with the
highest fitness, the elite, is copied directly, without any modification, to the next gen-
eration. By doing so it is ensured that the best chromosomes of the current generation
are at least as good as the best chromosomes of the previous one.

The selection operation provides the Elite-Pool and the Selection Pool. Depending
on the selection method, the Elite-Pool can be part of the Selection Pool aswell. In our
case the common selection operation roulette wheel selection [13] is used. Chromosomes
are picked at random, but the probability to be picked is depending on the fitness of
the chromosome. If fi is the fitness of chromosome i then its probability to being
selected is

ps,i =
fi

ΣN
j=1fi

The selection operation handles the chromosomes as a whole on a population scale.
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Therefore there is no distinction between the selection of CVCs and DVCs. Both
set-ups use the identical implementation at this point.

4.6. Coupling Operation

This operation provides a strategy to form pairs among the selected chromosomes
(Coupling Pool, Figure 13). Note that one chromosome can be coupled with multiple
other chromosomes. The pairs can be formed at random, or with consideration of
chromosome fitness. Genetic information of chromosomes with a high fitness can be
promoted by coupling a few very good chromosomes with the rest of the selection pool.
Other operators match each chromosome only a single time, forming Nsel/2 couples to
produce offspring. We implemented a simple random coupling, that assigns chromo-
some pairs randomly. The results of this operation are therefore entirely dependent
on the compilation of the selection pool. We chose this operation in order to minimize
the configuration parameters we have to control.
Similar to the selection operation, the coupling operation manages a part of the popu-
lation independently from the chromosome encoding, therefore there are no differences
between the management of CVCs of DVCs.

4.7. Crossover Operation

Provided with chromosome pairs, this operation will use a strategy to blend each pair to
a new chromosome. This process is also often referred to as recombination. The genes
of both chromosomes can be swapped, or combined to form new genes. The resulting
chromosome has to be influenced by both input chromosomes and has to be a viable
solution that can be evaluated. We refer to the resulting chromosome set as offspring
(Offspring Pool, Figure 13). Common methods for the crossover operation are One-
point-crossover, n-point-crossover and Uniform Crossover [7][13]. These operations
assume that the genes are stored in an ordered sequence within the chromosome. One-
point-crossover randomly determines an index within that sequence (Figure 16). The
first part of the resulting offspring chromosome consists only of genes from one parent,
the other part consists of genes from the other parent. N-Point-crossover behaves
similarly. Instead of one index, n indexes are chosen randomly. At each index the
parent that provides genomes for the offspring chromosome is switched. A third method
is the Uniform Crossover Operation. Here, at each index of the offspring chromosome
the parent determining the gene at this location is picked at random using a uniform
distribution.

Because of the used encoding (Section 4.2), the genomes in the chromosomes are
not ordered. For that reason, we cannot simply implement the classical crossover op-
erations mentioned above. It would be possible to run the classical operations on the
binary encoded version of the discrete chromosomes, but we would not be able to
compare both algorithms as they use different operators and we would not be able to
run large simulations, as explained in Section 4.2. Instead we implement a crossover
operation, that is based on One-Step-Crossover [24]. Richter et. al. faced the same
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Figure 16: Typical crossover operations: One-Point-Crossover ’flips’ both chromo-
somes at one point. N-Point-Crossover ’flips’ the genetic information at
multiple points. Uniform-Crossover picks at random from which parent to
choose the genetic information.

problem, when performing a crossover operation. When merging two chromosomes
with unordered genomes, we need to ensure that the resulting chromosome satisfies
the constrains of the simulation, such as minimum distance to neighboring positions.

Figure 17 depicts the implemented crossover operation. First the positions of both
parents (layout parent A and layout parent B) are merged into one combined layout. It
is expected to find conflicts (e.g. positions are too close to each other) within the new
layout. Conflicts are resolved by removing the position assigned to the layout of parent
B. Because the simulation provides data on individual genes, and their contribution to
the overall chromosome fitness, we are able to evaluate single positions, after resolving
all conflicts. Once all positions are ranked, the Ngene best positions form the new
layout (reduced layout).

The crossover operation creates new chromosomes and works directly with the val-
ues within these chromosomes. However, as will be demonstrated in Section 5.3, the
crossover operation does not modify any values. Instead it simply recombines genes to
new chromosomes. Values that have been formed before either as discrete parameters
or continuous ones, will remain either discrete or continuous after the operation. We
use the same operator for both DVCs and CVCs.

4.8. Choosing Operation

In order to introduce new aspects to the already existing solutions, some offspring
is modified by the mutation operation. Because the mutation can also worsen good
solutions, it is not applied to all chromosomes. The choosing operation provides a
strategy, to select which chromosomes are mutated and which are not. There are dif-
ferent operations which prefer low fitness chromosomes to be mutated, or which apply
the principles of roulette-wheel-selection at this point. For simplicity, we chose an op-
eration in our set up, picking chromosomes at random. For each offspring chromosome
there is a chance pc to be chosen for mutation.
The choosing operation picks chromosomes without modifying or replacing any gene
values. For both CVCs and DVCs the same operator is used.
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Figure 17: Implemented One-Step-Crossover Operation. Layouts of parent A and par-
ent B are combined. All conflicts resulting from this union are resolved.
Next all turbines are ranked individually. The amount of positions per
chromosome is limited therefore only the Ngene best positions form the fi-
nal output. One-Step crossover adds an evaluation step to the operator.
Although this adds runtime to the operation, the overall runtime of the
algorithm is lowered (see Section 5.3).

