
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

VERIFYING

AI-CONTROLLED HYBRID SYSTEMS

Ruoran Gabriela Jiang

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
László Antal Aachen, 29.03.2023

Abstract

In recent years, neural networks have been increasingly utilized in safety-critical
and mission-critical systems such as autonomous cars and airborne collision
avoidance systems. However, verifying the safety of these systems remains a
significant challenge. In this work, we focus on neural network control systems
(NNCS), where a neural network interacts with a continuous plant, modeled
by a simplified hybrid automaton, and aim to make statements about the sys-
tem’s safety by examining the transient behavior of generated trajectories. To
achieve this, we employ reachability analysis, a conservative approach that over-
approximates the set of reachable states. Furthermore, we extend the reacha-
bility analysis definition of neural networks to incorporate the staircase func-
tion for classification and introduce an iterative approach to minimize over-
approximation errors. We demonstrate the effectiveness of our approach on
multiple benchmarks and various neural network controllers, reporting quanti-
tative results from experiments. Overall, our work provides a comprehensive
and computationally efficient algorithm that enables the reachability analysis of
NNCS and facilitates the design of safe neural network controllers.

Keywords— Neural network control systems, safety verification, reacha-
bility analysis, flowpipe construction, over-approximative computation, exact
computation

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche ge-
kennzeichnet.

Ruoran Gabriela Jiang
Aachen, den 29. März 2023

Acknowledgements
I would like to express my deepest gratitude to my master thesis supervisor, László
Antal, for his tireless commitment, guidance and unwavering support throughout the
entire process of working on this thesis. His profound understanding of the subject and
his willingness to share his knowledge through insightful discussions and explanations
have been invaluable in helping me shape my ideas and arguments. I am also grateful
for his constructive feedback that helped me to improve the quality of this thesis.

Furthermore, I would like to extend my appreciation to my professor, Professor
Ábrahám, who provided me with helpful feedback that steered the thesis in the right
direction when I was not sure where I was heading. Her expertise has been instru-
mental in shaping my approach and methodology.

vi

Contents

Notations 9

Basic Definitions 11

1 Introduction 13
1.1 Related Work . 14
1.2 Thesis Outline . 15

2 Preliminaries 17
2.1 Hybrid Systems . 17

2.1.1 Hybrid Automata . 18
2.1.2 Verification of Hybrid Systems 20

2.2 Neural Networks . 24
2.2.1 Reachability Analysis of Neural Networks 25
2.2.2 Neural Network Control System Verification 30

3 Reachability Analysis for Neural Network Controlled Hybrid Sys-
tems 35
3.1 Conceptualization . 35

3.1.1 Invocation of Neural Network 36
3.1.2 Modeling the Hybrid System 37
3.1.3 Modeling the Neural Network Controller 38
3.1.4 Designing the Neural Network 39

3.2 NNCS Analysis . 41
3.2.1 Input Star Definition . 41
3.2.2 Neural Network Reachability Analysis 42
3.2.3 Flowpipe Construction Using Control Input 42
3.2.4 Algorithm Implementation . 44

4 Evaluation 47
4.1 Benchmarks . 47

4.1.1 Thermostat . 47
4.1.2 Rod Reactor . 48

4.2 Experimental Results . 52
4.2.1 Run-time . 53
4.2.2 Accuracy . 54
4.2.3 Complexity . 55

viii Contents

5 Conclusion 59
5.1 Discussion . 59
5.2 Future work . 60

Bibliography 61

Appendix 64

A Supplementary Proofs 65

B Convex Polygon Area Computation 67

Notations

Throughout this work, we will use the following standard notational conventions.

Notation (Set operators). For sets A,B we define their operators as follows

• Set union: A ∪B := {x | x ∈ A ∨ x ∈ B}

• Set intersection: A ∩B := {x | x ∈ A ∧ x ∈ B}

• Set minus: A \B := {x | x ∈ A ∧ x ̸∈ B}

• Cross product: A×B := {(a,b) | a ∈ A ∧ b ∈ B}
Notation (Powerset). For a set A, we denote its powerset by 2A = {B | B ⊆ A}.
Notation (Number sets). We denote by

• N the set of natural numbers including 0,

• N>0 = N \ {0} the set of positive natural numbers,

• Z the set of integers,

• Q the set of rational numbers,

• R the set of real numbers.

Notation (d-dimensional space of a set). Let A be a set. Then its d-dimensional
space is denoted by Ad = A× · · · ×A︸ ︷︷ ︸

d times

. If not stated otherwise, we assume d ∈ N>0.

Notation (Intervals). For S ∈ {N,Z,Q,R}, and a,b ∈ S, we follow the usual notation
where

• [a,b] := {s ∈ S | a ≤ s ≤ b},

• [a,b) := {s ∈ S | a ≤ s < b},

• (a,b] := {s ∈ S | a < s ≤ b},

• (a,b) := {s ∈ S | a < s < b}
Notation (Set of intervals). We denote the set of all real-valued intervals by I.
Notation (Random sample). For a random variable X and a probability distribution
f , we write X ∼ f to denote the random variable is being randomly sampled from f .

Notation (Uniform distribution). By U(a,b) we denote the uniform distribution over
[a,b] ⊆ R.

Notation (Tuples). Let n ∈ N>0 and let Si be a set for all i ∈ {1, . . . , n}. Then
s ∈ S := S1 × · · · × Sn is a tuple. We write s = (s1, . . . , sn).

10 Contents

Basic Definitions

Before diving into the details of the thesis, it is necessary to establish a common
understanding of key terms and concepts. In this chapter, we provide a set of general
definitions that are used throughout this work.

Definition 0.0.1 (Vector). A d-dimensional vector x ∈ Rd, d ∈ N>0 is an ordered
sequence of d real values x1, . . . , xd ∈ R. A column vector is ordered vertically

x =

 x1

...
xd


whereas a row vector is oriented horizontally and can be written as a tuple (x1, . . . , xd).
Transposition (x1, . . . , xd)

T transforms a row vector into a column vector.

Definition 0.0.2 (Standard basis vector). Let d be the dimension of a real vector
space, then we denote its i-th standard basis vector as ei ∈ Rd with ei = (0, . . . , 0, 1, 0, . . . , 0)T .

Definition 0.0.3 (Matrix). A (real-valued) matrix A of dimension n ×m is a col-
lection of n · m real numbers arranged in a rectangular array with n rows and m
columns:

A =

 a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 .

The set of all (real-valued) matrices of dimension n ×m is denoted by Rn×m. The
matrix entry at row i and column j in matrix A is referenced by ai,j, while we use
ai,− to reference the i-th row and consequently a−,jto refer to the j-th column of A.

Definition 0.0.4 (Convex sets). A set S is convex if the line segment between any
two points in S lies in S, i.e., for all s1, s2 ∈ S, and for all α ∈ [0,1],

αs1 + (1− α)s2 ∈ S.

We extend this definition to an arbitrary number n of points such that a set S is convex
iff any convex combination of points α1s1 + · · · + αnsn, for points s1, s2, . . . , sn ∈ S
and α1, . . . , αn ≥ 0 with

∑n
i=1 αi = 1, is also in S.

Definition 0.0.5 (Convex hull). The convex hull of a set S is the set of all convex
combinations of points in S:

conv(S) =

{
α1s1 + · · ·+ αnsn | si ∈ S, αi ≥ 0, i = 1, . . . , n,

n∑
i=1

αi = 1

}
.

12 Contents

Definition 0.0.6 (Minkowski sum). The Minkowski sum A⊕B of two sets A,B ⊆ Rd

is defined as the set
{a+ b | a ∈ A ∧ b ∈ B}.

Definition 0.0.7 (Affine transformation). For a d-dimensional set S, its affine trans-
formation A · S + b, A ∈ Rd×d, b ∈ Rd is defined as the set

{A · s+ b | s ∈ S}.

Definition 0.0.8 (Emptiness checking). A set S is empty if it holds no elements,
that is

∃S.∀y.(¬(y ∈ S)).

Definition 0.0.9 (Halfspace). A d-dimensional halfspace is a convex set

H = {x ∈ Rd | cT · x ≤ z}

for some c ∈ Rd, called the normal of the halfspace, and an offset z ∈ R.

Definition 0.0.10 (Halfspace intersection). Let H ⊆ Rd be a halfspace and A ⊆ Rd

some set. Then the halfspace intersection · ∩ h is defined as A ∩H.

Definition 0.0.11 (Hausdorff Distance). The Hausdorff distance between two sets
A,B ⊆ Rd is defined as

dA,B = max

{
sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(a,b)

}
for some distance metric d(·).

Definition 0.0.12 (Box). A set B ⊆ Rd is a box if there exist intervals I1, . . . , Id ⊆
Id such that

B = I1 × · · · × Id.

Definition 0.0.13 (Convex polyhedron). A set P ⊆ Rd is a convex polyhedron if
there are n ∈ N and ci ∈ Rd, si ∈ R, i = 1, . . . , n such that

P =

n⋂
i=1

hi where hi =
{
x ∈ Rd | cix ≤ si

}
.

A convex polyhedron can thus be expressed as an intersection with finitely many half-
spaces.

Chapter 1

Introduction

In recent years, neural networks have been introduced to various new domains due
to their promising potential, including safety-critical or mission-critical systems such
as autonomous cars [WL19] or airborne collision avoidance systems [JLB+16]. As
such, data-driven control systems, particularly neural-network-based controllers, have
attracted a lot of attention. However, verifying the safety of these systems is a crucial
yet challenging problem [KBD+17].

In this work, we consider controlled dynamical systems where the continuous
plant model is given as a set of uniquely labeled linear ordinary differential equa-
tions (ODEs), and the controller is implemented by a neural network interacting with
the plant periodically. Such a system is referred to as a neural network control system
(NNCS). For this, we are interested in making statements about the safety of such a
system by examining the transient behavior of all the generated trajectories. Verifying
these questions for hybrid systems can be achieved using the method of reachability
analysis that aims to determine the states a system can potentially reach. However,
since the exact computation of the reachable states is generally infeasible [HKPV98],
many approaches focus on a more conservative approach that over-approximates this
reachable set, such as by flowpipe construction [FLGD+11]. The result of the analysis
thus allows for the following assertion. If the over-approximation does not intersect
the set of pre-defined unsafe states, then the actual reachable set also does not in-
tersect them, and the system is thus considered safe. Note that this implication is
solely valid in one direction, rendering the method sound but incomplete. On the
other hand, the non-linearity of neural network controllers poses a significant chal-
lenge, and many approaches are restricted to specific types of neural networks. In
this thesis, we apply the existing work by Tran et al. [Tra20] to compute the exact
reachable states for the controller with ReLU activation.

The objective of this work is to develop an algorithm that facilitates the reachabi-
lity analysis of neural network control systems by utilizing flowpipe construction for
the plant and exact star-based reachability analysis for the controller. The challenge is
to define the interaction between plant and controller and integrate both components
into a comprehensive and computationally efficient analysis that allows for iterative
over-approximation with a minimal error of the reachable states. To accomplish this
task, we introduce the concept of an input star set for the system’s state variables to
be used in neural network reachability analysis and controller design. Moreover, we
extend the reachability analysis definition of neural networks previously specified for

14 Introduction

selected piece-wise linear activation functions, such as ReLU, leaky ReLU, and satlin,
and also incorporate the staircase function for classification. Finally, to minimize
over-approximation errors, we employ an iterative approach that transforms the orig-
inal initial set rather than the entire flowpipe segment at a specific time point to avoid
strong wrapping effects. We demonstrate the effectiveness of our approach on mul-
tiple benchmarks, showing its capability in handling dynamical systems with various
neural-network controllers and reporting quantitative results from experiments.

1.1 Related Work

In [XTRJ18], the original polyhedron-based approach for ReLU feedforward neural
networks was expanded to include the safety verification of neural network controlled
systems. Specifically, this approach was used to verify the safety of a ReLU network
controller that controls a discrete linear switching plant model. The method calculates
the polyhedron-based reachable set of the neural network controller at every control
step. It uses the convex hull of all polyhedra in the reachable set as the control
input to the plant model. The plant’s reachable set is then computed based on this
control input. This approach works well for neural network controlled systems that
have a small number of neurons and low-dimensional plant models. However, using the
convex hull of all polyhedra in the reachable set as the control input to the plant model
results in a conservative estimate of the system’s safety due to over-approximation
error. This over-approximation error can accumulate quickly over time when dealing
with a large set of initial states.

More recently, a new simulation-guided approach for safety verification of a neural
network controlled system was proposed in [XTYJ20]. The novel idea of this approach
is the combination of interval arithmetic and simulation-guided input set partitioning
to estimate the neural network’s output ranges, which are then used as inputs for the
plant model’s reachability analysis. The experiments have shown that this approach
can efficiently verify the safety of a neural network-based adaptive cruise control
system. Moreover, this approach is much less computationally expensive than the
maximum sensitivity approach presented in [XTJ18].

Verisig [IWA+19] introduces a novel method to convert a neural network controller
with sigmoid activation function (or any other continuously differential activation
function) into a nonlinear hybrid automaton by exploiting the fact that the sigmoid
can be expressed as a solution to a quadratic differential equation. The resultant
hybrid automaton comprises L + 1 modes and 2N states for a neural network with
L layers and N neurons per layer. This hybrid system representation of the neural
network controller is then composed in parallel with the plant model to create a single
hybrid system representation of the neural network control system. Safety verification
of the system properties is performed using hybrid systems verification tools such
as Flow* [CÁS13]. The Verisig approach has been successfully applied in verifying
the safety properties of the mountain car benchmark and DNN-based quadcopter
application. To evaluate the scalability of their approach, the authors compared the
reachable set computation times between the Verisig and Flow* approach and the
prior mixed-integer linear programming (MILP) approach for DNNs of increasing
sizes. The results showed that the network size increases linearly with the Verisig
and Flow* reachability time. In contrast, the MILP approach showed an exponential
increase in the reachability time, as reported in Figure 6 of the publication [IWA+19].

Thesis Outline 15

Huang et al. [HFL+19] propose a new approach called ReachNN for reachability
analysis of NNCS with general neural-network controllers. The approach constructs
a polynomial approximation based on Bernstein polynomials. It estimates the ap-
proximation error bound using two techniques, an a priori theoretical approach and
an a posteriori approach based on adaptive sampling. The approach can approximate
most neural networks to arbitrary precision and handle dynamic systems with vari-
ous neural-network controllers, including heterogeneous networks with multiple types
of activation functions. The approach achieves comparable or better approximation
performance but with longer computation time than state-of-the-art approaches.

ReachNN* [FHC+20] extends the ReachNN tool and employs Bernstein polyno-
mial approximation and knowledge distillation (KD) to retrain an NN controller with
a smaller Lipschitz constant while preserving the original network’s performance.
The extended method accelerates the sampling-based error analysis in ReachNN us-
ing GPU-based parallel computing to uniformly sample the input space and evaluate
the neural network controller and polynomial approximation. Experimental results
demonstrate ReachNN*’s efficiency improvement over the previous prototype by 7x
to 422x on a set of benchmarks.

1.2 Thesis Outline
In this thesis, we begin by presenting the fundamental concepts and definitions in
Chapter 2. Specifically, in Section 2.1.1, we discuss the formalization of hybrid systems
as hybrid automata, and in Section 2.1.2, we cover the established safety verification
approach using flowpipe construction. We further introduce artificial neural networks
in Section 2.2 and discuss a reachability analysis approach for feedforward neural
networks in Section 2.2.1, which constitutes the core concept of neural network control
system verification in Section 2.2.2.

Having established the foundations for our work, we proceed by presenting our
algorithm in Chapter 3. To this end, we analyze the possible design choices for
the final approach. This includes considering the invocation frequency of the neural
network in Section 3.1.1, modeling the hybrid system in Section 3.1.2, modeling the
controller in Section 3.1.3, and designing the neural network in Section 3.1.4. Finally,
we present the complete analysis of our algorithm in Section 3.2.

