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Abstract

The model constructing satis�ability calculus (MCSAT) is an abstract de-
cision procedure for determining the satis�ability of �rst-order logic formulas
with respect to some theory. This process is known as satis�ability modulo
theories (SMT) solving. In particular, MCSAT can be applied to the theory of
quanti�er free non-linear real arithmetic (QFNRA), whose formulas are Boolean
combinations of polynomial constraints. A crucial step of the algorithm is the
construction of a single cell around a given point in the multidimensional real
space so that a given set of polynomials is sign-invariant on that cell.

In this thesis, we modify a recently proposed method for single cell construc-
tion, showing how arti�cial low-degree polynomials can be introduced during
the construction to speed up the computation of resultants, with the drawback
of underapproximating the cell. Experimental results suggest that our approach
can outperform the original method in the context of MCSAT.



iv



Contents

1 Introduction 7

2 Preliminaries 11
2.1 SMT Solving for Non-linear Real Arithmetic . . . . . . . . . . . . . . 11
2.2 MCSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Constructing a Single Sign-Invariant Cell . . . . . . . . . . . . . . . . 17

3 Underapproximating Sign-Invariant Cells 29
3.1 A Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Implemented Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Using the Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Experimental Results 51
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Taylor-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion 61
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65



vi Contents



Chapter 1

Introduction

Over the last decades, computer programs have progressively found their way into
numerous aspects of our everyday lives and they continue to do so ever more rapidly.
And there is good reason for that, as software can not only take over simple, repeti-
tive tasks, but it can also e�ciently solve problems that would be too complex or too
laborious to solve manually. With signi�cant advances in the �eld of arti�cial intel-
ligence, even tasks previously deemed to be only manageable by humans now seem
within reach of computers. But especially in critical applications, such as self-driving
cars or medical equipment, it is crucial to con�rm that the software, unlike humans,
will never make any mistakes.

The process of formally proving the correctness of a computer program is called
software veri�cation. Considering the amount and complexity of program code pro-
duced every day, it is obvious that only automated approaches are suitable for this
task. Usually, these approaches use some kind of formalism to encode software sys-
tems and their properties in order to make them suitable for formal reasoning. One
example of this is satis�ability modulo theories (SMT), which expresses properties as
logical formulas so that analysing their satis�ability allows to infer when a property is
ful�lled. Depending on the context in which SMT is used, the formulas have di�erent
syntax and semantics, which are determined by a background theory. One particu-
larly interesting theory is quanti�er free non-linear real arithmetic (QFNRA), where
formulas describe relations between real number variables by so-called polynomial
constraints. It yields a very expressive and versatile logic for which the satis�abil-
ity problem is still decidable. Taking into account that the satis�ability problem for
propositional logic is already NP-complete, tools for solving SMT problems are often
confronted with generally very challenging tasks. However, there are many strate-
gies that prove to be e�cient and helpful in practice and thus, there has been vivid
research in the �eld of SMT solving.

A noteworthy result is the model constructing satis�ability calculus (MCSAT)
proposed by Jovanovi¢ and De Moura in 2013, along with its application to QFNRA
[dMJ13, JdM12]. A crucial part of this method is the single cell construction. For
a set of multivariate polynomials with n input variables and a sample point s in the
multidimensional real space Rn, a connected set S ⊆ Rn is constructed around s
so that the polynomials have constant sign when evaluated at any point in S. The
implementation by Jovanovi¢ and de Moura builds upon the theoretical results of
Collins' CAD method [Col75] and was later improved by Brown and Ko²ta [BK15]
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whose ideas inspired a recent approach by Nalbach et al. [NSÁ+22].
The single cell construction subroutine makes up a signi�cant portion of the run-

time in MCSAT and one reason for this is the repeated computation of polynomial
resultants, which can lead to a doubly exponential blow-up, depending on the degrees
of the involved polynomials. Accordingly, there have been e�orts to improve the ef-
�ciency of single cell construction methods and to reduce the number of computed
resultants.

In this thesis, we will tackle this problem from a di�erent angle, aiming to compute
simpler resultants instead of fewer.

Contributions We modify the levelwise method for single cell construction recently
proposed by Nalbach et al. ([NSÁ+22]) with the aim of reducing the complexity of
resultant calculations, which make up a signi�cant portion of the method's runtime.
In particular, this thesis contains the following contributions:

� Firstly, we show how, during the levelwise single cell construction, new polyno-
mials can be introduced to the working set of polynomials so that the computed
resultants are far less complex. The resulting cell will always be an under-
approximation of the maximal sign-invariant cell for the given input but not
necessarily a subset of the cell computed by the unmodi�ed procedure.

� We present two exemplary options for constructing the additional polynomials,
one of which is a naive box-like approach, while the other is based on the
multivariate Taylor expansion.

� Our main motivation is to improve the single cell construction in the context
of the MCSAT method for SMT-solving. Therefore, we show that MCSAT is
generally not complete when using our modi�ed procedure, but we also present
simple measures that can be employed to guarantee completeness, after all.

� There are many heuristic decisions within our approach, for which we give a
number of possible choices and strategies. We also implemented our approach
with the di�erent heuristics within the SMT-RAT toolbox for SMT solving
[SMTb, CKJ+15].

� Finally, we evaluate our approach in the context of MCSAT using the SMTLIB
benchmark set [SMTa, BST10]. We compare it to the original levelwise method
and investigate the performance of di�erent heuristics and settings.

Structure In Chapter 2, we describe the foundations of our work and set up some
basic de�nitions. First, the satis�ability problem for quanti�er free non-linear real
arithmetic (QFNRA) is introduced. We then show how the model constructing satis�-
ability calculus (MCSAT) can be used to solve that problem by utilizing sign-invariant
cells. In Section 2.3, we delve further into the construction of single sign-invariant
cells and present the levelwise approach by Nalbach et al.

Building upon this basis, we modify the levelwise method in Chapter 3. After
giving an intuition for the idea of our approach and presenting a rather simple im-
plementation, we provide a general formulation and show its correctness. This is
followed by a more complex implementation using the multivariate Taylor expansion.
In Chapter 4, we evaluate our approach based on experimental results.



9

Finally, Chapter 5 concludes this thesis, summarizing our work and providing
some thoughts about future research based on our approach.
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Chapter 2

Preliminaries

2.1 SMT Solving for Non-linear Real Arithmetic

Satis�ability modulo theories (SMT) is a variation of the satis�ability problem for
�rst-order logic (FO), where the formulas are interpreted with respect to one or more
background theories. In practice, the theory often predetermines the used variable
domain, predicates and function symbols, as well as their semantics. This means that
in SMT, we can view formulas as Boolean combinations of theory atoms (constraints),
each of which is evaluated over its respective theory.

We will focus on one of the more well-known theories, named real arithmetic,
which uses the real numbers R as underlying variable domain, along with the function
symbols + and · and comparison predicates < , ≤ , ≥ , > , = , 6= with their
standard semantics for R. Before we de�ne the formulas and satis�ability notion of
quanti�er free non-linear real arithmetic, we �x some basic notations and concepts
used throughout the thesis.

We denote by N the set natural numbers including 0, by Q the rational numbers
and by R the real numbers, respectively. Given k ∈ N, we de�ne the set of natural
numbers from 1 to k as [k] := {1, . . . ,k} ⊂ N. Moreover, for k ∈ N and j ∈ [k],
the �rst j components of a multidimensional point r = (r1, . . . ,rk) ∈ Rk are written
as r[j] := (r1, . . . ,rj). In the remainder of this thesis, let n ∈ N be an arbitrary
positive integer. We �x a set X := {x1,x2, . . . ,xn} of distinct (real valued) variables
and an ordering x1 ≺ x2 ≺ . . . ≺ xn according to the index labels of the variables.
Furthermore, we use lowercase letters like y to denote an arbitrary variable in X.

De�nition 2.1.1 (Polynomial). Let R be a ring, e.g. R or Q, and m ∈ N. For all
i ∈ [m] and j ∈ [n], let ai ∈ R and ei,j ∈ N. Then a term of the form

m∑
i=1

ai

n∏
j=1

x
ei,j
j

is a polynomial over R in variables x1, . . . ,xn. The set of all such polynomials is
again a ring and denoted by R[x1, . . . ,xn].

De�nition 2.1.2 (Univariate Polynomial). Let R be a ring and p ∈ R[x1, . . . ,xn].
We call p univariate in y ∈ X if p ∈ R[y], i.e. p mentions no variables other than y.
Otherwise, p is called multivariate.
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We can always interpret p ∈ R[x1, . . . ,xn] as a univariate polynomial in xn with co-
e�cients R[x1, . . . ,xn−1], that is as p ∈ R[x1, . . . ,xn−1][xn]. In particular, it can then
be written as p =

∑m
i=0 cix

i
n for a unique m ∈ N and unique polynomial coe�cients

c0, . . . ,cm ∈ R[x1, . . . ,xn−1].

De�nition 2.1.3 (Coe�cients and Degree). Let R be a ring, p ∈ R[x1, . . . ,xn].
Moreover, let m ∈ N and c0, . . . ,cm ∈ R[x1, . . . ,xn−1] be so that p =

∑m
i=0 cix

i
n.

� We de�ne the set coe�xn
[p] := {c0, . . . ,cm} ⊂ R[x1, . . . ,xn−1] of polynomial

coe�cients of p w.r.t. xn.

� The degree of p with respect to xn is degxn(p) = m.

The terms built from rational numbers, variables x1, . . . ,xn, addition and multi-
plication form the set Q[x1, . . . ,xn] of polynomials with rational coe�cients. We can
evaluate a polynomial p ∈ Q[x1, . . . ,xn] at a point r ∈ Rn by substituting r1 for x1,
r2 for x2 and so on, up to xn. The result is denoted by p(r) ∈ R.

De�nition 2.1.4 (Real Roots). Let p ∈ Q[x1, . . . ,xn] and r ∈ Rn. We call r a real
root of p if p(r) = 0. The set of all real roots of p is denoted by realRoots(p).

Note that, if a (non-zero) polynomial p with rational coe�cients is univariate in
some variable y, i.e. p ∈ Q[y] \ {0}, then the set realRoots(p) is �nite. The roots of
univariate polynomials let us de�ne the real algebraic numbers, which are important
for algorithmic reasons. In contrast to the real numbers, all algebraic numbers are
�nitely representable, which makes them suitable for computations.

De�nition 2.1.5 (Real Algebraic Numbers). A real number r ∈ R is algebraic if
there is some p ∈ Q[y] (y being any variable) with p(r) = 0. The set of all real
algebraic numbers (RANs) is denoted by R. Every RAN r can be represented as a
pair r = (p,I), where p ∈ Q[y] with p(r) = 0 and I is an open interval with rational
boundaries, so that r ∈ I is the only root of p contained in I.

Example 2.1.1 (RAN). The irrational number
√

2 is algebraic with a possible rep-
resentation (y2 − 2, (0,2)). Note that there are real numbers which are not algebraic,
for example π, and thus R ( R.

There is an e�ective procedure for isolating the real roots of a univariate polyno-
mial and representing them as RANs. Given algebraic numbers r1, . . . ,rn−1 ∈ R and
p ∈ Q[x1, . . . ,xn], we can isolate the real roots of p(r1, . . . ,rn−1,xn). That is, we can
compute the set {r′ ∈ R | p(r1, . . . ,rn−1,r′) = 0} ⊂ R. For r = (r1, . . . ,rn−1), we
also write p(r,xn) to represent the univariate polynomial resulting from substituting
r1, . . . ,rn−1 for x1, . . . ,xn−1 in p. Similarly, given an additional value r′ ∈ R, we write
p(r,r′) to denote p(r1, . . . ,rn−1,r′).

With these de�nitions in place, we now de�ne formulas of non-linear1 real arith-
metic. Polynomial constraints compare a polynomial to zero and they are the most
basic kind of formula, also called theory atoms. They can be combined to create more
complex formulas using the standard Boolean connectives.

1
Linear real arithmetic is a fragment of the here presented logic, where only linear polynomials

are used. It can be solved more e�ciently with specialized algorithms, which is why we make the

explicit distinction.
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De�nition 2.1.6 (Polynomial Constraint). Let p ∈ Q[x1, . . . ,xn] and
∼∈ {< , ≤ , = , 6= , ≥ , >} be a comparison symbol. Then we call the term

p ∼ 0

a polynomial constraint.

Since we do not deal with other theories in the thesis, this is the only kind of con-
sidered constraints and therefore, we will sometimes omit the speci�er �polynomial�
and simply say constraint.

De�nition 2.1.7 (Formula). A quanti�er free formula of non-linear real arithmetic
(QFNRA-formula) is a Boolean combination of polynomial constraints using the op-
erators ∧,∨,¬.

If a formula ϕ is built from constraints over variables x1, . . . ,xn, then we call these
the free variables of ϕ and also write ϕ(x1, . . . ,xn) to indicate this.

Every QFNRA-formula ϕ has an equivalent formula ϕCNF in conjunctive normal
form (CNF), that is, there are c, k1, . . . ,kc ∈ N so that ϕCNF =

∧
i∈[c](

∨
j∈[ki]

li,j),
where each li,j is a constraint or the negation of a constraint. The disjunctions in a
CNF are called clauses and the disjuncts are also referred to as literals. Note that
the negation of a constraint p > 0 is equivalent to the constraint p ≤ 0 and similarly
for the other comparison symbols.

The semantics of QFNRA are straightforward: we can assign real values to the
free variables of a formula and evaluate it handling polynomials and comparisons as
usual in R and using the standard semantics for the Boolean operators.

De�nition 2.1.8 (Semantics of QFNRA). Let r ∈ Rn, p ∈ Q[x1, . . . ,xn] be a poly-
nomial and ∼∈ {< , ≤ , = , 6= , ≥ , >}.

� We say that r satis�es the constraint p ∼ 0, if p(r) ∼ 0 evaluates to true under
the standard semantics of R. In that case, we write r |= (p ∼ 0).

� This notion of satisfaction is extended in the usual way. For formulas ϕ,ψ with
free variables x1, . . . ,xn, we have r |= ϕ ∧ ψ if r |= ϕ and r |= ψ, r |= ϕ ∨ ψ if
r |= ϕ or r |= ψ and �nally r |= ¬ϕ if r 6|= ϕ.

� A QFNRA-formula ϕ(x1, . . . ,xn) is satis�able, if there exists a satisfying as-
signment r ∈ Rn with r |= ϕ (also called model) and unsatis�able otherwise.

Example 2.1.2 (QFNRA-Formula). The QFNRA-formula

ϕ = (1 = 0 ∨ x1 > 0)︸ ︷︷ ︸
clause

∧( x1 ≤ 0︸ ︷︷ ︸
constraint/literal

∨x21 + x22 − 1︸ ︷︷ ︸
polynomial

< 0)

is in conjunctive normal form. For the point s = ( 1
2 ,0) ∈ R2, assigning 1

2 to x1 and
0 to x2, we have s |= ϕ and thus the formula is satis�able.

Finding a model for QFNRA-formulas algorithmically seems tricky at �rst, con-
sidering that not all real numbers are �nitely representable. Fortunately, it holds that
for any QFNRA-formula ϕ(x1, . . . ,xn) there exists s ∈ Rn with s |= ϕ if and only if
there exists s ∈ Rn, s |= ϕ. Therefore, all algorithms presented in this thesis will in
fact work on RANs and not on arbitrary real numbers.
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2.2 MCSAT

Tarski showed in 1948 that the satis�ability problem for real arithmetic is decidable,
even for quanti�ed formulas [Tar98]. However, the algorithm he presented was not
suitable for practical applications as it su�ered from a non-elementary runtime com-
plexity. The �rst somewhat applicable approach followed in 1975, when Collins intro-
duced the idea of cylindrical algebraic decomposition (CAD) [Col75], showing that for
a given �nite set of polynomials in n variables, the in�nite space Rn can be partitioned
into a �nite number of cells over which those polynomials have constant sign. The
satis�ability of any formula built from constraints using those polynomials can then
be determined by evaluating it on one sample point from each of the corresponding
cells. Although the CAD method is a great achievement, it still leaves room for im-
provement, having a doubly exponential worst-case complexity which can also be ex-
perienced in practical applications. Since then, gradual improvements to the method
were achieved by McCallum, Lazard and Brown [McC98, Laz94, MPP19, BM20] and
various SMT-solving methods for QFNRA have been developed which use the the-
oretical insights related to CAD. Rather recently, in 2013, Jovanovi¢ and de Moura
presented a model constructing satis�ability calculus (MCSAT) [dMJ13, JBd13] that
can be used to solve the satis�ability problem for a row of theories. In particular,
they provided an instantiation of the abstract MCSAT method for solving QFNRA
and called the resulting procedure NLSAT [JdM12]2.

