
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

CEGAR APPROACH FOR

HANDLING URGENCY IN

HYBRID SYSTEMS

Tristan Ebert

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Alexander Mitsos

Additional Advisor:
Dr. Stefan Schupp Aachen, 11.11.2021

Abstract

Hybrid automata are a popular modeling formalism of hybrid systems, which
are systems that have both continuous as well as discrete behavior. To prove
safety of hybrid automata, a widely used algorithm is the �owpipe-construction
based reachability algorithm which constructs a sequence of convex segments
to over-approximate the behavior of the analyzed system in a given time in-
terval. In this thesis we consider the extension of hybrid automata with a set
of urgent transitions, which are transitions that enforce discrete change in con-
trast to the non-deterministic semantics of non-urgent transitions. Applying
�owpipe-construction to urgent automata involves the set di�erence operation
which splits the segments into multiple convex sets and can cause an exponen-
tial blowup in the number of segments. To mitigate this we apply the CEGAR
technique by ignoring the urgency of transitions and re�ning them on demand
with the goal to minimize the number of splits. Experimental results show suc-
cess of the technique in some instances, provided that urgency would cause a
reasonable amount of splitting in the �owpipe segments.

iv

v

Erklärung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäÿe Zitate wurden als solche ge-
kennzeichnet.

Tristan Ebert
Aachen, den 11. November 2021

vi

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Hybrid Automata . 3
2.2 State Set Representations . 6
2.3 Reachability Analysis . 8

3 Urgent Hybrid Automata 15

3.1 De�nition and Applications. 15
3.2 Set Di�erence Computation . 17
3.3 Utilizing Set Di�erence . 20
3.4 Urgent LHA I . 25

4 CEGAR 31

4.1 The CEGAR Technique . 31
4.2 CEGAR for Urgent Automata . 33
4.3 Path Re�nement . 37
4.4 Improvements . 42

5 Experimental Results 49

5.1 Setup . 49
5.2 Re�nement Strategies . 52
5.3 Re�nement Levels . 56

6 Conclusion 63

6.1 Summary . 63
6.2 Future Work . 64

Bibliography 65

Appendix 69

A Benchmark Automata 69

B Benchmark Results 73

viii Contents

Chapter 1

Introduction

There are many examples for hybrid systems we can observe in day-to-day life. These
range from simple systems such as a ball bouncing on the �oor over complex ones
like autonomous cars or even space shuttles to relevant applications such as factory
controllers. In contrast to discrete systems, such as a computer program where only
instantaneous change of state is present, or continuous systems like the temperature in
a room which changes over time, hybrid systems involve both discrete and continuous
state changes. This can for example occur when the computer program triggers a
heater to be turned on which then a�ects the temperature in a room.

When analyzing hybrid systems we are often interested whether a given system is
safe, for example it may be critical to know whether the temperature in a controlled
room can exceed an upper limit or whether autonomous cars can crash into one
another. To formalize analysis approaches, a common �rst step is to model hybrid
systems as hybrid automata, which model the state of a system as a combination of
location or mode and variable values. The variables change over time according to
a �ow function while discrete change is modeled by transitions between locations.
The safety problem can then be formalized by speci�ying a set of bad states in the
automaton which must be unreachable in order for the analyzed system to be safe.
Although the safety problem is undecidable [HKPV98], di�erent approaches have been
explored in the past to prove safety in some cases for subclasses of hybrid automata.

Here, we focus on �owpipe-construction based reachability analysis, which covers
the set of reachable states by geometric sets. Thus an over-approximation, i.e., a
superset of the set of reachable states is computed, as the exact computation is not
possible due to undecidability of the safety problem. In particular, a sequence of
convex segments is constructed, each of which over-approximates the behavior of the
system in a small time interval. By computing enough segments, an arbitrarily large
time interval can be covered and if no segment contains a bad state, the system is
safe in the time bound.

While this approach can be used to prove safety of some systems, in this thesis
we focus on a limitation of hybrid automata as model for hybrid systems, which is
that they are non-deterministic. In particular, when a transition in an automaton
is enabled, the semantics allow both discrete state changes as well as further time
evolution. This however does not always accurately re�ect the behavior of the con-
sidered system, where in some cases discrete change is urgent and time is not allowed
to elapse further. An example for this is when a heater is turned o� as soon as the

2 Chapter 1. Introduction

temperature goes above a critical upper bound. In order to model such behavior more
accurately, in this thesis we extend hybrid automata with a set of urgent transitions
which impede time elapse when they are enabled.