To assess the algorithm’s effectiveness, in Chapter 4, we evaluate the approach on
two benchmarks from related literature in Section 4.1 and conduct experiments to
quantify the run-time, accuracy, and complexity of the approach in Section 4.2.

Finally, we conclude this work in Chapter 5 by discussing the work’s contributions
and limitations and by suggesting future directions of work.

16 Introduction

Chapter 2

Preliminaries

This chapter begins with a formal introduction of hybrid systems and their associated
safety verification problem, and further covers the topic of neural networks and their
safety analysis. From there, the preliminary work builds upon these concepts to
provide a formal definition of neural network control systems and the methods for
verifying their safety.

2.1 Hybrid Systems

Hybrid systems are real-time systems combining both discrete and dynamic compo-
nents into a unified system exhibiting a mixed discrete-continuous behavior [Sch19].
Exemplary settings in which hybrid behavior arises are physical processes that are
inherently hybrid by nature, such as the canonical example of a ball bouncing off the
ground from an initial altitude [ACH+95], as well as digital controllers coupled to
a continuous environment. While the controller’s state is governed by the discrete
switching of its configurations, it interacts with the environment’s real-valued and
continuously evolving variables. For instance, in aviation systems, the autopilot em-
bodies the discrete controller and acts on quantities such as time, temperature, speed,
etc., measured by means of sensors.

Example 2.1.1 (Thermostat). Consider a thermostat which keeps the temperature
x in a room between 17◦C and 23◦C by turning the heater on and off according to the
temperature it measures. When the heater is turned on (or off), the temperature in
the room increases (or falls) according to the differential equation ẋ = K(ρ − x) (or
ẋ = −Kx respectively), where t is the time, K a constant determined by the room
and ρ a constant determined by the power of the heater.

Due to hybrid systems often being embedded in the context of safety-critical appli-
cations, such as in autonomous driving or aviation systems, guaranteeing and validat-
ing that the hybrid behavior complies with the design specifications of the system is
of utmost importance. To verify this safety property, researchers have been seeking to
answer an equivalent question: whether a potentially unsafe state (or configuration)
is reachable from a set of initial states. This problem is known as the reachability
problem for hybrid systems [LTS99]. Solving the reachability problem by formally
analyzing a system’s behavior thus provides a formal guarantee of its safety.

18 Preliminaries

2.1.1 Hybrid Automata

Hybrid automata [Hen00] formally model systems exhibiting both continuous and dis-
crete dynamics and extend in some respect discrete transition systems. The following
definitions are based on notations presented in [ACH+95, Á21, Sch19].

Definition 2.1.1 (Syntax of hybrid automata). A d-dimensional hybrid automaton
H is described by a tuple (Loc, Var, Con, Lab, Edge, Act, Inv, Init) where

• Loc is a finite set of locations or control modes,

• Var = {x0, . . . , xd−1} is a finite ordered set of real-valued variables,

• Con : Loc→ 2Var assigns a set of controlled variables to each location,

• Lab is a finite set of labels including the stutter label τ ∈ Lab,

• Edge ⊆ Loc×Lab× 2V
2 ×Loc is a finite set of edges (or transitions) including

a τ -transition (ℓ, τ, Id, ℓ) for each location ℓ ∈ Loc with Id = {(ν, ν′) ∈ V 2
Var |

∀x ∈ Con(ℓ).ν′(x) = ν(x)}, and where all edges with label τ are τ -transitions,

• Act is a function assigning a set of activities or flows f : R≥0 → V to each
location which are time-invariant meaning that f ∈ Act(ℓ) implies (f + t) ∈
Act(ℓ) where (f + t)(t′) = f(t+ t′) for all t′ ∈ R≥0,

• Inv is a function assigning an invariant Inv(ℓ) ⊆ V to each location ℓ ∈ Loc,
and

• Init ⊆ Σ is a set of initial states.

where V denotes the set of all valuations ν : Var → R, and Σ = Loc × V the state
space of H.

Definition 2.1.2 (Operational semantics of hybrid automata). The operational se-
mantics of a hybrid automaton H = (Loc, Var, Con, Lab, Edge, Act, Inv, Init) is
given by two rules: one for discrete instantaneous steps and one for continuous time
steps.

1. Discrete step semantics

(ℓ, a, (ν, ν′),ℓ′) ∈ Edge ν′ ⊆ Inv (ℓ′)
(ℓ, ν)

a→ (ℓ′, ν′)
Rulediscrete

2. Time step semantics

f ∈ Act(ℓ) f(0) = ν f(t) = ν′ t ≥ 0 f([0, t]) ⊆ Inv(ℓ)

(ℓ, ν)
t→ (ℓ, ν′)

Ruletime

An execution step → =
a→ ∪ t→ of H is either a discrete or a time step, and we give

its transitive closure by →∗.

Hybrid Systems 19

For a transition (ℓ, a, µ,ℓ′) ∈ Edge, the transition relation µ ∈ V ×V thus specifies
that a discrete step can be taken iff (ν, ν′) ∈ µ. The corresponding guard {ν ∈ V |
∃ν′ ∈ V. (ν, ν′) ∈ µ}, often modeled by first-order logic formulae, enables a transition
if it evaluates to true. Hence the operational semantics of hybrid automata induces a
state transition system that can be visualized graphically. For better readability, the
trivial τ -transitions can be omitted.

Example 2.1.2 (Thermostat). Assume the thermostat from Example 2.1.1. The
corresponding hybrid automaton, omitting τ -transitions, is depicted in Figure 2.1.

The system has two locations ℓon and ℓoff: in location ℓon, the heater is turned on,
whereas in location ℓoff, the heater is off. The transition relations are specified by the
guards; control thus may change locations from ℓon to ℓoff or vice versa, whenever the
temperature is above 22◦C or below 18◦C, respectively. The flows are represented by
the differential equations and the location invariants by logical formulae. Initially, the
heater is on and the temperature is 20◦C. Thus formally, the automaton is defined as

• Loc = {ℓon, ℓoff},

• Var = {x},

• Con (ℓon) = Con (ℓoff) = {x}

• Lab = {τ, a}

• Edge =

{
(
ℓon, a,

{
(ν, ν′) ∈ V 2 | ν(x) ≥ 22 ∧ ν′(x) = ν(x)

}
, ℓoff

)
,(

ℓoff, a,
{
(ν, ν′) ∈ V 2 | ν(x) ≤ 18 ∧ ν′(x) = ν(x)

}
, ℓon

)
,(

ℓon, τ,
{
(ν, ν′) ∈ V 2 | ν = ν′

}
, ℓon

)
,(

ℓoff, τ,
{
(ν, ν′) ∈ V 2 | ν = ν′

}
, ℓoff

)}
• Act (ℓon) =

{
f : R≥0 → V | ∀t ∈ R≥0.f(t)(x) = 20e−Kt + ρ

(
1− e−Kt

)}
,

Act (ℓoff) =
{
f : R≥0 → V | ∀t ∈ R≥0.f(t)(x) = 20e−Kt

}
,

• Inv (ℓon) = {ν ∈ V | ν(x) ≤ 23},
Inv (ℓoff) = {ν ∈ V | ν(x) ≥ 17},

• Init = {(ℓon, ν) ∈ Σ | ν(x) = 20}.

We note that the synchronization label a would only play a role in parallel compo-
sition of this hybrid automaton with another one. Considered in isolation, the label
a can be omitted for simplicity.

Definition 2.1.3 (Path). A path (or run or execution) π of a hybrid automaton H
is a (possibly infinite) sequence

σ0 → σ1 → σ2 . . .

of states σi ∈ Σ for i ≥ 0 starting in an initial state σ0 = (ℓ0, ν0) with (ℓ0, ν0) ∈ Init
and ν0 ∈ Inv(ℓ0). A state σ of H is reachable iff there is a run of H starting in an
initial state of H and leading to σ.

20 Preliminaries

ℓon

ẋ = K(ρ− x)
x ≤ 23

x = 20

ℓoff

ẋ = −Kx
x ≥ 17

a : x ≥ 22

a : x ≤ 18

Figure 2.1: The hybrid automaton model of the thermostat.

Hybrid automata can be categorized into subclasses of varying degrees of ex-
pressivity. We provide a brief overview over the most popular classes by increasing
expressivity.

• Timed automata introduce time as the only continuous component. The vari-
ables are clocks continuously evolving at a constant rate, i.e. the flow is re-
stricted to the derivative ẋ = 1. Guards and invariants are conjunctions of
constraints comparing variables to constants, edges can only reset variables to
0.

• Rectangular automata extend the flows of timed automata to rectangular sets
such that ẋ ∈ [a,b] and variables x ∈ Var can be reset on jumps with x ∈ [a,b]
where a,b ∈ N.

• Linear hybrid automata I (LHA I) further allow for linear expressions over the
model variables in the invariants and guards, i.e. constraints are of the form
Ax ∼ b with ∼ ∈ {<,≤,=,≥, >} and resets may use affine mappings Ax + b
where A ∈ Rd×d, b ∈ Rd.

• Linear hybrid automata II (LHA II) additionally support linear expressions in
the flows. Dynamics can now be modeled by systems of linear ODEs.

Moving forward, if not stated otherwise, we assume the model class of LHA II.

2.1.2 Verification of Hybrid Systems
As previously mentioned, formal safety verification of hybrid systems can be reduced
to computing the set of reachable states from a set of initial states. In this respect, a
system is considered safe if the intersection of a set S̄ of pre-specified unsafe (or bad)
states with the set R(I) of reachable states from an input set I is empty.

Definition 2.1.4 (Reachable Set). Let I ⊆ Σ be a set of states, then the reachable
set (I 7→∗) ⊆ Σ of I is the set R of all states reachable from states in I, i.e.

R(I) = {σ ∈ Σ | ∃σ′ ∈ I.σ′ →∗ σ}

Definition 2.1.5 (Forward Reachability Analysis). Let H be a hybrid system, I ⊆ Σ
the initial state set, S̄ ⊆ Σ the set of bad states. Then H is safe iff R(I) ∩ S̄ = ∅.

Hybrid Systems 21

Algorithm 1 General reachability algorithm for hybrid systems [Á21]
Input: Set of initial states Init ⊆ Σ of a hybrid system model H
Output: Set of reachable states R

1: R ← InitH;
2: Rnew ← R;
3: while Rnew ̸= ∅ ∧ ¬termination_cond do
4: let stateset ∈ Rnew; ▷ Pick unprocessed state set
5: Rnew ← Rnew\{stateset};
6: R′ ← computeFlowPipe(stateset); ▷ Get set of state sets covering flowpipe
7: computeJumpSuccessors(R′); ▷ Add jump successors to R,Rnew

8: end while
9: return R

Since the reachability problem for general hybrid automata is undecidable [HKPV98],
many approaches rely on conservative approximations, i.e. over-approximating the
reachable state set with R ⊆ R′. However, results only provide conclusive answers in
the case no bad states are reachable.

From among the various reachability analysis techniques, we focus on flowpipe-
construction-based approaches that assume a time horizon within which the set of
trajectories (flowpipes) of a given system is estimated. The general algorithm for
flowpipe-based reachability analysis is presented in Algorithm 1 and is borrowed from
[Á21, SÁMK17] where detailed explanations can be found. The rough idea is to
expand the set of initial states by the successor iteratively states reachable within a
single flow and a single jump (Line 6). The crucial step of the over-approximation
lies in computing the flowpipes to obtain the time-successors for an initial set within
a time horizon T by equally discretising T into δ-sized intervals [i · δ, (i + 1) · δ],
i = 0, . . . , T − 1. Hence in the following, we introduce the construction of flowpipes
for autonomous linear hybrid systems specified by linear hybrid automata.

Flowpipe Construction

Given an LHA IIH, the flow in each location is a system of linear differential equations

ẋ(t) = Ax(t) (2.1)

over d-dimensional variables x ∈ Var where A ∈ Rd×d is the flow matrix at time point
t. In a non-autonomous system, the dynamics are extended by a time-dependent func-
tion u(t) representing external inputs influencing the system evolution, thus resulting
in dynamics of the form

ẋ(t) = Ax(t) +Bu(t) (2.2)

with B ∈ Rd×d. Usually, it is assumed that u(t) ∈ Rd×1 is from a bounded domain U .
Solving Equation 2.1 with

x(t) = etAx(0) (2.3)

leads to the state at time t that is reachable from the initial state x(0) at time point
t = 0 by following the flow specified by A. Observe how the factor etA depends on
the current location ℓ for which time successors need to be computed and the time t.
Equation 2.3 can directly be extended to the set of variable valuations N such that

Nt = etAN0. (2.4)

22 Preliminaries

While Equation 2.4 allows computing the set of reachable states at specific time points
t, it is not yet equipped to make statements about the set of reachable states over a
time interval.

To overcome this issue, methods that over-approximate the error α between an
approximation Ω of the set of reachable states for the time interval [0, δ] and the
actual set of reachable states

R[0,δ] =
{
(ℓ, ν) | ν = etAx0, t ∈ [0, δ], x0 ∈ N0

}
have been proposed.

Girard et al. [Gir05] propose to over-approximate the error α by approximating
the Hausdorff distance (see Definition 0.0.11) between Ω′ = Conv(N0 ∩Nδ) and the
actual reachable set of states R[0,δ].

For an initial state x ∈ N0, and the state r = eδAx that is reached from x at time
point δ, we consider their connecting line segment{

sx(t) = x+
t

δ
(r − x) | t ∈ [0, δ]

}
.

The convex hull of N0 and Nδ is then the union of all line segments sx(t) for all
x ∈ N0. From there, the error between a line segment and the actual trajectory
ζx(t) = etAx is evaluated as

∥ζx(t)− sx(t)∥ =
∥∥∥∥etAx− x− t

δ

(
eδA − I

)
x

∥∥∥∥ .
Using Taylor’s theorem of the second degree, this error is approximated such that∥∥∥∥etAx− x− t

δ

(
eδA − I

)
x

∥∥∥∥ ≤ (
eδ∥A∥ − 1− δ∥A∥

)
∥x∥︸ ︷︷ ︸

α

.

This upper bound α on the error allows us to safely over-approximate the set of
reachable states R[0,δ] for the time interval [0,δ] by bloating the convex hull with a
ball Bα of radius α such that

Ω0 = conv(X0 ∪ eδAX0)⊕ Bα

where the operator ⊕ denotes the Minkwoski-sum (Definition 0.0.6). This approach
results in a uniform bloating. In later works, non-uniform bloating [LG09] stating
Ω0 = conv(X0 ∪ (eδAX0 ⊕ B(α′)) has been proposed that creates smoother flowpipes
and smaller over-approximation than uniform bloating.

From the first flowpipe segment that over-approximates the trajectory in the time
[0, δ] we can compute the further segments Ωi using the same time step size δ and
thereby equally discretizing the time horizon T . For an autonomous hybrid system,
we obtain a sequence of segments Ωi from the recurrence relation

Ωi+1 = eδAΩi (2.5)

for a location ℓ with flow matrix A. By construction, repeated application of eδA

produces a sequence of segments that safely overapproximates the interval [iδ, (i+1)δ].
For non-autonomous hybrid systems, an additional bloating step is needed in each
iteration. We refer to [LG09] for a detailed description.

Hybrid Systems 23

Figure 2.2: Uniform bloating Figure 2.3: Improved bloating

Figure 2.4: Construction of the first segment of a flowpipe, reproduced from [Á21].