The general idea of MCSAT is to construct a model for the given input formula
through a close interplay between theory and Boolean reasoning. In addition to
deciding the truth value of a literal, it allows to temporarily decide the value of theory
variables, which in turn impacts the possible Boolean decisions. When the search
for a model encounters a con�ict, MCSAT tries to generalize that con�ict, gaining
information on both the theory and Boolean level, and employs clause learning. We
will now give a brief overview of an implementation of this procedure speci�cally for
the theory of QFNRA, mainly based on the description in [Kre19]. A rough sketch of
the algorithm �ow is also illustrated in Figure 2.1. While MCSAT is the name of the
general approach, which is applicable to many theories, we will use it to refer to the
speci�c implementation for real arithmetic.

Algorithm Flow MCSAT takes as input a QFNRA-formula ϕ(x1, . . . ,xn) in con-
junctive normal form ϕ =

∧
c∈C c for a clause set C and it returns SAT along with

a model s |= ϕ, if the input is satis�able and UNSAT otherwise. The procedure can
be structured into levels corresponding to the theory variables x1, . . . , xn.

De�nition 2.2.1 (Level). Let F be a polynomial, constraint or clause. The level of
F is the index label of the highest variable occurring in F , i.e.

lvl(F ) := max({i ∈ N | xi appears in F} ∪ {0}).

Moreover, if lvl(F ) = i, then we call xi the main variable of F .

According to their level, i.e. the highest variable they contain, the clauses are
sorted into sets C0, . . . ,Cn ⊆ C with Ci := {c ∈ C | lvl(c) = i} for i ∈ {0, . . . ,n}.
Each level of the algorithm deals with the corresponding clauses, trying to �nd a
partial model that is also consistent with the lower levels.

2In fact, they �rst published the NLSAT procedure and then generalized its ideas.
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Construction of a Partial Model More precisely, the bottom level considers C0,
which are the clauses that do not contain any theory variables and thus immediately
evaluate to the Boolean constants true or false. If level 0 is consistent, i.e. none
of the clauses evaluate to false, the algorithm moves on to level 1, where it tries to
satisfy C1.

MCSAT employs Boolean reasoning to determine a set of literals which are con-
tained in the clauses in C1 and which are assumed to be true. The truth value of a
literal is either determined by Boolean propagation or by making a decision, which
can then lead to propagation for other literals. If the resulting Boolean assignment
satis�es C1, a value s1 ∈ R for x1 is chosen, which is consistent with the asserted
literals and therefore s1 |= C1. This value is a partial model which is to be extended
for the other variables in the subsequent levels.

For level 2, this means that MCSAT searches a value s2 ∈ R for x2, so that
(s1,s2) |= C2. Since s1 is temporarily �xed, this is again a univariate problem and
can be handled in the same way as for level 1. Note that the extended model should
satisfy the same literals from C1 as before and thus, the Boolean decisions of level 1
are still in e�ect, potentially propagating truth values for the literals at level 2.

In general, the partial model (s1, . . . ,si) ∈ Ri is consistent with level i and is
extended by an assignment si+1 for xi+1 so that Ci+1 is satis�ed. This process is
repeated level by level until either a model for Cn is found, meaning that the input is
satis�able, or until the procedure fails to �nd a satisfying assignment for the current
level and thus encounters a con�ict.

Input: ϕ(x1, . . . ,xn) = (
∧

c∈C0

c0) ∧ . . . ∧ (
∧

c∈Cn

c)

Level 0: Boolean

Level 1: �nd s1 |= C1

Level i: �nd si with
(s1, . . . ,si) |= Ci

Level n: �nd sn with
s = (s1, . . . ,sn) |= Cn

(SAT,s)

Con�ict

Boolean
resolution

Single cell
construction

Boolean

theory

Clause learning,
backtracking

UNSAT

to level j < i

Model construction

Con�ct resolution

Figure 2.1: Schematic illustration of the NLSAT procedure
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Con�icts We distinguish two kinds of con�icts. If all literals of a clause are forced
to be false by the previous Boolean decisions and propagations, then that clause
cannot be satis�ed under the current assumptions and we call this situation a Boolean
con�ict. If the partial model cannot be extended to satisfy the currently asserted
literals, i.e. there is no feasible value si for xi, it is a theory con�ict. In either
case, MCSAT tries to resolve the issue by employing con�ict driven clause learning
(CDCL) and backtracking to one of the lower levels, undoing Boolean decisions and
theory assignments in the process. Backtracking stops if a level is reached where
the learned clause is satis�able consistently with the decisions made up to that level,
or if it reaches level 0, in which case it can be deduced that the input formula is
unsatis�able. While the con�ict resolution and clause learning for Boolean con�icts
can be done in the usual way like in standard SAT solvers, it is a bit more involved
for the theory con�icts.

When the current partial model (s1, . . . ,si) cannot be extended with an assignment
for xi+1, MCSAT generates an explanation for this con�ict, with the purpose to guide
the later search for a model. The more general this explanation is, the better it can
guide the search. Simply learning that the partial model (s1, . . . ,si) fails is barely
helpful, considering that it only excludes one of in�nitely many possible assignments.
Instead, the con�ict is generalized in two ways. First, a con�icting core is identi�ed,
which is a minimal subset K of the asserted literals on level i+ 1, so that already for
K, no satisfying assignment (s1, . . . ,si,si+1) |= K exists. Then, the partial model is
generalized to a whole set S ⊆ Ri of assignments that would fail in the same way and
cannot be extended to satisfy the con�icting core K. The description of such a set
S can be computed using single cell construction, which we introduce in Section 2.3.
Its origin lies in the CAD method and the related theoretical concepts, but instead
of an entire decomposition, only a cell containing s is constructed.

The result of the con�ict explanation process is a clause stating that, if the liter-
als in K hold, the partial model (restricted to the variables x1, . . . ,xi) must not be
contained in S. This clause is added to the input formula, thereby excluding S from
the later search. The part of the clause expressing membership of an assignment to
the set S might introduce literals which were not present in the original input. It is
worth pointing out that the termination and hence completeness of MCSAT is only
guaranteed if for each input formula only �nitely many new literals will be introduced
by any number of generated explanations. This is important because, in the main
part of this thesis, we will modify a procedure used for generalizing s to a set S, which
will result in a di�erent explanation. Consequently, we change what new literals are
introduced and thus need to watch out for completeness.

Example 2.2.1. We again consider the formula ϕ from Example 2.1.2:

ϕ = (1 = 0 ∨ x1 > 0)︸ ︷︷ ︸
level 1

∧ (x1 ≤ 0 ∨ x21 + x22 − 1 < 0)︸ ︷︷ ︸
level 2

At level 1, the �rst clause is considered and obviously, x1 > 0 needs to hold to satisfy
it. MCSAT now chooses a value for x1, say s1 = 1. At level 2, the second clause is
considered. Under the current partial model, x1 ≤ 0 does not hold and therefore, the
literal l := x21 + x22 − 1 < 0 needs to be satis�ed. However, it simpli�es to x22 < 0
when substituting s1 for x1, which is unsatis�able and therefore a theory con�ict is
encountered. For the con�icting core {l}, we could generalize the assignment s1 = 1
to the set S = {s1 ∈ R | s1 ≥ 1} and learn the clause (¬l∨x1 < 1). After backtracking
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to level 1, Boolean propagation reveals that the new literal x1 < 1 needs to hold. A
di�erent value, e.g. s1 = 1/2 is chosen, which allows the choice of s2 = 0 for x2 and
hence, the input is satis�able.

2.3 Constructing a Single Sign-Invariant Cell

A crucial part of the MCSAT method is the generation of explanations for theory
con�icts. Jovanovi¢ and De Moura formulated MCSAT as an abstract decision pro-
cedure, leaving a lot of variability for speci�c implementations. This includes the
explanation function, for which they speci�ed certain properties it must possess but
did not �x it entirely. Nevertheless, they did also provide a concrete implementation
in NLSAT, which at its core uses the concepts of cylindrical algebraic decomposition
(CAD) to compute a single sign-invariant cell around the partial model that led to a
con�ict [JdM12]. In this section, we will describe the corresponding task of single cell
construction and present an approach recently proposed by Nalbach et al. [NSÁ+22].

De�nition 2.3.1 (Cell). We call a set S ⊆ Ri (i ∈ N \ {0}) a cell, if it is non-empty
and connected. A cell S is algebraic, if it is a semi-algebraic set, meaning that it is
the solution set of a conjunction of polynomial constraints.

De�nition 2.3.2 (Sign-invariance). Let i ∈ N and p ∈ Q[x1, . . . ,xi]. The polynomial
p is sign-invariant on a set R ⊆ Ri if

either ∀r ∈ R. p(r) > 0 or ∀r ∈ R. p(r) < 0 or ∀r ∈ R. p(r) = 0 holds.

A set P ⊂ Q[x1, . . . ,xi] of polynomials is sign-invariant on R if all p ∈ P are sign-
invariant on R. In that case we also say that R is P -sign-invariant.

The task of single cell construction is the following: given a non-empty �nite set
P ⊂ Q[x1, . . . ,xi] of polynomials and a point s ∈ Ri, compute a description of a
P -sign-invariant algebraic cell S ⊂ Ri with s ∈ S.

There are two additions to this formulation which are important in practice.
Firstly, note that the cell description should be suitable for algorithmic purposes,
meaning that it should be computable, have a coherent structure with other cell de-
scriptions and be accessible for other algorithms, in our case for MCSAT. For this
reason, we will compute algebraic cells with a cylindrical structure, so that they can
be represented by a conjunction of so-called extended polynomial constraints (see Def.
2.3.13). Secondly, we would like the cell to be as large as possible, again for algo-
rithmic reasons. In the context of MCSAT, a larger cell will exclude more from the
search space and might thus lead to a quicker result. While there is no obvious way
to quantify the size of a cell and we will not de�ne the notion formally, we hope that
the reader will get an intuition for it throughout this section and the next chapter.

2.3.1 Connection to MCSAT

Before we explain how single cell construction can be solved, we want to motivate its
usage in the explanation process of MCSAT.

In the case of a theory con�ict, the following situation occurs: there is a set K of
constraints with level up to i + 1 and a partial model s = (s1, . . . ,si) ∈ Ri so that
for all si+1 ∈ R holds (s,si+1) 6|= K. In order to use single cell construction, xi+1 is
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eliminated from K, producing a set P ⊂ Q[x1, . . . ,xi] of polynomials of level at most
i. This set has the property that, if S ⊆ Ri is a P -sign-invariant cell containing s,
then for all s′ ∈ S and for all si+1 ∈ R holds (s′,si+1) 6|= K, i.e. all s′ ∈ S lead to the
same con�ict as s. Accordingly, computing a sign-invariant cell for the input (P,s)
yields the set S generalizing the con�ict.

The input polynomials P can be constructed using CAD technology, in particular
the concept of delineability, which ensures the crucial properties of P . As the single
cell construction itself also utilizes those concepts, we will not go into more detail here
and instead explain them in the context that we are most interested in, i.e. single
cell construction. For more information on the original CAD method and the theory
surrounding it, see [Col75] and for details on how to integrate it into MCSAT, see
[JdM12] or [NSÁ+22].

Finally, the output cell description will be easily transformable into a formula for
MCSAT.

2.3.2 The Levelwise Method

In their NLSAT implementation, Jovanovi¢ and De Moura compute sign-invariant
cells with a slightly adapted version of Collins' CAD method, which does not return
a decomposition of the entire space, but only the desired cell. A more re�ned alter-
native was later published by Brown and Ko²ta [BK15], who developed an approach
which is better tailored to the speci�c task of computing a single cell around the
given sample point. Their ideas inspired further research and lead to the very recent
development of the so-called levelwise approach by Nalbach et al. [NSÁ+22], which
provides more control over the generated cells and related optimizations. We now
present this approach and it will be the basis of our considerations in Chapter 3.

We start with a motivating example, providing some intuition before we de�ne
the method formally.

Example 2.3.1 (Single Cell Construction). We want to construct a cell around the
point s = (s1,s2) = (− 1

2 ,0) ∈ R2 on which the input polynomials P = {p,q} ⊂ Q[x1,x2]
with

p = x21 + x22 − 1 and q = −2x1x2 + x2 − 1

are sign-invariant. Figure 2.2 depicts the maximal P -sign-invariant cell around s, in
the sense that no connected superset is also P -sign-invariant. The intuition for this is
that every such superset will contain a point at which p or q has a di�erent sign than
at s. It is maximal in the sense that no connected superset is also P -sign-invariant,
which is due to the fact that every such superset will contain a point on the boundary
of the cell and thus a point at which p or q has a di�erent sign than at s.

Unfortunately, it is often not possible to compute a maximal cell like this or to �nd
a suitable description. Therefore, we can in general only construct the description for
a sub-cell, which is included in, but not equal to the maximal cell.

As the name suggests, the levelwise method is structured into levels corresponding
to the variables and their ordering. Given P ⊂ Q[x1, . . . ,xi] and s ∈ Ri, it starts at
the top level, which corresponds to xi, and determines a symbolic interval Ii bounding
xi with respect to x1, . . . ,xi−1. Then, in the projection step, it derives from P a set
Pi−1 ⊂ Q[x1, . . . ,xi−1] of polynomials which are the input for the next level. This
process is repeated for each level j = (i − 1), . . . ,1, determining symbolic bounds Ij
depending on x1, . . . ,xj−1 and projecting the polynomials. On the bottom level, the
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x1

x2
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0

Figure 2.2: Graph of the implicit equations p = 0 (in red) and q = 0 (in blue),
together with the maximal P -sign-invariant cell (grey area) around s = (− 1

2 ,0). This
cell does is bounded by, but does not include the contours de�ned by the roots of
p and q. Notice that, throughout this thesis, we will label the graph of an implicit
equation p = 0 (also called the variety of p) simply with the name of the polynomial,
despite not plotting the non-zero function values of p.

description I1 does not depend on any variables and thus de�nes a concrete interval
in R. Crucially, the projections are chosen in a way ensuring that for all j, the
description Ij is well-de�ned and correct when evaluated on any point (r1, . . . ,rj−1)
that lies in the underlying cell described by the lower levels I1, . . . ,Ij−1.

Example 2.3.2. In our example, the top level corresponds to x2. We begin by de-
termining which polynomials de�ne the cell boundary above and below the sample s,
in the x2-direction. Note that the algorithm is not aware of the plots which we use
to illustrate the boundaries and it does not compute them. Instead, as is shown in
Figure 2.3a, we �x the x1-coordinate to s1 and isolate and order the roots r1,r3 of
p(s1,x2) and r2 of q(s1,x2), which is a univariate problem. At the sample coordinate
s1, the desired cell is bounded in the x2-direction by r1 and r2, belonging to p and q,
respectively. We use this information to construct a symbolic interval I2 depending
on x1, whose lower bound is de�ned by p and whose upper bound is de�ned by q,
generalizing the root structure found at s1.

We then move to the next level, where we try to �nd an interval I1 for x1, on
which the symbolic description I2 for the upper level is still correct and well-de�ned.
Graphically, I1 is a neighbourhood of s1 so that for each s′ ∈ I1, the root of q(s′,x2)
de�nes the upper bound and the smallest root of p(s′,x2) de�nes the lower bound of
the cell, just like at s1. This is shown in Figure 2.3c.

We will now, step by step, formalize the intuition from the example and explain
how the levelwise method works in the general case.

A primary observation is that the roots of the involved polynomials play a crucial
role for sign-invariant cells as they de�ne the boundaries of the maximal sign-invariant
cells. In fact, the symbolic intervals we use for the cell description are de�ned via a
symbolic representation of roots, called indexed root expressions.
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(a) The roots of p and q at x1 = s1 are
isolated and ordered. r1, belonging to p,
is the only root below s2 and r2, belonging
to q is the closest root above s2.
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(b) At s1, the lower and upper cell bound
is de�ned by p and q, respectively. This
is generalized to the symbolic interval I2.
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I1

(c) The interval I1 for x1 is constructed around
s1 so that the root structure is preserved.