4.9. Mutation Operation

In order to amplify diversity, some of the offspring are chosen at random and are
mutated. The mutation ideally will change small parts of the chromosome, leaving the
majority of the genetic information in its original state.

At first, the nm positions pi within the chromosome that are about to be altered have
to be determined. Where nm is picked at random such that nmin ≤ nm ≤ nmax. Each
position p1 · · · pnm is evaluated individually where f(pi) ∈ [0, 1]. The positions within
the chromosome are sorted by their fitness. The chance for a position pi at index j to
be picked is determined as follows: Let r′ be a random variable where r′ ∈ [0, 1].

p(j) = br
′2

2
+
r′4

2
c

A new index will be picked in case the resulting one was already chosen before. It is
more likely for a position with a lower fitness to be picked than one which is among
the positions with the highest fitness. This method is used to increase the likelihood of
mutations, improving the fitness of a chromosome. The chances for improvement are
higher when altering bad positions within the chromosome. Changes in good positions
could even result in a deterioration of already achieved fitness levels.

The mutation itself generates a random position prand = {xrand, yrand} and computes
the mutated position pmut between both positions. The value δmin represents the
minimal distance from the old value. The variable r is picked at random and is either
0 or 1. It is used to determine the direction in which a value is altered. The parameter
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µ represents the mutation rate.

δminx =
xmax − xmin

2ρ

δ(r) =

{
Random(xold + δminx , xmax), if r > 0

Random(xmin, xold − δminx), if r ≤ 0

xmut = ((xold + δ(r)minx · r) · (1−m) + xrand · µ)

δminy =
ymax − ymin

2ρ

δ(r) =

{
Random(yold + δminy , ymax), if r > 0

Random(ymin, yold − δminy), if r ≤ 0

ymut = ((yold + δ(r)miny · r) · (1−m) + yrand · µ)

(31)

We aim to keep both algorithm set-ups as close as possible. Therefore both operators
use the same computations to determine X and Y values. When using the discrete
value setup, the algorithm uses a post processing step to move each generated value
to the closest discrete position. We compute the cell index c as follows:

c =

 xi · ρ
|Xmax −Xmin|

ρ

+

 yi · ρ
|Ymax − Ymin|

ρ

 · ρ (32)

Using c as input for Equation 30 provides us with a discrete position. The parameter
δmin ensures that the mutation of a single value is large enough to result in a different
discrete value after this post processing step. We ensure that no cell is occupied by
two turbines at any time.

4.10. Replacement and Replenish Operation

The replacement operation forms the new population Γnew for the next generation.
The Nrepl best chromosomes of the offspring population (mutated and not mutated
set) are added to the current population. The worst chromosome is removed until the
population size matches N ′pop = Npop − (Nrand + Nrepl). Nrand represents the number
of randomly generated chromosomes. Randomly generated γ′i chromosomes are added
until the population size reaches Npop.

Γt = {γ1, γ2, · · · , γNpop}
Γt ∪ Γoffspring = {γ1, γ2, · · · , γN ′

pop
, · · · , γNpop , · · · , γ(Npop+Nrepl)︸ ︷︷ ︸
sorted by fitness

}

Γt+1 = Γrand ∪ {γ1, γ2, · · · , γN ′
pop
}

Γt+1 = {γ1, γ2, · · · , γN ′
pop
, γ′1, · · · , γ′Nrand}
|Γt+1| = Npop

(33)
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Figure 18: Maximum and minimum fitness values, that are present in a population
in each generation. We call the difference between the worst and the best
chromosome fitness gap.

In order to maintain a sufficient variety random chromosomes have to be introduced
to the population after the elimination of the individuals with the lowest fitness. Since
they did not undergo any evolution process these random chromosomes are very likely
to have a fitness below the population average. With increasing number of generations
the fitness gap between random chromosomes and the population average increases
(Figure 18). Thus the chance of a random chromosome to remain within the popu-
lation is very low, as they are likely to be replaced by offspring with a higher fitness.
By adding the chromosomes after the elimination process there is a chance that the
chromosome will be randomly selected for the mating pool, thus increasing diversity
in the population.

The replacement operation itself does not differ between its operator for CVCs and
for DVCs. However, the replacement operation includes a chromosome factory to
generate new random chromosomes. As explained above, the chromosome factory
itself differs greatly for both chromosome types.

4.11. Summary

In this section we went through one iteration of the genetic algorithm, highlighting each
major operator of it. Although working on different value types, many operators are
the same for both continuous value chromosomes and discrete value chromosomes. In
those cases, where different operators had to be implemented (Chromosome Factory,
Crossover and Mutation), attempts were made to keep the differences as small as
possible.
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After presenting the model, and the algorithm we use to optimize it, we will analyze
in the next section, what effects changes in discretization settings and and optimizer
configuration have upon the optimization results.
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5. Convergence

Evolution is based on diversity. Natural selection uses it to produce new and better
solutions for a given problem [18]. An evolutionary algorithm converges when the
diversity of its population breaks down and most of its individuals become similar [13].
In the following sections we will analyze the operators and evaluate the effect they have
on the diversity of the population and how their convergence changes upon parameter
modification. Not every operator can be configured with a parameter. Both choosing
operation and coupling operation are based on random selection and will therefore not
be analyzed in this section. Although the stopping criteria is one of the fundamental
building blocks of a genetic algorithm, it will not be covered by this section, as it has
no influence on the convergence itself. This leaves us with an analysis of the following
operators:

1. Chromosome Factory: We take a look on the effect of discretization on the
precision and the search space of the optimization.