State Set Representations

Flowpipe-construction-based reachability analysis as presented in Algorithm 1 calls
for an efficient state set representation (datatype) during computation for perform-
ing set operations (union, intersection, linear transformation, Minkowski sum, etc.),
and touches on the general problem of trading off between computational complexity
and accuracy. On that account, a plethora of representations has been introduced,
mainly divided into geometric representations (e.g., boxes, oriented rectangular hulls,
convex polyhedra, template polyhedra, orthogonal polyhedra, zonotopes, ellipsoids)
or symbolic representations (e.g., support functions or Taylor models). In particular,
as this thesis works extensively with convex polytopes, we refer to Definition 0.0.13.

Further assuming closedness leads us to convex polytopes that have two widely
used representations (see Figure 2.5). An H-representation (halfspace representation)
defines a polytope by its facets and is given by a pair (C,s) with a matrix C ∈ Rn×d,
a vector s ∈ Rn such that P =

⋂n
i=1{x | Ci,−x ≤ si}, i.e. each row Ci,− of C is the

normal vector and si the offset to the i-th facet of the polytope. A V-representation
(vertex representation) stores a polytope P by its vertices and is given by a set
V of d-dimensional points such that its convex hull (Definition 0.0.5) specifies the
polytope, i.e. P = conv(V). The underlying polytope representation determines the
computational effort for different set operations.

Example 2.1.3 (H-polytope representation). Assume a 2-dimensional convex poly-
tope P, i.e. a polygon, as depicted in Figure 2.5. Then its H-representation (Fig-
ure 2.5a) is given by (C, s) where

C =


0 1
5 −2
−1 −4
−4 −1

 , s =


7
26
−14
−11

 .

We can equivalently use the V-polytope representation to denote the exact same set.

Example 2.1.4 (V-polytope representation). Suppose the same convex polytope as in
Example 2.1.3. Then for the V-representation (Figure 2.5b), we obtain P = conv(V)
where

V = {(1,7), (8,7), (2,3), (6,2)}.

Given that our work heavily uses the state representation of boxes, it is necessary
to separately consider this particular class of convex polytopes. Boxes, defined as a
sequence (I1, . . . , Id) of intervals, are considered one of the simplest and most efficient

24 Preliminaries

(a) H-representation (b) V-representation

Figure 2.5: Example of convex polytope representations for d = 2.

state set representations for reachability analysis of hybrid systems [Sch19] (refer
to Definition 0.0.12). Nonetheless, it is important to acknowledge that their use can
often result in considerable over-approximations, particularly if the closure of state set
representations for all set operations is required, as is the case in HyPro. When boxes
are used to compute set operations, the result of each operation is approximated by its
bounding box, which can introduce additional over-approximation. These cumulative
errors are commonly referred to as the wrapping effect [LG09]. Although some of
these effects can be alleviated by using a smaller step size δ, others caused by specific
linear affine transformations cannot be mitigated. From Figure 2.6a, we see that
B1 = Box(conv(N0 ∪ N ′

0 ∪ N ′′
0) ⊕ Bα) has a significantly larger error than B2 =

Box(conv(N0 ∪N ′
0)⊕Bα1

)∪Box(conv(N ′
0 ∪N ′′

0)⊕Bα2
) with the intermediate step.

However, some transformations such as shearing or rotations inherently introduce
large errors over the entire time horizon independent of the step size. We visualize
the latter using the transformation by the matrix A in Figure 2.6b.

In approximation problems, constructing flowpipes involves a balance between
accuracy and time complexity. The number of flowpipes constructed grows exponen-
tially with each jump, which presents a significant computational burden. To reduce
this cost, one can over-approximate several sets with a single set, although this comes
at the cost of precision.

Clustering is one method used to achieve such over-approximation. In this method,
sets are grouped into clusters and each group is over-approximated by a single set.
When all considered sets are aggregated into a single group and thus over-approximated
by a single set, it is referred to as aggregation. Figure 2.7 provides a visual represen-
tation of this process.

2.2 Neural Networks

Alongside the increasingly widespread implementations of neural networks in safety-
critical applications, for instance in autonomous cyber-physical systems (CPS) such as
self-driving cars, emerges a need for methods proving the safety of AI systems. How-
ever, due to the complex and intransparent prediction processes of neural networks,
verifying their safety requires dedicated formal techniques different from those for or-
dinary hybrid systems. The difficulty in proving properties about neural networks is

Neural Networks 25

(a) Step-size dependent (b) Inherent over-approximation errors

Figure 2.6: Wrapping effects in the box representation.

caused by the presence of non-linear characteristics, rendering the problem non-convex
such that verifying simple properties is already NP-complete [KBD+17]. Slight per-
turbances in the input can already make their behavior unpredictable [SZS+14].

The objective of this section is to present a safety verification algorithm for neural
network control systems (NNCS) which in the general sense is a plant being regulated
by a neural network controller where both components interact in a cyclic manner.
We assume the controller to be a fully-connected feedforward neural network (FNN),
the simplest class of neural networks, restricted to Rectified Linear Unit (ReLU)
activation layers, and the plant dynamics to be modeled by a hybrid automaton. An
illustration of a general NNCS is depicted in Figure 2.9 which we elaborate on in
Section 2.2.2. This section is guided by [Tra20].

Taking a step back, we need to first analyze reachability in neural networks before
we can establish a method for computing reachable states in NNCS for safety verifi-
cation. Thus foremost, we briefly introduce FNNs which are composed of a number
of interconnected neurons divided into layers. Each neuron responds to the weighted
inputs it receives from the neurons of the previous layer, processes them and passes
a computed output to the next layer. The action of a neuron is specified by its
activation function, such that the output of the i-th neuron is given as

yi = ϕ
(∑n

j=1
wijxj + bi

)
(2.6)

where xj is the j-th input neuron, wij the weight from the j-th output, bi is the bias,
and ϕ(·) is the (non-linear) activation function. In this thesis, ϕ(x) = ReLU(x) =
max(x,0). It is worth noting that the methods introduced in the following can be
extended to support any other kind of piece-wise linear activation function.

2.2.1 Reachability Analysis of Neural Networks
Following the same rationale as for general hybrid systems (refer Definition 2.1.5),
safety verification of NNCS can be computed by validating that no bad states can be
reached from an initial input set. For this, a notion of reachability in neural networks
is required.

Definition 2.2.1 (Reachable set of an FNN). Let I = {x ∈ Rd | Ax ≤ b} with
A ∈ Rn×d, b ∈ Rn be a bounded convex polyhedron input set and N = {L1, · · · , Lk} a
k-layer FNN. Then the reachable set N (I) = RLk

of the neural network N given the
input set I is defined inductively by

RL0
:= I

RLi
:=

{
yi | yi = ϕi (Wiyi−1 + bi) , yi−1 ∈ RLi−1

}
, i = 1, . . . , k

26 Preliminaries

T
em

pe
ra

tu
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

(a) Box, no aggregation

T
em

pe
ra

tu
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2 2.5

(b) Box, with aggregation

T
em

pe
ra

tu
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

(c) H-polytope, no aggregation

T
em

pe
ra

tu
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2 2.5

(d) H-polytope, with aggregation

T
em

pe
ra

tu
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2

(e) V-polytope, no aggregation

T
em

pe
ra

tu
re

in
◦ C

Time in s

17

18

19

20

21

22

23

0 0.5 1 1.5 2 2.5

(f) V-polytope, with aggregation

Figure 2.7: Flowpipe construction using different state set representations with and
without aggregation for the thermostat example with a global time horizon T = 2.1
and time step δ = 0.1.

Neural Networks 27

where Wi, bi and ϕi are the weight matrix, bias vector and activation function of the
i-th layer Li, respectively.

Hence a k-layer FNN N is considered safe, i.e. N (I) |= S iff RLk
∩ ¬S = ∅ for a

safety specification S and an input set I. For the reachability analysis of FNNs with
ReLU activation functions, we distinguish between two approaches: an exact and
complete analysis (Section 2.2.1), and an over-approximate analysis (Section 2.2.1),
that both require an adequate and efficient datatype for computation. This work
presents a geometric approach using star set representations which provide desirable
properties for performing set operations as star sets are scalable and fast, highly
accurate and allow for the generation of counterexamples [BD17].

Star Set Representations

Definition 2.2.2 (Generalized star set). A generalized star set is a tuple Θ =
⟨c, V, P ⟩ where c ∈ Rd is the center, V = {v1, . . . , vm} ⊆ Rd a set of basis vectors,
and P : Rm → {⊤,⊥} a predicate. The set of states represented by star sets is given
by

JΘK =

{
x ∈ Rd | x = c+

m∑
i=1

(αivi) such that P (α1, · · · , αm) = ⊤

}
. (2.7)

Sometimes we will refer to both the tuple Θ and the set of states JΘK as Θ. In this work,
we restrict the predicates to be a conjunction of linear constraints, P (α) ≜ Cα ≤ s
where, for p linear constraints, C ∈ Rp×m, α is the vector of m-variables i.e., α =
[α1, . . . , αm]

T , and s ∈ Rp×1.

Next, we show the universal representation power of stars sets. The proofs of the
following findings are collectively appended in Chapter A.

Proposition 2.2.1. Any bounded convex polyhedron P =
{
x | Cx ≤ s, x ∈ Rd

}
can

be represented as a star.

Star sets are especially efficient with respect to computing the usually expensive
operations of affine mappings and halfspace intersections for which they outperform
polytope-based representations [TML+19]. The proofs are included in the supple-
mentary materials, and we refer interested readers to the work by Tran et al. [Tra20]
for a comprehensive explanation of the proofs.

Proposition 2.2.2 (Affine mapping of a star). Given a star set Θ = ⟨c, V, P ⟩, an
affine mapping of the star Θ with the affine mapping matrix W and offset vector b
defined by Θ̄ = {y | y = Wx+ b, x ∈ Θ} is another star such that

Θ̄ = ⟨c̄, V̄, P̄ ⟩, c̄ = Wc+ b, V̄ = {Wv1,Wv2, . . . ,Wvm} , P̄ ≡ P.

Proposition 2.2.3 (Star and halfspace intersection). The intersection of a star Θ =
⟨c, V, P ⟩ and a halfspace H = {x | Hx ≤ g} is another star such that

Θ̄ = Θ ∩H = ⟨c, V, P̄ ⟩

where P̄ = P ∧ P ′ with

P ′(α) = (H × V)α ≤ g −H × c, V =
(
v1 v2 · · · vm

)
.

28 Preliminaries

Exact and Complete Analysis

By Proposition 2.2.1, we can assume the input set I for a k-layer FNN N is repre-
sented by a star set such that I = ⟨c, V, P ⟩. Since star sets are closed under affine
transformations by Proposition 2.2.2, computing the reachable set by Definition 2.2.1
for layer l with n neurons, an input star set Θ, yields a sequence of n stepReLU op-
erations Rl = ReLUn (ReLUn−1 (· · ·ReLU1 (Θ) · · ·)), potentially multiple star sets.

Deconstructing the stepReLU operation of the i-th neuron in the l-th layer, that is
ReLUi(·), results in the following procedure for an FNN as presented in Algorithm 2.
Given the output star set Θ = ⟨c, V, P ⟩ of the preceding layer as input, it is partitioned
into subsets Θ1 = Θ ∩ xi ≥ 0, Θ2 = Θ ∧ xi < 0. Let Θ1 = ⟨c, V, P1⟩ and Θ2 =
⟨c, V, P2⟩. By definition, for x = [x1, . . . , xn]

T ∈ Θ1, it holds that ReLU(xi) = xi,
hence there is no change in x after applying the activation function. In contrast,
for x′ = [x′

1, . . . , x
′
n]

T ∈ Θ2, we have ReLU(x′
i) = 0, thus yielding a new vector

x′′ = [x′
1, . . . , x

′
i−1, 0, x

′
i+1, . . . , x

′
n] which is equivalent to mapping Θ2 by the identity

matrix with the i-th entry set to zero. Finally, the stepReLU operation of the i-th
neuron for an input star set Θ results in ReLUi(Θ) = ⟨c, V, P1⟩ ∪ ⟨Mc,MV, P2⟩.

To reduce the number of computations, it is helpful to determine the ranges of all
states in the input set Θ at the i-th neuron beforehand. If xi ≥ 0 (or xi ≤ 0) for all
states x ∈ Θ, then ReLUi(Θ) = Θ (or ReLUi(Θ) = MΘ, respectively) as presented
in Line 18 and Line 20 in Algorithm 2.

Lemma 2.2.4 (Worst-case complexity of number of stars). The worst-case complexity
of the number of stars in the reachable set of an FNN with N neurons is O(2N).

Lemma 2.2.5. The worst-case complexity of the number of constraints of a star in
the reachable set of an FNN with N neurons is O(N).

Theorem 2.2.6 (Verification complexity). Let N be an FNN with N neurons, Θ a
star set in the input star set with p linear constraints and m variables in the predicate,
S a safety specification with s linear constraints. In the worst case, verifying the

safety of the neural network, i.e., checking N (Θ)
?

|= S is equivalent to solving up to
2N feasibility problems with at most N+p+s linear constraints and m variables each.

Theorem 2.2.7 (Safety). Let N be an FNN, Θ = ⟨c, V, P ⟩ be a star input set,
N (Θ) =

⋃k
i=1 Θi, Θi = ⟨ci, Vi, Pi⟩ be the reachable set of the neural network, and S

be safety specification. Denote Θ̄i = Θi ∩ ¬S = ⟨ci, Vi, P̄i⟩, i = 1, . . . , k. The neural
network is safe iff P̄ = ∅ for all i.

Over-approximate Analysis

Due to the exponentially growing number of stars over the number of layers by
Lemma 2.2.4, the increase in computation costs limits the scalability of the exact ana-
lysis. Instead of decomposing the input star set for each neuron, the following approx-
imation rule constructs only a single star each layer. For an output yi = ReLU(xi),
let 

yi = xi if li ≥ 0,
yi = 0 if ui ≤ 0,

yi ≥ 0, yi ≤ ui(xi−li)
ui−li

, yi ≥ xi if li < 0 and ui > 0
(2.8)

Neural Networks 29

Algorithm 2 Star-based exact reachability analysis for one layer [Tra20].
Input Input star set I = [Θ1 · · · ΘN]
Output Exact reachable set R

1: procedure layerReach(I,W, b)
2: R ← ∅;
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj , Pj⟩;
5: R1 ← I1;
6: for i = 1 : n do
7: [li, ui]← I1.range(i); ▷ li ≤ xi ≤ ui, xi ∈ I1[i]

8: R1 ← stepReLU(R1, i, li, ui);
9: end for

10: R ← R∪R1;
11: end for
12: return R;
13: end procedure
14: procedure stepReLU(Ĩ , i, li, ui)
15: R̃ ← ∅, Ĩ = [Θ̃1 · · · Θ̃k]; ▷ Intermediate representations
16: for j = 1 : k do
17: R1 ← ∅, M ← [e1 e2 · · · ei−1 0 ei+1 · · · en];
18: if li ≥ 0 then
19: R1 ← Θ̃j = ⟨c̃j , Ṽj , P̃j⟩; ▷ No changes
20: else if ui ≤ 0 then
21: R1 ←M ∗ Θ̃j =

〈
Mc̃j ,MṼj , P̃j

〉
; ▷ Zero out i-th entry

22: else ▷ li < 0 ∧ ui > 0

23: Θ̃′
j ← Θ̃j ∧ x[i] ≥ 0 =

〈
c̃j , Ṽj , P̃

′
j

〉
;

24: Θ̃′′
j ← Θ̃j ∧ x[i] < 0 =

〈
c̃j , Ṽj , P̃

′′
j

〉
;

25: R1 ← Θ̃′
j ∪M ∗ Θ̃′′

j ; ▷ Decompose Θj

26: end if
27: R̃ ← R̃ ∪ R1;
28: end for
29: return R̃;
30: end procedure

where li and ui are the lower and upper bounds of xi.
Similar to the exact approach, the over-approximate reachable set of a layer with

n neurons can be computed by executing a sequence of n approximate-stepReLU
operations as outlined in Algorithm 3. Given an input star set I = ⟨c, V, P ⟩, the
algorithm maps the input set according to the layer’s weight and bias and carries
out the approximate-stepReLU operations on the resulting affine mapping. After first
determining the lower and upper bound li, ui of the state variable x[i] at the i-th
neuron, the operation distinguishes three cases. If the lower bound is not negative
(Line 13), no changes are applied to the input. If the the upper bound is not positive
(Line 15), the input set with the i-th state variable set to zero is returned as the
intermediate reachable set. Notice that these two cases are analogous to the procedure
as in the exact approach. Otherwise, in case the lower bound is negative and the

30 Preliminaries

(a) Star (b) Zonotope (c) Abstract domain

Figure 2.8: Over-approximation of the ReLU function by different state set represen-
tations [Tra20]. The dark blue line denotes the exact set and the light blue area the
approximate set.

upper bound positive (Line 17), for an input set’s predicate P with P (α) ≜ Cα ≤
d, α = [α1, . . . , αm]T , we introduce a new variable αm+1 that encodes the over-
approximation of the activation function at the i-th neuron according to Equation 2.8.
To capture the predicates of the over-approximate output set by P (α′) ≜ C ′α′ ≤ d′

where α′ = [α1, . . . , αm, αm+1]
T , we thus define

C ′ =


C 0

01×m −1
Vi,− −1

−ui

ui−li
Vi,− 1

 , d′ =


d
0
−ci

ui

ui−li
(ci − li)


such that C ′ ∈ R(p+3)×(m+1), d′ ∈ Rp+3. Here, Vi,− denotes the i-th row of V =
[v1, . . . , vm] and 01×m ∈ R1×m a row vector of zeroes. Indeed, αm+1 captures the
predicates correctly by only introducing one more variable and three more linear
constraints in the predicate for the intermediate reachable set. This observation leads
to the following lemma.

