
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

IMPROVING INCREMENTAL LINEARIZATION FOR

SATISFIABILITY MODULO NON-LINEAR REAL

ARITHMETIC CHECKING

Philippe Specht

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Christina Büsing

Additional Advisor:
Jasper Nalbach M.Sc. Aachen, April 12, 2023

Acknowledgment

First, I would like to thank professor Erika Ábrahám for giving me the opportunity
for this thesis and teaching me the required theoretical background. In addition, I
would like to thank Jasper Nalbach for answering my every question in detail. Also,
I would like to thank professor Christina Büsing for examining this thesis.

Last but not least, I would like to thank my family and friends, especially my
parents and girlfriend, for their unconditional support.

Abstract

Satis�ability modulo theories (SMT) solving deals with checking the satis-
�ability of a given formula over a distinct �rst-order logic theory. This the-
sis proposes improvements to incremental linearization (IL) [Irf18][CGI+18], a
procedure that can be used for SMT-solving the quanti�er-free non-linear real
arithmetic (NRA).

The value of this approach stems from its incompleteness. In this case,
meaning that it is not guaranteed to terminate for every input. This distances
the approach from complete NRA solvers that are guaranteed to be exponential
in worst-case runtime.

Incremental linearization works by �rst abstracting the non-linear input for-
mula into a linear one. The abstracted formula is then iteratively checked for
satis�ability using a solver for linear real arithmetic (LRA). The result can pos-
sibly be transferred to the original, non-linear input. If not, the abstracted
formula is re�ned by conjuncting linear formulas to it. For that, di�erent types
of formulas that we refer to as axioms can be utilized.

As the main contribution of this thesis, some existing axioms are adapted
and removed. Most notably, however, a new type of axiom is introduced. We
call it the secant axiom. It is intended as a (partial) counterpart to the existing
tangent plane axiom.

Also, heuristics are introduced that specify how the initial abstraction is cre-
ated. These are motivated by di�erent ways of abstracting, leading to di�erent
possibilities for re�nement.

Incremental Linearization has been implemented in smt-rat [smt] with the
proposed changes. Experimental evaluation shows that the heuristics for initial
abstraction do not decrease overall runtime. However, a signi�cant, overall
decrease in runtime was achieved by using the secant axiom.

iv

Contents

1 Introduction 9

2 Preliminaries 11
2.1 SMT-Solving for NRA and LRA . 11
2.2 Incremental Linearization for NRA-Solving 12

3 Improving Incremental Linearization 19
3.1 Heuristics for the Initial Abstraction 19
3.2 Improving the Re�nement . 23

4 Evaluation 35
4.1 Implementation Details and Setup . 35
4.2 Experimental Evaluation . 36

5 Conclusion 47
5.1 Future Work . 47
5.2 Summary . 49

Bibliography 51

vi Contents

Chapter 1

Introduction

In theoretical computer science, satis�ablity modulo theories (SMT) refers to the
problem of checking whether there exists an assignment to the variables of a �rst-
order logic formula or not. Or in other words, checking its satis�ability. To tackle
this problem, SMT solvers are speci�ed that can check the satis�ability of any formula
for a speci�c �rst-order logic theory, or fragment thereof.

A main application for these solvers is program testing, analysis, and veri�cation
[BdM14]. Tools for these tasks are a critical factor in ensuring the correct functionality
of software. In doing so, they guarantee safety and security in the software's usage. A
theory fragment used in this context is the quanti�er-free non-linear real arithmetic
(NRA). Formulas over this theory fragment are Boolean combinations of (in)equalities
that compare a multivariate, non-linear polynomial to zero.

Among other things, incremental linearization (IL) [Irf18][CGI+18] can be used to
constitute a SMT solver for NRA. Such a solver initially abstracts the non-linear input
formula to a linear one. Then, this abstraction is iteratively checked for satis�ability
using a solver for quanti�er-free linear real arithmetic (LRA). The result of this check
can possibly be transferred to the original, non-linear formula. If this cannot be done,
the abstracted formula is re�ned by conjuncting linear formulas. This re�nement can
be made using di�erent types of formulas that we refer to as axioms.

The potential of this approach lies in the fact that it is incomplete. In this particu-
lar case, this means that the solver can return whether the input formula is satis�ed or
not. Nevertheless, it can also run ad in�nitum without ever giving an answer. While
this might sound grim, it can be seen as a trade-o� for the runtime of a complete
NRA solver, which is proven to have a worst-case exponential runtime. Of course, not
terminating is worse! However, IL's main complexity comes from the utilized LRA
solver, which can run in polynomial time. Thus, there is potential for the approach
to solve some otherwise hard problems very quickly.

In this thesis, we propose changes that aim to improve IL over its initial form
as presented in [Irf18]. More precisely, these changes aim to improve the re�nement
since, after the initial LRA check of the abstraction, it is the only thing that can
change the procedure's outcome.

For one, we remove and modify some existing axioms. Above all, however, we
introduce a new axiom that we call the secant axiom. It is intended as a (partial)
counterpart to the very impactful, already existing tangent plane axiom. Also, we
will specify di�erent heuristics for creating the initial abstraction. That is because

10 Introduction

di�erent ways of abstracting can create di�erent opportunities for re�nement.
We implemented a NRA solver based on IL in smt-rat [smt] with these changes

in place. Experimental evaluation shows that usage of the heuristics for initial ab-
straction did not lead to a decrease in overall runtime. The introduction of the secant
axiom on the other hand, did exactly that with the decrease even being quite signi�-
cant.

The rest of this thesis is structured as follows. Chapter 2 formally speci�es SMT-
solving for NRA and LRA. Also, IL is introduced as in [Irf18]. Then, the aforemen-
tioned changes to IL are proposed in Chapter 3. The experimental evaluation of IL
can be found in Chapter 4. To conclude, a summary and ideas for future work are
given in Chapter 5.

Chapter 2

Preliminaries

We will �rst introduce the concept of SMT-solving for the theories of NRA and LRA1.
Then, we will present incremental linearization (IL) as proposed in [Irf18], which is
the foundation that this thesis builds upon.

2.1 SMT-Solving for NRA and LRA

Generally, the problem of SMT-solving can be formulated as proving whether there
exists an assignment that satis�es a given formula over a given �rst-order logic theory
(or not). The theory for which we want to conduct SMT solving is quanti�er-free
non-linear real arithmetic (NRA). However, the theory of quanti�er-free linear real
arithmetic (LRA) will also be introduced since IL essentially relies on reducing NRA
to LRA.

In the following, we will de�ne the terms we used above in order to specify the
problem of SMT solving for NRA/LRA, or short NRA/LRA-solving. We begin by
de�ning the syntax of formulas, starting with their atomic components.

De�nition 2.1.1 ((Linear) Constraint). Let R ∈ {Z,Q} be a ring, p ∈ R[x1, . . . ,xn]
a polynomial and ▽ ∈ {=, ̸=,≥,≤, >,<} a comparison operator. A constraint C over
R[x1, . . . ,xn] is of the form p▽0.

C is linear if p is linear, i.e. p can be written as
∑n

i=1 ci·xi for some c1, . . . , cn ∈ R.

Note that the multiplication of a constraint over Q[x1, . . . ,xn] with the prod-
uct of the denominators of all its coe�cients results in an equivalent constraint
over Z[x1, . . . ,xn]. Throughout this thesis, we will therefore consider polynomials
in Z[x1, . . . ,xn], even though polynomials in Q[x1, . . . ,xn] can be used equivalently.
Now, constraints can be combined into a formula as follows.

De�nition 2.1.2 (Formula, Clause). A NRA formula φ in CNF is of the form∧
i∈N

∨
j∈M Cij where N and M are �nite index sets and Cij is a constraint over

Z[x1, . . . ,xn]. Then for each i ∈ N ,
∨

j∈M Cij is a clause. φ can be represented in
clausal form as {

⋃
j∈M{Cij} | i ∈ N}.

If all constraints in φ are linear, then it is (also) a LRA formula.

1Parts of Section 2.1 are adapted or directly taken from [Spe20]

12 Preliminaries

Example 2.1.1. φ1 is a NRA formula in CNF in constraints over Z[x1,x2]

φ1 = (3x21x2 + x1x2 − 1 > 0︸ ︷︷ ︸
a constraint

∨x1 − 5x2 ≤ 0)

︸ ︷︷ ︸
a clause

∧(4x1 + 7 ≤ 0).

In clausal form

φ1 = {3x21x2 + x1x2 − 1 > 0, x1 − 5x2 ≤ 0}, {4x1 + 7 ≤ 0}}.

φ2 is a LRA formula in CNF in constraints over Z[x1,x2,z1,z2]

φ2 = (3z2 + z1 − 1 > 0 ∨ x1 − 5x2 ≤ 0) ∧ (4x1 + 7 ≤ 0).

Adding semantics, an assignment for a NRA/LRA formula, is a mapping of all
contained variables to real values. The formula's truth value under the assignment can
then be evaluated by replacing the variables with the values, followed by arithmetic,
and then Boolean evaluation.

Example 2.1.2. φ1 from Example 2.1.1 is evaluated under the assignment [x1 7→
1, x2 7→ 2] as follows

φ1[x1 7→ 1, x2 7→ 2] = (3 · 12 · 2 + 1 · 2− 1 > 0 ∨ 1− 5 · 2 ≤ 0) ∧ (4 · 1 + 7 ≤ 0)

= (7 > 0 ∨ −9 ≤ 0) ∧ (11 ≤ 0)

= (true ∨ true) ∧ false

= false

Since φ1 evaluates to false, we say that the assignment does not satisfy the formula.

Now, the problem of SMT-solving for NRA/LRA can be formulated as follows:
Given a NRA/LRA formula φ in variables x1, . . . , xn. Is φ satis�able? I.e., is there
an assignment a1, . . . , an ∈ R for variables x1, . . . , xn so that φ evaluates to true?

2.2 Incremental Linearization for NRA-Solving

For NRA-solving as de�ned above, incremental linearization (IL) can be used. This
approach was originally introduced for satis�ability and veri�cation modulo theories
for NRA as well as for transcendental functions by Irfan et al. [Irf18][CGI+18]. We will
only focus on IL for NRA-solving though. Note that there have already been attempts
at improving IL for NRA-solving [Zam19]. However, this thesis is independent of that.
In the following, we present IL for NRA-solving as in [Irf18].

The overall procedure is shown in Algorithm 1. Its input and output conform with
the problem formulation for NRA-solving. In the following sections, we will look at
the algorithm along the occurring function calls.