Figure 2.3: Intuition for the levelwise construction in the context of Example 2.3.1.

De�nition 2.3.3 (Indexed Root Expression). Let i, j ∈ N and p ∈ Q[x1, . . . ,xi]
with lvl(p) = i > 0. An indexed root expression has the form rootxi [p,j] and we can
evaluate it at any point s ∈ Ri−1 as follows:

rootxi
[p,j](s) :=

{
undef if j > |realRoots(p(s,xi))| or p(s,xi) = 0 and otherwise

ξj if realRoots(p(s,xi)) = {ξ1, . . . ,ξk} with ξ1 < . . . < ξk.

Given s ∈ Ri−1 and P ⊂ Q[x1, . . . ,xi], we de�ne the set of indexed root expressions
for the real roots of P at s as

irExp(P,s) = {rootxi [p,j] | p ∈ P, j ∈ [|realRoots(p(s,xi))|]}.

Here, undef denotes that the value of the indexed root expression is unde�ned
and in that sense, it induces a partial function.
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The levelwise method uses indexed root expressions to construct a locally cylindri-
cal cell. This means that the cell description can be structured into levels I1, . . . ,Ii for
the variables x1, . . . ,xi so that for j ∈ [i], Ij restricts xj with respect to x1, . . . ,xj−1,
but independent of the variables xj+1, . . . ,xi. More precisely, Ij either states that the
value of xj should be in between an upper and lower bound given by indexed root
expressions derived from polynomials of level j, or it states that the value of xj should
be equal to one of those expressions. In the �rst case, we say that Ij de�nes a sector
and in the second case a section. Note that in the case of a sector, the bounds can
also be ±∞, indicating that there is no real bound.

To simplify the following de�nition, we de�ne

De�nition 2.3.4 (Single Cell Data Structure). A single cell data structure or cell
description is a sequence D = (I1, . . . ,In), where for each i ∈ [n] the element Ii is an
object of one of the following forms:

� Ii = (sector,l,u), where l is either an indexed root expression depending on
the variables x1, . . . ,xi−1, or −∞ and u is either an indexed root expression
depending on the variables x1, . . . ,xi−1, or ∞.

� Ii = (section,b), where b is an indexed root expression depending on the variables
x1, . . . ,xi−1.

We can evaluate Ij at any point r ∈ Rj−1 for which the corresponding root
expressions are de�ned and obtain a real interval, which in the case of a section
will always contain only a single point. Now, graphically speaking, the lower levels
I1, . . . ,Ij−1 de�ne an underlying cell S(I1, . . . ,Ij−1) ⊆ Rj−1 and adding Ij de�nes
a slice of the cylinder S(I1, . . . ,Ij−1) × R which has the underlying cell as its base.
With these concepts in mind, we de�ne the set of points contained in the cell induced
by a cell description. To simplify the de�nition, we set −∞(r) := −∞ for all i ∈ N
and r ∈ Ri and do so symmetrically for ∞. This is only to avoid additional case
distinctions for sectors without two real bounds and we will use ±∞ only as interval
boundaries, which has a well-de�ned meaning.

De�nition 2.3.5 (Set Represented by a Single Cell Data Structure). A description
D = (I1) represents the cell

S(D) = S(I1) :=

{
{r ∈ R | r ∈ (l,u)} if I1 = (sector,l,u)

{r ∈ R | r = b} if I1 = (section,b).

Note that in this case l, u and b are constant total functions which we identify with
their constant value. A description D = (I1, . . . ,In) with n > 1 represents the cell

S(D) :=

{
{(r,r′) ∈ Rn | r ∈ S(I1, . . . ,In−1), r′ ∈ (l(r),u(r))} if In = (sector,l,u)

{(r,r′) ∈ Rn | r ∈ S(I1, . . . ,In−1), r′ = b(r)} if In = (section,b).

In accordance to the prior comment, if l = −∞, then l(r) = −∞ as well and analo-
gously for u.

Example 2.3.3. In our leading example, the roots r1,r3 correspond to the indexed
root expressions ξ1 := rootx2

[p,1] and ξ3 := rootx2
[p,2] associated with p, while r2
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corresponds to ξ2 := rootx2
[q,1]. In particular, we have ξk(s1) = rk, (k ∈ {1,2,3}).

Accordingly, the symbolic interval I2 for the cell description is given by

I2 = (sector,rootx2
[p,1],rootx2

[q,1]) = (sector,ξ1,ξ2).

Note that the bounds ξ1,ξ2 describe partial functions depending on x1. Therefore, the
underlying cell S(I1) for x1, which is constructed on the next level, must only contain
values for which ξ1 and ξ2 are de�ned. For ξ1, this restricts the values to [−1,1] and ξ2
is unde�ned on x1 = 1

2 . Furthermore, we need to identify the points where the graphs
cross and q is no longer the correct upper bound of the cell. The x1-coordinates of
those intersection points pose additional restrictions on the extent of I1.

We can generalize the requirements for the underlying cell stated in the example.
For every j ∈ [i], we need that Ij is well-de�ned over S(I1, . . . ,Ij−1). This primarily
means that for all s′ ∈ S(I1, . . . ,Ij−1), the indexed root expressions in Ij have a
de�ned value at s′, but we will in fact ensure that each of these expressions induces
a continuous function on the domain S(I1, . . . ,Ij−1). Furthermore, the described cell
should be correct in the sense that, if Ij = (sector, l,u), then for all s′ ∈ S(I1, . . . ,Ij−1),
the indexed root expressions l,u give the closest roots below and above sj among all
roots of polynomials involved in level j. On the other hand, if Ij = (section, b), then
no polynomial in Pj should change signs on the graph {(s′,b(s′)) | s′ ∈ S(I1, . . . ,Ij−1)}
of the root function induced by b.

For this purpose, we need to identify the points (or in general: regions) in the
underlying space Rj−1, where the root structure w.r.t xj of the polynomials changes
and where their varieties intersect. This can be done by examining the real roots of
certain polynomials derived from Pj .

De�nition 2.3.6 (Coe�cients, Resultants and Discriminants). Let i ∈ N, i > 0,
p, q ∈ Q[x1, . . . ,xi] and let k ∈ N, c0, . . . ,ck ∈ Q[x1, . . . ,xi−1] be so that p =

∑m
j=0 cjx

j
i

and ck 6= 0.

� The set of coe�cients of p w.r.t xi is coe�xi
[p] = {c0, . . . ,ck} ⊂ Q[x1, . . . ,xi−1].

� The leading coe�cient of p w.r.t. xi is ldcfxi
[p] = ck ∈ Q[x1, . . . ,xi−1].

� The resultant of p and q w.r.t. xi is a polynomial resxi [p,q] ∈ Q[x1, . . . ,xi−1]
so that for all s ∈ Ri−1:

resxi
[p,q](s) = 0⇔ p(s,xi) and q(s,xi) have a common complex root.

� The discriminant of p w.r.t. xi is a polynomial discxi
[p] ∈ Q[x1, . . . ,xi−1] so

that for all s ∈ Ri−1:

discxi
[p](s) = 0⇔ p(s) ∈ Q[xi] has a multiple complex root.

The resultant can be computed as the determinant of the Sylvester matrix for the
polynomials and the discriminant is equal to the resultant of p and its derivative with
respect to xi.

There is a helpful geometrical interpretation for those polynomial operations. For a
polynomial p ∈ Q[x1, . . . ,xi], a root r ∈ Ri−1 of p's leading coe�cient indicates a point
where p's variety describes a singularity. This means that a part of the graph tends to
in�nity or negative in�nity when approaching that root and thus, the root structure
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(a) At the roots of discx2 [p] (in red), the
root structure of p changes due to turning
points. The variety of q has a singularity at
the root of ldcfx2 [q] (in blue).
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q

x1

x2

(b) The resultant of p and q has its roots
at x1 ≈ −0.937 and x1 = 0 (marked grey).
For these values, p and q have a common
root.

Figure 2.4: Roots of the discriminant, leading coe�cient (left) and resultant (right)
of the polynomials p and q from Example 2.3.1.

of p changes at r as one of its roots �disappears�. The roots of the discriminant of
p indicate points where the root structure changes not due to singularities, but to
self-intersections or turning points of the graph. Finally, the resultant of p and q
describes the intersections of the respective graphs. This interpretation is illustrated
in Figure 2.4.

It is important to note that we can only use these polynomial operations e�ectively
if the respective input polynomials are square-free and pairwise coprime. That is,
none of the polynomials has the square of a non-constant polynomial as a factor and
no two polynomials share a common non-constant factor. Otherwise, the respective
discriminant or resultant would be constantly zero and would not allow us to infer the
desired information. Therefore, the projection step, in which resultants, discriminants
and coe�cients are gathered, is not applied directly to the polynomials of the current
level, but to the set of their irreducible factors, which are square-free and coprime.

With these de�nitions in place, we can now describe the projection step of the
levelwise method, which constitutes the transition from one level to the next. After
the representation Ij of level j has been computed, the polynomials are projected
to a set Pj−1 ⊂ Q[x1, . . . ,xj−1] for which the underlying cell is then generated. If
the polynomials in the projection ful�l certain properties of sign-invariance or order-
invariance on the underlying cell S′, then Ij is well-de�ned and correct over S′. Here,
order-invariance is a stronger version of sign-invariance.

De�nition 2.3.7 (Order-invariance). Let i ∈ N, p ∈ Q[x1, . . . ,xi] and r ∈ Ri. For
k ∈ N, let Dk(p) denote the set of partial derivatives of p with total order k. The
order of p at r is

ordr(p) := min({k ∈ N | ∃d ∈ Dk(p). d(r) 6= 0} ∪ {∞})

Let R ⊆ Rn, then p is order-invariant on R if for all r,r′ ∈ R holds ordr(p) = ordr′(p).
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Note that order-invariance implies sign-invariance.
To generate an underlying cell with the right properties, the algorithm proceeds

with level j − 1 as before on level j, though considering only the polynomials in
Pj−1. After repeating this process (computing the level representation and projecting)
for all levels below, the cell S(I1, . . . ,Ij−1) provides the required properties of the
polynomials in Pj−1 and by design of the projection ensures the de�nedness and
correctness of the description Ij .

To clarify the concept of projection, we �rst look at McCallum's projection oper-
ator, which was originally developed for the CAD method [McC98] and which forms
the basis of the projection used in the levelwise approach.

De�nition 2.3.8 (McCallum's Projection [McC98]). Let i ∈ N with i > 1 and let
P ⊂ Q[x1, . . . ,xi] \ {0} be a set of irreducible polynomials. Furthermore, we de�ne
Pi = {p ∈ P | lvl(p) = i} and P<i = P \ Pi. The McCallum-projection of P is

projmc(P ) := P<i ∪ {discxi [p] | p ∈ Pi} ∪ {resxi [p,q] | p,q ∈ Pi} ∪
⋃
p∈Pi

coe�xi
[p].

If the discriminants, pairwise resultants and coe�cients of all polynomials in Pi

are order-invariant on a cell S, then the root structure of Pi does not change and
as a result, the same indexed root expressions are de�ned over the entirety of S.
Moreover, the graphs corresponding to the roots do not cross over S, thanks to the
order-invariance of the resultants. This is the crucial property for the projection step,
which we will now formalize using the concept of analytic delineability. The following
de�nition uses two notions which we will not de�ne formally, but only give a rough
intuition, similar to what is described in [NSÁ+22]. An analytic submanifold of Rn

is a non-empty subset R ⊆ Rn which for some i ∈ [n] �looks locally like Ri�. A
function f : U → R with an open subset U ⊆ Ri as its domain is called analytic if it
has a multiple power series representation about each point of U . For more detailed
explanations, see [McC98]. For our purposes, it is enough to know that analytic
submanifolds are cells, all the cells constructed by the levelwise method are analytic
submanifolds and that analytic functions are continuous and have continuous partial
derivatives of all orders.

De�nition 2.3.9 (Analytic Delineability [McC98]). Let i ∈ N with i > 1. A poly-
nomial p ∈ Q[x1, . . . ,xi] of level i is called analytically delineable over an analytic
submanifold R ⊆ Ri−1 if there exist �nitely many analytic functions θ1, . . . ,θk : R→ R
(for some k ∈ N) so that

� θ1(r) < . . . < θk(r) for all r ∈ R,

� for all r ∈ R holds realRoots(p(r,xi)) = {θ1(r), . . . ,θk(r)} and

� for each j ∈ [k], the multiplicity of the root θj(r) in p(r,xi) is invariant with
respect to r ∈ R.

The intuition for this concept is in line with our prior considerations. If a polyno-
mial p(x1, . . . ,xi) is analytically delineable over an underlying cell R ⊆ Ri−1, then we
have a �xed number of di�erent well-de�ned, continuous functions (θ1, . . . ,θk) with do-
main R. Each of these functions corresponds to an indexed root expression associated
with p, which then is in turn also de�ned over R. McCallum's projection guarantees
that if projmc(Pj) is order-invariant on the underlying cell R := S(I1, . . . ,Ij−1), then
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the polynomials in Pj are analytically delineable on R and hence, Ij will be well-
de�ned. In addition, the resultants in the projection ensure that no root functions of
di�erent polynomials cross at any value in R, which guarantees the correctness of the
bounds.

There is one case in which this statement fails, namely if any of the polynomials
are nulli�ed over a point within the underlying cell. Then, an order-invariant cell for
the projection does not imply the wanted delineability properties.

De�nition 2.3.10 (Nulli�cation). Let i ∈ N. A polynomial p ∈ Q[x1, . . . ,xi] is
nulli�ed on a set R ⊆ Ri−1, if p(r,xi) = 0 for all r ∈ R.

During the construction, the coe�cients added to the projection can restrict the
underlying cell in order to exclude regions where the polynomials are nulli�ed. How-
ever, this does not work if nulli�cation occurs at the underlying sample, that is, if there
is p ∈ Pj with p(s1, . . . ,sj−1,xj) = 0. Since s must be included in the constructed cell,
there is no chance to avoid the point of nulli�cation and hence, McCallum's projection
cannot be applied. This means that the method is not complete in general, but only
for well-oriented sets of polynomials, where this kind of nulli�cation does not occur
(even after projection).

For our task, McCallum's projection actually computes more than is necessary.
In particular, we only need that no root function crosses the bounds de�ned by Ij ,
but we may allow intersections of functions outside the cell. Accordingly, we can omit
some of the resultants, which is very desirable as their computation is quite expensive
in terms of runtime and memory. A second advantage of omitting resultants is that
the resulting cell is potentially bigger, because fewer polynomials are restricting it.
To illustrate how we can discard certain resultants, we revisit our running example.

Example 2.3.4. We consider the known example, but with an additional polynomial
g = 2x2 − 2x21 − x1 − 1, whose variety is graphed in orange. McCallum's projection
would compute the three pairwise resultants for p, q and g, resulting in the cell shown
in Figure 2.5a. If we only compute the resultants of g with p and g with q and omit
the resultant of p and q, we get a bigger, but still correct cell.

s
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q

g

x1

x2

(a) Using all pairwise resultants.

s

p

q

g

x1

x2

(b) Using only resultants including g.

Figure 2.5: Sign-invariant cells computed for Example 2.3.4 with di�erent sets of
resultants. Dashed lines correspond to the roots of resx2

[g,p], dotted lines to the
roots of resx2

[p,q] and the dash-dotted line indicates the root of resx2
[g,q].
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The levelwise approach determines the set of necessary resultants using an indexed
root ordering. Suppose that Ξ is the set of indexed root expressions de�ned at the
underlying sample s[j−1] = (s1, . . . ,sj−1) and each corresponding to a polynomial in
Pj . Further, assume Ij = (sector, l,u) for some l,u ∈ Ξ, meaning that the current
level is a sector. Then we want to �nd a partial order on Ξ so that the ordering of
any ξ ∈ Ξ with l and u is consistent with their ordering at s[j−1]. In particular, the
partial order does not require comparability of such a ξ with any element di�erent to
the bounds. Moreover, we can use transitivity implicitly and thus only need a relation
� whose transitive closure ful�ls these requirements.

De�nition 2.3.11 (Indexed Root Ordering [NSÁ+22]). Let i ∈ N, P ⊂ Q[x1, . . . ,xi+1]
be a set of irreducible polynomials of level i+ 1 and s ∈ Ri be a sample such that no
p ∈ P is nulli�ed over s. Moreover, let Ξ ⊆ irExp(P,s) and �s⊆ Ξ×Ξ be an ordering
such that for all ξ,ξ′ ∈ Ξ holds ξ �s ξ

′ ⇔ ξ(s) ≤ ξ′(s). An indexed root ordering
(i.r.o.) on Ξ for s is a relation �⊆�s.