Lemma 2.2.8. The worst-case complexity of the number of variables and constraints
in the predicate in the over-approximate reachable set of an FNN with N neurons is
N+m0 and 3N+n0 respectively for an input set with m0 variables and n0 constraints
in the predicate.

To put the over-approximation rule from Equation 2.8 into perspective, over-
approximation of the ReLU function by star sets is less conservative than by zonotope-
based [SGM+18] or abstract domain based [SGPV19] representations as illustrated in
Figure 2.8.

2.2.2 Neural Network Control System Verification
Definition 2.2.3 (Neural network control system [HFC+21]). A neural network con-
trol system (NNCS) is denoted by a tuple (X,U, F,N , δ,X0) where

• X = {x1, . . . , xn} ⊆ R is the set of finitely many real-valued state variables,

• U = {u1, . . . , um} ⊆ R the set of finitely many real-valued control variables (or
inputs),

• F : R≥0 → Rn the ODE defining the continuous dynamics of the plant,

Neural Networks 31

Algorithm 3 Star-based over-approximate reachability analysis for one layer [Tra20].
Input Input star set I = [Θ]
Output Over-approximate reachable set R

1: procedure approxLayerReach(I,W, b)
2: I1 ←W ∗ I0 + b = ⟨Wc+ b,WV, P ⟩;
3: I ′ ← I1;
4: for i = 1:n do
5: I ′ ← approxStepReLU(I ′, i);
6: end for
7: R1 ← I ′;
8: end procedure
9: procedure approxStepReLU(Ĩ , i)

10: Ĩ ← Θ̃ = ⟨c̃, Ṽ, P̃ ⟩;
11: [li, ui]← Θ̃.range(i); ▷ li ≤ x[i] ≤ ui

12: M ← [e1 e2 · · · ei−1 0 ei+1 · · · en];
13: if li ≥ 0 then
14: R̃ ← Θ̃ = ⟨c, V, P ⟩;
15: else if ui ≤ 0 then
16: R̃ ←M ∗ Θ̃ = ⟨Mc,MV, P ⟩;
17: else if li < 0 ∧ ui > 0 then
18: P̃ (α) ≜ C̃α ≤ d̃, α = [α1, . . . , αm]T ;
19: α′ ← [α1, . . . , αm, αm+1]

T ; ▷ New variable αm+1

20: C1 ← [0 · · · 0 − 1], d1 ← 0; ▷ αm+1 ≥ 0 ⇔ C1α
′ ≤ d1

21: C2 ← [Ṽi,− − 1], d2 ← −c̃[i]; ▷ αm+1 ≥ x[i] ⇔ C2α
′ ≤ d2

22: C3 ← [−ui

ui−li
Ṽi,− 1], d3 ← ui

ui−li
(c̃[i]− li) ▷ αm+1 ≤ ui(x[i]−li)

ui−li
⇔ C3α

′ ≤ d3;
23: C0 ← [C̃ 0m×1], d0 ← d̃;
24: C ′ ← [CT

0 CT
1 CT

2 CT
3]

T , d′ ← [dT0 d1 d2 d3]
T ;

25: P ′(α′) ≜ C ′α′ ≤ d′;
26: c′ ←Mc̃, V ′ ←MṼ , V ′ ← [V ′ ei]; ▷ y[i] = ReLU(x[i]) = αm+1

27: R̃ ← ⟨c′, V ′, P ′⟩;
28: end if
29: end procedure

• N : Rnx → Rny denotes the input-output mapping defined by the neural network
controller with input dimension nx and output dimension ny,

• δ ∈ R>0 a positive number denoting the control step size, and

• X0 ⊂ Rn is the set of the initial values of the state variables.

Given an NNCS and an initial state x(0) ∈ X0, the controller senses the system
state at the beginning of every control step tk = kδ for k = 0, 1, . . . , and updates
the control inputs to uk = N (x(tk)). The system’s dynamics in that control step is
governed by the ODE ẋ(tk) = f(xk, uk) = Axk +Buk.

Definition 2.2.4 (Execution of an NNCS). An execution (or trajectory) of an NNCS
is given by a flowmap function g : X × R≥0 → Rn such that the system state at any
time t ≥ 0 from any intial state x(0) ∈ X0 is the function output g(x(0), t).

32 Preliminaries

FNN Controller
u(tk) = N (y(tk))

Plant
ẋ(t) = Ax(t) +Bu(tk)

u(tk)

y(tk) = Cx(tk)

Figure 2.9: Architecture of a closed-loop NNCS at discrete time steps tk = kδ for a
control step size δ and k = 0, 1, The plant is modeled by a (simplified) hybrid
automaton and the controller by an FNN.

Algorithm 4 Reachability analysis for an NNCS.
Input: NNCS (X,U, F,N , δ,X0), number of time steps K
Output: Set of reachable states R over time interval [0,Kδ]

1: R ← ∅;
2: Xi ← X0;
3: for i = 1 to K do
4: Ui ← computeExactReachableSet(N (Xi));
5: let x(0) ∈ Xi, u(0) ∈ Ui; ▷ Pick unprocessed state set
6: Ri ← computeFlowPipe(x(0), u(0));
7: R ← R∪Ri;
8: Xi ← getRelevantSets(Ri); ▷ Select last flowpipe in Ri

9: end for
10: return R

Definition 2.2.5 (Reachability of an NNCS). A state x′ ∈ Rn is reachable if there
exists x(0) ∈ X0 and t ≥ 0 such that x′ = g(x(0), t).

In the following, assume a general NNCS, i.e., a continuous plant governed by
a neural network controller as depicted in Figure 2.9. For an NNCS with an FNN
controller N , and a linear plant P with the initial states x(t0) ∈ X0, the task is to
verify whether or not the state of the plant satisfies a safety property in a bounded
number of time steps K, i.e. whether

∀x(t0) ∈ X0 → g(x(t0), tk) |= S(g(x(t0), tk)), ∀0 ≤ k ≤ K

where g is a nonlinear transformation function, S a linear predicate over the trans-
formed state variables g(x(t0), tk) defining the safety requirements of the system.

As pointed out in [Tra20], minimizing the approximation error and the time com-
plexity in reachable set computation is crucial to ensure the applicability of a reacha-
bility analysis approach in safety verification of practical NNCS.

Reachability Analysis of Neural Network Control Systems

From the architecture of a general NNCS as depicted in Figure 2.9, the reachability
analysis can be outlined. First, from the initial set of states X0 of the plant, the
controller N receives the output y(t0) ∈ Y0 of the plant sampled at time step k = 0
as input from which it computes the control set U0 = N (Y0, V0). The control set
is updated to U = U0 and applied to the plant to compute the next state X1 =
Ẋ (t0) = AX0 + BU . Iterative execution of the cycle yields the reachable sets Xk of
the plant for time steps 0 ≤ k ≤ K. The reachability analysis is now twofold: for the

Neural Networks 33

controller, we need to compute an exact control set U , and for the linear plant, the
exact reachable set of states Xk.

First, using the previously presented star-based reachability algorithm from Sec-
tion 2.2.1, for each time step k we can compute the exact control set Uk = N (CXk, Vk) =⋃l

j=1 Θ̃j as a union of stars for layer l.
Second, we obtain a union of stars for the exact reachable set of the plant Xk+1 =

AXk+BUk. Since the state set Xk = ⟨c, V, P ⟩ and the control set Uk are both defined
based on a unique predicate variable vector α, for any star in the control set, its
predicate P contains all linear constraints of the state set. Consequently, only a subset
of the state set can induce an individual control set Θ̃j where the predicates coincide.
Therefore, the next state corresponding to the individual control set Θ̃j = ⟨c̃j , Ṽj , P̃j⟩
is Xk+1 = ⟨Ac+Bc̃j , AV +BṼj , P̃j⟩ such that the exact next state set of the plant is
Xk+1 =

⋃L
j=1 X

j
k+1. At this point, we note that the star-based reachability algorithm

can be extended to non-linear plants as well. For further information, we refer to
[Tra20].

Combining both observations, we can obtain the exact reachable set of an NNCS.
In practice however, the exponentially increasing number of state sets in each cycle
introduce infeasible computation times. Hence, we compute the interval hull of a
set of stars after each step which can be achieved efficiently by solving a set of LP
optimization problems.

Safety Verification of Neural Network Control Systems

Let S̄(zk) = Hzk ≤ h define the unsafe region of an NNCS where zk = g(xk) is a
nonlinear transformation of the system’s states xk by a nonlinear function g. The
task becomes to answer Zk ∩ S̄

?
= ∅ for all time steps k = 0, . . . ,K and the trans-

formed reachable set Zk = {zk | zk = g(xk), xk ∈ Xk}. Again, instead of com-
puting the expensive exact transformed reachable set Zk, we compute the tightest
over-approximation Z̃k ⊇ Zk with respect to interval bounds, thus by solving the
nonlinear optimization problem

Z̃k = min
¯
zk∈Zk

max
z̄k∈Zk

[
¯
zk, z̄k] .

The above considerations yield Algorithm 5.

Algorithm 5 Safety verification for an NNCS.
Input: Reachable set of NNCS R, transformation function g, unsafe region S̄
Output: safe = True iff no unsafe state reachable

1: safe← True;
2: for k = 1 : length(R) do
3: Rk ← R{1,k};
4:

¯
zk ← min(g(xk)), z̄k ← max(g(xk)), xk ∈ Xk;

5: Z̃k ← [
¯
zk, z̄k];

6: if Zk ∩ S̄ ̸= ∅ then ▷ Some unsafe state is reachable
7: safe← False;
8: break;
9: end if

10: end for
11: return safe;

34 Preliminaries

Chapter 3

Reachability Analysis for
Neural Network Controlled
Hybrid Systems

In the previous chapter, we first laid the foundations for modeling and verifying hy-
brid systems, and further established an algorithm for star-based reachability analysis
of neural networks that exploits the piece-wise linear definition of ReLUs. The sub-
sequently presented flowpipe-construction based algorithm for safety verification of
NNCS (Algorithm 5) provides a high-level framework for combining both approaches
into one closed-loop system where in a cyclic manner, the neural network controller
processes incoming measurements from the plant and generates control inputs to reg-
ulate the plant. However, this raises the question on how to exactly relate properties
of both systems with each other to reason about the overall NNCS.

We shall now proceed as follows. Our goal is to develop and evaluate techniques
for verifying the safety of NNCS in hybrid systems modeled by discrete interactions
between a feedforward neural network with ReLU activation and a hybrid automaton.
Hereby, we focus on non-autonomous hybrid systems with external inputs u(t) and
want to use the star-based reachability analysis proposed by Tran et al. [Tra20] on the
side of the controller and flowpipe construction on the side of the plant. Further, we
want to explore how to handle the additional uncertainty and complexity introduced
by the neural network.

3.1 Conceptualization

In this section, we present an approach to address the challenge of verifying hybrid
systems that are too complex to be modeled as hybrid automata. As outlined in the
previous chapters, with the increasing application of neural networks as controllers in
a wide range of domains, their integration into hybrid systems has gained significant
attention as well. But to model a hybrid system as an NNCS, a suitable controller
needs to be devised to ensure the system’s safety. Further driven by the necessity to
effectively benchmark and validate our proposed methods, we design a neural network
controller based on an existing hybrid automaton and train the controller to accurately
approximate the original automaton’s behavior. In the NNCS setting, the controller

36 Reachability Analysis for Neural Network Controlled Hybrid Systems

now governs the system’s dynamics, and we thereby reduce the underlying hybrid
automaton to a simple plant that merely consists of a finite set of flows.

Therefore we introduce an alternative framework where the controller predicts the
control mode for the next time step based on the present state of the system. Subse-
quently, the reachability analysis algorithm constructs flowpipes from the controller
input such that all potential trajectories are over-approximated during the reacha-
bility analysis. This consideration allows us to verify whether a system is safe in
the presence of all admissible disturbances such as input noise and uncertainties in
the system parameters. The resulting alternating process aims to provide a more
comprehensive analysis of the system’s behavior.

We implemented our approach using the hybrid system tool HyPro [SÁMK17] for
easy integration with standard hybrid system models.

Moving forward, we will conduct a detailed analysis of the design choices made in
this work to provide a clear justification for the approach taken.

3.1.1 Invocation of Neural Network

Interaction

In the context of control systems, the interaction between a controller and a plant
can be broadly categorized into two main forms: continuous and discrete. In the
case of continuous interaction, the neural network can access the state of the plant
at any given time, allowing it to modify the control input to the plant at any time.
Conversely, for discrete interaction, the neural network receives the state of the plant
at each time step delta and modifies the control input accordingly using the actuators.
The interaction frequency may vary based on the system’s requirements and may be
either regular or irregular.

On the implementation level, continuous interaction is achieved through the use of
a callback function that is triggered each time a new segment is generated during the
flowpipe construction process, allowing the verification process to cover the real con-
tinuous interaction between the two. However, in practice, the verification approach
at hand requires extensive computation. Specifically, the neural network reachability
analysis is executed for each flowpipe segment, making the process too costly. As
a consequence, our approach is restricted to handling discrete-time interactions that
arise at either irregular or regular time intervals δ1, δ2, . . . where either δi ̸= δj for
some i ̸= j or δi = δj for all i ̸= j, respectively.

In the following sections, we make the assumption of a regular interaction fre-
quency with a time interval of δ. Yet, we acknowledge that the formalism of our
proposed algorithm is easily adaptable to accommodate irregular interactions.

Step Size

The step size, denoted as δ, is a crucial hyperparameter that requires careful selection
to balance safety and computational effort in the control system. The step size must
be small enough to maintain the stability of the closed-loop system and accurately
capture the discrete changes in the plant. However, it must also be large enough to
minimize computational cost and latency in real-time implementation. Finding the
right step size involves trade-offs between these conflicting considerations.

From Figure 3.1, we can see that selecting a step size δ of too large size directly
affects the safety of the system due to delayed feedback to the controller in Figure 3.1c.