2. Selection Operation: We present the effects of different selection rates on
population diversity

3. Crossover Operation: We verify the findings by Richter[24] upon which we
chose this operator.

4. Mutation Operation: We analyze the effects of different mutation settings.

5. Replacement Operation: We analyze the effect of different replacement rates.

Finally we will use the findings to propose two configurations for the chromosome types
of the genetic algorithm. If not displayed otherwise the default settings from Table 4
where used for any plots in this chapter.

The research of Goldberg [13] and Luis [18] to the topic of predictions on conver-
gence behavior is based on genetic algorithms, which use ordered sequences of bits as
chromosomes. They propose that a diverse population of a genetic algorithm converges
towards a population in which all individuals become similar. One approach to predict
convergence is to inspect the influence of each genetic operator on the diversity of the
next generation. Gale uses [28] the average hamming distance over all chromosomes to
measure the diversity of a population. We cannot use the same method to measure the
diversity of our population, as our chromosomes neither consist of binary sequences,
nor are they ordered. We will compute an indicator for diversity by computing the
distances between the positions pk from each chromosome i, j to another.

∆ =
1

NpopNgene

∑
i 6=j

∑
k

|xi,k − xj,k|+ |yi,k − yj,k| (34)

The correlation between convergence and diversity is depicted in Figure 19. We
can see that the fitness of the population converges as its diversity breaks down. In
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Figure 19: Convergence of a genetic algorithm using discrete value chromosomes. Set-
tings for a low runtime (Table 5) with a reduced population size Npop = 10
were used. Note that the population diversity is subject to a constant noise
due to the injection of random chromosomes, although this noise becomes
nearly negligible in the latter generations.

the early generations (0 − 200) the average chromosome variety seems to change a
lot within few iterations. This behavior is caused by changes in the order of the
chromosomes. An encoding of one chromosome with Ngene genes can represent the
same layout in Ngene! different ways. Note that each layout is only represented once
in the population. The diversity is expected not to converge towards zero as mutation
and replacement operations keep adding new chromosomes.

5.1. Effects of discretization on convergence

Discretization of the genome parameters has multiple effects on behavior how the
algorithm converges towards an optimum. In the context of this optimization we will
take a look at two different aspects that are influenced by discretization: Search-space
and precision.

5.1.1. Search-Space

The search-space A, also known as choice set, is the domain of the function that is
optimized. We shall take a look, what effect discretization has on the count of its
members |A|. When using a computer we have to rely on machine numbers in order
to represent genome values of CVCs. In our implementation we rely on the IEEE754
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double standard [2]. A double is represented as follows:

x = (−1)sign

(
1 +

52∑
i=1

b52−i2
−i

)
× 2e−1023 (35)

We can compute the search-space for a genome parameter, such as the X-Value as
follows: One approach is a simple count of all possible bits:

|D| = 264 (36)

It is impossible to represent more numbers with the same amount of bits, but we have
to consider representations such as infinity and NaN as well:

1. There are two representations of zero: One with a positive and one with a negative
sign.

2. There are two infinities, where the first 12 bits are 0x7ff or 0xfff and the
mantissa is all zero.

3. There is a set of NaN values, encoded with sign+exponent bits 0x7ff or 0xfff

and a nonzero mantissa.

The amount of distinct values that can be represented by a double is

|D| = 2 · 211 − 1 · 252 − 1 = 18.437.736.874.454.810.623 ≈ 1, 8438× 1019

In addition we have to consider the range of the genome parameters. We will not be
able to use the entire domain of the double-values. We can only use double-values
that are within Xmax − Xmin. We compute the amount of distinct double-values for
three parameter ranges that are common in our set up.

100010 = 01000100 01111010 00000000 [...] 00000000double

e = 100010002

m = 11110100 00000000 [...] 000000002

We compute the amount of possible values, by computing the amount of remaining
values that result in a smaller number than 1000:

|D|1000 = (e− 1) · 52 +m ≈ 4.4824× 1016

Analogous we compute for Xmax −Xmin = 5000:

e = 100010112

m = 01000101 10011100 01000000 [...] 000000002

|D|5000 = (e− 1) · 52 +m ≈ 5.5037× 1016
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Figure 20: CVC GA convergence behavior. The search space dimensions do not change
a lot when changing the Genome value limits between 1000 and 10.000.
Thus, the algorithms within this range do not differ a lot.

We compute for Xmax −Xmin = 10000:

e = 100011002

m = 01000101 10011100 01000000 [...] 000000002

|D|10000 = (e− 1) · 52 +m ≈ 5.940× 1016

As presented in Figure 20, the differences in the used ranges result in negligible differ-
ences in the convergence. For simplicity let us assume that the approximate domain
for a double value in a genome has |D| = 5× 1016 elements.