Let additionally si+1 ∈ R and either I = (sector, l,u) for some l, u ∈ Ξ∪{−∞,∞}
with l(s) < si+1 < u(s), or I = (section,b) with b ∈ Ξ and b(s) = si+1 respectively. An
indexed root ordering � with transitive closure �∗ matches I if it ful�ls the following
properties:

� If I = (section, b) then

for all ξ ∈ Ξ holds (ξ(s) ≤ b(s) =⇒ ξ �∗ b) and

for all ξ ∈ Ξ holds (b(s) ≤ ξ(s) =⇒ b �∗ ξ).

� If I = (sector,l,u) then

either l = −∞ or for all ξ ∈ Ξ holds (ξ(s) ≤ l(s) =⇒ ξ �∗ l) and

either u =∞ or for all ξ ∈ Ξ holds (u(s) ≤ ξ(s) =⇒ u �∗ ξ).

In this thesis, we only consider indexed root orderings that are constructed to
match the description of the respective current level. Consequently, we assume this
property implicitly whenever we use the term indexed root ordering. Note that there
can be multiple possible indexed root orderings to choose from and in the presented
approach, this choice is made by a heuristic. Nalbach et al. propose three heuristics
for the sector case and one for the section case. We will focus on the sector case and
one of the three heuristics in particular, which is called �biggest cell heuristic�.

De�nition 2.3.12 (Biggest Cell Heuristic). Let P , s, I, Ξ and �s be as in De�nition
2.3.11. In the case of I = (sector, l,u), we set L := {(ξ,l) | ξ ∈ Ξ \ {l}, ξ �s l} if
l 6= −∞ and L := ∅ otherwise. Similarly, we set U := {(u,ξ) | ξ ∈ Ξ \ {u}, u �s ξ}
if u 6= ∞ and otherwise U := ∅. The biggest cell heuristic yields the indexed root
ordering

�BC=

{
L ∪ U if I = (sector, l,u), l,u ∈ Ξ

{(ξ,b) | ξ �s b} ∪ {(b,ξ) | b �s ξ} if I = (section, b).

Like in the example, the idea is that we only need to ensure the order compared
to the boundaries of the cell. After an indexed root ordering � has been determined,
the resultant between two polynomials p and q is only computed if there is a pair
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(ξ,ξ′) ∈�, where ξ belongs to p and ξ′ belongs to q. One exception to this are
the polynomials inducing the cell bounds. If both the upper and lower bound exist
(i.e. they are not in�nite) and they are induced by di�erent polynomials, then the
corresponding resultant is always computed regardless of the indexed root ordering.
Moreover, note that several pairs in the i.r.o. can lead to the same resultant, as
the polynomials may yield multiple root expressions. However, the resultant is only
computed once because it only depends on the polynomials (not the root expression)
and is symmetric (up to a constant factor).

There are many other small optimizations, which allow to discard most of the
coe�cients and some discriminants from the projection, especially in the section case.
We do not describe these optimizations here, as they require complex case distinctions
and also do not interfere with our work in Chapter 3. The resulting projection opera-
tor is denoted by projLW . Its utility is more nuanced and complex than McCallum's
projection, as it does not simply guarantee delineability for all involved polynomials
on the basis of order-invariance. Instead, it is de�ned via sets of properties for each
of the involved polynomials and for the constructed cell, as well as rules for deriving
these properties. This way, for example, only a weaker version of analytic delineability
called projective analytic delineability is guaranteed for some of the polynomials and
only sign-invariance instead of not order-invariance is required for some elements of
the projection. The idea is to have more control over the required and guaranteed
properties, hoping to reduce the size of the projection.

Finally, the levelwise method is de�ned in Algorithm 1. Note that in the original
source, it is formulated much more abstractly and as a kind of proof system. However,
for the purpose of this thesis, we disregard some of the subtleties and instead focus
on the practical algorithm �ow.

Algorithm 1: Levelwise single cell construction: scc(P,s)

Input : P ⊂ Q[x1, . . . ,xi], s ∈ Ri

Output: D = (I1, . . . ,Ii) or FAIL
1 P⊥ := P
2 for j = i, i− 1, . . . ,1 do
3 Pj := {p ∈ P⊥ | lvl(p) = j}

/* check for nullification */

4 if ∃p ∈ Pj : p(s[j−1]) = 0 then
5 return FAIL
6 Ξ := irExp(Pj ,s[j−1])
7 Determine Ij from s[j] and Ξ
8 if i > 1 then
9 Determine an indexed root ordering � w.r.t. s[j] and Ξ
10 Project to the next level w.r.t. �, Ij , s: P⊥ := projLW (P⊥)

11 return (I1, . . . ,Ii)

Theorem 2.3.1 (Correctness (Theorem 7.1 in [NSÁ+22])). The levelwise single cell
construction is correct. That is, if scc(P,s) 6= FAIL, then it returns a cell description
scc(P,s) = D = (I1, . . . ,Ii) with s ∈ S(D) and S(D) is P -sign-invariant.

Going back to the context of MCSAT, we de�ne the formula derived from a cell
description.
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De�nition 2.3.13 (Extended Polynomial Constraint). Let i, j ∈ N, p ∈ Q[x1, . . . ,xi]
and ξ = rootxi [p,j] be an indexed root expression. Further, let xk, (k ∈ [n]) be a
variable and ∼∈ {<,≤,=, 6=,≥, >}. Then

xk ∼ ξ

is an extended polynomial constraint with the following semantics:

∀s ∈ Rn : (s |= xk ∼ ξ ⇔ ξ(s) ∈ R and sk ∼ ξ(s)).

Note that the free variables of ξ do not include xi.

De�nition 2.3.14 (Cell Description Formula). Let i ∈ N. The formula derived from
a cell description D = (I1, . . . ,Ii) is ϕD := ϕ1 ∧ . . . ∧ ϕi so that for each j ∈ [i] holds

ϕj :=



xj = b if Ij = (section, b)

true if Ij = (sector,−∞,∞)

xj < u if Ij = (sector,−∞,u)

xj > l if Ij = (sector, l,∞)

xj > l ∧ xj < u if Ij = (sector, l,u).



Chapter 3

Underapproximating

Sign-Invariant Cells

One of the most time-consuming operations in the levelwise single cell construction is
the computation of polynomial resultants. In the worst case, each resultant requires
a quadratic number of polynomial multiplications with respect to the degrees of the
involved polynomials [Duc00]. While this might be manageable for a single projection
step, the situation becomes quite drastic when iterating projections like in the CAD
method or in single cell construction. Then, the degree of the derived polynomials
(w.r.t their main variable) grows doubly exponential with the number of levels and
hence, the computation times for the respective resultants do so, too [BDE+16].

Consequently, reducing the number of resultants and discriminants in those projec-
tions has been one of the main research motivations in the �eld. In fact, McCallum's
projection was already a signi�cant improvement compared to the projection Collins
originally used for CAD. The levelwise single cell construction now builds upon this
and allows to cut down even further on the number of computed resultants, which is
one of its main advantages over prior approaches. As we have seen in Section 2.3 of
the previous chapter, this is achieved by using the concept of an indexed root ordering.

In fact, this optimization opens up yet another way of tackling the complexity of
resultants. When using an indexed root ordering, resultants are not computed canon-
ically for all pairs of involved polynomials, but only for a small subset of those pairs,
depending on the ordering of their real roots at the underlying sample. As a result,
the choice of the indexed root ordering in�uences not only the number of computed
resultants, but also their complexity. Nalbach et al. addressed this and presented an
alternative to the biggest cell heuristic, called lowest degree barriers heuristic, which
tries to minimize the degrees of the polynomials in each induced resultant input pair.
However, its advantages are limited by the degree distribution present in the current
set of polynomials. If there is a low variance or if the root structure at the sam-
ple enforces certain expensive resultants, then the gain in e�ciency is only marginal.
Moreover, using the lowest degree barriers heuristic might lead to a smaller cell at
the lower levels, when compared to the biggest cell heuristic.

Our goal now is to construct indexed root orderings for which the induced re-
sultants always have at least one low-degree polynomial as input and can thus be
computed more e�ciently. As we have pointed out for the lowest-degree-barriers-
heuristic, the polynomials of the current level set strong limitations for this kind of
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optimization.

In this chapter, we show how to overcome those limitations by introducing arti-
�cial low-degree polynomials to the working set, which have a root at a favourable
position. Then for the resulting indexed root ordering, each induced resultant is eas-
ier to compute and the degrees of the polynomials in the subsequent levels do not
grow as quickly. However, the additional polynomials change the boundaries of the
constructed cell, making it an underapproximation.

This idea is �rst illustrated by a naive approach and then generalized in Section
3.2, where we also prove its correctness and analyse its properties with regards to com-
pleteness. We then present which parts of our method allow variations and heuristics,
before we provide a more complex variant using the multivariate Taylor expansion in
Section 3.4.

3.1 A Naive Approach

To illustrate our idea, we revisit the Example 2.3.1 from Chapter 2.

Example 3.1.1. Instead of the usual input p = x21 + x22 − 1 and q = x2 − 2x1x2 − 1,
we consider the following polynomials:

p̂ = 26(x61x
6
2 + 1)p+ 1 and q̂ = 26(x61x

6
2 + 1)q + 1.

Note that these polynomials have degrees degx2
(p̂) = 8 and degx2

(q̂) = 7 in x2 and
that they are irreducible. They produce a graphically very slightly perturbed version of
the problem in our running example, as can be seen in Figure 3.1a. In fact, the single
cell construction would proceed in the same manner as shown before, only with p̂,q̂
instead of p,q and with slightly di�erent real values for their roots. Importantly, the
resultant of p̂ and q̂ will always be computed independently of the chosen indexed root
ordering, because they give the lower and upper bound of the cell. However, resx2

[p̂,q̂]
is a very complex polynomial with degree degx1

(resx2
[p̂,q̂]) = 70 in x1 and thus, its

construction, determining its real roots and evaluating it on sample points will take a
long time.

To avoid this expensive resultant, we can introduce the polynomial h = x2− 1
4 which

has a root at (s1,
1
4 ) and thus becomes the new upper bound of the cell, as depicted

in Figure 3.1b. Using the biggest cell heuristic now yields the indexed root ordering
�= {(ξh,ξ2),(ξh,ξ3)} and accordingly, only the resultants resx2

[h,p̂] and resx2
[h,q̂]

need to be computed, which is quite simple since h is linear. As a result, we get
two resultants instead of one, but they have degree 8 and 7 in x1 and thus are much
easier to deal with in later computations. The drawback is that the constructed cell
with the additional polynomial is much smaller in the x2-direction. In fact, over the
underlying cell for x1, the originally constructed cell is equal to the maximal sign-
invariant cell, which is not true for the new cell. In that sense, we only compute an
underapproximation.
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s
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(a) The root structure is basically the same
as in Example 2.3.1.
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q̂

h
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s

x1

x2

(b) The added polynomial h introduces a
new root closer to the sample.

p̂

q̂
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(c) The originally constructed cell without
h. The bounds for x1 are de�ned by the
resultant of p̂ and q̂.

p̂

q̂

h

s

x1

x2

(d) The cell constructed with h. The dashed
lines indicate the roots of the resultants re-
lated to h. Note that the upper bound for
x1 stems from the singularity of q.

Figure 3.1: Adding a new polynomial to the construction

In the leading example, we use a very simple construction for introducing arti�cial
polynomials like h. The general idea is to use the biggest cell heuristic, but if one
of the cell bounds has rather high degree, we create a new, approximate bound to
avoid heavy resultant calculations. Assume we wanted to approximate the upper cell
bound given by ξu at the underlying sample s[i−1] at level i. This means that we
need to �nd a polynomial h which, at s[i−1], has a real root between the sample
coordinate si and the bound ξu(s[i−1]). For this purpose, we �rst choose a rational
point r ∈ (si,ξu(s[i−1])) and then construct the arti�cial polynomial h = xi− r. Now,
the real roots of h are given exactly by {(s′,r) | s′ ∈ Ri−1} and in particular, we have
si < r < ξu(s[i−1]). As a result, the indexed root expression rootxi [h,1] now induces
a constant upper bound on xi because it is closer to si than ξu at the underlying
sample s[i−1]. The same idea can be applied for the lower bound.

After the arti�cial polynomials have been introduced to the working set, the in-
dexed root ordering is constructed with the biggest cell heuristic, which now induces
only resultants taking at least one of the simple bound polynomials as input. These
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kinds of resultants are very easy to compute, as resxi
[p,xi − r] essentially simpli�es

to p(x1, . . . ,xi−1,r), i.e. substituting r for xi in p.

It is worth noting that the resulting approximated cell has a particular structure.
If all bounds at each level were approximated, then the cell would be a box, i.e. the
symbolic intervals I1, . . . ,Ii are in fact simple rational intervals, whose boundaries do
not depend on the values of the variables at the lower levels. This is also why we
call this approach naive. The construction of the arti�cial bounds does not take the
original polynomials into account, only their roots at the sample.

The following algorithm is a modi�cation of the levelwise single cell construction
incorporating our naive approach.

Algorithm 2: Naive approximation approach: naive-scc-apx(P,s)

Input : P ⊂ Q[x1, . . . ,xi], s ∈ Ri

Output: D = (I1, . . . ,Ii) or FAIL
1 P⊥ := P
2 for j = i, i− 1, . . . ,1 do
3 Pj := {p ∈ P⊥ | lvl(p) = j}

/* check for nullification */

4 if ∃p ∈ Pj : p(s[j−1]) = 0 then
5 return FAIL
6 Ξ := irExp(Pj ,s[j−1])
7 Determine the lower bound ξl ∈ Ξ∪{−∞} and upper bound ξu ∈ Ξ∪{∞}
8 if ξl 6= ξu then

/* only approximate in the sector case */

9 if ξl = rootxi
[p,j] with degxi

(p) su�ciently large then
10 Let rl = ξl(s1, . . . ,sj−1) ∈ R
11 Choose r ∈ (rl, sj)
12 Pj := Pj ∪ {xj − r}
13 Ξ := Ξ ∪ {rootxj

[xj − r,1]}
14 if ξu = rootxi

[p,j] with degxi
(p) su�ciently large then

15 Let ru = ξl(s1, . . . ,sj−1) ∈ R
16 Choose r ∈ (sj ,ru)
17 Pj := Pj ∪ {xj − r}
18 Ξ := Ξ ∪ {rootxj

[xj − r,1]}
19 Determine Ij from s[j] and Ξ
20 if i > 1 then
21 Use the biggest cell heuristic to construct the i.r.o. � w.r.t. s[j] and Ξ
22 Project to the next level w.r.t. �, Ij , s: P⊥ := projLW (P⊥)

23 return (I1, . . . ,Ii)

The main di�erence to the original method is that if the current level is a sector
and if its bounds would be de�ned by polynomials with high degree, we add a simple
approximation inducing a new bound. This is done in lines 8 to 18 of the algorithm.
Moreover, we �x the indexed root ordering to the biggest cell-heuristic. There are
several aspects of this approach which we now want to consider more closely.
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Sector vs. Section Case Notice that we only introduce arti�cial polynomials
when the current level of the cell is a sector. If at level j there is ξb ∈ Ξ with
ξb(s[j−1]) = sj , then Ij will de�ne a section and for every s′ ∈ S(I1, . . . ,Ij−1) in the
underlying cell, there is a unique value ξb(s′) in Ij . Graphically speaking, there is no
space to �t additional roots in between the cell boundary and the sample. Introducing
a new polynomial with a root exactly at the sample would mean that the resultant
with the section de�ning polynomial is also zero at the sample and thus, the next
level would collapse to another section. To put this into more formal terms, we have

p ∈ Q[x1, . . . ,xj ], p(s[j]) = 0⇒ resxj
[p,xj − sj ](s[j−1]) = 0.

This behaviour is undesirable since we aim to produce cells that are as big as possible.
Therefore, the section case is handled in the same way as in the original method.