Conceptualization 37

(a) δ = 0.05 (b) δ = 0.1 (c) δ = 0.5

Figure 3.1: Sampled trajectories simulating the NNCS behavior of the thermostat
with initial interval x ∈ [19.5, 20.5] and different step sizes δ. The vertical dashed
lines denote the invocation of the neural network controller every δ time and the
dashed horizontal lines the temperature threshold of switching the state. Entering
the red region denotes a violation of the safety condition.

On the other hand, if chosen very small as in Figure 3.1a, the computation becomes
expensive. Thus it seems sensible to choose a middle ground (see Figure 3.1b) between
both extremes.

3.1.2 Modeling the Hybrid System

After removing the guards and the invariants of the original hybrid automaton H, we
consider the system as a simple plant that merely covers all the possible flows of the
system where each flow is uniquely labeled.

Definition 3.1.1 (Reduced hybrid automaton). Let H be a hybrid automaton as
specified in Definition 2.1.1 with (Loc, Var, Con, Lab, Edge, Act, Inv, Init). We
transform it into a reduced representation

H′ = (Loc′, Var′, Lab′, Act′, Init′)

such that

Loc′ = {ℓ}, Var′ = Var, Lab′ : Act→ {1, . . . ,m} ×Var,

Act′(ℓ) =
⋃
i

Act(ℓi), Init′ ⊆ Σ′

where Loc = {ℓ1, . . . , ℓm}, m ∈ N and Σ′ = Act′(ℓ)× V .

Example 3.1.1 (Reduced thermostat hybrid automaton). Following Definition 3.1.1,
we transform the hybrid automaton from Example 2.1.2 into a reduced hybrid automa-
ton. Formally, the automaton becomes

• Loc′ = {ℓ},

• Var′ = {x},

• Lab′(Act(ℓon)) = (1,x), Lab′(Act(ℓoff)) = (2,x),

38 Reachability Analysis for Neural Network Controlled Hybrid Systems

ℓ

f1,x : ẋ = −Kx
f2,x : ẋ = −K(x− ρ)

x = 20, f2,x

Figure 3.2: Modeling the hybrid automaton as a set of ODEs.

• Act′(ℓ) =

{f1,x : R≥0 → V s.t. f1,x(t)(x) = 20e−Kt + h
(
1− e−Kt

)
,

f2,x : R≥0 → V s.t. f2,x(t)(x) = 20e−Kt},

• Init′ = {(f1,x, ν) ∈ Σ′ | ν(x) = 20}.

The resulting automaton is illustrated in Figure 3.2.

3.1.3 Modeling the Neural Network Controller

When modeling the neural network controller, the question of the type of output
it should produce arises. Essentially, there are two broad categories of options to
consider. The first is training the network to produce a continuous value from an
uncountable but usually bounded set, and the second is training it to produce a
discrete value from a finite and countable set.

In the first case, the output value could be akin to that of a PID controller and
represent a variable in the hybrid system’s flow function, which is the most common
approach in the literature. If this approach is taken, it is expected that the system
will eventually converge to a stable state. However, this approach is not applicable
to all use-cases.

In the second case, the network could be treated as a traditional multi-class clas-
sifier that predicts the flow being applied to the system. For example, if there are m
flows, the controller could output confidence scores for each flow in an m-dimensional
vector using a softmax activation function. However, this type of output can be
difficult to interpret during reachability analysis, so this approach is not pursued.

Alternatively, the neural network’s output could be modeled as a discrete value for
a variable in the hybrid system’s flow function. Note how the flow of non-autonomous
systems is defined as

ẋ(t) = Ax(t) +Bu(t)

according to Equation 2.2. Let Loc = {ℓm : m ≤ n} for an n ∈ N be a finite and
countable set of locations, such that we can uniquely denote a location by some index
m ∈ N. Further, let only a single variable x ∈ Var be of interest for the practical
applicability of plotting a two-dimensional reachability plot. If we now assume the

Conceptualization 39

Ntherm

u(tk) = N (y(tk))
Plant

ẋ(t) = −Kx(t) + u(tk)

u(tk)

y(tk) = (x(tk),mk)

Figure 3.3: Feedback loop on the example of the thermostat at discrete time steps
tk where the controller senses the state x(tk) and the current mode mk of the plant,
evaluates the input and outputs a control u(tk) ∈ {0,Kh}.

flows of the variable x of a given hybrid automaton H can be distinctly differentiated
by a constant such that

ẋ(t) = Ax(t) + hi

for hi ∈ R, then we can model the external inputs from the controller as u(t) = hi.
The approach that has been outlined lastly is the one that we will be adopting

and incorporating into the subsequent modeling of the neural network controller.
Subsequently, we will take the neural network to be a classifier and thus the outputs
hi as its classes indicating the control input of the hybrid system.

Example 3.1.2 (Modeling the output for the thermostat controller). The two flows
are given as ẋ = −Kx and ẋ = K(ρ−x) = −Kx+Kρ for the thermostat being turned
off or on respectively. Thus the neural network is designed to predict 0 or Kρ = 15
as illustrated in Figure 3.3.

3.1.4 Designing the Neural Network

Given a hybrid automaton H with d variables Var = {x0, . . . , xd−1} and a countable
set of locations Loc = {ℓm : m ≤ n}, we define the input dimension for the neural
network to be d+ 1 such that the input to the neural network is a real-valued tuple
(x0, . . . , xd−1,m) of the variables and the current flow denoted by an index m ∈ N.
The hidden layers are straightforward and restricted to ReLU activation functions to
satisfy the requirements of the exact star-based reachability approach used during the
analysis.

For the output layer, we implement a classification layer using step functions,
formally a function that can be written as a finite linear combination of indicator
functions of intervals.

Definition 3.1.2 (Step function). A step function fstep : R→ R is defined as

fstep(x) =

n∑
i=1

αiχAi(x) (3.1)

where αi ∈ R are real coefficients, n > 0, χAi
is the indicator function such that

χAi(x) =

{
1, if x ∈ Ai,

0, otherwise

for each interval Ai, i = 1, . . . , n.

40 Reachability Analysis for Neural Network Controlled Hybrid Systems

h1 h2 h3 h4

h1

h2

h3

h4

h1+h2

2

h2+h3

2

h3+h4

2

A1

A2

A3

A4

x

f s
te

p
(x
)

Figure 3.4: Step function for ordered classes h1, h2, h3, h4 and such that the corre-
sponding intervals Ai with i = 1, . . . , 4 are as defined in Equation 3.2.

Moving forward, we assume Ai ⊂ R. For ordered target outputs hi ∈ R with
i = 1, . . . , n and hi−1 < hi, the neural network employs the step function with
intervals

Ai =


(−∞, hi+hi+1

2), if i = 1,

[hi+hi−1

2 ,∞), if i = n,

[hi−1+hi

2 , hi+hi+1

2), otherwise
(3.2)

and αi = hi for classifying the intermediate output value. This definition simply
rounds a number x to the closest class hi as depicted in Figure 3.4.

Example 3.1.3 (Classifying the output for the thermostat). For inputs x ∈ R and
m ∈ {0,1}, the desired input-output mapping of the neural network Nth is

Nth(x,m) =


0, if x ≥ 22,

15, if x ≤ 18,

m · 15, otherwise.

This can equally be achieved by using the step function as the last layer where A1 =
(−∞, 7.5), A2 = [7.5,∞) and α1 = 0, α2 = 15. Let N ′

th denote Nth without the final
classification layer, such that for an intermediate output x′ = N ′

th(x,m) we get

fstep(x
′) = 0 · χA1

(x′) + 15 · χA2
(x′) =

{
0, if x′ < 7.5,

15, if x′ ≥ 7.5.

Overall, we can now define a specific neural network controller and train it to
achieve the desired behavior.

Example 3.1.4 (Neural network architecture for the thermostat). In the context
of the thermostat example, we devised a straightforward feedforward neural network
consisting of three layers. The input layer comprises of two neurons to represent
temperature x ∈ R and mode (on or off), denoted by m ∈ {0, 1}. The network further

NNCS Analysis 41

comprises two hidden layers, each having ten neurons. Finally, the output layer of
the network generates a single prediction for Kh ∈ {0, 15}.

The hyperparameters used in the network implementation are as follows: the net-
work was trained on 15000 samples, with a 80/20 train-validation split. The batch
size was set to 32 and the number of epochs was set to 300. The mean squared error
(MSE) loss was used as the loss function, and the learning rate was set to 0.0012.
The Adam optimizer was used with weight decay of 1e-5. The accuracy of the network
was tested on 3750 samples, and it was found to be 98.40%.

3.2 NNCS Analysis
As we advance, we take it as given that the two components of the NNCS, specifically
the trained neural network and the plant, are as previously defined. We will proceed
by describing the interaction between them and how the algorithm operates during the
safety verification. Note that in the subsequent, the neural network is employed for the
exact star-based method of the reachability algorithm as laid out in the Preliminaries
in Algorithm 2.

3.2.1 Input Star Definition
At time tk−1, the plant constructs flowpipes for δ time from an initial set Ik−1. The
reachable set Rk with state variables x0, . . . , xd−1 and the mode mk are used to create
an input star set ΘIk = ⟨c, V, P ⟩ such that

c =

 0
...
0

 , V = {e1, . . . , ed′}, P (α) ≜ Cα ≤ s (3.3)

where d′ = d+1 is the dimension of the input to the neural network, the center c is a
d′-dimensional zero vector, V is the d′-dimensional standard basis, and the constraints
C ∈ R2d′×d′

are defined as

Cij =


−1, for i = 2j

1, for i = 2j + 1

0, otherwise
(3.4)

where 0 ≤ j < d′. We specify the limits s ∈ R2d′
by requiring

s2i+1 = −xil (3.5)
s2i+2 = xiu (3.6)

for 0 ≤ i < d, and s2d+1 = −mk and s2d+2 = mk. Since the reachable set Rk is a
set, it potentially covers an interval [xil , xiu] in each dimension i ≤ d′. The intuition
behind this definition is to convert the reachable set into an equivalent star set that
satisfies the same conditions for each state variable while also including the system’s
mode. Consequently, each element y ∈ Θ in this star set satisfies yi ≥ xil , yi ≤ xiu

and yd′ = mk.
We note that the aforementioned definition is applicable only when the initial set

is represented as a d-dimensional interval, and it has to be adjusted accordingly to

42 Reachability Analysis for Neural Network Controlled Hybrid Systems

also hold for other types of representations such as polytopes. It is worth mentioning
that HyPro, at the implementation level, defines the initial set exclusively in terms
of intervals, and thus we can safely make this assumption.

Example 3.2.1 (Input star set for the thermostat). Let xkl
, xku

∈ R be the lower and
upper bounds of the temperature, and mk ∈ {0,1} the mode the system is in at time
point tk. Then the input star set for the controller ΘI = ⟨c, V, P ⟩ with P (α) ≜ Cα ≤ s
is defined as

c =

[
0
0

]
, V = {e1, e2}, C =


−1 0
1 0
0 −1
0 1

 , s =


−xkl

xku

−mk

mk

 .

3.2.2 Neural Network Reachability Analysis

Let X be the set of all inputs to the neural network controller N and Y = N (X) the
set of all outputs. As defined above, the input star set ΘI ∈ X is then passed to the
controller that performs the exact star-based neural network reachability analysis (Al-
gorithm 2 and Algorithm 6). By definition, the output is again a set of stars such that
for Yi ∈ Y , Yi = ⟨c, V, P ⟩. Assuming the neural network gets a d′-dimensional input
point during run-time, it now receives a d′-dimensional input set with 2d′ constraints
during the analysis to handle sets spanning intervals in each feature dimension. Anal-
ogously, the output covers an interval instead of a single number.

More specifically, given the ordered target classes h1, . . . , hn during run-time, for
each output star Yi ∈ Y during the analysis, we obtain a set of intervals Ji =
{Ji1 , . . . Jin′} with trivial intervals Jij = [hij , hij] and ij = ij−1 + 1 ≤ n. To ac-
count for the possibility that Yi ∩ Yj = ∅ for some output stars Yi, Yj , the subsequent
flowpipes have to over-approximate all the possible trajectories that are induced. That
means that if there are predictions for classes hj−1 and hj+1, but not for hj , we need
to consider the trajectory induced by the mode hj as well. Formally, let J =

⋃
i Ji,

then we obtain all the predicted modes as Y ′ = {hi′ : [hi′ , hi′] ∈ J } which by def-
inition are each uniquely associated with respective flows ẋ = Ax(t) + hi′ . To take
all the possible trajectories into account, we derive the indices of the minimum and
maximum value of the predicted classes

imin = argmin
i′
{hi′ : hi′ ∈ Y ′}, imax = argmax

i′
{hi′ : hi′ ∈ Y ′} (3.7)

to also pass on the intermediate classes hi with imin < i < imax for inferring the
respective flows. This process is embedded in the exact star-based reachability ana-
lysis for the staircase function in Algorithm 6. Overall, this leads to the potential
branching of the created flowpipes over time.

3.2.3 Flowpipe Construction Using Control Input

The following objective at hand is to specify from the predicted modes of the con-
troller the input to the plant to perform flowpipe construction. Recall that flowpipe
construction is rooted in the idea of successively applying an affine transformation,
defined by the flow at the current location, on an initial set at time t1 until some
specified time point t2, considering the convex hull of both states and bloating this

NNCS Analysis 43

Algorithm 6 Star-based exact reachability analysis for one layer with step function.
Input Input star set I = [Θ1 · · · ΘN], ordered classes [h1 · · ·hm] such that

intervals [A1 · · ·Am] are as defined in Equation 3.2
Output Exact reachable set R

1: procedure layerReach(I,W, b)
2: R ← ∅;
3: for j = 1 : N do
4: I1 ←W ∗Θj + b = ⟨Wcj + b,WVj , Pj⟩;
5: R1 ← I1;
6: for i = 1 : n do
7: [li, ui]← I1.range(i); ▷ li ≤ xi ≤ ui, xi ∈ I1[i]

8: R1 ← stepStaircase(R1, i, li, ui);
9: end for

10: R ← R∪R1;
11: end for
12: return R;
13: end procedure
14: procedure stepStaircase(Ĩ , i, li, ui)
15: R̃ ← ∅;
16: Ĩ = [Θ̃1 · · · Θ̃k];
17: M ← [e1 e2 · · · ei−1 0 ei+1 · · · en]; ▷ Intermediate representations
18: for j = 1 : k do
19: R1 ← ∅;
20: Θ̃j = ⟨c̃j , Ṽj , P̃j , ⟩;
21: imin ← argmini′{hi′ | li ∈ Ai′ , i

′ ≤ m}; ▷ Index of smallest class
22: imax ← argmaxi′{hi′ | ui ∈ Ai′ , i

′ ≤ m}; ▷ Index of greatest class
23: for j′ = imin : imax do
24: v1 ← hj′ · ei;
25: Θ̃′

j′ ← ⟨Mc̃j + v1,MṼj , P̃j , ⟩;
26: R1 ← R1 ∪ Θ̃′

j′ ;
27: end for
28: R̃ ← R̃ ∪ R1;
29: end for
30: return R̃;
31: end procedure

hull by a ball of the approximated error to finally obtain the reachable set R[t1,t2].
Accordingly, it is necessary to determine the initial set for the next flowpipe cons-
truction when passing the control output to the plant. We propose to record the
initial sets for each flowpipe by inference from the initial set I0 of the entire analysis.
Therefore we can establish the following recurrence relation between the initial set for
the current time point tk and the previous time point tk−1.