2.2.1 Initial Abstraction from NRA to LRA

The �rst step of Algorithm 1 is to call initial-abstraction (l.1). This function
derives a linear formula φ from the non-linear input ψ that we call the (linear) ab-
straction of ψ. The idea to construct said abstraction is to replace every monomial

Incremental Linearization for NRA-Solving 13

Algorithm 1: NRA-solve using IL (adapted from [Irf18])
Input : a NRA formula ψ in CNF
Output: a Boolean res

1 φ := initial-abstraction(ψ)
2 Γ := ∅
3 while true do

4 (res, µ) := lra-check(φ ∧
∧

Γ)
5 if not res then

6 return res

7 res := nra-lift(ψ, φ, µ)
8 if res then

9 return res

10 Γ′ := refine(ψ, φ, µ)
11 Γ := Γ ∪ Γ′

m = c · xi11 · . . . xinn that occurs in ψ with m′ = c · z using a fresh variable z. Thereby,
fresh means that it is newly de�ned and previously unused.

This is done by iteratively abstracting the products of two variables into a fresh
one. In the base case, for example, the product x1x2 can be abstracted by z1. Note
that a more sophisticated term, x21x2 could then be replaced by x1z1. However, this
would then have to be abstracted again into a fresh variable z2 since x1z1 is still
non-linear.

Example 2.2.1. The non-linear formula ψ over Z[x1,x2]

ψ = 3x2
1x2 + x1x2 − 1 > 0 ∨ x1 − 5x2 ≤ 0

could be abstracted to a linear formula φ over Z[x1,x2,z1,z2] as follows

φ
z1=x1·x2→ 3x1z1 + z1 − 1 > 0 ∨ x1 − 5x2 ≤ 0
z2=x1·z1→ 3z2 + z1 − 1 > 0 ∨ x1 − 5x2 ≤ 0.

It should also be clear that this process of abstracting is not distinct. For example,
considering x21x2 as in Example 2.2.1, we could abstract x1x1 by z′1 and then z′1x2 by
z′2 instead. Therefore, we will present heuristics for this process of abstracting in Sec-
tion 3.1. We also experimentally evaluate how these heuristics a�ect the performance
of IL in Section 4.2.4.

After the initial abstraction has been created in Algorithm 1, merely Γ is ini-
tialized to be the empty set (l.2) before entering the loop that constitutes the main
functionality of the algorithm.

2.2.2 LRA-Solving the Abstracted Formula

The �rst step of the loop is checking φ for satis�ability via the function lra-check

(l.4). This is done using an LRA solver. The solver in our implementation uses the
simplex algorithm in the DPLL(T) framework [Nal20]. However, any complete solver
can be used.

14 Preliminaries

The solver returns whether the formula is satis�able via the Boolean res. If res
is false, the algorithm will terminate and return that ψ is unsatis�able since its over-
approximation φ is already unsatis�able (ll.5-6). Otherwise, φ is satis�able and the
LRA solver will additionally return an assignment µ that satis�es φ.

2.2.3 Lift LRA Assignment to NRA

The assignment µ is then used in nra-lift (l.7). This function tries to deduce an
assignment µ′ from µ so that it satis�es ψ. If this is successful, the algorithm will
return that ψ is satis�able and terminate (ll.8-9).

The easiest approach would be to set µ′ := µ. Then the only remaining step is to
check, for every variable z that abstracted the product of some variables x1 and x2
in initial-abstraction, whether µ′(z) = µ′(x1) · µ′(x2) holds.

Note that it might happen that variables x1 and/or x2 do not occur in φ and
therefore are not assigned in µ/µ′. This is due to the fact that during initial-

abstraction, variables can vanish from the formula if all their occurrences are re-
placed. In that case, the assignment(s) have to be guessed. If possible, this should be
done so that µ′(z) = µ′(x1) · µ′(x2) holds.

In practice, however, this approach is unlikely to succeed on a consistent basis.
That is because it merely checks whether the LRA assignment coincidentally is also
consistent with the non-linear multiplications that have not been considered in the
creation of said assignment.

To increase the chances of success, the authors of [Irf18] proposed a more sophis-
ticated approach that aims to under-approximate ψ. In detail, a new linear formula
φ′ is derived from φ. It consists of two components. The �rst is the truth assignment
of φ which can be seen in the �rst line of Equation (2.1). It is a conjunction of all
constraints contained in φ where all constraints that evaluate to false under µ are
negated. The second component are the multiplication-line constraints which can be
seen in the second line of Equation (2.1). These constraints essentially assume all
abstracted multiplications to be linear with respect to the assignment of x or y.

φ′ =
∧

C∈constraints(φ)
s.t. µ satis�es C

C ∧
∧

C∈constraints(φ)
s.t. µ does not satisfy C

¬C ∧

∧
z=x·y via initial abstraction

(
(x = µ(x) ∧ z = µ(x) · y) ∨
(y = µ(y) ∧ z = µ(y) · x)

) (2.1)

Now, φ′ under-approximates the non-linear formula ψ. This means that if φ′ is sat-
is�able, ψ is satis�able as well. Thus, nra-lift returns the result of lra-check(φ′)
if this approach is used. Note, however, that since φ′ is an under-approximation, if it
is unsatis�able, ψ can still be satis�able.

Coming back to the algorithm, if the satis�ability of ψ could not be proven in
ll.7-9, the next step is to re�ne φ.

2.2.4 Re�nement in IL using Axioms

This re�nement is done via the function refine (l.10). It returns a set of LRA
formulas Γ′ that is added to the continuously maintained set of formulas Γ (l. 11).
From a theory perspective, the added formulas re�ne φ since they are conjuncted to

Incremental Linearization for NRA-Solving 15

Monotonicity axioms:
(|x1| ≤ |x2| ∧ |y1| ≤ |y2|) → |z1| ≤ |z2|
(|x1| < |x2| ∧ |y1| ≤ |y2| ∧ y2 ̸= 0) → |z1| < |z2|
(|x1| ≤ |x2| ∧ |y1| < |y2| ∧ x2 ̸= 0) → |z1| < |z2|

Congruence axiom:
(x1 = x2 ∧ y1 = y2) → z1 = z2

Figure 2.1: Axioms specifying a property of the multiplication function w.r.t. ab-
stracted multiplications z1 = x1 · y1 and z2 = x2 · y2. Thereby, | · | is used as a unary
function symbol that maps to the absolute value of the input (adapted from [Irf18]).

Zero axiom:
(x = 0 ∨ y = 0) ↔ z = 0

Sign axioms:
((x > 0 ∧ y > 0) ∨ (x < 0 ∨ y < 0)) ↔ z > 0
((x > 0 ∧ y < 0) ∨ (x < 0 ∨ y > 0)) ↔ z < 0

Tangent plane axiom:
(x = a→ z = a · y) ∧
(y = b→ z = b · x) ∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b)) → z > b · x+ a · y − a · b) ∧
(((x > a ∧ y < b) ∨ (x < a ∧ y > b)) → z < b · x+ a · y − a · b)

Figure 2.2: Axioms bounding the values of an abstracted multiplication z = x · y.
Thereby, a = µ(x) and b = µ(y) (adapted from [Irf18]).

it in the lra-check (l.4). As a result, the overall algorithm can yield di�erent results
after each iteration of the loop.

The formulas that are created for re�nement aim at linearly specifying the non-
linear multiplications that were abstracted in intial-abstraction (l.1). For that,
schemes of formulas are created that can be instantiated for a singular or pair of
abstracted multiplications. We call these schemes axioms since they axiomatize prop-
erties of the multiplication(s).

The following axioms are adapted from [Irf18], where (in addition to LRA) un-
interpreted functions are used for abstraction. Because of that, not all axioms can
be adapted, and for the remaining ones, the notation changes slightly. However, the
meaning of the remaining axioms is exactly as described in [Irf18]. Broadly speaking,
the axioms either specify a property of the multiplication function or bound the values
of a multiplication using the value zero or the assignment µ.

The monotonicity axioms and the congruence axiom fall into the �rst category
and are displayed in Figure 2.1. They precisely specify the name-giving property for
a pair of abstracted multiplications.

The second category consists of the zero axiom, sign axioms, and the tangent
plane axiom which are shown in Figure 2.2. The zero axiom and the sign axioms are
rather straightforward, specifying the multiplication of two variables with respect to
the sign function. Thereby, the zero axiom covers the special case of zero. Note that

16 Preliminaries

in [Irf18], what we refer to as sign axioms were called zero axioms as well. Also, the
term sign axioms was used for a di�erent property that we can not replicate here due
to us not using uninterpreted functions.

A more involved axiom is the tangent plane axiom. Its name comes from the
tangent plane, which is de�ned as z = bx+ ay − ab for a point (a, b). This plane has
the special property that it intersects with the multiplication function z = x ·y in two
distinct lines on the plane's surface that cross at (a, b, ab).

In Figure 2.3c, the multiplication function z = x · y and the tangent plane z =
2x + 6y − 12 for (a, b) = (6, 2) are displayed. The multiplication function is also
explicitly shown in Figure 2.3a-b for reference. In the plot, the above-mentioned lines
and intersection at (a, b, ab) = (6, 2, 12) can clearly be seen.

If we project the plot along the z-axis, we can observe that the x-y-domain is
split orthogonally into 4 quadrants Iab-IVab with respect to the projected lines, see
Figure 2.3d. Now, the premises of the tangent plane axiom as given in Figure 2.2 can
be concluded from this split.

That is, the �rst two implications of the axiom describe the lines that separate
the quadrants, which are located at x = a and y = b. Additionally, the conjunctions
contained in the premises of the third and fourth implications describe exactly the
four quadrants. From visualization, we can also note that for quadrants Iab and IIIab,
the tangent plane is always below the multiplication function. Therefore, it is used
as a lower bound in the third implication. Analogously, the tangent plane is used as
an upper bound for quadrants IIab and IVab in the fourth implication.

Now, the refine function returns at least one instance of an axiom that is not
satis�ed under the current assignment µ via Γ. How many and which instances are
created and then returned is a question of heuristic. In [Irf18], an eager approach was
implemented and a lazy one proposed for future work. Thereby, eager means that
all axioms are instantiated for all individuals or pairs of abstracted multiplications,
and the ones unsatis�ed by µ are returned. Lazy, on the other hand, means that
exactly one instance of an axiom that is unsatis�ed by µ is returned. In concrete
implementation, it has to be speci�ed with respect to which axiom and abstracted
multiplication(s) this instance is created.