Such an extension has relevant applications since many hybrid systems have nat-
urally urgent semantics. This includes for example the modeling of programmable
logic controllers [NÁW15], which are used to control the behavior of plants, or plan-
ning problems that occur for example in robotics [BMMW15]. Additionally, other
simulation languages for hybrid systems such as Simulink or Modelica use deter-
ministic semantics so that translation to hybrid automata without urgency is di�-
cult [SJ12, MF16a]. Translation is however desirable because simulation is not always
su�cient to prove safety of hybrid systems.

After formalizing urgency in hybrid automata, the �rst goal of this thesis is to
extend the �owpipe-construction method to handle urgency in order to prove safety
for urgent hybrid automata. The main di�erence here is that we need to exclude
states that are only reachable by letting time elapse after an urgent transition has
already been enabled. Our approach is to use the set di�erence operation in order
to exclude the interior of the jump enabling sets of urgent transitions. This however
presents a new problem, because we can no longer guarantee convexity of the com-
puted �owpipe segments and therefore split them into multiple fragments. For each
of these framgnets, successor segments have to be computed which can again be split.
Repeating this process can cause an exponential blowup in the number of segments
and consequently computation time.

The second goal of this thesis is therefore to apply the Counterexample-guided
abstraction re�nement (CEGAR) [CGJ+00] technique to the analysis of urgent hybrid
automata. CEGAR is a technique with applications to many di�erent areas of model
checking, where the idea is to abstract the analyzed model in a way that analysis
becomes easier while keeping properties of interest. If the abstracted model cannot
be veri�ed it is re�ned, which means that features of the original model are added to
the abstraction until it cannot be re�ned further or veri�cation is successful. In our
setting we will apply CEGAR by making transitions non-urgent, therefore minimizing
the amount of splitting in segments. We will see that this is indeed a sound approach,
since by ignoring urgency the computed set of reachable states grow larger, i.e., if the
abstracted model is safe then the same holds for the original system. The re�nement
step in our approach consists of making transitions urgent again, thus making analysis
more precise.

Structure. We will start by formally introducing hybrid automata, reachability
analysis and in particular �owpipe-construction in Chapter 2, which also requires some
results about state set representations. The next step is to extend hybrid automata
with urgent transitions, which we do in Chapter 3. In this chapter we also extend
�owpipe-construction to urgent automata, highlight problems that can occur and
present a specialized algorithm for urgent hybrid automata with constant dynamics.
Finally, we are ready to combine the analysis algorithm with the CEGAR technique in
Chapter 4 which is the main part of this thesis. Here we explain the general CEGAR
technique in more detail, highlight related approaches and formalize a re�nement
algorithm for urgent hybrid automata. In Chapter 5 we evaluate an implementation of
the presented algorithm and compare its performance to that of an analysis algorithm
without re�nement. We conclude by summarizing our results as well as topics of
possible future work in Chapter 6.

Chapter 2

Preliminaries

This chapter introduces preliminary results which will be used in the following chap-
ters. We start by de�ning hybrid automata as a formal model for hybrid systems and
de�ne the safety problem as the main problem of interest in Section 2.1. We then
establish basic results about geometric sets and their representations in Section 2.2,
where we focus mostly on closed convex polytopes. These results will be used in
Section 2.3, where we introduce linear hybrid automata as the main subclass of inter-
est in this thesis and describe the �owpipe-construction based reachability analysis
algorithm which will be extended in subsequent chapters.

2.1 Hybrid Automata

In this section, which is mainly based on [Ábr17] and [ACH+95, Hen96], we introduce
hybrid automata and the general reachability problem. Hybrid automata aim to model
hybrid systems by using a combination of locations and variables to describe the state
of a system. As an example for a hybrid system we consider a moving vehicle which
may either be accelerating or braking. This example can be modeled as a hybrid
automaton with two locations accelerating and braking and variables can include the
position of the vehicle, given as x coordinate, the velocity and the acceleration. In
each location the variables change over time, e.g., in the accelerating location the
velocity may increase whereas it decreases in the braking location, and by switching
between locations instantaneous change can be modeled. Formally, we de�ne hybrid
automata as follows, where we omit components related to parallel composition:

De�nition 2.1.1. A hybrid automaton H is a tuple

H = (Loc,Var ,Flow , Inv ,Edge, Init),

where the components are de�ned as follows:

� Loc is a �nite set of locations.

� Var is a �nite ordered set of real-valued variables {x1, . . . , xd}. The number
of variables d is the dimension of H. A state of H is a pair of a location and
a valuation ν, assigning a real value ν(x) ∈ R to each variable. The set of
all states is the state space Σ. We denote sets of states that have the same

4 Chapter 2. Preliminaries

location component ` ∈ Loc as (`,X) = {(`, x) ∈ Σ | x ∈ X}. For simplicity
we identify valuations with their function values and consider the state space as
Σ = Loc × Rd. Similarly, we write x for the vector of variables or the vector of
real values, depending on the context.