Definition 3.2.1 (Initial set of NNCS analysis). Let (X,U, F,N , δ,X0) be an NNCS
and T = Kδ the time horizon of the analysis. Then the initial set Ik at time point

44 Reachability Analysis for Neural Network Controlled Hybrid Systems

Figure 3.5: For the current set information Si = {(Xi, F, Ii−1)} at time ti, the old
initial set from which the segment Xi was constructed is transformed by the flow F
to obtain Ii. The dashed lines denote times of invocation of the neural network.

tk = kδ is defined inductively by

I0 := X0

Ik := eδAk−1Ik−1, k = 1, . . . ,K

where Ak−1 is the flow matrix of the flow ẋ = Ak−1x over the time interval [tk−1, tk].

In practice, this means that at time point tk once the controller outputs the pre-
dicted modes, the former initial set for each flowpipe from the previous time point
tk−1 gets propagated by an affine transformation for δ time. These affine transforma-
tions correspond to the flows of the predicted modes. The advantage of adopting this
definition is that it effectively minimizes the wrapping effects. This is due to the fact
that our approach involves propagating only the original initial sets, as opposed to
considering the entire flowpipe segments at a jump, which is the conventional method
employed in flowpipe construction.

3.2.4 Algorithm Implementation

Having thoroughly discussed the various components of the NNCS analysis, we will
proceed to integrate them into a comprehensive algorithm, as depicted in Algorithm 7.

Suppose we have an NNCS (X,U, F,N , δ,X0) where the hybrid system is modeled
by a reduced hybrid automaton H′ = (Loc′, Var′, Con′, Act′, Init′) as proposed in
Definition 3.1.1 with initial set I0, and a global time horizon T = Kδ.

The first step involves the execution of the flowpipe construction on the initial
set I0 with the initial flow F0 for δ time. This results in the over-approximate com-
putation of the reachable sets R[0,δ] = {ν | ν = etAx0, t ∈ [0, δ], x0 ∈ N0}, A being
the flow matrix of F0. For simplicity, the location is omitted as the reduced hybrid
automaton consists of only a single location. Then, the relevant sets, i.e. those that
intersect the time point δ, are extracted and stored in the variable Xi.

As the flowpipe construction may lead to branching into multiple flowpipes, it
is necessary to keep track of the relevant sets, the initial sets from which they were

NNCS Analysis 45

Algorithm 7 NNCS analysis (discrete).
Input: NNCS (X,U, F,N , δ,X0), reduced HA H with initial set I0
Output: Set of reachable states R over time interval [0,Kδ]

1: procedure nncsReach(I0,K)
2: R ← computeFlowpipe(I0, δ);
3: Xi ← getRelevantSets(R, δ); ▷ Get sets that intersect time δ

4: Si−1 ← {(Xi, F0, I0)}; ▷ Current branch: set, initial flow, initial set
5: for i = 1 to K do
6: Si ← ∅;
7: for (Xj , Fj , Ij) ∈ Si−1 do
8: (X ′, F ′, I ′)← computeSetFlowMaps(Xj , Fj , Ij);
9: Si ← Si ∪ {(X ′, F ′, I ′)};

10: end for
11: for j = 1 to |Si| do
12: Rj ← computeFlowpipe(Ij , δ);
13: R ← R∪Rj ;
14: end for
15: Si−1 ← Si;
16: Xi ← getRelevantSets(R, (i+ 1)δ);
17: end for
18: return R
19: end procedure
20: procedure computeSetFlowMaps(X , F, I)
21: I ← makeInputStar(X , F); ▷ As defined in Section 3.2.1
22: R ← nnForwardAnalysis(I); ▷ Uses Algorithm2
23: S = ∅;
24: I ′ ← affineTransformation(I, F, δ); ▷ Using Definition 3.2.1
25: for Θi ∈ R do
26: F ′ ← Ax+Θi.vertices1; ▷ Θi.vertices1 is the control input
27: S ← S ∪ (X , F ′, I ′);
28: end for
29: return S
30: end procedure

generated, and the corresponding flows that transformed them. To this end, we
maintain this information in a set of triples

Si−1 = {(Xi, F, I) | Xi ⊆ V ′, F ∈ Act′(ℓ), I ∈ Init′}.

We visualize the set information triple in Figure 3.5 and elaborate on its function
further below.

Proceeding to the central loop iterating over the K time steps, it can be divided
into two parts. In the first part, we calculate all conceivable system behaviors, which
correspond to possible combinations of flow and state. In the second part, we perform
flowpipe construction for each combination generated from the previous iteration and
accumulate the resulting reachable states.

The key computation is carried out by the method computeSetFlowMaps in Line 8
mapping reachable sets of the hybrid system to flows through the application of a
neural network controller to generate control inputs for the plant, thus establishing a

46 Reachability Analysis for Neural Network Controlled Hybrid Systems

mapping between the sets and the corresponding flows. Starting from the set infor-
mation triple Si−1, the method first computes an input star on which it applies the
neural network reachability analysis, resulting in a reachable set R = {Θ1, . . . ,Θn}
of stars. Then, the flow matrix of the flow F from the previous time step applies an
affine transformation on the initial set I by δ time to obtain I ′. For each reachable
star set Θi, the new flow F ′ is inferred from the predicted mode hj , the interval
bounds [hj , hj] of the one-dimensional output star Θi, by extracting the output star
set’s vertices. Since by definition of the controller predictions h and a flow being
described as ẋ = Kx+h, we obtain the corresponding flow matrix. The set of set in-
formation triplets is extended accordingly by the updated triple (X , F ′, I ′). Overall,
this method allows for the effective manipulation of the system’s behavior through
the selection of appropriate control inputs.

For each element in the set information set Si, we construct a new flowpipe for δ
time from the corresponding initial sets and add them to the reachable sets. Finally,
we update the set information and the sets intersecting the following time step (i+1)δ.
This procedure is repeated until the global time horizon of T is reached.

We now show that the sequence Ωk, the set of reachable states using the discrete
NNCS analysis, covers the set of actual reachable states R.

Theorem 3.2.1. Let N = (X,U, F,N , δ,X0) be an NNCS. Then

R[0,δ](X0) ⊆ Ω[0,δ](X0,U). (3.8)

Proof. For the entire analysis to satisfy Equation 3.8, it suffices to show that all
building elements satisfy the statement for interval [0, δ]. We provide the proof by
reviewing Algorithm 7 for one iteration. The validity of the statement is straightfor-
ward to see for Line 2, as shown in Section 2.1.2, flowpipe construction is already a
valid over-approximation. Let R̄[0,δ] be the result of flowpipe construction. For the
first controller invocation at time δ, the reachable set Xi ⊆ R̄[0,δ] with Xi ∩ R[δ,δ]

is used to obtain the current state variable valuations for creating the input star ΘI

as outlined in Section 3.2.1, which by design encompasses the reachable set at time
δ. By definition of the exact star-based reachability algorithm in Algorithm 2, the
reachable states N (ΘI) = RLk

of a k-layer neural network controller are exactly
computed. Lastly, it remains to consider the initial set transformation. As defined in
Definition 3.2.1, the initial set for the first time step is thus Ik = eδA0X0, for the flow
matrix A0 over [0,δ]. Hence Ik ⊆ R̄[0,δ]. By design of the controller, the prediction
yields a valid flow such that in the next iteration, flowpipe construction can be applied
to the transformed initial set.

As for flowpipe construction, iterative execution of the algorithm results in the
over-approximation over the global time horizon T = Kδ such that

R[0,T](X0) ⊆ Ω[0,T](X0,U) =
K⋃
i=1

Ω[(i−1)δ,iδ](Ii−1,U).

Now that we know the NNCS analysis is indeed an over-approximation of the true
reachable states, it follows directly that Algorithm 7 is sound, meaning that a system
is considered safe iff no unsafe states can be reached.

Theorem 3.2.2. Let N = (X,U, F,N , δ,X0) be an NNCS, I ⊆ X the initial state
set, S̄ ⊆ X the set of bad states. Then N is safe iff Ω[0,T](I) ∩ S̄ = ∅.

Chapter 4

Evaluation

4.1 Benchmarks
Moving forward, we use two benchmarks to evaluate our proposed approach. The
following benchmarks are compiled from related literature and were selected to cover
non-autonomous hybrid systems with flows that can be decomposed the same way as
described in Section 3.1.3. The first one, the thermostat, was already introduced as a
simple running example to illustrate the definitions of our method, while the second
benchmark is more sophisticated and exhibits non-deterministic switching between
different control modes while still maintaining a relatively small size.

4.1.1 Thermostat

Having laid the theoretical groundwork for the constituent components of our ap-
proach in Chapter 3 and demonstrated their effectiveness through complementary
examples with the thermostat benchmark, we are now prepared to present the results
of our reachable set computation. In this section, we assume that the components
have been defined as described in Chapter 3.

Example 4.1.1 (NNCS analysis of the thermostat). In Figure 3.3, we report on two
results of the application of Algorithm 7 on the thermostat example using different
state set representations to compute the reachable sets of the NNCS. The system uses
both the neural network as specified in Example 3.1.4 as well as the reduced hybrid
automaton from Example 3.1.1. For the plots, the controller gets invoked every δ = 0.1
time units over a global time horizon T = 2.1.

In Figure 3.1, the system is shown to be safe with the choice of step size δ = 0.1
with respect to the trajectories. However, the safety verification results obtained in
Figure 4.1 indicate that the lower temperature bound is exceeded between time 0.8
and 1.4, and the system enters the unsafe region. This behavior can be attributed to
the introduction of an additional error by the controller. This is because the neural
network only makes a binary decision, which is either the thermostat being turned
on or off, and does not take into account any qualitative aspects such as the degree
by which the temperature is adjusted. Therefore, the full initial set for flowpipe
construction is either propagated or not in each time step, leading to potentially
oversized flowpipe segments, which can cause such deviations.

48 Evaluation

(a) V-polytope representation (b) Box representation

Figure 4.1: Result of NNCS analysis on the thermostat example with δ = 0.1 and
different representations. The dark blue curves on the figures are sampled trajectories,
and the underlying light blue curves are the over-approximated sets by the reachability
analysis where the borders accentuate each segment. The initial set with temperature
x ∈ [19.5,20.5] and flow f1,x at time 0 is indicated by an orange line.

We further observe that the result does not suffer from strong wrapping effects,
which refers to the over-approximation errors introduced during computation. due to
the requirement of closure for all representations. We attribute this phenomenon to
mainly two reasons: first, at all times, we are merely propagating the original initial
set and second, there are no rotations present in the affine transformations induced
by the flows.

4.1.2 Rod Reactor

The second selected benchmark, commonly referred to as the rod reactor, presents
an intriguing subject for analysis as it involves multiple state variables and exhibits
unique properties despite its relative simplicity in structure. To provide context for
the problem, we will initially present a high-level description.

Example 4.1.2 (Rod Reactor [ACH+95, SÁMK17]). The rod reactor system is a sim-
plified model of the reactor core of a nuclear power plant and features fuel rods that
heat the surrounding water to power turbines and cooling rods made from a material
that inhibits the radioactive reaction. These cooling rods can be lowered in between
the fuel rods to regulate the temperature. The system models the reactor temperature
depending on the state of two different cooling rods that can be extended or retracted.
Since the cooling rods are made from different materials, they have a different influ-
ence on the temperature dynamics when used. Without any cooling rods inserted, the
temperature x rises according to the ODE ẋ = 0.1x − 50. If the first rod is inserted,
the temperature falls by ẋ = 0.1x − 56, and by ẋ = 0.1x − 60 for the second rod. At
most one rod can be inserted at a time.

The controller can decide which cooling rod to use whenever the temperature ex-

Benchmarks 49

rod 1

ẋ = Kx− 56
ċ1 = 1
ċ2 = 1
x ≥ 510

no rods

ẋ = Kx− 50
ċ1 = 1
ċ2 = 1
x ≤ 550

x ∈ [510, 520]
c1 = 20
c2 = 20

rod 2

ẋ = Kx− 60
ċ1 = 1
ċ2 = 1
x ≥ 510

shutdown

ẋ = 0
ċ1 = 0
ċ2 = 0

x = 510
c′1 = 0

x = 550
c1 ≥ 20

x = 550
c2 ≥ 20

x = 510
c′2 = 0

x = 550
c1 < 20
c2 < 20

Figure 4.2: The hybrid automaton model for the rod reactor system.

ceeds a fixed boundary of 550 ◦C but cannot use the same rod for 20 time units after
it has been used. It thus controls the coolant temperature in a reactor tank by moving
two independent control rods. However, allowing the temperature to rise or fall beyond
600 ◦C or 500 ◦C, respectively, leads to a meltdown or shutdown.

The presented description gives rise to four distinct states, depending on whether
no rods or either the first or the second rod is inserted, or the system is shut down.
The system’s unsafe state is represented by the latter configuration. The dynamic
constraints further impose restrictions on the system’s behavior. Specifically, if the
temperature falls below 500 ◦C, it can only decrease. The first rod is effective in
cooling down the reactor core if the temperature is below 560 ◦C, while the second
rod can achieve the same goal only if the temperature is below 600 ◦C. As a result,
they must be retracted before the temperature exceeds 500 ◦C.

The issue of ensuring the safe operation of the reactor cooling system necessitates
the development of a suitable control strategy. In practice, designing a safe and
effective control strategy would typically require learning through techniques such as
reinforcement learning. However, given the scope of this study, we opted to adopt
a control strategy previously proposed in the literature, as modelled by a hybrid
automaton [Sch19].

Example 4.1.3 (Hybrid automaton for rod reactor). The goal is to maintain the
coolant between temperatures 510 ◦C and 550 ◦C. When the temperature reaches
its maximum value 550 ◦C, the tank must be refrigerated with one of the rods. The

50 Evaluation

Figure 4.3: Flowpipe construction for the rod reactor example using box representa-
tion with a step size of 0.1 and a jump depth of 3, colored by flow.

temperature rises at a rate ẋ = Kx − 50 and decreases at rates ẋ = Kx − 56 and
ẋ = Kx− 60 depending on which rod is being used. A rod can be inserted again only
if 20 seconds have elapsed since the last time it was removed. If the temperature of
the coolant cannot decrease because there is no available rod, a complete shutdown
is required. Figure 4.2 illustrates the hybrid automaton of this example: variable x
measures the temperature and the values of clocks c1 and c2 represent the times elapsed
since the last use of the first and second rod, respectively. In practice, we find K = 0.1
to guarantee a safe behavior.

In Figure 4.3, we illustrate the reachable state sets obtained from flowpipe cons-
truction to demonstrate that the system under consideration satisfies the safety cri-
teria. The first rod insertion exhibits non-deterministic behavior, while the system’s
behavior becomes fully deterministic thereafter. Specifically, both rods are inserted in
an alternating manner, and the process repeats periodically, ensuring that the system
does not enter any unsafe state. Neither the shutdown mode is reached nor are the
critical temperatures exceeded. This observation motivates the training of a neural
network controller based on the control strategy established by the hybrid automaton
depicted in Figure 4.2.

Example 4.1.4 (Neural network for rod reactor). In Section 3.1.4, we present the
design of the neural network’s input features to encompass the hybrid automaton’s
state variables and the current mode, uniquely represented by an index. This allows
us to create an input tuple (x, c1, c2,m) for the temperature, clocks of the first and
second rod, and the indexed mode.

Given that the flows of the state variable x follow the form ẋ = Kx − hi for
h1 = 50, h2 = 56, h3 = 60 and the shutdown mode is represented by ẋ = 0, we
construct the neural network to predict the next mode from the set {50, 56, 60, 0}.

To perform the analysis, we adopt a specific architecture consisting of a four-layer
feedforward neural network with an input dimension of four, hidden layers of sizes 10,

Benchmarks 51

(a) δ = 0.5 (b) δ = 1.0 (c) δ = 3.0

Figure 4.4: Sampled trajectories simulating the NNCS behavior of the rod reactor
with initial interval x ∈ [510, 520] and different step sizes δ. The vertical dashed lines
denote the invocation of the neural network controller every δ time and the dashed
horizontal lines the temperature threshold of switching the state. Entering a red
region denotes a violation of the safety condition.