Approximation Criteria So far, we described only vaguely in which situations this
approximation approach is used by checking the condition whether the cell bounds
are de�ned by a polynomial with �rather high degree�. The reason is that there
is no obvious way to characterize the instances in which simplifying the resultants is
bene�cial in the context of MCSAT. In fact, this may depend on other implementation
details like the e�ciency of resultant computations and real root isolation. Therefore,
we only make heuristic choices, depending on the degrees of the involved polynomials.
As we will see in Chapter 4, approximating polynomials with degree �ve or higher
seems to be a good choice in practice, at least within the implementation of MCSAT
that we used. While this threshold might not seem that high, recall that the degrees
of the polynomials grow doubly exponential in the subsequent levels and hence, it
can be worth to approximate early to mitigate that growth. There are many other
criteria which take not only the degree of the respective bounding polynomial into
account and we will explain some of them later in Section 3.3. For now, we use the
simple threshold criterion.

Cell Size As can be seen in Example 3.1.1, the introduction of arti�cial polynomials
leads to an underapproximation of the cell. We can formalize this observation as
follows:

Theorem 3.1.1. Let i ∈ N, P ⊂ Q[x1, . . . ,xi] be a set of polynomials at level i and
s ∈ Ri. Moreover, let D = (I1, . . . ,Ii) = scc(P,s) be the cell description returned by
the original levelwise method and D′ = (I ′1, . . . ,I

′
i) = naive-scc-apx(P,s) be the cell

description returned by the modi�ed method, so that at level i, the bounds have been
approximated. For the maximal P -sign-invariant cell Smax ⊆ Ri around s we have

S(D) = Smax ∩ (S(I1, . . . ,Ii−1)× R) and S(D′) ( Smax ∩ (S(I ′1, . . . ,I
′
i−1)× R)

Proof idea. The �rst part of the statement follows obviously by construction of the
cell. For the second part, observe that any point between an arti�cially created root
and the original cell bound would be contained in Smax, but not in S(D′).

This property can greatly harm the quality of the produced cells for their usage
in MCSAT. Not only will a smaller cell exclude fewer possible assignments from the
search, but the arti�cial polynomials introduce cell boundaries which are less closely
tied to the actual problem structure, as they are only vaguely related to the original
set of polynomials. This is the price we have to pay for a faster cell computation and,
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depending on the given instance, that price might be too high and our approximation
approach might not be worth it. This is why we do not always use the simpli�ed cell
bounds but only when certain criteria are met.

While our method always yields a smaller interval for the top level of the cell,
compared to the original method, the lower levels are a bit more forgiving. In fact,
it can happen that we produce a larger underlying cell because we avoid certain
resultants. We illustrate this observation with another example.

Example 3.1.2 (Size of the Underlying Cell). Consider the leading example of this
chapter again. Depending on where we choose the arti�cial root r, the underlying cell
S(I ′1) of the approximation can be larger or smaller than the underlying cell S(I1)
computed without approximation. Moreover, neither S(I ′1) ⊆ S(I1) nor S(I ′1) ⊇ S(I1)
hold necessarily. This is illustrated in Figure 3.2.

p̂

q̂

h

s

x1

x2

S(I1)

S(I ′1)

(a) For r = 1
4
, we have S(I1) ( S(I ′1).

p̂

q̂

h

s

x1

x2

S(I1)

S(I ′1)

(b) For r = 2
5
, there is no subset relation

between S(I1) and S(I ′1).

Figure 3.2: Comparison of the underlying cells S(I1) and S(I ′1) for di�erent positions
of the arti�cial root. S(I1) results from the original construction and S(I ′1) results
from introducing the approximation polynomial h = x2 − r on the top level. Addi-
tionally, the original two-dimensional cell (grey) and approximated cell (orange) are
indicated.

This concludes our presentation of the naive approximation approach. Our next
step is to lift these ideas to a more general method with several possibilities for
variations. Showing the correctness of the generalized approach will then also yield
the correctness of the naive one.

3.2 General Formulation

In the previous section, we pointed out some parts of the naive approximation method
that can be easily varied, but the constructed arti�cial polynomials and the resulting
indexed root ordering were �xed. However, we will show that one can introduce any
number of polynomials on each level of the single cell construction method and then
choose an arbitrary indexed root ordering without damaging the correctness of the
produced cell.
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De�nition 3.2.1 (Level Approximation). A level approximation function is a func-
tion

apx-level(P,s) :
⋃
i∈N

(P(Q[x1, . . . ,xi])×Ri)→
⋃
i∈N
P(Q[x1, . . . ,xi])

so that for all i ∈ N it holds

P ⊂ Q[x1, . . . ,xi] and s ∈ Ri ⇒ apx-level(P,s) ⊂ Q[x1, . . . ,xi].

That is, for each set of polynomials at level i with a corresponding sample, it returns
a set of approximation polynomials of level at most i.

Obviously, our naive approach can be formulated with a level approximation func-
tion which gives for each cell bound at level i a polynomial of the form xi − r ∈
Q[x1, . . . ,xi]. Note that this de�nition allows to construct any number of newly in-
troduced polynomials and also does not restrict the position of their real roots. The
important property is that the approximation polynomials do not have a higher level
than the input and can thus be used in the corresponding level of the single cell con-
struction. Now, we can formulate a more general algorithm with respect to some level
approximation function apx-level(P,s).

Algorithm 3: General approximation approach: scc-apx(P,s)

Input : P ⊂ Q[x1, . . . ,xi], s ∈ Ri

Output: D = (I1, . . . ,Ii) or FAIL
1 P⊥ := P
2 for j = i, i− 1, . . . ,1 do
3 Pj := {p ∈ P⊥ | lvl(p) = j}

/* check for nullification */

4 if ∃p ∈ Pj : p(s[j−1]) = 0 then
5 return FAIL
6 Ξ := irExp(Pj ,s[j−1])
7 Determine the lower bound ξl ∈ Ξ∪{−∞} and upper bound ξu ∈ Ξ∪{∞}
8 if ξl 6= ξu then

/* only approximate in the sector case */

9 H := apx-level(Pj ,s[j])
10 Pj := Pj ∪H
11 Ξ := Ξ ∪ irExp(H,s[j−1])
12 Determine Ij from s[j] and Ξ
13 if i > 1 then
14 Determine an indexed root ordering � w.r.t. s[j] and Ξ
15 Project to the next level w.r.t. �, Ij , s: P⊥ := projLW (P⊥)

16 return (I1, . . . ,Ii)

Correctness

The correctness of this algorithm follows from two important observations.

Lemma 3.2.1. Let i ∈ N, s ∈ Ri and P,H ⊂ Q[x1, . . . ,xi]. If P ∪H is sign-invariant
on a cell S ⊆ Ri, then so is P .

Proof. This is an immediate result of the de�nition of sign-invariance.
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Lemma 3.2.2. Let i ∈ N, s ∈ Ri and P ⊂ Q[x1, . . . ,xi]. For all j ∈ [i], let the set of
approximation polynomials introduced by apx-level(Pj ,s[j]) at level j of the modi�ed
single cell construction be denoted by Hj ⊂ Q[x1, . . . ,xj ]. For H :=

⋃
j∈[i]Hj, we

have
scc-apx(P,s) = scc(P ∪H,s).

Proof. To obtain this result, observe that at level j of the original single cell construc-
tion, only polynomials of level exactly j are considered. Therefore, any polynomial
p ∈ P of level j does not a�ect the construction of Ij+1, . . . ,Ii. As a result, both
scc-apx(P,s) and scc(P ∪ H,s) compute the description Ij and the projection of
level j based only on the polynomials P ∪

⋃i
k=j Hk. Since the modi�ed algorithm

does not di�er from the original one after introducing the approximation polynomi-
als, they do indeed yield the same description and projection.

Theorem 3.2.3 (Correctness of the Modi�ed Single Cell Construction). Let i ∈ N,
s ∈ Ri and P ⊂ Q[x1, . . . ,xi]. If scc-apx(P,s) = D 6= FAIL, then S(D) is a
P -sign-invariant cell with s ∈ S(D).

Proof. With the second lemma, we get that there is a set H ⊂ Q[x1, . . . ,xi] with
S(D) = scc(P ∪H,s). Since the original method is correct, it follows that S(D) is a
(P ∪H)-sign-invariant cell with s ∈ S(D). Applying the �rst lemma then yields the
wanted P -sign-invariance.

There is actually an even more general version of the method in which the indexed
root ordering and the computation of the symbolic interval do not need to consider
all of the indexed root expressions belonging to the arti�cial polynomials. One could,
for example, only use one particular arti�cial root expression to approximate the cell
bound and disregard the other roots of the corresponding polynomial. Proving the
correctness of this version is more involved and relies on techniques used in the proof
for the original levelwise single cell construction. In fact, Nalbach et al. accounted for
this idea in their de�nition of an indexed root ordering and their algorithm formulation
based on properties and derivation rules. A closer look at the Rules 6.9 - 6.10 of
[NSÁ+22] and the corresponding Lemmas reveals that they already implicitly allow
this kind of modi�cation, though it is not used in the original paper. As we focus on
variations of the presented approximation method that use only linear polynomials,
which only induce a single root expression anyway, we will not provide a detailed
proof here.

Completeness

When investigating the completeness properties of our approach, we need to dis-
tinguish two di�erent aspects. Firstly, the completeness of the modi�ed single cell
construction itself and secondly, its e�ect on the completeness of MCSAT. Concerning
the �rst aspect, it is easy to see that the underapproximating single cell construction
unfortunately inherits the incompleteness of the original method.

Theorem 3.2.4. The modi�ed single cell construction scc-apx is not complete. That
is, there are i ∈ N, P ⊂ Q[x1, . . . ,xi] and s ∈ Ri with scc-apx(P,s) = FAIL.

Proof. This follows from the incompleteness of the original levelwise single cell con-
struction. If P is not well-oriented, then at some point in the algorithm, a polynomial
in the projection is nulli�ed and thus, the method fails.



3.2. General Formulation 37

Interesting questions arising in this context are whether the arti�cial polynomials
can lead to more cases of nulli�cation or whether one can actively avoid nulli�cation
by constructing the approximations in a certain way. Obviously, no reasonable level
approximation function should yield any nulli�ed polynomials and this can, in fact,
be easily avoided. Moreover, we can ensure that the resultants related to the approx-
imation polynomials are not nulli�ed either. However, it is not trivial to decide what
impact an arti�cial polynomial will have on the lower levels after multiple projection
operations. While our experimental results suggest that there is no signi�cant increase
in nulli�cations for the tested variants, we do not have a general, proved statement.

Application in MCSAT Employing the modi�ed single cell construction in the
explanation function of MCSAT at �rst yields another incompleteness result.

Example 3.2.1 (Completeness). The following is illustrated in Figure 3.3. Assume
that p̂ and q̂ are derived from a set of literals which, together with the current sample
s(1) = ( 1

10 ,−
1
2 ), form a theory con�ict in MCSAT. We know that any other point s′ in

the maximal {p̂,q̂}-sign-invariant cell Smax around s(1) will lead to the same con�ict.
In particular, MCSAT will derive the same polynomials p̂,q̂ from the con�icting liter-
als. Employing the naive underapproximating single cell construction yields a cell S1,
so that an arti�cial polynomial h1 induces the upper bound for x2. This cell is now
excluded from the further search process of MCSAT and the algorithm backtracks, e.g.
to the level for x2. While the partial assignment for x1 stays the same, a new value
for x2 could be chosen, which is outside of S1 but still within Smax. Consequently,
the same con�ict occurs and a cell S2 is constructed, again introducing an arti�cial
polynomial h2. This process can be repeated inde�nitely as the cell bounds induced by
the arti�cial polynomials are always strictly between the sample and the actual bound
of Smax. Depending on what values MCSAT chooses for the partial assignments, it
might not terminate when using the modi�ed single cell construction. This behaviour
does not occur with the original method, as it produces cells with a maximal top-level
description, as shown in Theorem 3.1.1.

p̂
q̂

h1
s(1) S1

h2s(2) S2

h3s(3) S3

...

x1

x2

(a) MCSAT chooses samples s(1),s(2) . . .
which converge towards the actual cell
bound, but never reach it.

p̂

q̂

s(1)

s(2)

s(3)

x1

x2

(b) The cell produced by the original level-
wise method already includes all s(k), k ∈ N
and hence avoids that problem.

Figure 3.3: Incompleteness of MCSAT when using underapproximation.
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The example illustrates a great disadvantage of underapproximating the cells,
namely that MCSAT might need to compute signi�cantly more cells than normally
needed, even leading to non-termination. It is important to note that such an in�nite
sequence of samples and cells can occur in general and not only for certain versions
of the naive approximation. While the example gives a nice intuition for the incom-
pleteness result, we can also describe it more formally, connecting it to the work of de
Moura and Jovanovi¢. They showed that MCSAT is complete if the used explanation
function ful�ls a �nite basis requirement. That is, for every input formula ϕ, there
exists a �nite set B of theory literals so that in any run of MCSAT on ϕ, the clauses
produced by the explanation function contain only literals from B.

The original levelwise method yields an explanation function which indeed has this
property, as long as we assume a common �xed variable ordering for all generated
cells. The new literals it introduces are extended polynomial constraints, comparing
a variable to a polynomial that has been constructed by repeatedly computing resul-
tants, discriminants or coe�cients of the polynomials present in the original literals.
For a given starting formula, the set of all these polynomials is �nite. When the new
literals are involved in another con�ict, the explanation function will again only yield
literals built from the same set of polynomials. However, when we use the approxima-
tion method and introduce arti�cial polynomials, which also depend on the current
sample, then we cannot assure the existence of a �nite basis.

The solution to this problem is to restrict the level approximation function used in
our modi�ed method. If it yields only �nitely many new approximations in any run of
MCSAT, then we can guarantee completeness again (except in instances where nulli-
�cation occurs). For this purpose, we let it take additional status information about
the solving process in MCSAT into account. Then, the function only approximates a
cell bound if this information meets certain criteria. With an appropriate choice of
criteria and status information, we can ensure that only �nitely many approximation
polynomials will be generated.

Theorem 3.2.5. Let f(P,s; info) be a level approximation function, which takes
an additional parameter set info as input. For an arbitrary run of MCSAT, let
Inputs = {(P,s,info) | f(P,s; info) is called in the run}. If f(P,s; info) 6= ∅ holds
only for �nitely many (P,s; info) ∈ Inputs, then the run terminates.

Proof. If f(P,s; info) 6= ∅ for only �nitely many inputs, then there is a point in the
run after which the explanation function does not approximate any more. Therefore,
all subsequent cells are computed essentially with the original levelwise construction.
As only �nitely many approximations have been added, the non-approximating single
cell construction will still ensure a �nite basis, though a larger one than for the initial
input of MCSAT. Thus, the run terminates.

We have implemented several realizations of this idea, which we will present in
the next section, along with heuristics for other parts of the resulting algorithm.

3.3 Implemented Heuristics

The original levelwise single cell construction has been implemented in SMT-RAT,
an open source C++ toolbox for SMT solving [SMTb, CKJ+15]. We built upon this
basis and integrated our approach into that implementation. While we have shown
more general results in theory, we have only put variants into practice that do not
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di�er too much from the naive approach. Still, there are several aspects which leave
room for variability. The level approximation functions of our implemented methods
all follow the same general structure:

� First, apply the criteria used to ensure termination. If they fail, do not generate
any arti�cial polynomials.

� Then apply additional criteria to the polynomials of the current level to de-
termine whether it is worth approximating the upper or lower bound of the
cell. For example, check whether the degree of the polynomials inducing the
cell bounds is greater than �ve.

� If one of the bounds meets the criteria, choose a point between the sample and
the root de�ning that bound.

� For each of those points, generate an arti�cial polynomial that has a root at
exactly that point.

That way, we only ever use arti�cial polynomials to simplify resultants with the cell
bounds and accordingly, all our implemented methods use the biggest cell heuristic
for computing the indexed root ordering. It would, of course, be possible to introduce
polynomials with roots at other advantageous positions and then use other indexed
root orderings, but this was not yet part of our considerations.

Termination Criteria

We start by providing some implementations of the strategy for ensuring termination
given in Theorem 3.2.5. That is, we use criteria on additional status information to
limit the number of approximations.

Number of Approximated Cells Probably the simplest idea is to count the num-
ber of (underapproximated) cells and to generate approximation polynomials only as
long as that number is below a �xed threshold. In practice, one would not check this
criterion in each call of the level approximation function, but rather once before the
entire cell computation.

For more advanced criteria, we use additional properties of the level approximation
function, which naturally arise from the desire to simplify the computations.