In our own implementation, we will compare approaches that di�er in eagerness.
The concrete heuristics are presented in Section 4.1 and the experimental results
regarding them can be found in Section 4.2.5.

Overall, the refine method is a critical factor for the success of IL for NRA-
solving. That is because after the initial calls to lra-check and nra-lift, it is the
only method that can change the algorithm's outcome. Therefore, the changes that
are proposed in the following Chapter 3 all aim at improving the re�nement.

As a �nal remark, it should be mentioned that IL for NRA-solving is incomplete.
This means that, no matter the (linear) re�nement strategy, the algorithm will either
return unknown or run ad in�nitum for some inputs. This can be seen as a trade-o� for
the runtime of complete NRA solvers, which is proven to be (worst-case) exponential
in the number of variables in the input formula. IL's main complexity, on the other
hand, lies in the LRA solver that is used in the main loop, which can be polynomial
in runtime. So if IL solves a lot of problems, especially harder ones, in only a few
iterations, it might be bene�cial in application. We will see evidence that this is the
case in Section 5.1.2.

Incremental Linearization for NRA-Solving 17

(a) z = x · y (b) Projection to x- and y-axis

(c) z = x · y and tangent plane (d) Projection to x- and y-axis

Figure 2.3: Plot of multiplication function z = x ·y and tangent plane w.r.t. the point
(a, b, ab) = (6, 2, 12), i.e. z = 2x+ 6y − 12 (adapted from [Irf18]).

18 Preliminaries

Chapter 3

Improving Incremental

Linearization

The improvements to IL as given in Algorithm 1 that we propose can be divided into
two parts. The �rst one deals with introducing di�erent heuristics for abstraction
that can be used to implement initial-abstraction. In the second part, refine
will be improved by modifying and removing some axioms as well as introducing a
new axiom.

3.1 Heuristics for the Initial Abstraction

Our �rst contribution is specifying two di�erent ways of linearizing the polynomials
contained in ψ, i.e., the input of Algorithm 1. Technically, this can also be seen as
di�erent speci�cations of the function initial-abstraction which is called in line 1
of Algorithm 1. We will present both in the following sections.

3.1.1 Heuristic: Optimal w.r.t. Number of Fresh Variables

We named the �rst heuristic optimal w.r.t. number of fresh variables. That is because
it minimizes the amount of abstraction that is done by minimizing the number of fresh
variables/abstracted multiplications that are introduced.

This characteristic also motivates the heuristic. Fewer abstracted multiplications
give fewer possibilities for re�nement in refine of Algorithm 2. For example, the zero
axiom and sign axiom can only be instantiated once per abstracted multiplications.
Thus, minimizing this target directly translates to fewer axiom instantiations that
could possibly be created. Therefore, we see potential for this heuristic to lead to
faster termination. Algorithm 2 speci�es the optimal w.r.t. number of fresh variables
heuristic.

The algorithm is commented to improve understanding. Thus, we will only give a
general description. In lines 1 to 7, initialization is done. Most notably, ψ is converted
into a notation that is more accessible for our purposes (ll.1-3) and the map M is
created in order to save the abstracted multiplications. Thereby, the unordered pair
relation ⊗ is de�ned as follows:

20 Improving Incremental Linearization

De�nition 3.1.1 (Unordered Pair Relation ⊗). For any sets S1,S2, let

S1 ⊗ S2 := {[s1, s2] | s1 ∈ S1, s2 ∈ S2}

be the set containing lists of all combinations of elements in S1 and S2.

Then the loop that progressively replaces variables begins. In lines 9 to 19, the
pair of variables that will be replaced by a fresh variable is searched for. This is done
by looking for the pair of variables among all pairs that (as a pair) occurs most often
across all monomials. Then, all pairwise occurrences in the current representation of
the formula S are replaced by a single occurrence of a fresh variable in lines 22 to 26.

It can also happen that no such pair is found in lines 9 to 19 due to no more
pairwise occurrences of variables left in S. This translates to the underlying formula
now being linear. Thus, the loop would be broken in line 21, and the linear abstraction
φ can be reconstructed from S and ψ in line 32.

To conclude, we present a run of Algorithm 2 on the formula from Example 2.2.1.

Example 3.1.1. The input formula is

ψ = (3x21x2 + x1x2 − 1 > 0 ∨ x1 − 5x2 ≤ 0) ∧ (4x1 + 7 ≤ 0).

In lines 1-3, it is converted to the new representation

S = [[x1, x1, x2], [x1,x2], [x1], [x2], [x1]],

essentially removing Boolean and arithmetic structure that is not relevant for abstrac-
tion.

After further initialization, the occurrence count (oc) of all pairs of variables in
{x1, x2} ⊗ {x1, x2} = {[x1, x2], [x1, x1], [x2, x2]} is computed. The oc of [x1, x2]
is two since it occurs once in the �rst list in S and once again in the second list.
Analogously, the oc of [x1, x1] is one, and the oc of [x2, x2] is zero. Since [x1, x2]
has the highest oc, it is chosen for abstraction.

Note that, while not happening here, the occurrence count can increase by more
than one per list in S. For example, considering [x1, x1, x2, x2] in S, the occurrence
count of [x1, x2] would be increased by two.

Now, all pairwise occurrences of x1 and x2 are replaced by the fresh variable z1 in
lines 23 to 27, resulting in

S = [[x1, z1], [z1], [x1], [x2], [x1]].

In the next iteration, the oc of all elements of {x1, x2, z1} ⊗ {x1, x2, z1} is zero,
except for [x1, z1] which has an occurrence count of one. Replacement by the fresh
variable z2 results in

S = [[z2], [z1], [x1], [x2], [x1]].

Now, the oc of all pairs of variables is zero in the third iteration. Thus, the loop
breaks and the linear formula φ is constructed from S using the structure of ψ so that

φ = (3z2 + z1 − 1 > 0 ∨ x1 − 5x2 ≤ 0) ∧ (4x1 + 7 ≤ 0).

This formula is then returned as the result of the algorithm.
Note that alongside the algorithm, the map

M : Vall → Vall ⊗ Vall, z1 7→ [x1, x2], z2 7→ [x1, z1]

where Vall = {x1, x2, z1, z2} is also computed. It is not of relevance here, but it is
necessary knowledge for the re�nement in Algorithm 1.

Heuristics for the Initial Abstraction 21

Algorithm 2: Abstract ψ to LRA formula φ using heuristic optimal

Input : a NRA formula ψ in CNF
Output: a LRA formula φ
// S represents current state of formula during execution
// → 1:1 relation between monomials in ψ and elements of S

1 S := list of all non-constant monomials occurring in ψ in order of appearance
2 foreach monomial m in S do

// e.g. replace 3x21x2 by [x1, x1, x2]
3 m := list containing all variables in m, including multiple occurrences

// keep track of all variables for later
4 Vall := set of all variables occurring in S
// keep track of variables that potentially need replacement

5 Vtmp := set of all variables occurring in S
// save which var abstracts multiplication of which two vars

6 M := empty map Vall → Vall ⊗ Vall

// greedily merge variables by occurrence count (oc)
7 i := 1
8 while true do

// find pair of variables with maximal oc
9 oc := 0

10 foreach [v1, v2] ∈ Vtmp ⊗ Vtmp do

11 octmp := 0
12 foreach s in S do

13 if v1 = v2 then

14 octmp += ⌊(number of occurrences of v in s)/2⌋
15 else

16 octmp += minimum number of occurrences of v1 vs v2 in s

17 if octmp > oc then
18 oc := octmp

19 [w1, w2] := [v1, v2]

20 if oc = 0 then

21 break

// create fresh zi-variable and replace
22 M(zi) := [w1, w2]
23 Vall := Vall ∪ {zi}
24 foreach s in S do

25 while s contains an occurrence of w1 and w2 do

// add zi and remove w1 and w2 exactly once
26 s := s− w1 − w2 + zi

// clean up Vtmp

27 if w1 not in any s in S then

28 Vtmp := Vtmp \ {w1}
29 if w2 not in any s in S then

30 Vtmp := Vtmp \ {w2}
31 i += 1

// All lists in S contain only one element
32 φ := ψ where vars of monomials are replaced by the corresponding variable in S
33 return φ

22 Improving Incremental Linearization

3.1.2 Heuristic: Exponents First

Another heuristic that we named exponents �rst follows a di�erent idea. In particular,
this idea is to �rst abstract the squares of single variables. Thus, with respect to the
input formula, the present exponents are abstracted �rst.

Example 3.1.2. The monomial x21x
5
2 could be abstracted as follows

x21x
5
2

z1=x1·x1→ z1x
5
2

z2=x2·x2→ z1z
2
2x2

z3=z2·z2→ z1z3x2.

We suggest applying the optimal w.r.t. number of fresh variables heuristic to abstract
the remaining non-linear monomials without exponents.

The advantage of this heuristic is that for abstracted squares of variables, the
instances of axioms for re�nement are less complex. For example, the tangent plane
axiom (see Figure 2.2) can be instantiated for an abstracted multiplication z = x · y.
When this multiplication is a square (x = y) the axiom simpli�es to

(x = a→ z = ax) ∧ ((x < a ∨ x > a) → z > 2ax− a2).

Algorithm 3 shows a possible implementation of the heuristic. It is an adaptation
of Algorithm 2, which was presented in the previous Section 3.1.1. Essentially, lines
10 to 19 are changed to only consider abstractions of squares of single variables. As an
e�ect, no monomial in φ has an exponent left after line 13 of Algorithm 3. Abstracting
these remaining monomials is then done by calling Algorithm 2 in line 14.

To show where the exponents �rst (EF) heuristic di�ers from the optimal w.r.t.
number of fresh variables (OPT) heuristic, we restrict ourselves to a single polynomial.

Example 3.1.3. EF and OPT abstract the polynomial x21x2 + x1x2 as follows

EF : x21x2 + x1x2
z1=x1·x1→ z1x2 + x1x2

z2=z1·x2→ z2 + x1x2
z3=x1·x2→ z2 + z3

OPT : x21x2 + x1x2
z1=x1·x2→ x1z1 + z1

z2=x1·z1→ z2 + z1

On the one hand, this shows that EF can use more fresh variables for abstraction. In
this case, EF introduces three new variables, while OPT only introduces two. On the
other hand, only EF has done the abstraction z1 = x1 · x1 for which re�nement will
be easier in Algorithm 1.