As for the search-space of DVCs it is important to note that a genome value can take
on ρ-many values. In contrast to the CVC-encoding this amount is independent on the
range of the values (Xmax −Xmin). For DVSs there are |D| = ρ many distinct values
for each parameter in a genome.

After this determination of how many values a parameter can take on, we can com-
pute the amount of possible chromosomes, and thus predict the size of the search-space
the genetic algorithm is operating on. A chromosome γ encodes a layout L of Ngene

positions. Each position is represented by a genome, that is encoded by either a tuple
(x, y) or a triplet (x, y, r). We compute:

|A| = Ngene · |D|a (37)

Where a = 2 in case we encode tuples and a = 3 in case we encode triplets. We can
compute some examples in order to compare search-space dimensions. With Ngene = 50
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Figure 21: A GA using DVC can converge faster than a GA using CVC with the same
settings. A higher resolution causes a greater search space, which slows the
performance of the algorithm down.

and a = 2 we get:

|A|CV C = 50 · (5× 1016)2 = 1, 25× 1035 (38)

with ρ = 100 : |A|DV C = 50 · (102)2 = 5× 105 (39)

with ρ = 105 : |A|DV C = 50 · (104)2 = 5× 109 (40)

with ρ = 5× 105 : |A|DV C = 50 · (5× 104)2 = 1, 25× 1011 (41)

We expect the GA to converge faster when it is exposed to a smaller search space.
Figure 21 displays the fitness of the highest ranked chromosome in each generation. It
is notable that the configurations for DVCs produce fitter chromosomes in the same
amount of iterations. In contrast to our first observation, simply lowering the search-
space size by discretization of genome values will not always improve performance.
Note that the curves of the three DVC-GAs cross at multiple points. In Section 5.1.2
we will take a look at the influence of discretization on the precision of our model. This
might explain why a smaller ρ not necessarily leads to a higher fitness, in a smaller
amount of generations. In this thesis we introduce GAs as a search algorithm. Until
now we tried to improve the search space of the algorithm by reducing the amount of
possible distinct values for each parameter in a genome. We should also be able to
improve the performance by increasing the sample size. The current population of a
GA is the portion of the search-space the algorithm works on in parallel. By increasing
its size, the drawback of big choice-set size should be compensable (Figure 22a). Doing
the opposite should cause the DVCs convergence behavior to match the CVCs at a
higher population size (Figure 22b).
Augmenting the population size Npop, provides a higher growth in fitness per iteration,
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Figure 22: Effects of diversity on convergence

but at the same time the computation costs rise linearly with Npop (Figure 23). Thus
the gain in performance comes at the cost of runtime and computer resources.

5.1.2. Precision

When we increase the resolution ρ, the amount of available positions increases as well.
With a greater variety of positions to choose from, we gain more precision in our
placement of either wind turbines or heliostats. We can compute the precision of the
current DVC configuration as follows:

∆x = ±xmax − xmin
ρ

∆y = ±ymax − ymin
ρ

(42)

Example: With ρ = 104 and Xmax − Xmin = Ymax − Ymin = 5000 m, each posi-
tion will be placed in an area of 0.5 m by 0.5 m (Figure 24a). With ρ = 10 and
Xmax−Xmin = Ymax−Ymin = 5000 m, each position will be placed in an area of 500 m
by 500 m (Figure 24b). The objective function TRIANGLE will the configuration with
the higher resolution above the one with a low resolution (Figure 25).

The amount of possible values is reduced by lowering the resolution. The lower
the resolution, the more likely a value is unable to reach its global optimum. Reducing
the resolution causes on average the values to drift away from their optimal positions.
Lower resolution tend to cause layouts with a lower quality (Figure 25).
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Figure 24: Effects on ρ of placement. It is important to pick a resolution that is precise
enough to reach an optimal placement. While both algorithms optimize for
the same function, the algorithm on the left (Fig. 24a) reaches a fitness
> 90%. The plot on the right (Fig. 24b) is only a little bit above the fitness
of a randomly generated chromosome (70%).
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Figure 25: Genetic algorithms running on DVCs with a resolution that is too low will
not converge towards the global maximum, as the optimal configuration can
not be resolved.

Following the findings, the algorithm faces an improvement conflict. While on the
one hand a reduction of the search-space leads to improvements for the progress of
the algorithm, it also causes the configuration to be too inaccurate, and due to its
placement will prevent the algorithm from reaching a global optimum.

It is important to find a good balance between search-space size and precision. We
will now take a closer look at resolutions that are close to the precision of the sim-
ulation we are working with. Due to the placement restriction, each position must
be placed at least R meters away from the closest position. This restriction effects
the expected precision as displayed in Figure 26. In case we choose a resolution that
results in a greater cell size c than the restricted area around each position, we can
configure the chromosome to any set of positions without risking any position conflicts
(Figure 26a). The same applies to Figure 26b, note that this is the configuration with
the highest precision, where still no conflicts are expected. An additional resolution
increase could result in blank cells where we can not place a position within the fields
closest to a neighboring position, one cell has to be left blank. The resulting smallest
distance with the higher precision can be greater than with a lower precision (Figure
26c). Further increment of the resolution minimizes this problem (Figure 26d).
While the section above only considered the precision of DVCs we should also consider
the precision of CVCs. For CVCs we can refer to the machine epsilon in order to get
an upper bound on the precision of CVC configurations. In case of a double value the
maximum rounding error is 2−53 ≈ 1.1102× 10−16 [12]. In the context of the offshore
wind park model, this precision would hypothetically allow us to place a wind turbine
with a precision of a tenth of a femto meter. The size of one proton amounts to 1.6fm.
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(a) c > 2R (b) c = 2R (c) c < 2R (d) c < R

Figure 26: Effect of R on ρ: Placement restrictions and resolution interact. Figure 26b
permits a more dense placement than in Figure 26c, although Figure 26c
employs a higher resolution. Higher resolutions will allow denser placement
again (Figure 26d).