� Flow is a function assigning a set of time-invariant �ow functions Flow(`) ⊆(
R≥0 → Rd

)
to each location ` ∈ Loc. Time-invariant means that if f ∈ Flow(`)

then f+t′ ∈ Flow(`) for all t′ ≥ 0, where (f+t′)(t) = f(t+t′). H is called time-
deterministic if for all x ∈ Rd there is at most one �ow function f ∈ Flow(`)
such that f(0) = x.

� Inv is a function mapping each location to an invariant Inv(`) ⊆ Rd.

� Edge ⊆ Loc× 2R
d×Rd ×Loc is a �nite set of transitions. For (`, µ, `′) ∈ Edge we

call ` the source location, `′ the target location and µ the jump relation.

� Init ⊆ Σ is the set of initial states.

The continuous change of the variables over time is given by the �ow functions
in each location, where time can elapse as long as the invariant is satis�ed, while the
discrete changes are de�ned by the set of transitions. This semantic is formalized by
two inference-rules:

De�nition 2.1.2. The semantics of a hybrid automaton H are de�ned by the rules

e = (`, µ, `′) ∈ Edge x, x′ ∈ Rd (x, x′) ∈ µ x′ ∈ Inv(`′)

(`, x)
e−→ (`′, x′)

Rulediscrete

x, x′ ∈ Rd ` ∈ Loc f ∈ Flow(`)
f(0) = x f(t) = x′ ∀ε ∈ [0, t].f(ε) ∈ Inv(`)

(`, x)
t−→ (`, x′)

Ruletime

Summarizing both rules we de�ne an execution step, denoted (`, x) → (`′, x′), as
either a time step or a discrete step. An initial run is a sequence of execution steps
σ0 → σ1 → . . . with σ0 = (`0, x0) ∈ Init and x0 ∈ Inv(`). We also write σ0 →∗ σi
and say that σi is reachable for all i ≥ 0.

To de�ne automata, the �ow of a location is often given as the solution set to a
system of ordinary di�erential equations (ODE)

ẋi(t) = ϕi(x(t)), for i = 1, . . . , d,

where ẋi denotes the derivative of xi with respect to time and ϕi are quanti�er free
arithmetic expressions over variable set Var . To describe the transitions we often use
a combination of guard and reset. The guard ge of a transition e = (`, µ, `′) ∈ Edge
is the set of variable values from which a jump can be taken, i.e., ge = {x | ∃x′ ∈
Rd | (x, x′) ∈ µ}. When a transition is taken the variables then change according to
the reset function re which maps each value to the set of values that can be taken
after the transition: re(x) = {x′ | (x, x′) ∈ µ}. If re(x) is a singleton for all x ∈ Rd
we also consider the reset as a function Rd → Rd. Note that the combination of
guard and reset uniquely de�nes the jump relation µ. We therefore sometimes denote
transitions as tuples (`, ge, re, `

′). We illustrate the de�ned concepts on the moving
vehicle in Example 2.1.1.

2.1. Hybrid Automata 5

driving

ẋ = v
v̇ = a
ȧ = 0

x = 0
v = 0

a = adrive

braking

ẋ = v
v̇ = a
ȧ = 0

v ≥ 0

a′ := abraking

v ≤ vmin

a′ := adrive

Figure 2.1: Hybrid automaton modeling a moving vehicle.

Example 2.1.1. We consider the introductory example of a vehicle that is either

driving or braking. An automaton modeling the vehicle is depicted in Figure 2.1.

Here, we have three variables, x describes the position of the car in one dimension,

v is the velocity of the car and a is the acceleration. Initially, x and v are zero and

the car is driving. Therefore we start in the location driving with an acceleration

a = adrive where adrive > 0 is a positive constant. The dynamics are given by the

di�erential equations ẋ = v and v̇ = a, while the acceleration is constant in each

location. The car can brake at any time which is modeled by an unguarded transition

to the braking location and a reset of a to abrake , which is a negative constant. Here,

we assume that the change in acceleration is instant. In the braking location the

velocity decreases but can never be negative, which is ensured by the invariant v ≥ 0
and once some lower threshold vmin ≥ 0 is reached the vehicle can stop braking and

return to the driving location.