To summarize this section, we presented heuristics for initial-abstraction with
solid evidence for their usefulness in application. Additionally, we speci�ed them pro-
�ciently enough for implementation, which has not previously been done. The impact
on performance of these heuristics is looked into experimentally in Section 4.2.4.

Improving the Re�nement 23

Algorithm 3: Abstract ψ to LRA formula φ using heuristic exponents �rst,
implemented as an adaptation of Algorithm 2
Input : a NRA formula ψ in CNF
Output: a LRA formula φ
. . .
// greedily merge variables by occurrence count (oc)

1 i := 1
2 while true do

// find pair of variables with maximal oc
3 oc := 0
4 foreach v ∈ Vtmp do

5 octmp := 0
6 foreach s in S do

7 octmp += ⌊(number of occurences of v in s)/2⌋
8 if octmp > oc then
9 oc := octmp

10 [w1, w2] := [v, v]

11 if oc = 0 then

12 break

// create fresh zi-variable and replace
. . .

// All lists in S contain no variable more than once
13 φ := ψ where vars of monomials are replaced by the corresponding variable in S
14 return initial-abstraction-optimal(φ)

3.2 Improving the Re�nement

In the following, we delete, modify, and introduce new axioms in order to improve the
re�nement process constituted by refine of Algorithm 1. The result of these changes
is displayed in Figure 3.3 which is therefore a summary of this section's results. In
the following, the changes are explained in detail.

3.2.1 Optimizing Existing axioms

We propose some changes to the existing axioms that were presented in Figure 2.1
and Figure 2.2.

Adapting Axioms to Our Implementation

We made some minor, general adjustments for IL to work better in our implemen-
tation. For one, we made all inequalities non-strict. This is useful in our case since
we use the simplex algorithm [Nal20] in our LRA solver, which requires additional
e�ort for dealing with strict inequalities [NÁK21]. From a theoretical perspective,
this creates redundancy between some parts of the same formula. However, we do
not see any potential for that slowing down the algorithm.

Also, we explicitly implemented squared cases for some axioms, i.e., when x = y
for abstracted multiplication z = x · y. This by itself will most likely not cause a sig-
ni�cant speedup since a sophisticated implementation of IL could implicitly simplify
the standard case to the squared case formula every time the squared case occurs.

24 Improving Incremental Linearization

Nevertheless, this synergizes with our implementation of Algorithm 2/3 using two dis-
tinct maps to explicitly bu�er abstracted multiplications that are squares. Additional
synergy comes with using the exponents �rst heuristic.

Adapting the tangent plane axiom

The tangent plane axiom is slightly modi�ed, which is expected to enhance its utility.
For that, we replace some implications contained in the axiom with equivalences.

(x = a→ z = ay) ∧ (y = b→ z = bx) ∧
(((x ≥ a ∧ y ≤ b) ∨ (x ≤ a ∧ y ≥ b)) ↔ z ≤ bx+ ay − ab) ∧
(((x ≤ a ∧ y ≤ b) ∨ (x ≥ a ∧ y ≥ b)) ↔ z ≥ bx+ ay − ab)

This is possible because the tangent plane exactly separates the projection of z = x ·y
to x and y into the four quadrants Iab-IVab, as visualized in Figure 2.3d. And the
description of these quadrants is exactly formalized on the left-hand side of the now-
equivalences. For example, x ≥ a ∧ y ≥ b for quadrant Iab.

Practically, this modi�cation realizes that an instance of the tangent plane axiom
cannot simply be satis�ed by violating what had previously been the preconditions
of the implications. Theoretically, it can also be seen as the addition of an entire new
axiom. That is because previously, the tangent plane axiom bounded z based on x
and y. Now, it also bounds x and y based on z.

Removing The Congruence and Monotonicity Axiom

We remove the congruence and the monotonicity axiom from the re�nement process
since neither, under any circumstance, guarantees an improvement of the assignment
in the following iteration. Thereby, we consider improving in the sense of forcing a new
assignment so that the multiplications x1 · y1 = z1 and/or x2 · y2 = z2 are enforced or
at least closer to it. We substantiate this claim, starting with the congruence axiom.

Let x1, x2, y1, y2, z1 and z2 be variables with the current assignments of a1, a2,
b1, b2, c1 and c2. The axiom is only violated if a1 = a2, b1 = b2 and c1 ̸= c2. The
only useful correction to the assignment that the axiom could cause is that if w.l.o.g.
a1 · b1 = c1 and a2 · b2 ̸= c2. Then it is possible that c1 will be assigned the value of
c2 in the next iteration. However, reassigning a1, a2, b1 and/or b2 also satis�es the
axiom. Even worse, the axiom can also be satis�ed by assigning the value of c1 to c2.

Very similar arguments can be made for the monotonicity axiom. Under the same
assumptions, the axiom is only violated if |a1| ≤ |a2|, |b1| ≤ |b2| and |c1| > |c2|.
If now, w.l.o.g., a1 · b1 ̸= c1, for example, assigning c2 the value of c1 in the next
iteration will satisfy the axiom but will not be an improvement. Otherwise, if w.l.o.g.
a1 · b1 = c1, it is possible that c2 will be assigned to a better-�tting value in the next
iteration. However, it is also possible to reassign c1 in order to satisfy the axiom,
which is the opposite of an improvement.

We substantiate the correctness of these statements experimentally in Section 4.2.6.

3.2.2 Introducing the New Secant Axiom

We now present a (partial) counterpart to the tangent plane axiom in the form of the
secant axiom. Let us �rst look at the squared case of this axiom, in order to transfer
the idea to the standard case later on.

Improving the Re�nement 25

Squared Case of the Secant Axiom

The squared case of the tangent plane axiom gives a lower bound to an abstracted
multiplication z = x · x with respect to a, the currently assigned value to x. We
visualize this exemplary in Figure 3.1a for a = 7. It can be seen that the axiom
creates a tangent to x · x through the point (7, 49). In the context of the axiom,
this tangent is a lower bound. So the grayed out area underneath it describes value
combinations of x and z for which the axiom evaluates to false. We now design an
axiom that gives an upper bound for the same multiplication.

Since x ·x is convex, it is impossible to de�ne a single, linear bound over the entire
domain as done for the tangent plane axiom. Instead, we have to restrict ourselves to
some interval on the domain of x. Because there is no clear choice for a good interval
size, we determine the width using a parameter d > 0 that can be heuristically chosen
in implementation.

The interval with respect to d over which we will de�ne our axiom is then [0, a+d]
for a > 0 and [a − d, 0] for a < 0. We create two di�erent axioms to make precisely
this case distinction. In notation, we di�erentiate the axioms via the quadrants of the
coordinate system that they are de�ned for. In this case, these are I (a > 0) and II
(a < 0). The restriction to these intervals is encoded into the premises contained in
the axioms, see Figure 3.3.

Note that we also explicitly de�ne an axiom for the case that a = 0, i.e., case 0.
Essentially, this axiom is the conjunction of I and II for a = 0. Therefore, it covers
the interval [−d, d]. We will not further address this axiom here since it can be seen
as a special case derived from I and II.

Now to the conclusions contained in I and II. To have a good approximation
without over-complicating things, we create two secants to bound the multiplication.
The �rst one always intersects x·x at (0, 0) and (a, a2). And the second one intersects

(a) Tangent plane axiom
(b) Secant axiom

Figure 3.1: Combinations of x- and z-values that are excluded by di�erent axioms for
a = 7 in the squared case.

26 Improving Incremental Linearization

the function at (a, a2) and (a+d, (a+d)2) or (a−d, (a−d)2) respectively. This way,
precisely the above-mentioned intervals on x are covered. We visualize this exemplary
for I in Figure 3.1b with a = 7 and d = 5. The grayed-out area over the secants shows
value combinations of x and z, for which I evaluates to false.

Formally deriving these secants is relatively simple. Each secant can be calculated
by inserting the two intersection points from above into the general formula for a line
mx+ b = y and solving the resulting system of equations for m and b. For example,
considering I, using (a, a2) and (a + d, (a + d)2), the secant (2a + d)x + (−a2 − da)
can be derived.

As brie�y mentioned, choosing the parameter d is a question of heuristic. We
do not see any indicators for a choice that is bene�cial on a theoretically founded
level. Thus, for our implementation, we will test the values 1, 10, 100 and 1000
experimentally in Section 4.2.3.

Choosing d dynamically with respect to a could enhance the axiom's utility, since
for a static d, the approximation gets more narrow with a growing towards ∞/−∞.
That is because x · x becomes increasingly steeper with x tending towards its limits.
However, we leave this for future work.

To conclude the squared case of the secant axiom, we prove its correctness. Thereby,
we mean that Algorithm 1 stays correct when it is utilized. The only way an axiom
can potentially violate this is if it changes the fact that φ∧

∧
Γ over-approximates ψ,

i.e., any assignment that satis�es ψ also satis�es φ∧
∧
Γ. We conclude the following:

Lemma 3.2.1. An axiom is correct w.r.t. Algorithm 1 if it over-approximates ψ.

Proof. Let ψ be a non-linear formula and φ ∧
∧

Γ be a linear over-approximation
of ψ as in Algorithm 1. Also, let ϑ be an axiom, i.e., a LRA formula, so that ϑ
over-approximates ψ.

Assume there is a satisfying assignment for ψ. In order for the axiom to be correct
w.r.t. Algorithm 1, this assignment needs to satisfy φ ∧

∧
Γ ∧ ϑ. Now, since both

φ ∧
∧
Γ and ϑ over-approximate ψ, the assumed assignment satis�es both of them

and thus also their conjunction.

Theorem 3.2.2. The secant axioms I and II (squared case) as displayed in Figure 3.3
are correct w.r.t. Algorithm 1.

Proof. We only provide a proof for I since II can be proven analogously. Let there be
a satisfying assignment for ψ. As stated in Lemma 3.2.1, it is to be shown that this
assignment also satis�es I. Now, per Algorithm 1, it holds that

ψ ≡ φ ∧
∧

z=x·y via

initial abstraction

z = x · y.

Thus, the assignment satis�es z = x · x, where x and z are the variables contained in
I. Using this equality and extracting the boolean structure from I, we can reformulate
what remains to be shown. Let a > 0 and d > 0,

1. if 0 ≤ x ≤ a then x2 ≤ ax and

2. if a ≤ x ≤ a+ d then x2 ≤ (2a+ d)x+ (−a2 − da).