Obviously this immense precision is not required. Neither the simulation is sufficiently
accurate, nor is it possible to place any construction with such precision. The CVC
algorithm is optimizing with an accuracy that is several magnitudes too large.
One side effect is the risk of diversity decline in the population. In case two chro-
mosomes differ in one position by a femto meter it will be recognized as a different
chromosome although the fitness function will not be able to compute a difference.
This can lead to a monotone population that is unable to converge towards a global
maximum. Default mechanisms to prevent duplicates will not be able to avert this
unlikely scenario, as the population consists of seemingly different chromosomes.

5.2. Effects of Selection Operation on Population Diversity

Classical selection operations reduce diversity of the population with each iteration
[18]. The amount of this reduction depends on the offspring that is generated by the
selected individuals. Choosing a high selection rate will still result in a convergence.
Although there is no promotion of any genetic material based on its fitness, there
is still a random genetic drift [18][28], that minimizes diversity. Selecting the entire
population to provide new offspring slows down the convergence rate (Figure 27a,
blue line). Choosing a low selection rate (Figure 27a, blue line) will cause a rapid
convergence, as the next generation will only be based on a small elite part of the
current generation. A high fitness is reached in a few generations. This can be also
observed for CVCs (Figure 27b, blue lines). Although starting with the highest growth
rate the algorithm with the configuration with the highest selection rate is soon trapped
in a local maximum. Choosing a low selection rate (Figure 27a, Figure 27b, green lines)
provides best results for both chromosome types and is recommended.
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(a) Convergence of a genetic algorithm us-
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(b) Convergence of a genetic algorithm
using CVCs.

Figure 27: Effect of selection rate on convergence. Selecting a small portion of the
population will result in a slow convergence, that will reach the highest
values. Selecting half of the population will result in a fast convergence,
but will converge towards a lower fitness. Selecting all chromosomes will
converge fastest, but will also result in the lowest fitness.
Settings for a low runtime (Table 5) were used.

5.3. Effects of Crossover Operation on Convergence Behavior

Analogous to the proof in Louis [18], the crossover operators 1-Point-Crossover and
N-Point-Crossover do not have any effect on the diversity of a population, because
these operators only change the order in which the genomes contribute to the overall
diversity. The crossover operator used in our implementation is an adaptation of the
One-Step-Crossover as presented in [24]. As Richter points out, the operator was
modified in order to compute crossover for the specific genotype representation and
adapted to prefer good genes in its offspring, thus improving the overall fitness of the
population. The effect is illustrated in Figure 28. We are able to reproduce Richter’s
findings within our own implementation. This preferential treatment of alleles reduces
the average diversity of all individuals to a greater extend than classical crossover
operations such as 2-point-crossover. By passing on dominant genes to the offspring,
it is likely to hand down a specific gene to multiple offspring, thus multiplying its
presence in the population and reducing the average diversity.

5.4. Effects of Mutation Operation on Convergence Behavior

The mutation operation is a constant source for diversity in the population. Mutation
is one of the few operations that will introduce new alleles into the population [28].
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Figure 28: Performance of One-Step-Crossover in comparison to classical crossover op-
erations and Zero-Step-Crossover as presented by Richter [24]. We are able
to confirm his findings (Fig. 28a), by reproducing the measurements (Fig.
28b)

By modifying existing chromosomes it counteracts genetic drift. In case the mutation
operation is set up too strong it can destroy alleles that had a positive impact on
specific chromosomes and lower the overall quality of a population. If the mutation is
too weak, it will slow down the convergence of the algorithm, and cause the algorithm
to require many iterations to evolve a specific allele. We take a look at two properties
of the mutation: The amount of mutated chromosomes (Mutation Probability) and the
rate at which a genome of a chromosome is mutated (Mutation Rate).

5.4.1. Mutation Probability

Although the mutation operation increases diversity, it lowers the average fitness of
the population (Figure 29). This can be explained by the fact, that the mutation
only takes place in chromosomes that where generated from individuals with a high
fitness. In later iterations it is very likely to undo evolved progress by a random
mutation. Without any mutation and without the replacement operation as a second
source for diversity, it is expected for the algorithm to perform worse than algorithms
with a configuration that includes diversity providing operations. In the case displayed
below, the initial population is diverse enough to enable a GA without mutation and
replacement to perform better than those who include those operations. It is important
here, that this progress relies entirely on the initial population. In case we reduce the
population size or analyze a greater amount of iterations, the other configurations will
perform better.