De�nition 3.3.1 (Degree-bounded). A level approximation function f(P,s; info)
is called degree-bounded if there is a �xed d ∈ N, so that for all i ∈ N, s ∈ Ri,
P ⊂ Q[x1, . . . ,xi] and additional status information info, we have

� degxj
(h) < d for all h ∈ f(P,s; info), j ∈ [i] and

� (∀p ∈ P. degxi
(p) < d)⇒ f(P,s; info) = ∅.

This property expresses that the approximation polynomials do not have arbitrar-
ily large degree, which is reasonable since we want to simplify resultants. Moreover,
if all polynomials at the current level are already rather simple, then there is no ap-
proximation needed. When only approximating cell bounds induced by polynomials
of degree �ve or higher, then the level approximation function corresponding to our
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naive approach is degree bounded with d ∈ {2,3,4,5}. The bene�t of this property is
that the arti�cial polynomials alone do not cause any further approximations. That is,
if MCSAT encounters a con�ict consisting of literals derived only from arti�cial poly-
nomials, then the computed cell will not be underapproximated and no new arti�cial
polynomials are introduced.

Dynamic Threshold Degree-bounded level approximation functions allow for a
more dynamic version of the criterion counting the approximated cells. Given a
monotone function g : N → N with n < m ⇒ g(n) < g(m) and the number ncells of
cells, we only introduce arti�cial polynomials if the current level contains a polynomial
p with deg(p) > g(ncells). Intuitively, the higher the degree of the polynomials, the
more approximations we allow. This is motivated by the idea that for very high degree
polynomials, the gain in e�ciency might still outweigh the overhead of producing more
cells. Since the level approximation function is degree-bounded, each run of MCSAT
will reach a point at which all polynomials have a degree less than g(ncells) and hence,
no more arti�cial polynomials are generated.

Number of Approximations per Constraint Another option using degree-
bounded functions aims to tackle the behaviour shown in the example, while being
more adaptive to complex problem structures. If one only considers the overall num-
ber of approximated cells, it might happen that, after the threshold is reached, a
con�ict is encountered which consists of literals that were not involved in any of the
prior con�icts. Using the underapproximation may be more e�cient in this case,
but is not even considered any more. To address this, one can limit the number of
approximated cells for each constraint individually. That is, the level approximation
function takes as status information the number of times each literal was involved in
a con�ict. If this number exceeds a certain threshold for any of the literals involved in
the current con�ict, then no arti�cial polynomials are generated. Degree-boundedness
now ensures that each run of MCSAT will reach a point at which each con�ict either
contains a literal with exceeded threshold or the degrees of the polynomials in the
corresponding cell construction are so small that no approximation is needed.

Approximation Criteria

The second variable aspect of the method is the approximation criterion, which is a
heuristic to decide when an approximation will be useful. This is only a heuristic as
there is no obvious or simple way to determine what resultants will be computed in
the lower levels of the cell and how exactly the approximation will a�ect the solving
process in MCSAT.

Degree of the Approximated Polynomial A simple choice, which we already
presented, is to introduce an arti�cial polynomial only if the polynomial inducing the
cell bound has a degree exceeding some threshold. Of course, the concrete value of
that threshold impacts how well the method performs in the context of MCSAT. If
it is too high, the approximation might never be used and there is no bene�t to it.
On the other hand, if it is too low, the method will approximate cells that could have
been computed e�ciently anyway and thereby just produce unnecessary overhead. In
practice, a value of �ve performed quite well.
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Estimating Overall Resultant Complexity An alternative idea is trying to es-
timate the overall complexity of the resultants that would be computed without ap-
proximation. When using the biggest cell heuristic for the indexed root ordering, it
is fairly easy to determine for which pairs of polynomials a resultant would be added
to the projection. A rough and easy to calculate guideline value for the complexity of
a resultant of polynomials p and q is the product of their degrees, as this is the upper
limit for the degree of the resultant. Consequently, one could use a criterion which
allows approximation only if one of the potential resultants is deemed too expensive
based on the guideline. However, it is worth noting that the reduction of resultant
complexity is not the only bene�t of the approximations. The simpler cell description
can also speed up calculations and be helpful in cases where this criterion would not
support an approximation.

Choice of the Arti�cial Root

A step of the algorithm that was kept vague in the description of the naive approach
is the choice of the arti�cial root between the actual bound and the sample. The
simplest method would be to use the midpoint, that is, if (s1, . . . ,sj) is the sample
and ξ is the indexed root expression corresponding to the bound:

rmid =
1

2
(sj + ξ(s[j−1]))

However, this choice is not always valid because sj or ξ(s[j−1]) may be irrational and
thus so can their midpoint. In that case, an arti�cial polynomial like h = xj − rmid

does not have rational coe�cients and is hence unusable for our algorithms.

Rational Midpoint A simple workaround uses the representation of real algebraic
numbers as roots of a polynomial within a certain interval with rational boundaries
(see Def. 2.1.5). To �nd a rational point between two algebraic numbers, one can
take the midpoint of those boundaries. More precisely, if α = (p,I) and β = (q,J) are
algebraic numbers with α < β and I ∩ J = ∅, then we have

r′mid =
1

2
(a2 + b1), for intervals I = (a1,a2) and J = (b1,b2).

Usually, the intervals in the representation are obtained by the procedure for real
root isolation and they might overlap. In order to �nd a rational point between the
algebraic numbers, we would then �rst need to re�ne the intervals until they are
disjoint.

In practice, the rational midpoint is still not a good choice. SMT-RAT uses an
implementation of rational numbers with arbitrary precision arithmetic, which entails
that the representation of these numbers can become rather large. Consider two
rationals a

b and c
d with coprime denominators b and d, which need log(b) and log(d)

bits of storage. The denominator of the midpoint ad+cb
2bd will need log(b) + log(d) + 1

bits and hence, the representation of numbers in our algorithm would grow and grow.
This is even more severe when evaluating polynomials on the rational numbers, as
(a
b )k will need k ·log(b) bits to store even the denominator. Accordingly, computations
will also take a longer time. We will see later that this indeed has a signi�cant impact
on the performance of the algorithm.
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Simple Representation Consequently, it is better not to use the midpoint, but
instead choose a rational number with a representation that is as simple as possi-
ble. This can be achieved by utilizing the so called Stern-Brocot tree [Ste58, Bro61,
GKPL94], which is a binary search tree containing all positive rational numbers. The
path from the root ( 11 ) to any number q consists of fractions that have a smaller de-
nominator than q and generally converge towards it. We can easily adapt its concepts
to account for negative rational numbers, assuming that they are given in the form
z
m with z ∈ Z and m ∈ N \ {0}. The following procedure then lets us �nd a rational
number with rather simple representation within a given rational interval:

Algorithm 4: Simple representation point: choose-point-sr(q1,q2)
Input : Reduced fractions q1, q2 ∈ Q with q1 < q2
Output: r ∈ (q1,q2) with a simple representation

1 if ∃z ∈ Z. z ∈ (q1,q2) then
2 return some such z
3 Initialize nl := bq1c, dl := 1 and nr := 1, dr := 0
4 Set nc := nl + nr and dc := dl + dr
5 c := nc/dc
6 while c /∈ (q1,q2) do
7 if c < q1 then
8 Set nl := nc and dl := dc
9 if c > q2 then
10 Set nr := nc and dr := dc
11 nc := nl + nr, dc := dl + dr and c := nc/dc
12 return c

The procedure makes use of the mediant of two fractions, which is the sum of
their numerators divided by the sum of their denominators and which always lies
between the two fractions. In the Stern-Brocot tree, the children of each node are
also obtained by taking the mediant of that node with some of its ancestors. The
advantage of using the mediant instead of the midpoint is that it produces a smaller
representation, where the denominator only needs log(d1 + d2) < log(d1) + log(d2)
bits of storage.

�Best� of Multiple Candidates A potential drawback of the simple representa-
tion method may be that the position of the arti�cial root can be rather arbitrary,
while having more control over the position could allow for choices that are bene�cial
in other ways. Depending on the cell's boundary that is to be approximated, we
might want to choose a root closer to or further away from it. Figure 3.4 illustrates
this on an example, showing that the position of the arti�cial root will a�ect the size
of the cell at the lower levels. In extreme cases, it can make the di�erence between a
bounded and an unbounded level.

Therefore, it might be bene�cial to look for an arti�cial root which will maximize
the size of the cell. However, we cannot calculate the size of the cell without processing
the lower levels and thus, we need to fall back to rough heuristics. One possibility
for estimating the cell size is to only consider the current and next level. For a given
arti�cial root r, we can construct the approximation polynomial and compute its
resultant with the actual cell bound. Isolating the roots of the resultant will give an
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s

x1

x2

r

(a) The root r is chosen rather close to the
original bound de�ned by p. While this
leads to a larger interval I2 for x2, the un-
derlying cell for x1 is bounded by the addi-
tional resultant.

s

x1

x2

r

(b) If r is chosen closer to s, then the cell is
smaller in the x2-direction, but unbounded
on the lower level. This can be more desir-
able, as it simpli�es the cell description and
arguably produces a bigger cell.

Figure 3.4: Cells generated with the naive approach using di�erent positions of the
arti�cial root. The line in blue depicts a root function de�ning the boundary of a cell.

overestimation of the cell bounds at the next level. This yields a rough guideline for
the quality of the arti�cial root. Since we cannot easily compute an exact value for
r that would maximize the resulting estimated two-dimensional cell, we simply test
several di�erent values and take the best one. A possibility to de�ne and compare
the estimated cell sizes when using the naive approach is as follows:

De�nition 3.3.2 (Root Position Heuristic). Let i ∈ N with i > 1, s ∈ Ri be a sample
point and let p ∈ Q[x1, . . . ,xi] de�ne the upper or lower cell bound at level i by its
root rp ∈ R with p(s1, . . . ,si−1,rp) = 0. If rp > si, let J = (si,rp) and otherwise
J = (rp,si). For r ∈ J , we set Nr := realRoots(resxi [p,xi − r](s1, . . . ,si−2)) and
de�ne the heuristic size estimation hse(r,p,s) as follows:

� If there are l,u ∈ Nr with l < si−1 < u and no element of Nr lies between l and
u, then hse(r,p,s) = |si − r| · |u− l| ∈ R.

� If Nr 6= ∅ and either ∀a ∈ Nr : si−1 < a or ∀a ∈ Nr : si−1 > a holds, then
hse(r,p,s) = half-unbounded.

� If Nr = ∅, then hse(r,p,s) = unbounded.

Let r,r′ ∈ J and h := hse(r,p,s) and h′ := hse(r′,p,s). We can compare h and h′

by a partial ordering on the set R ∪ {half-unbounded, unbounded}. Elements of R
are ordered as usual. For all a ∈ R we have unbounded > half-unbounded > a.
We say that r provides a better heuristic value than r′ if h > h′. In the cases
a = a′ = half-unbounded or a = a′ = unbounded, the values |r− si| and |r′− si| can
be used as a tie break.

To illustrate this idea, we revisit the example introduced in Figure 3.4.
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Example 3.3.1. The following process is depicted in Figure 3.5. We �rst choose a
root r1 rather close to the actual bound, construct the corresponding approximation
polynomial h1 and compute the resultant with the polynomial inducing the bound. The
two-dimensional estimated cell E1 is bounded in x2-direction by r1 and s2 and in x1-
direction by the roots of that resultant. Notice that we bound it by s2 with the reason
that we do not take any potential lower bound into account. This makes our estimation
easier to compute, but also less accurate. Next, we could try out two more roots r2,r3
at di�erent positions and recognize that the estimation for r3 is fully unbounded in
x1-direction and is hence more favourable.

s

r2

r3 E2

E3

s

r1

E1

x1

x2

Figure 3.5: Illustration of the heuristic estimated cell size for di�erent placements of
the arti�cial root w.r.t. the upper cell bound. As lower bound in x2-direction, s2
is used. The estimations E1 and E2 for r1 and r2 are half-unbounded (in the x1-
direction), but r1 is further away from s, so it yields the better heuristic value. The
arti�cial bound built with r3 would have no intersection with the actual bound and
thus give the best value: unbounded.

Note that this kind of computation is only reasonable for very simple resultant cal-
culations and root isolations. The overhead resulting from testing multiple candidates
can be immense and thus this method should be handled with care.

Construction of the Polynomial

Finally, the last aspect of variation in our implementation is the construction of the
approximation polynomial itself. In general, any polynomial that has a root at the
chosen position would work, but in practice we want it to be a simple one. That is, we
only consider polynomials with total degree one or two, so that the resultants and real
roots can be computed e�ciently. We already presented the simplest possible version
in our naive approach, which only takes the root into account, but no properties
of the approximated polynomial. Naturally, the question arises whether a better
approximation leads to a more accurate cell and therefore to better results in MCSAT.
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In the next section, we will present a more advanced approach based on the Taylor
expansion of the approximated polynomial which will generate arti�cial cell bounds
whose behaviour is closer to the original bounds.

3.4 Using the Taylor Expansion

For the purpose of generating a better approximation polynomial, we �rst need to
clarify what it is that we want to approximate. Ultimately, our goal is an arti�cial cell
bound which is represented by an indexed root expression. This expression induces
a continuous function over the underlying cell which preferably behaves similar to
the function corresponding to the original cell bound. However, it is not suitable to
approximate root functions directly as their evaluation is quite time-consuming and
requires real root isolation of a possibly very complex polynomial. Moreover, we do
not know the extent of the underlying cell when constructing our approximations.
Therefore, we resort to the less direct approach of approximating the polynomial
which induces the cell bound.

More precisely, given the sample s ∈ Ri, a polynomial p ∈ Q[x1, . . . ,xi] and
rp ∈ R with p(s1, . . . ,si−1,rp) = 0, we �nd an arti�cial root r ∈ Q between si and rp
and construct another polynomial h ∈ Q[x1, . . . ,xi] whose behaviour in the vicinity
of (s1, . . . ,si−1,r) is similar to the behaviour of p around the point (s1, . . . ,si−1,rp).
To achieve this, we can simply compute an approximation ĥ of p and then apply an
appropriate shift it in the xi-direction, i.e. h(x1, . . . ,xi) = ĥ(x1, . . . ,xi−1,xi−(r−rp)).

There are several methods for polynomial approximation, many of which belong
to the �eld of interpolation [GS12]. That is, they generate polynomials matching the
interpolated function on a set of sample points. Hermite interpolation extends this
by demanding that not only the function value, but also certain derivatives match
on some of the samples. While interpolation has been studied thoroughly and has
many applications, it does not seem suitable for our task. One of the di�culties of
multivariate polynomial interpolation is to �nd an appropriate set of sample points.
In our case, this would be particularly hard as we need a good approximation over the
underlying cell, but do not yet know its extent. Therefore, it is unclear from which
region the points should be chosen.

Instead, we use the multivariate Taylor expansion (see, e.g. [Edw73]), which is
well-understood and one of the go-to methods for function approximation and which
has already been applied in the context of algebraic curves [BHLH88]. Its advantage
is that it only needs one sample point and yields a polynomial whose function value
and derivatives match the approximated function at that point. Although the Taylor
expansion can be de�ned for any order, we will only consider the �rst and second
order cases, which correspond to linear and quadratic approximations.

De�nition 3.4.1 (Taylor Expansion). Let i ∈ N, a ∈ Ri and F : Ri → R be two
times di�erentiable at a. The �rst-order Taylor expansion of F at a is

T1[F,a](x1, . . . ,xi) := F (a) +
∑
j∈[i]

∂F

∂xj
(a)(xj − aj).

The second-order Taylor expansion of F at a is

T2[F,a](x1, . . . ,xi) := T1[F,a](x1, . . . ,xi) +
1

2

∑
j,k∈[i]

∂2F

∂xj∂xk
(a)(xj − aj)(xk − ak).
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The Taylor expansion has some practical properties, which we will not prove here
as they can be easily veri�ed.

Proposition 3.4.1. Let i ∈ N, a ∈ Ri and F : Ri → R be twice totally di�erentiable
at a. It holds

F (a) = T2[F,a](a) = T1[F,a](a)

∂F

∂xj
(a) =

∂T2[F,a]

∂xj
(a) =

∂T1[F,a]

∂xj
(a)

∂2F

∂xj∂xk
(a) =

∂2T2[F,a]

∂xj∂xk
(a).