A central problem related to hybrid systems is safety analysis or the reachability
problem. Here, we de�ne the set of reachable states

Reach(H) := {σ′ ∈ Σ | ∃σ ∈ Init . σ →∗ σ′}. (2.1)

Given a set of bad states Bad ⊆ Σ we want to verify that no bad state can be reached,
i.e., that

Reach(H) ∩ Bad = ∅,

in which case we call the system safe. In Example 2.1.1 a safety relevant question could
be whether the velocity goes above a certain limit vmax in which case the set of bad
states would be given by Bad = {(`, (x, v, a)) ∈ Σ | ` ∈ {driving , braking}v ≥ vmax}.

The reachability problem is undecidable for general hybrid automata [HKPV98],
however by restricting the possible �ow functions, invariants, jump relations and
initial sets, subclasses of hybrid automata can be de�ned. For some of these subclasses
the reachability problem is decidable, however in this thesis we are mostly concerned
with the subclass of linear hybrid automata (see De�nition 2.3.1), and we will consider
the problem of bounded reachability analysis. Here, the runs used to de�ne the set of
reachable states in Equation (2.1) are limited by a time horizon, which bounds the
time that can elapse in a location and a jump depth, bounding the total number of
discrete transitions. Although even the bounded reachability problem is undecidable
for linear hybrid automata we will see in Section 2.3 how in some cases safety can be
veri�ed. For that we will employ �owpipe-construction-based reachability analysis,
which over-approximates the reachable states, i.e., computes a superset, by iteratively
transforming geometric sets according to the possible runs of the analyzed automaton.

To de�ne linear hybrid automata and explain the analysis technique in more detail
we will �rst need some results about geometric sets in Rd.

6 Chapter 2. Preliminaries

(a) Convex set (b) Non-convex set

Figure 2.2: Subsets in R2. The line segment in (b) is not contained in the set.

2.2 State Set Representations

We will now establish some de�nitions and results about geometric subsets of Rd
and in particular closed convex polytopes, which are central to the following sections.
The results of this section can be found with additional details in [Zie95] or [Grü03].
Regarding notation, we consider the points in Rd as column vectors and denote the i-
th component of v ∈ Rd by vi. The transposition into a row vector is written as vT for
v ∈ Rd. We write ai,j to denote the entry in the i-th row and j-th column of a matrix
A ∈ Rn×m, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Finally, we denote closed intervals in R
as [a, b] := {x ∈ R | a ≤ x ≤ b}, open intervals by (a, b) := {x ∈ R | a < x < b} and
denote half-open intervals analogously.

Set properties. We start by de�ning the set properties convex, open, closed and
bounded. A set is convex if all points on the line segment between two points of the
set are also part of the set:

De�nition 2.2.1. A set V ⊆ Rd is called convex if for all u, v ∈ V it holds that

∀λ ∈ [0, 1].λu+ (1− λ)v ∈ V.

Examples for convex and non-convex sets can be seen in Figure 2.2. To mea-
sure distance between points we use the Euclidean norm ‖·‖ and the induced metric
d(u, v) = ‖u− v‖, where

‖u‖ =

√√√√ d∑
i=1

u2
i .

Using this metric we can de�ne topological set properties. For that we denote the
open ball with radius ε centered at a point v by

Bv(ε) := {u ∈ Rd | d(u, v) < ε}.

De�nition 2.2.2. A set V ⊆ Rd is called open if for every point v ∈ V there exists
an ε > 0 such that V contains the ball Bv(ε). V is called closed if its complement
V := Rd \ V is open. Equivalently, a closed set contains all its boundary points where
a boundary point of V is a point v ∈ Rd such that for all ε > 0

Bv(ε) ∩ V 6= ∅.

We thus de�ne the closure cl(V) as the union of V and all its boundary points.

Note that both closed and open sets are closed under union and intersection, i.e.,
the intersection or union of �nitely many closed sets is again closed and the same
holds for open sets.

We say that V ⊆ Rd is bounded if it is contained in some arbitrarily large ball
centered at the origin.

2.2. State Set Representations 7

Operations. Flowpipe-construction based reachability analysis heavily relies on
speci�c operations on geometric sets, which we will de�ne next. Let U, V be sub-
sets of Rd, let A ∈ Rd×d be a matrix and let b ∈ Rd be a vector. We de�ne the
following operations:

� U ∩ V := {x ∈ Rd | x ∈ V ∧ x ∈ U} is the intersection of U and V ,

� U ∪ V := {x ∈ Rd | x ∈ V ∨ x ∈ U} is the union of U and V ,

� U ⊕ V := {u+ v | u ∈ U ∧ v ∈ V } is the Minkowski sum of U and V ,

� AV + b := {Av + b | v ∈ V } is an a�ne transformation of V .