We can demonstrate the requirement for mutation by reducing the genetic infor-
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(a) Convergence of a DVC GA using dif-
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(b) Convergence of a CVC GA using dif-
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Figure 29: Effect of mutation probability on convergence. Note that the replacement
operation was disabled for this analysis. Mutation has a negative effect on
the convergence. It seems that no mutation at all will yield the fastest con-
vergence. The diversity required for the optimization was provided by the
initial population. The lower the mutation rate, the more the algorithm re-
lies on pure ’luck’ that the genetic information was provided with the initial
population. For this reason we have to employ at least a small mutation
rate in order to guarantee that all solutions can be reached, even if they
were not part of the initial population.
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Figure 30: GA running with CVCs on a small population (Npop = 10). Mutation is
required to reach all possible solutions. Without diversity providing oper-
ators, multiple executions of the GA show nondeterministic behavior (blue
lines). The algorithm relies entirely on the initial population to contain all
genetic information to evolve the solution. With mutation (red lines) the
GA converges to higher values and behaves deterministic.

mation in the initial population. By configuring the GA to use CVC with a very
small population size (Npop = 10) we will reach the upper limit of the convergence in
less iterations (Figure 30 ). We observe that running the GA multiple times in this
configuration will provide different results. The genetic algorithm does not behave
deterministically anymore. The GA that is configured to use the mutation operation
(red lines, Figure 30) provides better results and does not remain on a local maximum.
Note, that with mutation the algorithm shows deterministic behavior.

5.4.2. Mutation Rate

The mutation rate µ determines how strongly a mutation can modify a value within a
gene. For µ = 100% the targeted value in a gene is replaced by a random value, for
µ = 0% the value is kept the same. (Figure 31). In a DVC set up high mutation rates
tend to result in offspring with a higher fitness. Due to the discretization it is more
difficult to make ’fine adjustments’ to individual values via mutation. In a CVC set up
it is possible to make minor corrections to the values. These small mutations support
the progress of the algorithm once a certain level of fitness has been reached. When
mutating a chromosome with a very low fitness, a high mutation rate significantly
increases the chance of fitness improvement. The draw back of worsening its fitness is
negligible, as it already is a low fitness chromosome. On the contrary, for high fitness
chromosomes only minor changes should be applied in order to avoid a corruption of
the properties. The similarity of chromosomes in two subsequent iterations is very high
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Figure 31: Effect of mutation rates on convergence. A high mutation rate is beneficial
for a DVC-GA, but for a CVC-GA the opposite applies. In both cases, the
extend of the influence of the mutation rate is small.

which is why mutations should be done in smaller steps when a high fitness level is
already reached. We can observe these benefits of both rates in Figure 31b: The high
mutation rate provides more progress in the early iterations (red line) (0 − 100), but
as the average fitness of the population increases the GA that is configured to use a
high mutation rate (turquoise line)(100-1000) provides better results.

5.5. Effects of Replacement Operation on Convergence Behavior

The mutation operation is the second source for diversity among the genetic opera-
tors. The replacement operation replaces old chromosomes with Nrepl new ones from
the offspring pool. After this replacement the worst Nrand chromosomes are replaced
with random chromosomes. Since these random chromosomes did not undergo the
evolution process they usually have an ever lower fitness than those removed from the
optimized population. However, this is uncritical as the replacement operation does
not aim to improve the current average fitness of a population, but to inject new genetic
information into it and provide diversity without worsening the fittest chromosomes
of the population. Therefore we expect the operation to have a beneficial effect on
the fitness of the elite within the population despite lowering the average fitness of the
population. Figure 32 displays the effect of a 10% replacement of the population with
random chromosomes, compared to replacing none. The fitness gap indicates the range
of fitnesses within a population. When relying only on Mutation to provide diversity,
chromosomes with a low fitness are rapidly expelled from the population. When using
replacement the very same chromosomes still get expelled, but new ones are added.
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Figure 32: Convergence with and without replacement. Adding random chromosomes
into the population introduces diversity, and lowers the lower fitness limit
of the population. The fitness gap is wider in comparison to a GA that only
uses mutation to manage diversity.

New chromosomes provide completely independent and random genetic information,
that allows the algorithm to converge faster.

When replacing chromosomes of the population we have to ensure that the new
chromosomes provide more benefit for the optimization than the previous ones. As we
are adding chromosomes that are very likely to have a fitness that is below the average
of the population we should only replace a small part of the population.

Similar to the improvement conflict described for mutation in Section 5.4, replace-
ment also needs to be balanced to avoid a corruption of the population’s achieved
fitness level. While too many replacements would turn the algorithm into a Monte-
Carlo-Algorithm and compromise its genetic character, too few would lead to a slow
convergence for the same reasons as in Section 5.4 (Figure 33b). Figure 33b demon-
strates the ideal replacement rate of 10% for a population of 1000 which is the per-
centage to be used in this simulation.
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(a) DVC GA convergence using extreme
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(b) DVC GA convergence using common
replacement rates.

Figure 33: Effect of different replacement rates on convergence. Note that the Mutation
Operation was disabled for this analysis. No replacement provides the same
curve (blue line), as known from previous plots about lack of divergence
(Fig. 30), replacing the entire population disables the evolutionary process.
We observe the range fitness values, random chromosomes are likely to reach
(green line). More reasonable replacement rates provide better results (Fig.
33b)
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5.6. General Algorithm settings

The behavior of the genetic algorithm can be optimized by choosing a configuration
that matches the simulated model. Based on the findings above we present two rec-
ommendations for the algorithm: One configuration for a GA using DVCs (Table 6)
and one for a GA using CVCs (Table 7). The parameter of the configuration will be
explained in detail in this section.