20, and 10, and an output layer for a one-dimensional output. Classification is defined
using Equation 3.2, where A1 = (−∞,25), A2 = [25, 53), A3 = [53,58), A4 = [58,∞)
and α1 = 0, α2 = 50, α3 = 56, α4 = 60.

To train the neural network, we randomly generate 2M samples where x ∼ U(500, 560),
c1, c2 ∼ U(0,60), and m ∼ P (0,3), where P (x = 0) = 0.48, P (x = 1) = P (x = 2) =
0.24 and P (x = 3) = 0.04. We define the target outputs as specified by the hybrid
automaton in Example 4.1.3. We set the train-validation split to 80/20 and train the
model using the Adam optimizer with a learning rate of 1e−3 and weight decay 1e−5
for 140 epochs. The batch size is fixed as 32 and we employ the MSE loss function.
The resulting trained network achieves an accuracy of 92.45%.

Assuming the neural network is trained to keep the hybrid system behavior safe,
we shall now proceed to employ it for safety verification. To this end, we need to define
the input to the controller during the reachability analysis which is straightforward
by Section 3.2.1.

Example 4.1.5 (Input star set for the rod reactor). Let xl, xu, c1l , c1u , c2l , c2u ∈ R be
the lower and upper bounds of the temperature, the first and second clock, respectively,
and m ∈ {0,1, 2, 3} the mode the system is in at time point tk. Then the input star
set for the controller ΘI = ⟨c, V, P ⟩ with V = {e1, e2, e3, e4} and P (α) ≜ Cα ≤ s is
defined as

c =


0
0
0
0

 , C =



−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1


, s =



−xl

xu

−c1l
c1u
−c2l
c2u
−mk

mk


.

Now that all the components are defined, it remains to fix the hyperparameters.
Following the rationale from Section 3.1.1, we find a controller invocation frequency
of δ = 1.0 to be an adequate trade-off between computational effort and safety. We

52 Evaluation

compare a selection of different step sizes in Figure 4.4 to underline our decision.
Lastly, we apply Algorithm 7 to compute the reachable sets of the system and testify
the system’s safety.

Example 4.1.6 (NNCS analysis on rod reactor). The resulting reachable states are
plotted in Figure 4.5. Although the neural network controller is trained to behave
safely, the NNCS reachability analysis alone is inconclusive to make statements about
the system’s safety. Clearly, the reachable states begin to diverge at the first time
point when there is a non-deterministic choice to insert a rod at time 10 and quickly
intersect the unsafe regions with x ≥ 560 and x ≤ 500. This observation can be
attributed to the following points. The desired decision boundaries as indicated by
the horizontal lines at 500 ◦C and 560 ◦C correspond to the guards of the original
automaton. At each time of invocation of the neural network, one of the decision
boundaries is contained in the temperature interval. By definition of our approach,
the analysis is tasked to over-approximate all possible trajectories, hence at this point,
the predicted control modes require a branching of the original flowpipe into multiple
flowpipes with different flows. In this case, it is a branching into inserting the first,
the second and no rod, respectively. Additionally, as aforementioned, by the defining
temperature flows of each mode, once the unsafe region of the minimum or maximum
critical temperature is entered, and the flow is too small or too large, the flowpipes
will eventually diverge. For instance, after time step 13 once the flowpipe according
to the temperature flow ẋ = 0.1x − 50, where no rod is inserted, reaches the unsafe
region below 500 ◦C, the slope of the flowpipes only gets steeper with time the lower
the temperature since 0.1 ∗ 500− 50 ≤ 0.

Due to the diverging behavior, eventually both unsafe regions are reached. The
result is thus inconclusive for the considered time horizon of 17 seconds as the over-
approximation of reachable states intersect the bad states although the real trajecto-
ries as illustrated in Figure 4.5b model a safe behavior. In a real-time verification, it
would thus prove beneficial to restrict the analysis of this system to a smaller time
horizon.

4.2 Experimental Results

In this section, we will perform experiments to obtain quantitative results that com-
plement our analysis. To quantify the error introduced by the over-approximation, we
measure the surface area of the flowpipe segments and compare the results obtained
with different state-set representations. Furthermore, we investigate the run-time of
the analysis using different state-set representations. Additionally, we analyze the
branching factor over the course of the analysis and the number of flowpipe segments
generated during the analysis. All experiments are conducted using floating point
numbers.

For this, we present the experimental setup for evaluating the proposed method.
We consider the following benchmarks: the thermostat, which was introduced in
Example 3.1.4, and the rod reactor, as introduced in Example 4.1.2. The Thermostat
is bounded by a time horizon of T = 2.1 with an invocation frequency of 0.1, and
a flowpipe-wise time step of 0.05. For the Rod Reactor, we set the time horizon to
T = 17, local time horizons to 1.0, and flowpipe-wise time steps to 0.25.

Experimental Results 53

(a) Reachable states colored by flow (b) With trajectories (dark blue) overlay

Figure 4.5: Reachable states of the rod reactor example computed by the NNCS
analysis for T = 17 using V-polytope representation. The initial set with temperature
x ∈ [510,520] and flow f1,x at time 0 is indicated by an orange line.

4.2.1 Run-time
To measure the run-time performance, we execute the analysis 100 times using dif-
ferent state-set representations, namely box, H-polytope, and V-polytope. Unfortu-
nately, due to numerical inaccuracies, it is not possible to deploy the analysis for
the rod reactor benchmark using the H-polytope representation, therefore in that
case, we restrict the results to the other two state-set representations. We report
the aggregated results in Table 4.1. Our results indicate that the box representation
consistently yields the lowest run-time. Specifically, for the thermostat example, the
box representation is 2.9 times faster than the V-polytope representation and 5 times
faster than the H-polytope representation. The speedup is even more pronounced in
the rod reactor example, where the speedup is by a factor of 13.4 for the V represen-
tation.

The median runtime values, as shown in the results, follow a similar pattern to
that of the mean values, with the box representation consistently exhibiting the lowest
median runtime and the H-polytope representation manifesting the highest median
runtime in the thermostat benchmark. Additionally, the minimum and maximum
runtime values reveal that the H-polytope representation has a narrower range of
runtime values in comparison to the other two representations in both benchmarks.
Moreover, the H-polytope representation demonstrates the smallest standard devi-
ation, implying that the runtimes are relatively consistent in contrast to the other
representations, while the V-polytope representation bears the highest standard de-
viation in both benchmarks, signifying a broader range of runtime values.

The significant differences in run-time between the H- and V-polytopes can be
attributed to the fact that in the implementation of the analysis, operations are
used where the V-polytope requires less computational efforts than the H-polytope.
In Algorithm 7, several instances of such operations are employed. For example,
creating the input star (as well as processing the predictions of the output stars of

54 Evaluation

Representation Mean Median Min Max Std
Thermostat

Box 880.73 864.33 657.49 3433.20 279.67
H-polytope 4426.76 4418.52 3759.03 4980.86 186.12
V-polytope 2544.66 2496.54 1650.08 5090.44 355.09

Rod reactor
Box 6969.49 6953.31 4877.65 9638.46 474.57
V-polytope 93445.35 91314.90 87657.10 116347.00 4646.71

Table 4.1: Run-time measures in milliseconds.

the neural network reachability analysis) require extracting interval bounds in each
dimension of the considered state set, which necessitates an expensive conversion to a
V-polytope. The affine transformation of the initial set also involves a conversion. In
HyPro, the conversion from H- to V-polytope requires vertex enumeration methods
that entail solving 2d linear programs to obtain the interval bounds for each variable.
Interested readers can find an overview of the computational demands of operations
using convex polytopes in Chapter 6 of [Sch19].

4.2.2 Accuracy
As previously stated in Section 2.1.2, the reachability problem for general hybrid au-
tomata is undecidable [Hen00]. As a result, assessing the accuracy of our approach
cannot be done by a direct comparison with the exact reachable set. Instead, alter-
native measures are necessary for an indirect evaluation of the accuracy. To this end,
we propose quantifying the degree of over-approximation error through a comparison
of the total volume of the flowpipe segments projected to a two-dimensional subspace
with respect to various state-set representations. To assess the evolution over time,
we further examine the area of the projections over the entire time horizon T = Kδ
and the associated growth factor. In this section, when we refer to the growth factor,
we refer to a time-dependent factor ak ∈ R with k = 1, . . . ,K, such that

ak =

{
1, if k = 1

bk
bk−1

, if k = 2, . . .K
(4.1)

given an arbitrary sequence of measurements b1, . . . , bK ∈ R. In case of the area
growth factor, we assume the measurements bk to be the cumulative area until time
tk.

Computation of the area is straightforward due to two restrictions. Firstly, we
consider convex polytopes exclusively, and secondly, to compute the surface area of
the projected flowpipe segments, we only need to consider two-dimensional convex
polytopes, or convex polyhedra. We refer to the Appendix B for the detailed compu-
tation of such areas.

We report the results in Table 4.2 and Figure 4.6. The table shows the results
of computing the total area for different representations (Box, H-polytope, and V-
polytope) over different dimensions for the two benchmarks and allows us to draw
conclusions about the accuracy of the analysis with respect to the state-set repre-
sentations. In both examples, the box representation consistently yields the largest

Experimental Results 55

Projection Box H-polytope V-polytope
Thermostat

t, x 11.0967 10.4597 6.8272
Rod Reactor

t, x 8226.88 - 8087.65
t, c1 49.02 - 5.82292

Table 4.2: Total area of flowpipes computed over different dimension projections.

over-approximation. For the thermostat benchmark, the area of the box, reported as
11.0967, is 1.0609 times larger than of the H-polytope with 10.4597 and even 1.625361
times larger than the V-polytope with 6.82722. When considering the evolution of
the areas over time, Figure 4.6a reveals that the projected flowpipes using box and
H-polytope representation are growing in size faster than V-polytope. This observa-
tion is further supported when calculating the area growth factor over time as shown
in Figure 4.6b which is smaller between time 4 and 11 for the V-polytope, leading to
a mean growth factor (as denoted by µ in the plots) of 1.236 instead of 1.254 for the
other two representations.

Regarding the rod reactor benchmark, it involves four state variables, namely the
temperature denoted by x, as well as the clocks c1 and c2 for the first and second
rods, respectively, and the global time t. In order to compute the area over time,
we project the four-dimensional space onto the plane spanned by the time axis and
each of the state variables separately, resulting in three two-dimensional projections
to be analyzed. Again, the boxes yield the most inaccurate over-approximation in
all projections. In comparison to the V-polytope, the boxes cover an area 1.01 or
8.42 times its area when considering the subspace of the temperature over time or
the clocks over time, respectively. We omit the projection to the global time and the
second clock as it is the same as for the first clock by design of the clock dynamics and
the same initial conditions. Interestingly, the cumulative area over time in Figure 4.6d
for the box and the V-polytope representation are hardly discernible, causing the
growth factors of the flowpipe area over time to be virtually identical as plotted in
Figure 4.6e, unlike the thermostat benchmark. The resulting mean growth factors
are thus 1.4994 and 1.4981 for the box V-polytope, respectively.

The findings presented herein provide compelling evidence for a discernible trade-
off between computational efficiency and precision, with the box representation be-
ing the least computationally demanding but also the most imprecise. Additionally,
the results suggest that utilizing H-polytopes in the analysis may not be beneficial
given their excessive run-time and negligible improvement in over-approximation er-
ror compared to the box representation. In contrast, despite incurring a significant
computational cost, the employment of V-polytopes may be justified by their superior
accuracy in approximating the true reachable set.

4.2.3 Complexity

Due to the intricacy of Algorithm 7, a thorough formal analysis of its time and space
complexity is beyond the scope of this thesis. However, we propose an alternative
approach to gain insights into its theoretical complexity by presenting quantitative

56 Evaluation

0 5 10 15 20

0

2

4

6

8

10

Time step

A
re

a
Box
Hpoly
Vpoly

(a) Cumulative area

0 5 10 15 20

1

1.2

1.4

1.6

1.8

Time step

G
ro

w
th

fa
ct

or

Box
Hpoly
Vpoly
µ box
µ hpoly
µ vpoly

(b) Area growth factor

(c) Thermostat

5 10 15

0

2,000

4,000

6,000

8,000

Time step

A
re

a

Box
Vpoly

(d) Cumulative area

5 10 15

1

1.2

1.4

1.6

1.8

2

Time step

G
ro

w
th

fa
ct

or

Box
Vpoly
µ box
µ vpoly

(e) Area growth factor

(f) Rod reactor

Figure 4.6: Area projected to global time and temperature over time (first column),
and the growth factors (second column) for each representation (box, H-polytope, V-
polytope), respectively. The dashed lines in the combined plot in the second column
denote the mean growth factors.

results. We measure the number of branches and the number of flowpipes at each
time step, which indirectly allows us to evaluate the complexity of the system being
analyzed. Specifically, a larger number of branches may indicate a more complex sys-
tem with numerous intersections and discontinuities in the dynamics, while a smaller
number of branches may indicate a simpler system with more regular dynamics that
is easier to analyze. By quantifying the number of branches at each time step, we can
indirectly assess the theoretical complexity of the analysis and gain insights into the
potential computational cost and difficulty of verifying the system.

We present the results plotted over time in Figure 4.7, where for each benchmarks,
we show the number of branches, the number of flowpipes, and their respective growth
factors according to Equation 4.1. The thermostat benchmark exhibits a steady
increase in the number of branches with short plateaus until at most 12 branches at

Experimental Results 57

time step 20, whereas the rod reactor example has only one branch for the first ten
time steps, after which the number increases heavily at each time point, from 3 to
38 branches in six time steps until the final time step 16. The number of flowpipes
in both benchmarks steadily increases, with the thermostat having 129 flowpipes and
the rod reactor having 169 flowpipes by the time the global time horizon is reached.
However, the slope only begins to rise more strongly after a while for the rod reactor,
and it is more extreme than for the thermostat.

For each time step tk, we further compute the branching factor bk according
to Equation 4.1 over the number of branches. Comparing both benchmarks, the
thermostat has a mean branching factor of 1.16 while the rod reactor has a mean of
1.35, denoted by the dashed horizontal lines. The general tendency for the thermostat
seems to be a decrease in the branching factor over time, whereas it is the opposite
for the rod reactor, where there appears to be an increase in the long run.

Analogously, we compute the growth factor fk of the number of flowpipes at time
tk and obtain a mean of 1.252 for the thermostat and a mean of 1.397 for the rod
reactor, highlighted by the dashed lines. Interestingly, the growth factor of the number
of flowpipes in each benchmark appears to follow the evolution of the branching factor,
with the thermostat flowpipe growth factor decreasing over time and the rod reactor’s
increasing.

The findings of this study indicate that the complexity of both benchmarks in-
creases with time, as evidenced by the continuous rise in the number of branches
and flowpipes. Nevertheless, the rod reactor benchmark displays a more pronounced
growth in these quantities compared to the thermostat. In addition, the branching
factor and growth factor analyses provide further insights into the complexity of the
benchmarks. The mean values of both factors are greater for the rod reactor com-
pared to the thermostat, suggesting that the former is more complex in terms of the
number of branches and flowpipes generated over time which indeed aligns with the
comparative larger size of the rod reactor benchmark.

While there are no established references for interpreting these numbers, the direct
comparison of both benchmarks allows us to infer that the factors are indicative of
the complexity of the respective systems. It is worth noting, however, that this metric
has limitations as it depends on the hyperparameters set for the benchmarks, such as
the global time horizon or step size. Therefore, it is challenging to generalize these
findings to unseen benchmarks and make them comparable. Nevertheless, we still
believe that the evolution of the number of branches and flowpipes over time is an
insightful metric to consider.