Example 3.4.1 (Taylor Expansion). We go back to our running example and want
to approximate the upper bound polynomial q̂ = 26(x61x

6
2+1)(−2x1x2+x2−1)+1 at its

root over the underlying sample s1 = − 1
2 , that is at the point a = (− 1

2 , rootx2 [q̂,1](− 1
2 ))

which is also shown in Figure 3.6. The �rst-order approximation is t1 = T1[q̂,a] and
similarly, t2 = T2[q̂,a] for the second order. Note that in this example, the quadratic
approximation is so close to the original polynomial that there is almost no visible dif-
ference. Before we can use the Taylor expansions as cell bounds, we need to introduce
a �shift�. Currently, their roots intersect the root of q̂ at a and thus, the resultant
would equal zero at the sample and force a section on the lower level. We choose a
point r between s and a and modify the approximation so that their root is at r, which
is shown in Figure 3.6b.

p̂

q̂
t1

t2

a

s

x1

x2

(a) The usual expansions have a root at a,
meaning that the resultant of q̂ and t1(t2)
would have a root at s1.

p̂

q̂
t1

t2

a

r

s

x1

x2

(b) This problem is solved by shifting the
polynomials towards s.

Figure 3.6: Taylor-based approximation of cell bounds. The linear expansion t1 is
marked orange, the quadratic expansion t2 is marked green.

It is important to emphasize that we approximated the polynomial, but are ac-
tually interested in its variety. As can be seen in the example, the varieties of the
approximation also behave similarly to the original one. This follows from Proposi-
tion 3.4.1, as it implies that all �rst (respectively second) directional derivatives at a
match the approximated polynomial.
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Unfortunately, we need to make even more modi�cations to the construction to
accommodate for some of the requirements and complications of our task. Similar to
the choice of the root in the naive approach, we need to guarantee that the coe�cients
of the arti�cial polynomials are rational numbers. It can indeed happen that for some
j ∈ [i], the coordinate sj is irrational, meaning that terms of the form xj − sj are not
suitable. In that case, we omit the summands containing xj in the Taylor expansion
and thereby lose the approximation properties related to the derivatives with respect
to xj . The reason why we cannot simply replace sj by a rational approximation is
that this could move the roots of the constructed polynomial to an unforeseen place,
potentially rendering our method incorrect. Notice though that this problem will
never occur for the top variable xi since we replace xi − rp by xi − r for the chosen
rational point r.

Example 3.4.2. Let p ∈ Q[x1,x2] be a polynomial of level 2 and s ∈ R2 so that s1 is
irrational. If we omit the summands containing x1 in the �rst-order Taylor expansion
of p at a point a = (s1,rp), we get

t1 = p(a) +
∂p

∂x2
(a)(x2 − rp).

If p(a) = 0 and we shift t1 to have a root at (s1,r) instead, we get

t̃1 =
∂p

∂x2
(a)(x2 − r),

which has exactly the same roots as x2 − r and is thus equivalent to the polynomial
produced by our naive approach.

The irrational samples also a�ect the derivatives which we compute for the Taylor
expansion. If the approximation point a contains irrational coordinates, then ∂p

∂xj
(a)

might be irrational, too. Now, however, we can use a rational approximation as the
root structure is guaranteed by the terms (xj − aj). While this does interfere with
the gradient similarity, it does not fully destroy it, assuming a good enough rational
approximation.

Another complication is the special case that the derivative of the original polyno-
mial in direction of the highest variable xi is zero. In that case, the Taylor expansion
would have a level lower than i and would therefore not induce a valid cell bound.
But we can deduce in this case that the discriminant of the original polynomial is
zero at the underlying sample and therefore, the next level will collapse to a section
anyway. Thus, we simply resort to the naive construction, which will not perform
worse than the Taylor expansion in this situation.

With these modi�cations, we can de�ne the new construction method.

De�nition 3.4.2 (Taylor-based Bound Approximation). Let i ∈ N, s ∈ Ri and
let p ∈ Q[x1, . . . ,xi]. For a point rp ∈ R \ {si} with p(s1, . . . ,si−1,rp) = 0, we set
a := (s1, . . . ,si−1,rp) ∈ Ri. If rp < si, let r ∈ (rp,si) and otherwise r ∈ (si,rp).
Furthermore, we set a′ := (s1, . . . ,si−1,r) and Rat(a′) := {j ∈ [i] | a′j ∈ Q}. The
linear Taylor-based bound approximation of p at a is

h1[p,s,r](x1, . . . ,xi) :=
∑

j∈Rat(a′)

∂p

∂xj
(a)(xj − a′j).
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The quadratic Taylor-based bound approximation of p at a is

h2[p,s,r](x1, . . . ,xi) := h1[p,s,rp](x1, . . . ,xi)+
1

2

∑
j,k∈Rat(a′)

∂2p

∂xj∂xk
(a)(xj−a′j)(xk−a′k).

The second-order Taylor expansion can have the unwanted side e�ect of introduc-
ing a second root function. Since the approximation is quadratic, it may have two
roots over the underlying sample, only one of which is useful for us. While there
could be applications of the approximation method which make use of both roots
to, for example, underapproximate both the lower and upper cell bound at once, we
will focus on the simple version of handling one root function at a time. And in this
version, the second root is undesirable.

Example 3.4.3. If we consider instead of q̂ a di�erent polynomial q̃ = (1−2x1)7x52−1
with a similar root structure, then its second-order Taylor-based approximation is
signi�cantly less close, as can be seen in Figure 3.7. In particular, it de�nes two root
functions for all values of x1 instead of one. As we only explicitly constructed the
second root, adding the �rst one to the indexed root ordering would be disastrous. It
can signi�cantly shrink the cell and in extreme cases even lie exactly at the sample,
meaning that the current level would suddenly be handled as a section instead of a
sector. The solution to this is to only consider the explicitly constructed root in the
indexed root ordering. As we mentioned earlier, this does not harm the correctness
of our method, though the proof for this statement is more involved. Nevertheless,
the second root will still interfere with the size of the underlying cell as the resultants
indicate any common roots of the two input polynomials. Consequently, when we
compute the resultant of our approximation with p̂ and isolate its roots, we will get
two roots belonging to intersections of the �rst, unwanted root function with the variety
of p̂. One of those additional roots actually shrinks the underlying cell.

p̂

q̃ t2

a
r
s

x1

x2

(a) When considering the additional root
as lower bound of the cell, then this can
shrink the cell immensely.

p̂

q̃ t2

a
r
s

x1

x2

(b) Ignoring the additional root when com-
puting the bounds provides a bigger cell,
but it still causes intersections with other
root functions which can shrink the next
level (marked in red).

Figure 3.7: Additional root function introduced by t2 := h2[q̃,s,r]. The second (upper)
root of t2 has been constructed explicitly, the �rst root has not.
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As mentioned in the example, we can partially solve the problem of the second
root by not including it in the indexed root ordering. That is, when we construct an
arti�cial polynomial t2 via the second-order Taylor expansion with an explicit root r
over the underlying sample, we only add the indexed root expression corresponding
to that root to the set Ξ from which the indexed root ordering will be derived. In
particular, we can use the values of the derivatives computed in the Taylor expansion
to determine whether we are interested in the �rst or second root, meaning that we
can avoid real root isolation.

Lemma 3.4.2. Consider the quadratic Taylor-based approximation h := h2[p,s,r] of
a polynomial p ∈ Q[x1, . . . ,xi] (i ∈ N \ {0}) with respect to s ∈ Ri and the chosen
root r ∈ Q. Let rp ∈ R be a root of p at s[i−1] and a := (s1, . . . ,si−1,rp). Further, let

d1 := ∂p
∂xi

(a) and d2 := ∂2p
∂2xi

(a). It holds

rootxi [h,1](s[i−1]) = r ⇔ d1 = 0 or d2/d1 < 0.

Proof. To determine the roots of h at the underlying sample s[i−1], we substitute s1
for x1, . . . ,si−1 for xi−1 and obtain

h(s1, . . . ,si−1,xi) =
∂p

∂xi
(a)(xi − r) +

∂2p

∂2xi
(a)(xi − r)2 = d1(xi − r) + d2(xi − r)2.

If d1 = 0, then this polynomial has a double root at r and we are done. Otherwise,
the roots are r and r − d2

d1
. Accordingly, if d1 6= 0, we have

rootxi
[h,1](s[i−1]) = r ⇔ r < r − d2

d1
⇔ 0 >

d2
d1
.

Example 3.4.4. In the situation of Figure 3.7 we would proceed as follows. During
the construction of t2, we identify and store d1 and d2 as in the lemma. Then, we add
t2 to the working set P2 which will be projected. However, depending on the values of
d1,d2, we only add one of the root expressions rootx2 [t2,1] or rootx2 [t2,2] to the set Ξ
from which the root ordering and level description will be derived. In the example, it
is rootx2

[t2,2], and accordingly we avoid that the other root would be used as the lower
cell bound.

This concludes the theoretical presentation of our modi�ed levelwise single cell
construction and of the many possible variations. In the next step, we see how they
perform when put into practice.
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Chapter 4

Experimental Results

In this chapter, we evaluate the performance of our approach and compare it to
the original levelwise method on the basis of experimental results. The generation
of explanations for the SMT-solving process in MCSAT was our main motivation
and naturally, we intend to evaluate the measures speci�cally implemented with that
regard, for example the criteria for ensuring termination. Therefore, we mainly restrict
our considerations to the usage in MCSAT. Nevertheless, we will also extract some
statistics that give insights on the single cell construction as a stand-alone procedure.

Tested Implementations

The levelwise algorithm and our adaptations are implemented in the SMT-RAT solver,
which can use these methods as explanation backends for its implementation of MC-
SAT. One of the main principles of SMT-RAT is modularity and accordingly, it allows
to combine backends in a sequential manner. For example, if the levelwise method
fails due to nulli�cation, then a cell construction using the much more time-consuming
Collins projection as in NLSAT is employed instead. Similarly, other incomplete, but
more e�cient backends can be called prior to the single cell construction so that,
if a backend fails, it passes the problem on to the next method in the sequence.
In addition to the single cell construction methods, SMT-RAT currently o�ers im-
plementations of the following backends: The Fourier-Motzkin variable elimination
(FM)[JBd13], which can be used to analyse linear constraints, the Virtual Substitu-
tion (VS) method [ÁNK17], which is particularly suitable for problems with linear
and quadratic polynomials and the Interval Constraint Propagation (ICP) [Kre19]. If
they work, these approaches are often much faster than single cell construction. We
compared variants of our approach with the levelwise method, each with the fallback
to original NLSAT explanations in the case of nulli�cation. In addition, we also evalu-
ated their performances when employing the other backends �rst. Our considerations
will focus on the following tested variants:

� LW: The levelwise single cell construction using the biggest cell heuristic for
generating indexed root orderings when the current level is a sector. In the fail
case, it resorts to the complete construction method from NLSAT.

� APX-N: The naive approximation approach, introducing an arti�cial bound
whenever the polynomial corresponding to the actual bound has degree 5 or
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higher. The arti�cial root is chosen so that it has a simple rational representation
and to guarantee termination of MCSAT, a �xed threshold of 50 approximated
cells per instance is used.

� APX-Ti: For i = 1, this denotes the Taylor-based method of order one and,
similarly, for i = 2, it refers to the second-order version. We use the same
set of additional settings for approximation criteria, arti�cial root position and
termination as for the naive approach.

� FM-*/VS-*/ALL-* For any of the above solvers, say [solver], we denote by
FM-[solver] and VS-[solver] the variants resulting from calling the FM- or VS-
backend prior to [solver]. The sequential combination of the FM-, ICP- and
VS-backends, as well as [solver], in that order is denoted by ALL-[solver]. We
test these combinations to determine whether our approach can be bene�cial
in cases where the already known methods struggle. Moreover, as the approx-
imation reduces the degree of the polynomials in the cell descriptions, it could
even enhance the incomplete FM and VS methods, which thrive on linear and
quadratic polynomials.

Note that we also tested di�erent criteria and values for the various heuristics
in the approximation approach. In Section 4.4, we will give some details on their
comparison. Before that, we will only consider the settings as described for APX-N,
as they seemed to work best.

Benchmark Setting

All solvers were tested under the same conditions. For the test cases, we used the
SMT-LIB benchmark set for quanti�er free non-linear real arithmetic [BST10, SMTa],
which is a collection of 11552 individual problem instances. Each instance provides a
QFNRA-formula whose satis�ability is to be determined. We executed the solvers on
a machine with four 2.1 GHz AMD Opteron CPUs, each consisting of 12 cores. Every
individual problem instance was run with a time limit of one minute and with 4 GB
of memory available. Consequently, if a solver could not solve the instance within the
allotted time (or memory), its result was classi�ed as a timeout (or memout).

4.1 Overview

We begin our analysis with a general overview of the solved instances for each solver,
summarized in Table 4.1. In addition to the above mentioned versions, it also contains
a row VB for the virtual best of the solvers LW, APX-N, APX-Ti. That is, VB is
the hypothetical method which employs on each instance the fastest of the actually
implemented variants.

An important observation is that only a fraction of the test instances allow for
meaningful comparisons between the cell construction methods. The �fth column
of the table indicates the number of solved instances that did not require any cell
construction at all. In the case of the �rst four solvers, this means that only Boolean
con�icts were encountered in the solving process, if any. As can be seen, this applies
to roughly half of the solved instances. For the solvers using the other, incomplete
backends �rst, the situation is even more extreme as they are able to also solve
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Solver solved sat unsat without scc with scc using approx.

LW 9221 4512 4709 4724 4497
APX-N 9265 4535 4730 4724 4541 583
APX-T1 9249 4528 4721 4724 4525 569
APX-T2 9210 4505 4705 4724 4486 530
VB 9272 4537 4735 4724 4548 441

FM-LW 9410 4662 4748 7223 2187
VS-LW 9514 4716 4798 8303 1211
ALL-LW 9584 4729 4855 8495 1089
FM-APX-N 9442 4673 4769 7221 2221 596
ALL-APX-N 9610 4737 4873 8492 1118 544
VS-APX-T2 9499 4698 4801 8304 1195 519

Total 11552* 5069* 5379*
* For 1104 instances, it is not known whether they are satis�able or unsatis�able.

Table 4.1: Details on the solved instances for each solver. The columns show the
total number of solved instances, the number of satis�able and unsatis�able instances
among them, the number of instances where no single cell construction (scc) and
where at least one scc was used and the number of solved instances where a cell was
approximated (in that order). The solvers based on LW did not use any approxima-
tion.

instances which do require theory explanations without single cell construction. For
example, in about 88% of the instances solved by ALL-LW, no call to the levelwise
method was made, leaving only slightly more than a thousand relevant test cases.

When we examine the instances in which our new methods introduced at least
one arti�cial polynomial, the data set is shrunk down even more. With the chosen
approximation criteria, an approximation was performed in no more than 600 of the
solved instances. When counting both the solved and unsolved cases, we get 808
cases where it was used. Notice that if no arti�cial polynomial is introduced, the
approximation methods are almost identical to the levelwise approach, the only dif-
ference being some additional overhead for checking the criteria. Of course, changing
the criteria could increase the number of relevant cases, for example when already
approximating polynomials of degree three, but we will see later that this also leads
to a worse performance overall. An interesting observation in this context is that the
number of instances solved using approximation does only decrease very slightly (by
at most 6.7%) when using the additional backends. In the case of FM-APX-N, it
even increases. This contrasts the fact that the number of cases in which single cell
construction is used plummets by 50 to 75 percent. A possible explanation is that
the instances which the other backends cannot solve have a high overlap with the
instances in which the approximation methods thrive. Taking into account that the
former are specialized on problems with low-degree polynomials, while the latter are
designed to deal with high degrees, this seems even more plausible.

Considering only the pure numbers, the naive approach stands out as it solves
the most instances among the non-virtual-best methods. It solves 44 instances more
than the original levelwise method when used as primary backend. The combination
with other backends reduces the gap slightly, only being 32 instances for FM-APX-N
and FM-LW and being 26 for the ALL-* variants. While the linear Taylor-based
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Figure 4.1: Performance pro�le with respect to the runtime of the solvers using only
cell construction backends. The horizontal axis begins at 8500 since there is no sig-
ni�cant di�erence between the solvers before that value.

method still performs better than the original solver, the quadratic version actually
solves fewer instances than LW. This can also be observed in the performance pro�le
in Figure 4.1.