Improving the Re�nement 27

1. Let 0 ≤ x ≤ a. Because x · x is strictly convex (trivial for x2) and ax is linear,
x2 ≤ ax holds if it holds for the extreme values of the assumed domain for x. For
x = 0, it follows that

02 ≤ a · 0
⇔ 0 ≤ 0.

For x = a, it follows that

a2 ≤ a · a
⇔ 0 ≤ 0.

2. Analogously, let a ≤ x ≤ a + d and insert the extreme values into the inequality
x2 ≤ (2a+ d)x+ (−a2 − ad). For x = a, it follows that

a2 ≤ (2a+ d)a+ (−a2 − ad)

⇔ a2 ≤ 2a2 + ad− a2 − ad

⇔ a2 ≤ a2

⇔ 0 ≤ 0.

For x = a+ d, it follows that

(a+ d)2 ≤ (2a+ d)(a+ d) + (−a2 − ad)

⇔ a2 + 2ad+ d2 ≤ 2a2 + ad+ 2ad+ d2 − a2 − ad

⇔ a2 + 2ad+ d2 ≤ a2 + 2ad+ d2

⇔ 0 ≤ 0.

Standard Case of the Secant Axiom

In the following, we propose an axiom that bounds an abstracted multiplication
z = x · y with respect to the assignments a to x and b to y. These bounds are
intended to be a (partial) counterpart to the bounds employed by the tangent plane
axiom (standard). Unlike the tangent plane axiom, however, there does not exist a
mathematical generalization like a �secant plane� that we could make use of. That is
why the name of our axiom does not include the term �plane�1. Never the less, we
will transfer the sentiment of secants to this case.

The general idea for the secant axiom (standard) is derived from the squared case.
In that case, the secants that we constructed can be seen as a rotation of the tangent
around the point (a, a2), compare Figure 3.1. Similarly, we will rotate the tangent
plane z = bx + ay − ab around the point (a, b, ab). However, a plane requires not a
point but an axis to be rotated around. We propose a rotation around the axis that
is (i) parallel to the x-y-plane, (ii) lies in the tangent plane, and (iii) runs through
(a, b, ab).

This can be realized by introducing a parameter α > 0 that modi�es the tangent
plane so that z = αbx + αay − (2α − 1)ab. The idea is that we want to equally

1While our axiom does use planes for bounding the multiplication, we avoid the term �secant
plane� since it is mathematically not well de�ned for this context.

28 Improving Incremental Linearization

scale the x- and y-component of the tangent plane. So initially, we came up with
z = αbx+αay−βab. However, this plane does not generally intersect with the point
(a, b, ab). To realize that, we merely have to insert the point into the formula. Doing
this yields that β = 2α − 1 must hold for our plane. From now on, we will refer to
this plane as

Secanta,b,α(x,y) := αbx+ αay − (2α− 1)ab.

Rotating the tangent plane in both directions by using an α > 1 and an α < 1
yields two di�erent planes. Roughly speaking, the �rst creates a bound between the
coordinate origin and the point (a, b, ab). This can always be achieved by setting
α = 1

2 . In Figure 3.2a, this is exemplary displayed for a = 6 and b = 2 with the
corresponding tangent plane in gray for reference. The second plane bounds the
multiplication from (a, b, ab) to the point (αa, αb, α2ab) using α as a heuristic
parameter. For α = 1.2, the plane is shown in Figure 3.2b for the same example as
above.

Note that using only these two planes, the secant axiom will only be a coun-
terpart for Iab and IIIab, or IIab and IVab of the tangent plane (see Figure 2.3 for
reference). We are content with this for now, but extension of the axiom to the other
two quadrants is discussed as future work in Section 5.1.1.

We now derive the secant axioms (standard) as displayed in Figure 3.1. First,
we propose to separate cases I-IV, one for each quadrant of the projection of the
three-dimensional space to x and y. So, for example, II is supposed to restrict the
multiplication for given a < 0 and b > 0. This way, the appropriate axiom will bound
z locally around the given point (a, b, ab).

The conclusions for each case are rather straight forward. Analogous to the tangent
plane axiom, the aforementioned planes Secanta,b, 12 (x,y) and Secanta,b,α(x,y) for α > 1
are used to bound z. The premises then have to be �tted to formalize the domain over
which the bound from the conclusion actually holds. This is more involved because,
analogous to the squared case, our bounds are on the other side of the curvature of
z = x · y compared to the tangent plane. So bounding the entire x-y-domain is not
possible.

We derive the bounds as displayed in Figure 3.3 exemplary for I. For all other
axioms, merely some inequalities have to be �ipped. In order to derive the bounds,
we consider the two proposed planes and look over which domain they can make
guarantees. The �rst plane we consider is Secanta,b,α(x,y) with α > 1.

The intersection of x · y and this plane is xy = αbx + αay − (2α − 1). This
intersection can be seen very well for our example in Figure 3.2f. We can observe that
this intersection is a hyperbola and therefore non-linear. Thus, we can not de�ne
it exactly in our axiom. Graphically speaking, we would like to formalize the red
area in Figure 3.2f. We bound the parabola on the bottom left by x ≥ 6 and y ≥ 2
which generalizes to x ≥ a ∧ y ≥ b for the axiom. The hyperbola on the top right
can be under-approximated very well with the lines x = 7.2 and y = 2.4 since it
tends towards these values in each direction. This generalizes to x ≤ αa and y ≤ αb.
Overall, we thus use Secanta,b,α(x,y) as an upper-bound for x · y over the visualized
L-shaped domain that can be formalized as x ≥ a ∧ y ≥ b ∧ (x ≤ αa ∨ y ≤ αb).

The second plane whose domain we need to derive is 1
2bx+

1
2ay, i.e. Secanta,b, 12 (x,y).

We need to under-approximate the red area displayed in Figure 3.2d whose edge is
again a hyperbola. Similar to the previous bound, we can safely approximate the
L-shape that can be formalized as x ≥ 0 ∧ y ≥ 0 ∧ (x ≤ 1

2a ∨ y ≤ 1
2b).

Improving the Re�nement 29

(a) α = 0.5 with TP as reference (b) α = 1.2 with TP as reference

(c) α = 0.5 (d) Projection to x- and y-axis

(e) α = 1.2 (f) Projection to x- and y-axis

Figure 3.2: Plot of multiplication function z = x · y and rotated tangent planes
Secant6,2,α(x,y) for α = 0.5 and α = 1.2. Also, the origin, as well as the points
(a, b, ab) and (αa, αb, Secant6,2,α(αa, αb)) are marked.

30 Improving Incremental Linearization

But only using this L-shaped bound, there would be a gap in the domain between
(12a,

1
2b) and (a, b). Therefore, we also include the box-shaped area x ≥ 0 ∧ y ≥

0 ∧ x ≤ a ∧ y ≤ b in the premise of the axiom. Combining the two formulas, we get
the formalization of the domain x ≥ 0 ∧ y ≥ 0 ∧ (x ≤ 1

2a ∨ y ≤ 1
2b ∨ (x ≤ a ∧ y ≤ b))

over which Secanta,b, 12 (x,y) now constitutes an upper-bound for x · y.
One last issue is the choice of α for Secanta,b,α(x,y). Choosing it statically is not

a good idea, since for larger values of a and b, the approximation becomes tighter.
That is because, similar to the squared case, the multiplication becomes increasingly
steeper over a �xed interval for growing absolute values of a and b.

As a solution, we introduce a �proxy parameter� d from which we can derive α,
making its choice dynamic. Our proposal is to choose

α =
d√

a2 + b2
+ 1.

This will always yield an α that is strictly greater than one, thus guaranteeing a
proper rotation of Secanta,b,α(x,y). The idea behind this is to set d as the distance
between (a, b) and (αa, αb) in the x-y-plane. Then, simply applying the Pythagorean
theorem, we can derive α in dependency of d

d2 = (αa− a)2 + (αb− b)2

⇔ d2 = a2 · (α− 1)2 + b2 · (α− 1)2

⇔ d2 = (α− 1)2(a2 + b2)

⇔ (α− 1)2 =
d2

a2 + b2

⇒ α =
d2√
a2 + b2

+ 1.

Di�erent values for d are experimentally evaluated in Section 4.2.3. Analogous to the
squared case, it might be useful to choose d dynamically as well. However, we leave
this for future work.

As a minor note, we also explicitly propose and implemented a case 0 for the
secant axiom that can be applied when a = 0 and b = 0, see Figure 3.3. It essentially
bounds x · y over [−d, d]× [−d, d] using Secant±d,±d, 12

(x,y). But since it constitutes
a special case, we will not further address it.

To conclude this section, we prove that the secant axiom is also correct in the
standard case.

Theorem 3.2.3. The secant axioms I-IV (standard case) as displayed in Figure 3.3
are correct w.r.t. Algorithm 1.

Proof. We only provide a proof for I since II-IV can be proven analogously. Let there
be a satisfying assignment for ψ. As stated in Lemma 3.2.1, it is to be shown that
this assignment also satis�es I. Now, per Algorithm 1, it holds that

ψ ≡ φ ∧
∧

z=x·y via

initial abstraction

z = x · y.

Thus, the assignment satis�es z = x·y, where x, y and z are the variables contained in
I. Using this equality and extracting some boolean structure from I, we can reformulate
what remains to be shown. Let a > 0, b > 0 and α > 1,

Improving the Re�nement 31

1. if a ≤ x ≤ αa and b ≤ y, or b ≤ y ≤ αb and a ≤ x then xy ≤ Secanta,b,α(x,y)

2. if x ≥ 0 and y ≥ 0 and x ≤ 1
2a ∨ y ≤ 1

2b ∨ (x ≤ a ∧ y ≤ b) then
xy ≤ Secanta,b, 12 (x,y).

1. Let a ≤ x ≤ αa and y ≥ b, or b ≤ y ≤ αb and x ≥ a, as well as α > 1. Looking
merely at the lower bounds of the given domain, let x = a. Then

ay ≤ αba+ αay − (2α− 1) · ab
a≥0⇔ y ≤ αb+ αy − 2αb+ b

⇔ y ≤ αy − αb+ b

⇔ y − b ≤ α(y − b)

y≥b⇔ α ≥ 1

which holds per assumption. For y = b, the inequality holds analogously, meaning
that overall xy ≤ Secanta,b,α(x,y) at the lower bounds x = a∧y ≥ b and y = b∧x ≥ a.

Now, the gradients of the functions xy and Secanta,b,α(x,y) are

∇xy =

[
∂xy
∂x
∂xy
∂y

]
=

[
y
x

]
and

∇Secanta,b,α(x,y) =

[
∂αba+αay−(2α−1)·ab

∂x
∂αba+αay−(2α−1)·ab

∂y

]
=

[
αb
αa

]
.