5.6.1. DVC-GA

• Resolution Based on Section 5.1 a resolution that matches the resolution of the
simulation is recommended. In our case we assume that the placement of a wind
turbine will occur with an error not less than ±0.1m. Thus we simply choose:

ρ =
|xmax − xmin|

0.1m
(43)

• Population Size Based on Section 5.4 a population of Npop = 100 provides
sufficient diversity. A higher diversity would require more runtime, whereas a
lower population would lower the progression per iteration of the algorithm.

Npop = 100 (44)

• Selection Pool Size According to Section 5.2 low selection rates are recom-
mended. Best results were accomplished with 10% of the population.

Nsel = 0.1×Npop (45)

In this thesis we do not modify the amount of produced offspring. Therefore for
any experiment or computation in this thesis holds: Noffspring = Nsel

• Mutation Probability Because the mutation is necessary, but disadvantageous
for the fitness at the same time, we choose a low rate (Section 5.4.1).

pc = 0.1 (46)

• Mutation Rate High mutation rates on DVCs lead to a steeper convergence
than low mutation rates (Section 5.4.2). Accordingly we choose the maximal
rate.

µ = 1 (47)

• Replacement The insertion of random chromosomes is important to prevent
convergence to only a local maximum and enables the optimizer to reach a global
one. Replacement provides the new genetic information without dramatically
worsening the progress of the optimization. As presented in Section 5.5 we choose
a low replacement rate.

Nrand = 0.1×Npop (48)

In this thesis we do not further analyze changes to Nrepl. For all experiments
and computations holds: Nrepl = Noffspring
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5.6.2. CVC-GA

The configuration of a genetic algorithm for CVCs is very simililar to one for DVCs.
Some differences however are essential.

• Resolution The resolution is predetermined by the number system that we use.
Changing this parameter will not have any effect on the optimization.

• Population Size Based on Section 5.1 a population of Npop = 100 performs
worse than the same population encoded in DVCs. Incrementing the population
size will cause more runtime. Accordingly we chose a slightly higher population
size.

Npop = 1000 (49)

• Selection Pool Size Similar to the DVC-GA we choose a low selection rate of
10%.

Nsel = 0.1×Npop (50)

In this thesis we do not modify the amount of produced offspring. Therefore for
any experiment or computation in this thesis holds: Noffspring = Nsel

• Mutation Probability Similar to the DVC-GA we choose a low mutation rate
of 10%. (Section 5.4.1).

pc = 0.1 (51)

• Mutation Rate High mutation rates on CVCs lead to a steeper convergence
than low mutation rates, but in contrast to DVCs high mutation rates tend to be
disadvantageous once the population has reached high fitness values, therefore
we choose a low mutation rate (Section 5.4.2)

µ = 0.1 (52)

• ReplacementAs presented in Section 5.5 replacement causes a similar conflict
as the mutation rate. To avoid an undermining of the population’s fitness we
choose a low replacement rate.

Nrand = 0.1×Npop (53)

In this thesis we do not further analyze changes to Nrepl. For all experiments
and computations holds: Nrepl = Noffspring
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5.7. Summary

We presented the effects different parameters have on a Genetic Algorithm with a
population consisting either of CVCs or DVCs. As expected, only the operators that
interact directly with the chromosomes (Chromosome Factory and Mutation), require
different settings for a CVC and a DVC configuration. The remaining operators only
differ in the extend of the influence of a parameter change. We stated, that due to the
great differences in search space, CVCs converge slower than DVCs. In conclusion, we
presented changes to the parameters of the CVC configuration to counteract the draw
back in part. The algorithm settings defined above allow us in the following section
run the evolutionary algorithm for the optimization of wind turbine placements.

6. Experimental Results

In this section we present the results of the complete set-up for the genetic algorithm.
We will compare the results for both continuous values and discrete values. We will
Optimize a model of the HornsRev1 wind park. As an objective functions AEPnet,
NPV and IRR (See Section 3.5) will be used. These simulations provide sufficient
complexity to evaluate the difference in performance of both GA-configurations.

6.1. Test Functions

The following plots show the results of the four test functions we used to analyze the
convergence behavior in the previous chapter.
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(a) Optimization for objective function
CORNER f = 0.86%
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(b) Optimization for objective function
MAX SIDE f = 0.95%
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(c) Optimization for objective function
TRIANGLE f = 0.84%
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(d) Optimization for objective test func-
tion RHOMBUS f = 0.83%

Figure 34: Overview of the different test function results.