Moving on from the pure numbers of solved instances, we take a closer look at
speci�c statistics, with the aim of providing a better understanding of where and how
much the methods di�er. Table 4.2 considers those instances solved by LW and all
APX-* methods for which the latter did indeed use approximation. The overlap is
rather high, as this sums to 499 instances, while none of the variants individually
solved more than 583.

We see that the linear approximation methods were on average faster than LW,
despite computing many more cells. This means that not only do they solve more
instances, they are also often more e�cient in each individual cell construction and in
total. One reason for the improved e�ciency could be that our approach does indeed
reduce the degrees of the involved polynomials, which can be observed by examining
the mean maximum degree per instance. Moreover, we can see the e�ect of intro-
ducing arti�cial polynomials in the numbers of computed resultants, discriminants
and leading coe�cients. While APX-N produced about 51% more cells than LW, the
mean number of resultants per instance increased by 124% and for discriminants and
leading coe�cients by 80% and 70%, respectively. The other approximation methods
behave similarly, producing bigger projections in each cell. In the case of APX-N and
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LW APX-N APX-T1 APX-T2

mean runtime (s) 2.61 1.71 1.9 3.45
sum calls to scc 3462 5238 5599 5418
sum calls to NLSAT 9 9 9 9
mean max. degree 42.2 33.06 33.19 33.12
mean #resultants 12.42 27.83 30.92 28.29
mean #discriminants 23.37 42.14 45.61 43.16
mean #leading coe�cients 30.99 52.68 57.41 53.92
mean runtime in scc (s) 0.51 0.28 0.29 0.54

Table 4.2: Statistics for the 499 instances on which the approximation methods did
approximate at least one cell and which were solved by all listed variants.

APX-T1, this is outweighed by the simpli�cation of the resultant computations, since
they are still more e�cient. This is also indicated by the fact that their mean time
spent to compute a single cell is much lower than for LW. In that sense, they do work
as intended. On the other hand, the quadratic Taylor-based method needs more time
on average, both for individual cell constructions and in total. This suggests that the
e�ort required to compute the Taylor expansion is too high compared to the payo� of
simpler resultants. Interestingly, the reduction in degree is very similar to the linear
methods.

An open question was how the introduction of arti�cial polynomials a�ects the
frequency of failure due to nulli�cation. As we can see, such failures occurred exactly
the same number of times for all variants, as in those cases the NLSAT backend was
called. On all other instances where approximation was used, LW needed 315 and
APX-N 212 such calls, even though it generated more cells. This suggests that our
method does not have any signi�cant positive or negative in�uence on nulli�cation.

We will now take a closer look at the data for the naive and then the Taylor-based
approaches, followed by some insights on the di�erent heuristics that could be used.

4.2 Naive Approach

First of all, the results of LW and APX-N only di�er in a few instances. The number
of test cases solved by both variants is 9215, meaning that there are only six cases
in which LW found a solution but APX-N did not. It turns out that in two of
those cases, LW found a solution just barely before reaching the time limit, while
the approximation method failed simply due to the additional overhead of checking
criteria without even approximating any cell. On the other hand, the approximation
method was able to solve 50 new instances with regard to the original method. For
the variants with other backends, the situation is similar. We have 9403, respectively
9577, commonly solved instances for the FM-* and ALL-* solvers, which translates to
seven instances each �lost� by using approximation, but many more �gained�. While
these numbers do not show a great impact of our approach, they suggest that it almost
never leads to a signi�cantly worse performance.

Statistics similar to those in Table 4.2 are visualized in Figure 4.2 with a data point
for each instance on which approximation was applied, including those not solved by
both solvers. They show that the di�erences in averages are not simply skewed by
outliers, but do indeed follow from a general pattern.
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(a) Overall runtime in seconds. Timeouts
are set to a value of 70 seconds and thus
appear on the right and upper borders.

(b) The total number of constructed cells
for each instance. That is, the number of
calls to single cell construction.

(c) The average time needed to construct
a cell for each instance. (time spend in
single cell construction divided by number
of cells)

(d) Maximum degree (in its main vari-
able) of any polynomial in the input or
constructed in the explanation process.

Figure 4.2: Scatter plots comparing LW and APX-N on the set of benchmarks where
approximation is used.

4.3 Taylor-based Approach

As can be seen in Tables 4.1 and 4.2, the Taylor-based methods performed worse than
the naive approach in terms of solved cases and the quadratic version even solved
fewer instances than the original levelwise method. Moreover, the more accurate
approximation does not seem to give an advantage, even on subsets of the benchmarks.
That is, almost no instance solved by APX-T1 or APX-T2 cannot be solved by the
naive approach. This can also be seen in the numbers for the virtual best in Table
4.1, which only solves seven instances more than APX-N.

Furthermore, Table 4.2 shows that the Taylor-based methods actually required
more cells than APX-N to solve the inputs, which contradicts the original motivation
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that a more accurate approximation would produce cells of higher quality for MCSAT.
Accordingly, we suppose that the additional e�ort for computing the Taylor expansion
and the related, more complex resultants does not pay o�. While the linear version
is not too far behind the naive approach, the additional overhead seems to be quite
drastic in the second-order method APX-T2. Possible reasons for this behaviour could
be a rather slow implementation of polynomial operations (e.g. taking the derivative
and evaluating it) used by SMT-RAT or smaller cells due to the additional root of the
quadratic polynomial. However, further investigations will be needed to see whether
these assumptions are correct.

(a) Overall runtime in seconds. Timeouts
are set to a value of 70 seconds and thus
appear on the right and upper borders.

(b) The total number of constructed cells
for each instance. That is, the number of
calls to single cell construction.

(c) The average time needed to construct
a cell for each instance. (time spend in
single cell construction divided by number
of cells)

(d) Maximum degree (in its main vari-
able) of any polynomial in the input or
constructed in the explanation process.

Figure 4.3: Scatter plots comparing LW and APX-T2 on the set of benchmarks where
approximation is used.

The disadvantages of the quadratic Taylor approach also translate to the com-
bination with other backends. We initially hoped that a combination with the vir-
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tual substitution method (VS) could be synergistic, as VS thrives on problems with
quadratic and linear polynomials. But again, VS-APX-T2 solved even fewer instances
than VS-LW.

4.4 Heuristics

During the evaluation of our approach, we tried many di�erent settings for the ap-
proximation criteria, termination criteria and placement of the arti�cial root. To be
precise, we considered the following variations:

� Approximate all bounds induced by a polynomial of degree at least d for each
d ∈ {3,4,5,6,7}.

� Approximate only bounds which would induce a resultant of degree 9 or higher.
That is, check whether there would be a complicated resultant when approxi-
mation was not used.

� Only approximate a polynomial if its degree is higher than the value of a mono-
tone function applied to the number of so far approximated cells.

� Stop using approximation after k cells for k ∈ {10,20,50,100}.

� Do not approximate a cell if it results from a con�ict between constraints which
already lead to k approximated cells, for k ∈ {5,10,20}.

� Place the arti�cial root at a point with a small rational representation.

� Place the arti�cial root at a point with a small rational representation within
a certain interval. This way, one can force the root to be closer to or further
away from the bound.

� Try several candidates for the root and use the one which gives the best esti-
mated cell, as described in Section 3.3.

While we did not test all combinations of these parameters, we still acquired some
insights on their performance. Of all tested versions, the one used for APX-N worked
best and solved the most instances.

Approximating only polynomials with degree greater or equal to six made almost
no di�erence, compared to a threshold of �ve. Setting the value to seven still changed
the results only slightly, but there were some unsolved instances where approximating
more eagerly would have helped. While a threshold lower than �ve led to fewer
solved instances overall, the behaviour di�ered more from our default method. More
precisely, there is a row of cases which only the earlier approximation allowed to solve,
but there are even more cases which it did not solve despite them being e�ciently
solvable without approximation.

When approximating only a �xed number of cells, the experimental results showed
that a threshold between 20 and 50 works well. Importantly, there are instances in
which approximation does not help and it is useful to stop earlier. Of course, the
threshold should depend on the concrete instance given and on other data sets, other
strategies might work better. However, we found that setting a threshold for each
constraint, allowing for more approximations in more complex problems, did not make
a signi�cant di�erence. A possible reason for this could be that the instances in which



4.4. Heuristics 59

approximation was used successfully have a rather simple Boolean structure in which
only a few constraints cause con�icts. Indeed, the average number of disjunctions
in the conjunctive normal form of the input formula is around 350 for the whole
data set, around 150 in the cases where approximation was used and roughly 20 for
the solved cases where approximation was used. A similar pattern emerges for the
number of variables in the Boolean abstraction of the formula. Whether this is a
general property of our approach or a lack in diversity in the benchmark set would
need a more detailed investigation.

Regarding the root placement, the more advanced methods could not outperform
the strategy of simply �nding a rational with small representation. An unexpected
reason for this lies in the MCSAT-implementation of SMT-RAT. When choosing a
new sample, it prefers points with simpler representation, for example integers are
preferred over fractions. If the arti�cial cell bound is very close to the actual bound,
it is less likely that there is a rather simple point in between them and thus, a candidate
which is unrelated to the approximated con�ict might be chosen. This could lead to
many di�erent cells being approximated before one of those cells is actually covered
by approximations, leading to longer runtime.

Although APX-N performed best individually, it is far from being optimal. As can
be seen in Table 4.3, the number of instances solved by any variation is noticeably
higher than the number for APX-N. This also holds true when only varying one
parameter at a time, meaning that each of them has an impact on the number of
solved instances and for each of them, APX-N is not yet optimal. Since the numbers
for the virtual bests of each individual parameter variation are lower than for the
overall virtual best, we assume that the parameters are to some extent orthogonal.
That is, the solver performs better on di�erent sets of instances when varying di�erent
parameters.

APX-N VB-deg VB-apx-crit VB-term-crit VB-root VB-all
solved 9265 9281 9307 9296 9286 9322

Table 4.3: Number of solved instances for APX-N and the virtual bests of all variations
of the degree threshold (VB-deg), all variations of approximation criteria (VB-apx-
crit), all variations of termination criteria (VB-term-crit), the di�erent root placement
strategies (VB-root) and of all tested variations (VB-all). Note that APX-N is taken
into account for each of those virtual bests.
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Chapter 5

Conclusion

5.1 Future Work

Our experimental results not only showed that the approximation approach can im-
prove the SMT-solving process, but also that there is still unused potential, especially
when varying the di�erent parameters and heuristics. Therefore, we do think that
pursuing the idea further is worthwhile and we already see several directions for future
research.

Approximation Criteria

While our main implementation only used approximation in around 800 of the test
instances, we have seen that changing the approximation criteria can increase this
number. More importantly, it also showed that there are more instances for which
our approach would be bene�cial. On the �ip side, the variation of approximation
criteria also led to timeouts on problems that could previously be solved and which
were due to unnecessary approximations. Accordingly, we assume that a clever way to
identify the cases in which approximation is indeed helpful could have a big positive
impact on our method. That is, one needs to �nd a good set of approximation criteria
which are more dynamic than simply approximating all bounds of degree �ve or more.
We already tried the idea of estimating the complexity of the resultants that would be
computed without approximation and making the decision based on this estimation.
Re�ning this idea could be promising, although we did not �nd an estimation and
threshold that led to better results.

Termination Criteria

Similar to the question of whether or not a speci�c bound should be approximated,
we see potential in the strategy for deciding whether a speci�c cell should be approxi-
mated. All our termination criteria rely on the fact that at some point, we simply stop
using approximation and essentially resort to the normal levelwise method. Again,
varying these criteria shows that more instances could be solved when applying the
right strategy to each instance. Sometimes, many approximations are needed to come
to a result, while at other times the approximation is not bene�cial and stopping
earlier would be the correct decision. Recognizing the cells for which an approxima-
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tion is helpful is not an easy task, but �nding an adequate heuristic potentially yields
signi�cant improvements.

Arti�cial Polynomial Construction

Even though the Taylor-based versions of our approach did not meet our expectations,
we do not rule out the possibility that a better approximation of the cell bound could
be advantageous. We suppose that non-linear approximations are only suitable if
one �nds a way to identify and ignore intersections of speci�c root functions. That
is, if we could �nd out which roots of a resultant correspond to the intersections of
the explicitly constructed root of our arti�cial polynomial, then its other roots would
not harm the quality of the resulting cell. Alternatively, it might be interesting to
approximate both bounds at once with a quadratic polynomial, so that it has two
roots, each corresponding to one of the bounds.

To obtain a more accurate cell from linear bounds, one could develop a technique
for using piecewise de�ned functions in the cell description. In particular, this would
allow for linear descriptions of non-convex cells. This idea is illustrated in Figure 5.1
and would probably require some kind of interpolation.

p

q

s

x1

x2

Figure 5.1: Approximation of cell bounds by piecewise linear functions.

However, all methods constructing an arti�cial bound close to the original one
should be developed with regard to the strategies of the respective MCSAT imple-
mentation, because a rather small di�erence between the bounds can lead to numbers
with bigger rational representation and thus more complex calculations.

Other Indexed Root Orderings

We only considered the biggest cell heuristic for choosing an indexed root ordering.
However, our general formulation of the approach works with arbitrary indexed root
orderings and in fact, we can introduce arti�cial polynomials with roots at any point
of the ordering without harming correctness. Therefore, the question arises of what
strategies would be suitable for other orderings. For example, when using the �chain�
heuristic ([NSÁ+22], Def.7.6), the indexed root expressions are ordered according to
their value at the sample and then, only resultants of polynomials in neighbouring
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root expressions are computed. Adding an arti�cial polynomial with a root in between
two neighbours allows to replace their resultant with two simpler ones. Another idea
again modi�es the biggest cell heuristic, but it does not replace all resultants of the
original bounds. Instead, only the more expensive ones are replaced by resultants
with arti�cial bounds and the simpler ones still use the actual bounds. This way,
the cell might be closer to the original one, but still easier to compute. Figure 5.2
illustrates the two ideas.

ξ1 ξ2 ξl si ξu ξ3 ξ4ξ′ ξ′′

xi

(a) Modi�cation of the chain heuristic.

ξ1 ξ2 ξl si ξu ξ3 ξ4ξ′ ξ′′

xi

(b) Modi�cation of the biggest cell heuristic, only replacing some of the resultants.

Figure 5.2: Ideas for introducing arti�cial roots in di�erent indexed root orderings
w.r.t. a sample s. Arti�cial roots and are marked blue. The arcs below indicate the
pairs of root expressions which would originally induce a resultant. The resultants
represented by red arcs are replaced by the ones corresponding to the blue arcs, when
introducing arti�cial roots.

Usage in Incremental Linearisation Approaches

Finally, it would be interesting to see whether our approach can be used advanta-
geously in incremental linearisation approaches, which construct a linear abstraction
of formulas in non-linear real arithmetic, e.g. [CGI+18]. Solutions to the linear ab-
straction can be found more quickly, but not all of them solve the original problem.
Therefore, the abstraction is incrementally re�ned to exclude these false solutions.
Employing single cell construction and approximating all bounds by linear polynomi-
als could yield a novel way to generate lemmas for re�ning the abstraction.

5.2 Summary

In this thesis, we presented a modi�cation of the levelwise single cell construction
method with the aim of reducing its complexity. We have shown how low-degree
polynomials can be introduced at each level of the construction to de�ne arti�cial
cell bounds so that the resultants in the projection step are easier to compute and
have lower degree. As these new bounds reduce the cell's size at the respective level,
our approach can be understood as an underapproximation. However, it does yield
correct results, meaning that the approximated cell still contains a speci�ed point and
leaves the sign of the input polynomials invariant. We proved this correctness result
for a general formulation of our approach, but also gave concrete implementations and
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pointed out what parts of the method leave room for variation. The main motiva-
tion for this thesis was to improve the single cell construction as part of the MCSAT
algorithm for solving the satis�ability problem of non-linear real arithmetic. In this
context, the underapproximation becomes relevant since smaller cells will exclude less
of the search space for potential models and in the extreme case, underapproximating
can lead to non-termination. We tackled this problem by providing measures that
can be employed to guarantee termination. Finally, we implemented several versions
of the modi�ed single cell construction in the SMT-RAT toolbox and evaluated their
performance in MCSAT by examining experimental results. They showed that our
approach has the intended e�ect of speeding up cell construction and thereby allow-
ing to solve more satis�ability problems quickly, though only on a fraction of the
used test cases. Interestingly, the more complex implementations using the Taylor
expansion were outperformed by the so-called naive version, which might deserve a
less derogatory name, after all.
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