This means that from any point (a, y), where y ≥ b, onward in positive direction of y,
the growth of Secanta,b,α(x,y) is greater than the growth of xy up to at least x = αa.
Therefore, xy ≤ Secanta,b,α(x,y) must hold for a ≤ x ≤ αa. Arguing analogously
with (x, b), where x ≥ b, proves that the inequality must also hold for b ≤ y ≤ αb.

2. Let x ≥ 0 and y ≥ 0 and x ≤ 1
2a ∨ y ≤ 1

2b ∨ (x ≤ a ∧ y ≤ b). The inequality
trivially holds for x = 0 or y = 0, so assume x > 0 and y > 0. Rewriting yields

xy ≤ 1

2
bx+

1

2
ay

⇔ 1 ≤ b

2y
+

a

2x
.

Since x > 0 and y > 0, we only need to test the upper values of the assumed domain
for x and y, since these minimize the right-hand side of the inequality. For x = 1

2a,
it follows that

1

2
ay ≤ 1

2
b
1

2
a+

1

2
ay

⇔ ay ≤ 1

2
ab+ ay

⇔ ab ≥ 0

which holds per assumption. For y = 1
2b, the inequality holds analogously. For x = a,

32 Improving Incremental Linearization

it follows that

ay ≤ 1

2
ab+

1

2
ay

⇔ y ≤ 1

2
b+

1

2
y

⇔ y ≤ b

which holds per assumption. For y = b, the inequality holds analogously.

Improving the Re�nement 33

Zero axiom (squared): x = 0 ↔ z = 0

Zero axiom (standard): (x = 0 ∨ y = 0) ↔ z = 0

Sign axiom (squared): z ≥ 0

Sign axioms (standard):
((x ≥ 0 ∧ y ≥ 0) ∨ (x ≤ 0 ∨ y ≤ 0)) ↔ z ≥ 0
((x ≥ 0 ∧ y ≤ 0) ∨ (x ≤ 0 ∨ y ≥ 0)) ↔ z ≤ 0

Tangent plane axiom (squared):
(x = a→ z = ax) ∧ z ≥ 2ax− a2

Tangent plane axiom (standard):
(x = a→ z = ay) ∧ (y = b→ z = bx) ∧
(((x ≥ a ∧ y ≤ b) ∨ (x ≤ a ∧ y ≥ b)) ↔ z ≤ bx+ ay − ab) ∧
(((x ≤ a ∧ y ≤ b) ∨ (x ≥ a ∧ y ≥ b)) ↔ z ≥ bx+ ay − ab)

Secant axiom (squared) w.r.t. their quadrant:
I: (0 ≤ x ≤ a→ z ≤ ax) ∧ (a ≤ x ≤ a+ d→ z ≤ (2a+ d)x+ (−a2 − da))

II: (0 ≥ x ≥ a→ z ≤ ax) ∧ (a ≥ x ≥ a− d→ z ≤ (2a− d)x+ (−a2 + da))

0: (−d ≤ x ≤ 0 → z ≤ −dx) ∧ (0 ≤ x ≤ d→ z ≤ dx)

Secant axioms (standard) w.r.t. their quadrant:
I: [(x ≥ a ∧ y ≥ b ∧ (x ≤ αa ∨ y ≤ αb)) → z ≤ Secanta,b,α(x,y)] ∧
[(x ≥ 0 ∧ y ≥ 0 ∧ (x ≤ 1

2a ∨ y ≤ 1
2b ∨ (x ≤ a ∧ y ≤ b))) → z ≤ Secanta,b, 12 (x,y)]

II: [(x ≤ a ∧ y ≥ b ∧ (x ≥ αa ∨ y ≤ αb)) → z ≥ Secanta,b,α(x,y)] ∧
[(x ≤ 0 ∧ y ≥ 0 ∧ (x ≥ 1

2a ∨ y ≤ 1
2b ∨ (x ≥ a ∧ y ≤ b))) → z ≥ Secanta,b, 12 (x,y)]

III: [(x ≤ a ∧ y ≤ b ∧ (x ≥ αa ∨ y ≥ αb)) → z ≤ Secanta,b,α(x,y)] ∧
[(x ≤ 0 ∧ y ≤ 0 ∧ (x ≥ 1

2a ∨ y ≥ 1
2b ∨ (x ≥ a ∧ y ≥ b))) → z ≤ Secanta,b, 12 (x,y)]

IV: [(x ≥ a ∧ y ≤ b ∧ (x ≤ αa ∨ y ≥ αb)) → z ≥ Secanta,b,α(x,y)] ∧
[(x ≥ 0 ∧ y ≤ 0 ∧ (x ≤ 1

2a ∨ y ≥ 1
2b ∨ (x ≤ a ∧ y ≥ b))) → z ≥ Secanta,b, 12 (x,y)]

0: [(x ≥ 0 ∧ y ≥ 0 ∧ (x ≤ d ∨ y ≤ d)) → z ≤ dx+ dy] ∧
[(x ≤ 0 ∧ y ≤ 0 ∧ (x ≥ d ∨ y ≥ d)) → z ≤ −dx− dy] ∧
[(x ≤ 0 ∧ y ≥ 0 ∧ (x ≥ d ∨ y ≤ d)) → z ≥ dx− dy] ∧
[(x ≥ 0 ∧ y ≤ 0 ∧ (x ≤ d ∨ y ≥ d)) → z ≥ −dx+ dy] ∧

Monotonicity axiom:
(|x1| ≤ |x2| ∧ |y1| ≤ |y2|) → |z1| ≤ |z2|

Congruence axiom:
(x1 = x2 ∧ y1 = y2) → z1 = z2

Figure 3.3: All implemented axioms w.r.t. summarized multiplication z = x · y
(standard), z = x · x (squared), or summarized multiplications z1 = x1 · y1 and
z2 = x2 · y2. Thereby a = µ(x), b = µ(y) and c = µ(z). Also, α > 1 and d > 0 are
constants.

34 Improving Incremental Linearization

Chapter 4

Evaluation

First, we will give details on the implementation and setup of our solver. Then, its
performance will be analyzed with a special focus on the impact of heuristic param-
eters.

4.1 Implementation Details and Setup

We implemented incremental linearization [Irf18] with the addition of all the modi�-
cations that we proposed in the previous Chapter 3. It is implemented as a module
in the open source C++ toolbox for strategic and parallel SMT-solving smt-rat

[smt][CKJ+15]. In the following, we will consider this module as a standalone NRA
solver, simply referring to it by il.

In the module, heuristic parameters have to be speci�ed that in�uence the run of
the module. Most of these have been mentioned over the past two chapters. We will
now name and explain the parameters, as well as the speci�c values they can adopt.

The �rst parameter is the initial abstraction strategy (IAS). It in�uences the ex-
ecution of initial-abstraction (Section 2.2.1) by changing the criterion by which
the next multiplication to be replaced is chosen. The possible values for IAS are

Optimal Implements the optimal w.r.t. number of fresh variables heuristic as de-
scribed in Section 3.1.1.

Exponents �rst Implements the exponents �rst heuristic, see Section 3.1.2.

First Always abstract the �rst product of two variables that occurs in the formula.

The second parameter is the axiom selection strategy (AS). This parameter determines
how many instances of axioms are returned from the refinemethod. We implemented
this method so that the di�erent axiom types are considered serially. The order
imposed on the axioms is

zero → sign(→ congruence → monotonicity) → tangent plane → secant.

When an axiom type is considered, the axiom is instantiated for all pairs of variables
(or pairs of pairs of variables), for each instance checking whether it is satis�ed under
the current assignment or not. Remember that only the instances that are not satis�ed
are returned by refine. Now, we implemented three di�erent strategies

36 Evaluation

Full lazy Only the �rst instance of an axiom generated in the above-mentioned order
that is not satis�ed under the current assignment, is returned.

Less lazy Only all zero and sign axioms are instantiated to potentially be returned.
If all these instances are satis�ed, the above order is continued full lazy.

Full eager Return all (unsatis�ed) instances of all axiom types.

The third implemented parameter is the secant distance (SD). This is the d that is
directly used in the squared secant axiom and implicitly used in the standard secant
axiom to derive α. In general, it can take any value greater than zero. The values we
will test are 1, 10, 100 and 1000.

The last parameter is simply created to toggle the use of the speci�c axiom on
or o�. This parameter is used when we test the module with versus without (a) the
secant axiom and (b) the congrunence and monotonicity axiom.

To test our implementation, we used the set of benchmarks contained in the SMT-

LIB-Benchmarks QF_NRA library [QFN][BST+10]. The set consists of NRA for-
mulas, which we will refer to as problems. On the hardware side, each problem gets 5
minutes of runtime with 6GB of RAM available on a 2.1GHz thread of an Intel Xeon
Platinum 8160.

4.2 Experimental Evaluation

We will proceed with the evaluation as follows. First, we will show general statistics
of il and compare it to a state-of-the art solver for NRA. Then, we will analyze the
impact on performance for each of the heuristic parameters of the module. We begin
with the general statistics.

4.2.1 General Statistics and Comparison to MCSAT

For a �rst impression, we want to look at the performance of the best-performing
con�guration of il. This con�guration uses �rst as the initial abstraction strategy,
the axiom selection strategy full eager, and a secant distance of 1. This con�guration
will be experimentally determined in the following sections.

As a reference, we use the best-performing strategy of smt-rat for solving NRA.
We call this solvermcsat since it implements the MCSAT Framework [JdM12][dMJ13]
but uses multiple di�erent approaches for creating explanations in series without pass-
ing on information. The �rst approach implements Fourier Motzkin variable elimi-
nation [JBDM13] and is thereby only applicable for linear constraints. If the input
is not linear, Interval Constraint Propagation [Kre19] and then Virtual Substitution
[ÁNK17] are used. These are both incomplete, so a result is still not guaranteed.
If neither of these is successful, the �nal, complete approach, which uses single cell
construction[Spe20][NÁS+23], is used.

To get an initial impression in regard to runtime, we create performance pro�les.
That is, we plot runtime against the number of problems solved in that time for each
solver. Additionally, the virtual best is plotted. That being an imaginary solver that
for each problem has the smaller runtime between il and mcsat.