58 Evaluation

0 5 10 15 20

2

4

6

8

10

12

Time step

N
um

be
r

of
br

an
ch

es

(a) Thermostat, branching

0 5 10 15

0

10

20

30

Time step

N
um

be
r

of
br

an
ch

es

(b) Rod reactor, branching

0 5 10 15 20

0

50

100

Time step

N
um

be
r

of
flo

w
pi

pe
s

(c) Thermostat, flowpipes

0 5 10 15

0

50

100

150

Time step

N
um

be
r

of
flo

w
pi

pe
s

(d) Rod reactor, flowpipes

0 5 10 15 20

1

1.2

1.4

1.6

1.8

2

Time step

G
ro

w
th

fa
ct

or

Branching
Flowpipes growth
µ branching
µ flowpipe

(e) Thermostat, growth factors

0 5 10 15

1

1.5

2

2.5

3

Time step

G
ro

w
th

fa
ct

or

Branching
Flowpipes growth
µ branching
µ flowpipe

(f) Rod reactor, growth factors

Figure 4.7: Branching (first row), cumulative number of flowpipes (second row) and
growth factor of number of flowpipes and branches (third row) over time for the ther-
mostat (left) and rod reactor (right) benchmarks. The dashed lines in the combined
plot in the third row denote the mean growth factors.

Chapter 5

Conclusion

In the last chapter, we provide a critical analysis of the results obtained in the previous
chapters and discuss their implications, limitations, and potential for future research.

5.1 Discussion

In this work, we developed an algorithm for NNCS safety verification of a hybrid sys-
tem modeled by a feedback loop between a neural network controller and a simplified
hybrid automaton, represented as a set of linear ODEs defining the plant dynam-
ics, which enabled leveraging the established reachability analysis method of flowpipe
construction in conjunction with an exact star-based neural network reachability ana-
lysis. This not only keeps the over-approximation error minimal but also allows for
efficient computation of reachable sets.

The approach is supported by a comprehensive analysis of the possible design
choices that led to the final solution and is further shown to be sound for verify-
ing the safety of neural network controlled hybrid systems. Our approach keeps the
over-approximation error minimal for the following reasons: first, the controller’s rea-
chability analysis is exact and thus does not introduce any additional errors, and
second, since we are only propagating the original initial set, we are mitigating ac-
cumulated wrapping effects. We assess the algorithm’s effectiveness by evaluating
it on two benchmarks from related literature and provide quantitative results that
offer insights into the method’s run-time, accuracy and complexity. The implemen-
tation with HyPro [SÁMK17] allows for easy integration of further benchmarks and
extension to additional capabilities.

Yet, the current method is limited to fully connected feed-forward neural networks
with piece-wise linear activation functions only. Further, since all potential transient
trajectories generated from a system are considered with equal confidence, the re-
sulting analysis may return diverging states as seen in the rod reactor benchmark.
Motivated by the need to evaluate our approach on some benchmarks and limited by
time constraints, we adopted the controller behavior from existing hybrid automata,
however, it would be more sensible for the neural network to learn the optimal con-
trols in an unsupervised manner. These restrictions thereby give rise to the following
improvements future work may undertake.

60 Conclusion

5.2 Future work
Currently, the controller in this work only makes definite decisions about letting the
plant construct flowpipes according to the predicted mode in the next step. This be-
havior results in the propagation of the original initial set in its full size for a duration
of δ. However, a more nuanced decision-making process could be developed to reduce
the over-approximation error and the wrapping effects by incorporating a qualitative
measure that considers the controller’s confidence, given that it models a safe system.
Additionally, backward analysis could be applied from the reachable unsafe states
to refine the over-approximation by constructing flowpipes only for the relevant tra-
jectories that lead to unsafe states, which would be a more efficient approach than
constructing flowpipes for all potential trajectories.

In addition, the current output model of the controller is constrained by the as-
sumption that the flows of the underlying hybrid automaton can only be distinguished
by a constant value that the controller is trained to predict. This definition needs
to be expanded to increase the applicability of this approach. For example, dealing
with plants with nonlinear dynamics would enable comparisons with existing tech-
niques [IWA+19, ICW+21] that utilize Taylor models as a representation and imple-
ment them using FlowStar* [CÁS13]. Moreover, it would be worthwhile to investigate
the feasibility of the controller operating as a PID controller in specific cases, with
the controller output representing a control input from a finite but uncountable set
rather than a single discretized control.

To improve the practicality of the analysis for real-world applications, it may be
beneficial to apply a reinforcement learning approach to find the optimal control given
a specific state rather than artificially generating controls, as this work did. These
extensions and improvements could enhance the capabilities and usefulness of the
proposed algorithm.

Further metrics could be developed to enhance the comparability of the algorithm
with existing tools. Moreover, the theoretical time and space complexity could be
analyzed to provide a better understanding of the algorithm’s performance.

The rod reactor benchmark posed numerical challenges that prevented the analysis
from being conducted using the H-polytope representation. This issue highlights the
need for future work to improve the existing methodology. Furthermore, incorporating
alternative state set representations, such as zonotopes and support functions, may
be explored in future research, each with its benefits and drawbacks.

Bibliography

[Á21] Erika Ábrahám. Lecture notes in modeling and analysis of hybrid sys-
tems, May 2021.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Hen-
zinger, P-H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical
computer science, 138(1):3–34, 1995.

[BD17] Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent rea-
chability of large linear systems with inputs. In International Conference
on Computer Aided Verification, pages 401–420. Springer, 2017.

[Bra86] Bart Braden. The surveyor’s area formula. The College Mathematics
Journal, 17(4):326–337, 1986.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In Computer Aided Verification:
25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings 25, pages 258–263. Springer, 2013.

[FHC+20] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu.
Reachnn*: A tool for reachability analysis of neural-network controlled
systems. In Automated Technology for Verification and Analysis: 18th
International Symposium, ATVA 2020, Hanoi, Vietnam, October 19–23,
2020, Proceedings, pages 537–542. Springer, 2020.

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. Spaceex: Scalable verification of hybrid sys-
tems. In Computer Aided Verification: 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23, pages
379–395. Springer, 2011.

[Gir05] Antoine Girard. Reachability of uncertain linear systems using zono-
topes. In International Workshop on Hybrid Systems: Computation and
Control, pages 291–305. Springer, 2005.

[Hen00] Thomas A Henzinger. The theory of hybrid automata. In Verification of
digital and hybrid systems, pages 265–292. Springer, 2000.

62 Bibliography

[HFC+21] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. Polar: A
polynomial arithmetic framework for verifying neural-network controlled
systems. arXiv:2106.13867, 2021.

[HFL+19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. Reachnn:
Reachability analysis of neural-network controlled systems. ACM Trans-
actions on Embedded Computing Systems (TECS), 18(5s):1–22, 2019.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and
System Sciences, 57(1):94–124, 1998.

[ICW+21] Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur, George
Pappas, and Insup Lee. Verisig 2.0: Verification of neural network con-
trollers using taylor model preconditioning. In Computer Aided Verifi-
cation: 33rd International Conference, CAV 2021, Virtual Event, July
20–23, 2021, Proceedings, Part I, pages 249–262. Springer, 2021.

[IWA+19] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and
Insup Lee. Verisig: verifying safety properties of hybrid systems with
neural network controllers. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pages 169–
178, 2019.

[JLB+16] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and
Mykel J Kochenderfer. Policy compression for aircraft collision avoidance
systems. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), pages 1–10. IEEE, 2016.

[KBD+17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochen-
derfer. Reluplex: An efficient smt solver for verifying deep neural net-
works. In International conference on computer aided verification, pages
97–117. Springer, 2017.

[LG09] Colas Le Guernic. Reachability analysis of hybrid systems with linear
continuous dynamics. PhD thesis, Université Joseph-Fourier-Grenoble I,
2009.

[LTS99] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for rea-
chability specifications for hybrid systems. Automatica, 35(3):349–370,
1999.

[SÁMK17] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. Hypro: A C++ library of state set representations for
hybrid systems reachability analysis. In NASA Formal Methods Sympo-
sium, pages 288–294. Springer, 2017.

[Sch19] Stefan Schupp. State Set Representations and Their Usage in the Reacha-
bility Analysis of Hybrid Systems. PhD thesis, RWTH Aachen University,
Aachen, 2019.

[SGM+18] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and
Martin Vechev. Fast and effective robustness certification. Advances in
neural information processing systems, 31, 2018.

Bibliography 63

[SGPV19] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
An abstract domain for certifying neural networks. Proceedings of the
ACM on Programming Languages, 3(POPL):1–30, 2019.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. In International Conference on Learning Representa-
tions, 2014.

[TML+19] Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong
Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson. Par-
allelizable reachability analysis algorithms for feed-forward neural net-
works. In 2019 IEEE/ACM 7th International Conference on Formal
Methods in Software Engineering (FormaliSE), pages 51–60. IEEE, 2019.

[Tra20] Dung Hoang Tran. Verification of Learning-Enabled Cyber-Physical Sys-
tems. PhD thesis, Vanderbilt University, 2020.

[WL19] Song Wang and Zhixia Li. Exploring the mechanism of crashes with
automated vehicles using statistical modeling approaches. PloS one,
14(3):e0214550, 2019.

[XTJ18] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. Out-
put reachable set estimation and verification for multilayer neural net-
works. IEEE transactions on neural networks and learning systems,
29(11):5777–5783, 2018.

[XTRJ18] Weiming Xiang, Hoang-Dung Tran, Joel A Rosenfeld, and Taylor T
Johnson. Reachable set estimation and safety verification for piecewise
linear systems with neural network controllers. In 2018 Annual American
Control Conference (ACC), pages 1574–1579. IEEE, 2018.

[XTYJ20] Weiming Xiang, Hoang-Dung Tran, Xiaodong Yang, and Taylor T John-
son. Reachable set estimation for neural network control systems: A
simulation-guided approach. IEEE Transactions on Neural Networks and
Learning Systems, 32(5):1821–1830, 2020.

64 Bibliography

Appendix A

Supplementary Proofs

In this supplementary proofs section, we present a collection of proofs that were
omitted from the preliminary section of the thesis. These proofs provide additional
support for the main theorems and lemmas discussed in the thesis. The supplementary
proofs section is intended to be read in conjunction with the preliminary section and
the main body of the thesis.

Proposition A.0.1 (2.2.1). Any bounded convex polyhedron P =
{
x | Cx ≤ s, x ∈ Rd

}
can be represented as a star.

Proof. The polyhedron can be encoded by the star set Θ with the center c = (0,0, · · · , 0)T ,
the basis vectors V = {e1, e2, · · · , ed} in which ei is the i-th unit vector of Rd, and
the predicate P (α) ≜ Cα ≤ s.

Proposition A.0.2 (2.2.2). Given a star set Θ = ⟨c, V, P ⟩, an affine mapping of the
star Θ with the affine mapping matrix W and offset vector b defined by Θ̄ = {y | y =
Wx+ b, x ∈ Θ} is another star such that

Θ̄ = ⟨c̄, V̄, P̄ ⟩, c̄ = Wc+ b, V̄ = {Wv1,Wv2, . . . ,Wvm} , P̄ ≡ P.

Proof. Based on the definition of a star, we can infer that can be expressed as

Lemma A.0.3 (2.2.4). The worst-case complexity of the number of stars in the reach-
able set of an FNN with N neurons is O(2N).

Proof. To prove the worst-case complexity of the number of stars in the reachable set
of an FNN, we begin with a star input set. Each stepReLU operation applied to the
input set results in at most two more stars. Therefore, the total number of stars in
the worst-case scenario of one layer is 2nL , where nL is the number of neurons in the
layer. Since the output reachable sets of one layer are the inputs of the next layer, the
total number of stars in the reachable set of an FNN with k layers and N neurons, in
the worst-case scenario, is 2nL1 · · · · ·2nLk = 2nL1

+···+nLk = 2N . Hence, the worst-case
complexity of the number of stars in the reachable set of an FNN is O(2N).

Lemma A.0.4 (2.2.5). The worst-case complexity of the number of constraints of a
star in the reachable set of an FNN with N neurons is O(N).

66 Supplementary Proofs

Proof. The stepReLU sub-procedure produces one or two stars that have at most one
more constraint than the star input set Θ. Hence, for a layer of n neurons, at most
n stepReLU operations are performed, leading to star reachable sets that contain at
most n more constraints than the input set. Therefore, the number of constraints in a
star input set grows linearly over layers, resulting in a worst-case complexity of O(N)
for the number of constraints in a star in the reachable set of an N -neuron FNN.

Theorem A.0.5 (2.2.7). Let N be an FNN, Θ = ⟨c, V, P ⟩ be a star input set,
N (Θ) =

⋃k
i=1 Θi, Θi = ⟨ci, Vi, Pi⟩ be the reachable set of the neural network, and S

be safety specification. Denote Θ̄i = Θi ∩ ¬S = ⟨ci, Vi, P̄i⟩, i = 1, . . . , k. The neural
network is safe iff P̄ = ∅ for all i.

Proof. The exact reachable set is a union of stars. It is trivial that the neural network
is safe if and only if all stars in the reachable set do not intersect with the unsafe region,
i.e., Θ̄i is an empty set for all i, or equivalently, the predicate P̄i is empty for all i.

Appendix B

Convex Polygon Area
Computation

Let p1, p2, . . . , pn ∈ R2 with pi = (xi, yi)
T for i = 1, . . . , n, n > 1 denote the unordered

coordinates of a convex polygon. To compute its area, we first want to sort them in
a clockwise or anti-clockwise order. Without loss of generality, assume we want to
order them in counter-clockwise order. For this, we require an arbitrary reference
point that lies inside the polygon. Take

p∗ =
1

n

n∑
i=1

pi,

which is simply the averaged point of all coordinates.
After establishing a reference point by averaging, which is applicable only for the

convex polygon, the vertices can be sorted by the angle formed by a line segment
connecting the reference point and each vertex in a counterclockwise direction with
respect to the x-axis.

The angle between the line segment connecting two points p1, p2 ∈ R2 with the
positive x-axis in the anti-clockwise direction is computed by

θ(p1, p2) =


2π − arcsin(k) if k ≥ 0 and x2 ≥ x1 (first quadrant)
π + arcsin(k) if k ≥ 0 and x2 < x1 (second quadrant)
π − arcsin(−k) if k < 0 and x2 < x1 (third quadrant)

arcsin(−k) if k < 0 and x2 ≥ x1 (fourth quadrant)

(B.1)

where k is the slope of the line connecting p1 and p2, calculated as

k = (y2 − y1)/d(p1, p2).

The distance function d(·) is assumed to be defined as the Euclidean distance between
two points in the Cartesian coordinate system.

Lastly, the points pi = (xi, yi)
T for i = 1, . . . , n are sorted by their angle θi(p

∗, pi)
and the shoelace formula [Bra86]

A =
1

2

∣∣∣∣∣
n−1∑
i=1

xiyi+1 + xny1 −
n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣∣ (B.2)

returns the area of the convex polygon.

	Notations
	Basic Definitions
	Introduction
	Related Work
	Thesis Outline

	Preliminaries
	Hybrid Systems
	Hybrid Automata
	Verification of Hybrid Systems

	Neural Networks
	Reachability Analysis of Neural Networks
	Neural Network Control System Verification

	Reachability Analysis for Neural Network Controlled Hybrid Systems
	Conceptualization
	Invocation of Neural Network
	Modeling the Hybrid System
	Modeling the Neural Network Controller
	Designing the Neural Network

	NNCS Analysis
	Input Star Definition
	Neural Network Reachability Analysis
	Flowpipe Construction Using Control Input
	Algorithm Implementation

	Evaluation
	Benchmarks
	Thermostat
	Rod Reactor

	Experimental Results
	Run-time
	Accuracy
	Complexity

	Conclusion
	Discussion
	Future work

	Bibliography
	Appendix
	Supplementary Proofs
	Convex Polygon Area Computation