6.2. Experimental Setup

The Model we use in this thesis is based on the HornsRev1 Power plant, located in the
German bay (see Figure 1). HornsRev is a power plant, that consists of 80 horizontal
axis wind turbines (Model Vestas V80). The plant covers an area of 3800m by 5000m.
As discribed in section 3.1, the model uses statistical data of wind speed and direction,
accounts for downtimes caused by maintainance or demage to turbines and includes
economic data to compute the current value of the project.
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Average time required for: CVC DVC
iteration [ms] 41308 1141
selection operation [ms] 94 1
crossover [ms] 34375 844
mutation [ms] 951 24
replacement [ms] 5886 271

Table 1: Time spent on selected operations during optimization (AEP)

6.3. Test case Horns Rev AEP

We optimized the offshore wind park layout of HornsRev1 in order to maximize the
AEP as defined in Section 3.5.2. For this purpose we use two configurations: One
employing CVCs (Figures 35c and 35d) and a second one, employing DVCs (Figures
35a and 35b). We observe far better results using DVCs. The Table 1 presents runtime
results. The CVC-configuration required 24 hours (88732,62 s on an intel CORE i7)
to compute. The DVC-configuration finished within 48 minutes on the same configu-
ration.
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(b) Convergion of the genetic algorithm (Con-
figuration as in Table 6)
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(d) Convergion of the genetic algorithm (Con-
figuration as in Table 7)

6.4. Test case Horns Rev NVP

In this test case we compare the optimization of the two genetic algorithms, that
optimizes the objective function NPV (see section 3.5.4). The performance of both
algorithms differs a lot. The GA, configured to employ CVCs required a lot more
time, converging towards a lower value within the same amount of iterations. The
CVC-configuration took 20 hours (73594,79s) to compute while the DVC-configuration
only needed 137 minutes. Table 2 provides detailed information on the runtime costs.

52



Average time required for: CVC DVC
iteration [ms] 36796 3966
selection operation [ms] 89 1
crossover [ms] 25684 873
mutation [ms] 932 24
replacement [ms] 5586 276

Table 2: Time spent on selected operations during optimization (NVP)
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(b) Convergion of the genetic algorithm
(Configuration as in Table 7)
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(d) Convergion of the genetic algorithm
(Configuration as in Table 6)

6.5. Test case Horns Rev IRR

In this test case we compare the optimization of the two genetic algorithms, that
optimizes the objective function IRR (see section 3.5.5). We notice a difference in
performance similar to the previous results. CVCs require more time to converge. The
CVC-configuration took 5 hours (17768,83s) to compute while the DVC-configuration
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Average time required for: CVC DVC
iteration [ms] 6768 1173
selection operation [ms] 75 1
crossover [ms] 4338 843
mutation [ms] 180 25
replacement [ms] 2172 302

Table 3: Time spent on selected operations during optimization (IRR)

only needed 49 minutes. Detailed information on the runtime requirements can be
found in Table 3).
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(b) Convergion of the genetic algorithm
(Configuration as in Table 7)
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(d) Convergion of the genetic algorithm
(Configuration as in Table 6)
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7. Conclusion

In this section we will summarize the findings of this thesis and provide some sugges-
tions for future work.

7.1. DVCs and CVCs

We were able to evaluate the differences between the convergence behavior of CVCs
and DVCs. Although CVCs permit a more precise placement of wind turbine, they
converge slower due to their bigger search space. We were unable to compensate the
slower convergence rate by increasing the population size and by adapting the config-
uration. There is no benefit in using a resolution that exceeds the one of the objective
function. The additional placement options increase the search-space and slow down
the optimization as a consequence. Figure 38 demonstrates the basic problem of dis-
cretization of genome values. For a fixed amount of generations the following can be
observed:

• In case we observe a high fitness and a low runtime, it is very likely that the
search space of the given problem is a small one.

• In case we observe a low runtime and a big search-space, it is very likely that the
fitness that has been reached up to this generation is a small one.

• In case we observe a high fitness for a GA with a big search space, then it is very
likely that the run time was very low due to a big population size that had to be
used to reach the observed fitness.

high Fitness

low Runtime big Search-space

Figure 38: Runtime is influenced by the algorithms setup

Note, that GAs are heuristic search algorithms, and depending on their configura-
tion can ’get lucky’ in finding a solution (see Figure 30), therefore we can only can
use Figure 38 as an indicator, on how these parameters interact. A GA should be set-
up with a configuration that minimizes the dependency on chance to produce a good
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result, and instead be configured to converge towards the same result on any execution.

We conclude that a genetic algorithm that employs continuous gene parameters
performs worse than one using discretized gene parameters, as long as the discretization
is within a reasonable precision. Continuous parameters increase the search-space of
the algorithm unnecessarily and can not path through their precision. Using discrete
parameters is much more efficient and yields better results in all test cases.

7.2. GA Configuration

We also presented findings on how to configure the genetic algorithm, not only for the
model used in this thesis, but also provided general principles on how to configure this
set-up. A set of specific configurations was developed (Table 6).

7.3. Future Work

• The genetic algorithm that was developed for this thesis is also capable to op-
timize layout data of Solar Power Plants, as they are introduced in [24]. The
algorithm could be configured to match the parameters of the Heliostat-Field
model.

• We observed a high conversion rate when using smaller resolutions. However,
those configurations converged to worse results than the higher resolution coun-
terparts. A variable resolution could be implemented, that increases with each
iteration of the algorithm (See [22]).

• As part of this thesis we developed a framework to facilitate easy comparison of
optimizers. An evaluation of performance of the genetic algorithm and e.g. Tabu
search is possible.

• The implemented genetic Library permits both pre- and postprocessing steps.
The closer the optimization gets to the maximum, the slower it converges. A
stopping criteria could terminate the genetic algorithm optimizer in advance and
optimize the remaining part with an algorithm with a lower runtime.
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A. Appendix
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