The pro�les are displayed Figure 4.1. We can see that il overall performs signi�-
cantly worse than mcsat. That, however, was to be expected, seeing that this solver
on its own does not even have the capabilities to solve all problems given enough

Experimental Evaluation 37

time due to the approaches incompleteness. Thus, mcsat should rather be seen as a
ceiling for performance. Under this interpretation, il performs very well, solving up
to roughly 6500 problems in the given 5 minutes. Additionally, the virtual best not
being on par with the curve of mcsat means that for any runtime within the timeout,
there are problems that il solves faster than mcsat. As a minor detail, il performs
slightly better than mcsat for about the �rst 150 ms. The di�erence is rather small
though, and most likely due to some technicality like mcsat having a comparably
large overhead for problems with low complexity.

Figure 4.1: Performance pro�le of mcsat and il in its best performing con�guration,
i.e. IAS �rst, AS full eager and SD 1.

To slightly extend our impression, we list the number of solved problems and
respective mean runtimes of the overall, SAT (satis�able), and UNSAT (unsatis�able)
problems for both solvers. This can be seen in Table 4.1. Note that the runtimes in
the table cannot be directly compared since they are not calculated on the same set
of problems. Nevertheless, it can be seen that il solves more UNSAT than SAT
problems while having a similar mean runtime for both. On the other hand, mcsat
solves almost equally many problems of both kinds, but in contrast to il has a far
higher mean runtime on UNSAT problems compared to SAT ones.

IL MCSAT

Number of solved problems 7434 10371
Mean runtime 3.65 3.86
Number of solved SAT problems 3166 5181
Mean runtime 3.77 2.62
Number of solved UNSAT problems 4268 5190
Mean runtime 3.56 5.09

Table 4.1: General statistics for il and mcsat

38 Evaluation

In order to further investigate this, we create a scatter plot of all individual prob-
lems with respect to their kind, i.e., SAT or UNSAT. It is shown in Figure 4.2. To
see the di�erence in performance, the plot should be considered with a diagonal split.
The upper left triangle contains the problems that mcsat performs better on. Simi-
larly, the problems in the bottom right triangle are the ones that il performs better
on.

While the same holds for mcsat, it can be seen that there are quite a few problems
that il performs better on than mcsat. On some of these, performance is even so
much better that mcsat did not solve them within the timeout. These problems can
be seen above the 300-second mark on the axis for mcsat. This shows that il does not
just solve a subset of the problems that mcsat solves but instead seems to have use
cases where it performs better. This motivates its usage of some kind in a complete
NRA solver, as will be discussed in Section 5.1.2.

The plot also once again shows that il performs well on UNSAT problems. This
might be due to multiple factors. For one, the approach likely works better for UNSAT
problems since solving SAT problems relies on the chance that a satisfying assignment
for the linear abstraction is also satisfying for the non-linear input. Whereas UNSAT
problems are identi�ed as such when the linear abstraction becomes unsatis�able,
which is unambiguous as soon as it happens. Additionally, MCSAT generally performs
worse on UNSAT problems since the algorithm essentially constitutes a search for a
satisfying assignment. Thus, unsatis�ability can only be concluded when the entire
search space has been covered.

Figure 4.2: Scatter plot for mcsat and il in its best performing con�guration, i.e.
IAS �rst, AS full eager and SD 1, plotting all solved problems against each other
based on runtime.

Experimental Evaluation 39

Lastly, we will look at some statistics speci�c to il. These are displayed in Ta-
ble 4.2. First of all, we see that the mode is always the smallest number it can be.
So at least half of the solved problems are low in complexity with respect to il.

The mean value is generally more consistent with the third quartile for each statis-
tic. Only the added number of tangent plane axioms constitutes an exception. There,
we can see that the mean is in�ated by at most 25% of the solved problems in the
set. Even considering this in�ation, though, the mean and third quartile are still very
high compared to the other statistics. This indicates that the tangent plane axiom
is of high relevance for the success of il. A reason for that could be the adaptation
of making implications in the tangent plane axiom equivalences, see Section 3.2.1.
These equivalences are also a major di�erence in contrast to the secant axiom. We
therefore propose similar changes to the secant axiom in Section 5.1.1.

Seeing that 75% of the solved problems are solved within at most 3 iterations
indicates that incremental linearization has the potential to be used with a limit of
iterations, e.g., for pre-processing before using a complete solver. We further discuss
this in Section 5.1.2.

Mean # of Mode of Third quartile

Added zero axioms 3.35 0 3
Added sign axioms 3.31 0 2
Added tangent plane axioms 27.86 0 12
Added secant axioms 3.35 0 3
Iterations 2.57 1 3

Table 4.2: Speci�c statistics for il, only considering problems that have been solved
within the 5 minute timeout.

The rest of this chapter will investigate the impact of the aforementioned heuristic
parameters on the performance of il in the given test setting.

4.2.2 Impact of the Secant Axiom

First, we would like to determine whether the secant axiom is useful in practice. For
that, we created a performance pro�le of il in two con�gurations. One utilizes the
secant axiom, and the other does not. Both use �rst as the IAS since this is the �most
random� strategy. That is, a speci�c target is not optimized, which the secant axiom
could potentially make use of. They both also use the full eager AS, since this leads
to the most possible usage of the secant axiom. Also, the secant distance is set to 1.

The performance pro�les are displayed in Figure 4.3 and the result is very clear.
With access to the secant axiom, il performs signi�cantly better across the entire
runtime. This justi�es the usage of the secant axiom in all following investigations
and in the potentially best con�guration of the module (for this set of representative
benchmarks).

40 Evaluation

Figure 4.3: Performance pro�les for il with IAS �rst, AS full eager and SD 1 with
varying usage of the secant axiom for re�nement.

4.2.3 Impact of the Secant Distance

The next parameter that we analyze is the secant distance. For that, we once again
create a performance pro�le. This time for four di�erent con�gurations of the module,
so that the SDs 1, 10, 100 and 1000 can be tested. For all, we use exponents �rst as
the IAS to potentially have a few more square cases occur, and again, full eager as
the AS to have the computation of secant axioms occur as much as possible.

In Figure 4.4, the performance pro�les are shown. Here, the results are not as
clear. The pro�les are all very close to each other, so the parameter does not seem
to have a big impact on performance. However, we can see that up to the runtime
mark of about 3 ms, the SD of 1000 seems to perform the best. But onward from
that point in time, it is overtaken by SD 1 which then is slightly better than all other
distances over the entire remaining runtime. Therefore, we �x the SD at 1 for il.

Figure 4.4: Performance pro�les for il with IAS exponents �rst, AS full eager and
secant distances varying between 1, 10, 100 and 1000.

Experimental Evaluation 41

4.2.4 Impact of the Initial Abstraction Strategy

Now, we would like to consider the impact of the initial abstraction strategy on the
runtime of the module. For that, we create performance pro�les again. The �rst
strategy might pro�t from quick re�nement, which is provided by the full lazy AS.
On the other side, IASs exponents �rst as well as optimal optimize variables and
therefore might perform better when more axioms are computed, that is, full eager
is used as the AS. Therefore, we make two comparisons. One with full eager and one
with full lazy as the AS. For SD, 1 is used as determined previously.

Figure 4.5 shows the performance pro�les. Contrary to our proposition, exponents
�rst and optimal do not perform better using the full eager AS when compared to
�rst. It looks like �rst is even a slight bit further o� the other curves there. In general,
however, �rst seems to be the best performing strategy.

Now, exponents �rst and optimal have similar overhead and are relatively on par
in the pro�les. On the other hand, �rst has a far lower overhead, and its pro�le has
a relatively small but constant o�set to the other two curves. Thus, the most likely
reason for the di�erence in performance is the additional overhead.

(a) AS full lazy

(b) AS full eager

Figure 4.5: Performance pro�les for il with SD 1 and varying IAS for di�erent ASs.

42 Evaluation

To further analyze this, we look at the mean number of fresh variables created
for the initial abstraction. In Table 4.3, we provide this statistic with the further
distinction of variables that abstract squares of variables. And we can see that our
two heuristics indeed do what they are supposed to. That is because optimal has
the lowest number of new variables, and exponents �rst introduces the most squared
variables.

Mean # of new variables Mean # of squared new variables

Optimal 30.56 7.42
Exponents �rst 31.78 8.46
First 31.61 8.01

Table 4.3: Mean of the number of newly introduced variables for each IAS.

So it seems, the optimizations done by the optimal and exponents �rst heuristics
are not substantial enough to justify the additional e�ort. Nevertheless, for speci�c
problems, especially bigger ones where the additional overhead does not matter so
much, these two strategies might still be well suited. To underline this, we created
scatter plots as before in Figure 4.6, however, this time, comparing il with itself
using di�erent IASs. The plots both show similar results. First of all, the IAS �rst
performs better on easy inputs, as can be seen from the clustering in the lower left
that is mostly above the diagonal. But second of all, there are also a few problems
that optimal and exponents �rst solve faster than �rst. There are even quite a few
problems that are solved that �rst does not solve at all.

So generally, �rst does perform best overall. However, there are problems where
optimal and exponents �rst do perform better. These are most likely ones that are
high in complexity. From now on, though, we will use �rst as the IAS for testing.

Experimental Evaluation 43

(a) �rst vs optimal

(b) �rst vs exponents �rst

Figure 4.6: Scatter plot for il using AS full eager and SD 1, plotting all solved
problems against each other based on runtime for di�erent IASs.

44 Evaluation

4.2.5 Impact of the Axiom Selection Strategy

Next, we want to answer the question that has already been posed in [Irf18]: Which
axiom selection strategy performs the best? In order to answer it, we again compute
performance pro�les. For that, we use the con�guration of our module that performs
the best. That being the IAS �rst and a secant distance of 1.

The performance pro�les that are displayed in Figure 4.7 show that the full eager
AS generally performs the best. From about 0.3 s on, the strategy even performs
signi�cantly better than the other two. Only for the brief window from roughly 30 ms
to just below 200 ms, the less lazy AS outperforms full eager very slightly. However,
before and after that window, this strategy performs signi�cantly worse. Therefore,
we consider full eager as the AS for our best module con�guration.

Figure 4.7: Performance pro�les for il with IAS �rst and SD 1 with varying ASs.

Experimental Evaluation 45

4.2.6 Impact of the Monotonicity and Congruence Axiom

In Section 3.2.1, we argued that the monotonicity and the congruence axiom in general
are not helpful for re�nement. We indicate the correctness of this assessment by
testing il in di�erent con�gurations that only di�er by the inclusion of the two axioms
for re�nement. We therefore created performance pro�les that otherwise use the (for
these benchmarks) optimal con�guration of IAS �rst, AS full eager, and SD 1.

And indeed, our claims are con�rmed by the pro�les displayed in Figure 4.8. The
best con�guration is the one that uses neither of the axioms, and the worst is the one
that uses both. Individually, it seems that monotonicity axiom decreases performance
more than the congruence axiom.

Figure 4.8: Performance pro�les for il with IAS �rst, AS full eager and SD 1 with
varying inclusion of monotonicity and congruence axiom.

46 Evaluation

Chapter 5

Conclusion

5.1 Future Work

5.1.1 Improving the Secant Axiom

As far as we are aware, this thesis is the �rst to introduce a viable (partial) counterpart
for the tangent plane axiom. Therefore, there is very likely room for improvement.
In the following, we make some proposals that could potentially improve the axiom.

Extending the Axiom

The secant axioms as presented here only give a (partial) counterpart to either Iab
and IIIab, or IIab and IVab. To be more accurate, it would be useful to also bound
the other two quadrants.

Without guaranteeing correctness, we propose an extension of the secant axiom
that also covers the remaining two quadrants, exemplary presenting I:

[(x ≥ a ∧ y ≥ b ∧ (x ≤ αa ∨ y ≤ αb)) → z ≤ αbx+ αay − (2α− 1)ab] ∧

[(x ≥ 0 ∧ y ≥ 0 ∧ x ≤ a ∧ y ≤ b) → z ≤ 1

2
bx+

1

2
ay] ∧

[(x ≥ a ∧ y ≥ 0) → z ≥ ay] ∧
[(x ≥ 0 ∧ y ≥ b) → z ≥ bx]

Note that we also changed the premise of the second implication. This is done to
restrict the formalized x-y-domain so that it subsets IIIab, simultaneously reducing
the complexity of the formula.

Backward Direction of the Axiom

In Section 3.2.1, we proposed to turn the key implications contained in the original
tangent plane axiom from [Irf18] into equivalences. While this is a very minor syntac-
tical change, the impact is quite big, essentially adding a whole new axiom. Having
such a backward direction for the implications in the secant axiom might further
elevate its usefulness.

However, simply turning the current implications contained in the secant axiom
into equivalences would make the axiom incorrect. That is because the premises

48 Conclusion

under-approximate the domain over which the conclusion holds. Therefore, essentially
an entire new axiom has to be designed.

5.1.2 Using IL for Complete NRA Solving

We have seen that IL as a standalone NRA solver cannot compete with complete,
state-of-the art NRA solvers, see Section 4.2.1. Therefore, it makes sense to explore
how IL can be used as part of a complete solver.

Similar to how di�erent, partly incomplete explanations are used in series in mc-
sat, il could be used in series, before a complete NRA solver. This would, of course,
implicitly already solve all linear problems. But with a possibly minor increase in
runtime, a lot of non-linear problems could be solved as well before resorting to a
complete NRA solver.

To substantiate this idea, we create a bar plot, that for each number of iterations
il could do, shows the number of problems that were solved using that exact number
of iterations, see Figure 5.1. Note that the iterations axis has been trimmed to 18.
The real maximum value is 35. Nevertheless, within the omitted range, there are only
40 problems overall, with a maximum number of 7 problems for a single iteration.

The plot shows that most problems are solved within very few iterations, with by
far the most being solved in a single iteration. This indicates that setting a limit to
the number of iterations could be a good way to get good results within a reasonable
time frame. The mean solving times that are annotated for each bar support this
claim, seeing that they are very low.

However, we also looked at the maximum solving time for each iteration. And for
example, for one iteration this time is 276.8 s which is very high since the timeout
was set at 300 s. So the additional use of a timeout might be advised to solve exactly
the many problems with low runtimes indicated by the mean.

So overall, running il for 1-5 iterations with a timeout of about at most 1m
before resorting to a complete NRA solver could constitute a complete solver that has
improved performance. Of course, other, possibly more interconnected, approaches
are conceivable in order to make use of IL for complete NRA-solving.

Summary 49

Figure 5.1: Bar plot showing the number of solved problems using il with 5 m timeout
for each number of iteration the algorithm did. Also, the mean solving time in seconds
is annotated for each number of iterations.

5.2 Summary

In this thesis, we proposed improvements to the existing method of incremental lin-
earization (IL) for incomplete satis�ability modulo non-linear real arithmetic (NRA)
checking. We �rst introduced IL as presented in [Irf18] and [CGI+18].

To summarize, this method initially abstracts the non-linear input formula ψ as
a linear formula φ, also storing the background information as to how this transfor-
mation was done and thereby could be reversed. Said background information can be
viewed as non-linear constraints of the form z = x · y for variables x, y and z.

After the initial abstraction, a loop is entered. In this loop, it is �rst checked
whether φ is satis�able using a LRA solver. The result of this check can possibly
be transferred to ψ. If not, φ will be re�ned by conjuncting formulas that linearly
axiomatize the previously abstracted, non-linear multiplications z = x · y to it. We
categorize di�erent types of such formulas under the term axiom.

The �rst change to IL we presented was di�erent heuristics for the initial abstrac-
tion. We named these optimal w.r.t. number of fresh variables and exponents �rst.
Thereby, the �rst aims at minimizing the background information, i.e., the number
of constraints z = x · y. The latter tries to maximize the number of constraints that
are squares (z = x · x).

The second change deals with the axioms that are used for re�nement. Next to
some modi�cations of existing axioms, the most prominent change is the addition of a
new type of axiom, the secant axiom. It is supposed to act as a (partial) counterpart
to the already existing tangent plane axiom. For example, in the case of a squared
multiplication, z = x · x, the tangent plane axiom provides a lower-bound for the
parabola x · x in the form of a tangent. The secant axiom then provides an upper
bound in the form of multiple secants.

50 Conclusion

We implemented IL, including all changes in smt-rat [smt] as a standalone NRA
solver and tested it on the SMT-LIB-BenchmarksQF_NRA library [QFN][BST+10].
The evaluation of these tests mainly focused on the optimization of the heuristic pa-
rameters of the module.

One of these is the choice of heuristic for initial abstraction. The evaluation showed
that both proposed heuristics successfully do what they were intended for. However,
they are generally outperformed by a more primitive, greedy approach to abstraction.
That is most likely due to lower overhead. Nevertheless, the proposed heuristics could
have speci�c use for complex benchmarks.

To evaluate our other major contribution, we checked whether the secant axiom
improves performance or not. And here, the results are clear. Usage of the secant
axiom leads to a signi�cant, overall decrease in runtime.

Lastly, we proposed future work motivated by this thesis. For one, we see room
for improvement with regard to the secant axiom. Secondly, we presented an idea for
making use of incremental linearization for complete NRA-solving. This is of high
relevance since IL as a standalone solver does not provide competitive performance
compared to state-of-the art solvers.

Bibliography

[ÁNK17] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer. Embedding the
virtual substitution method in the model constructing satis�ability cal-
culus framework. In CEUR Workshop Proceedings, volume 1974. RWTH
Aachen, 2017.

[BdM14] Nikolaj Bjørner and Leonardo de Moura. Applications of smt solvers to
program veri�cation. Notes for the Summer School on Formal Techniques,
2014.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The SMT-LIB stan-
dard: Version 2.0. In Proceedings of the 8th International Workshop on
Satis�ability Modulo Theories (Edinburgh, England), volume 13, page 14,
2010.

[CGI+18] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and
Roberto Sebastiani. Incremental linearization for satis�ability and veri�-
cation modulo nonlinear arithmetic and transcendental functions. ACM
Transactions on Computational Logic (TOCL), 19(3):1�52, 2018.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: An open source C++ toolbox for strategic
and parallel SMT solving. In International Conference on Theory and
Applications of Satis�ability Testing, pages 360�368. Springer, 2015.

[dMJ13] Leonardo de Moura and Dejan Jovanovi¢. A model-constructing satis�abil-
ity calculus. In Veri�cation, Model Checking, and Abstract Interpretation,
pages 1�12. Springer Berlin Heidelberg, 2013.

[Irf18] Ahmed Irfan. Incremental Linearization for Satis�ability and Veri�cation
Modulo Nonlinear Arithmetic and Transcendental Functions. PhD thesis,
University of Trento, 2018.

[JBDM13] Dejan Jovanovi¢, Clark Barrett, and Leonardo De Moura. The design and
implementation of the model constructing satis�ability calculus. In 2013
Formal Methods in Computer-Aided Design, pages 173�180. IEEE, 2013.

[JdM12] Dejan Jovanovi¢ and Leonardo de Moura. Solving non-linear arithmetic.
In Automated Reasoning, pages 339�354. Springer Berlin Heidelberg, 2012.

[Kre19] Gereon Kremer. Cylindrical Algebraic Decomposition for Nonlinear Arith-
metic Problems. PhD thesis, RWTH Aachen University, 2019.

52 Bibliography

[NÁK21] Jasper Nalbach, Erika Ábrahám, and Gereon Kremer. Extending the fun-
damental theorem of linear programming for strict inequalities. In ISSAC
'21: International Symposium on Symbolic and Algebraic Computation,
pages 313�320. ACM, 2021.

[Nal20] Jasper Nalbach. A novel adaption of the Simplex algorithm for linear real
arithmetic. Master thesis, RWTH Aachen University, 2020.

[NÁS+23] Jasper Nalbach, Erika Ábrahám, Philippe Specht, Christopher W. Brown,
James H. Davenport, and Matthew England. Levelwise construction of a
single cylindrical algebraic cell. Journal of Symbolic Computation, 2023.

[QFN] Satis�ability modulo theories library for QFNRA. Available at,
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA.

[smt] SMT-RAT, a toolbox for strategic and parallel satis�ability modulo theo-
ries solving. Available at, https://github.com/ths-rwth/smtrat.

[Spe20] Philippe Specht. A Level-wise Variant of Single Cell Construction in
Cylindrical Algebraic Decomposition. Bachelor thesis, RWTH Aachen Uni-
versity, 2020.

[Zam19] Aklima Zaman. Incremental linearization for sat modulo real arithmetic
solving. Master's thesis, RWTH Aachen University, 2019.

	Introduction
	Preliminaries
	SMT-Solving for NRA and LRA
	Incremental Linearization for NRA-Solving

	Improving Incremental Linearization
	Heuristics for the Initial Abstraction
	Improving the Refinement

	Evaluation
	Implementation Details and Setup
	Experimental Evaluation

	Conclusion
	Future Work
	Summary

	Bibliography