Note that convex sets are closed under intersection, Minkowski sum and a�ne trans-
formations, i.e., if U and V are convex then the result of these operations is convex
as well. Since that is not true for the union operation, we de�ne the convex hull of a
set V which is the smallest convex set containing V :

chull(V) =

{
n∑
i=1

λivi

∣∣∣∣∣n ≥ 1 ∧

(
n∧
i=1

λi ∈ [0, 1] ∧ vi ∈ V

)
∧

n∑
i=1

λi = 1

}
. (2.2)

Two Boolean operations that we will make use of are the emptiness test, which checks
whether a given set is empty, and containment test for a point v ∈ Rd which checks
whether v is contained in a given set.

Representations. In order to use geometric sets algorithmically we require repre-
sentations as well as algorithms for computing the operations introduced above. Here
we focus on polytopes and in some cases more generally polyhedra and discuss some
intuitive and useful representations. A more exhaustive collection of representations
can be found in [Sch19].

De�nition 2.2.3. A halfspace h in Rd is the solution set of a linear inequality

h = {x ∈ Rd | aTx ≤ z},

where a ∈ Rd is the normal vector of h and z ∈ R is the o�set of h. Here aTx is the
scalar product of a and x. A polyhedron P ⊆ Rd is the set of points in the intersection
of a �nite number of halfspaces in Rd. If P is bounded, it is called a polytope.

A polyhedron P can always be written as P = {x ∈ Rd | Ax ≤ z} where the
rows of the matrix A ∈ Rn×d are the normal vectors of the de�ning halfspaces and
the vector z ∈ Rd contains the corresponding o�sets. We call the tuple (A, z) an
H-representation of P and say that P is given as H-polyhedron or H-polytope in case
P is bounded.

Convex sets can also be represented as the convex hull of a set of points and in case
this set of points is �nite it can be shown that the resulting set is a polytope [Zie95].
Conversely, for every polytope P there is a �nite set of points V (P), called vertices of
P such that chull(V (P)) = P . Note that this does not hold for unbounded polyhedra
or general convex sets which can have an in�nite set of vertices. We thus call V (P)
a vertex- or V-representation of P and say that P is a V-polytope. While conversion
between V and H representations is possible, no polynomial algorithms are known.

8 Chapter 2. Preliminaries

x

y

P

(a) Polytope P .

x

y

P

(b) Box approximation of P .

Figure 2.3: A polytope with its vertices (green points) and the normal vectors of its
de�ning halfspaces (blue arrows) in (a) and the bounding box (green) in (b).

Figure 2.3a shows an example of a polytope with the normal vectors of its de�ning
halfspaces and its vertices.

Finally, we consider boxes as a computationally cheap but less precise set repre-
sentation.

De�nition 2.2.4. A box B of dimension d is a subset of Rd that can be written as
the Cartesian product of d intervals I1, . . . , Id ⊆ R.

B = I1 × · · · × Id.

A box can be uniquely represented by the list of tuples

((I`1, I
u
1), . . . , (I`d, I

u
d)),

where Ij = [I`j , I
u
j]. Boxes cannot be used to exactly represent polytopes in general,

since not all polytopes are box shaped and computation with boxes is therefore usually
less precise than with polytopes. An example for a polytope that is not box shaped
and its over-approximating bounding box is shown in Figure 2.3b.

The choice of set representation plays an important role in reachability analysis
because the computational complexity of the set operations can vary greatly with
the used representation. Additionally, di�erent representations can imply a tradeo�
between speed and precision, e.g., operations on boxes are usually fast but less precise.
In the following we assume that the set operations de�ned above are available for
boxes and polytopal representations and refer to [Sch19] for speci�c algorithms and
an analysis of computational complexity. If the result of a computation cannot be
represented exactly by the input representation, like for example the union of two H-
or V-polytopes, we assume that the result is over-approximative.

2.3 Reachability Analysis

We now return to the reachability problem, where we want to know for a given hybrid
automaton H and a set of bad states Bad ⊆ Σ whether Reach(H) ∩ Bad = ∅. While
the problem is in general undecidable, various approaches have been developed to
partially solve the problem e.g., for subclasses of hybrid automata. Here, we consider
the bounded reachability problem with a time bound and a jump depth bound for time
deterministic linear hybrid automata (LHA):

2.3. Reachability Analysis 9

De�nition 2.3.1. A hybrid automatonH = (Loc,Var ,Flow , Inv ,Edge, Init) is linear
if the �ow in each location is given as the solution set to a system of linear ODEs

ẋ = Ax,

for a matrix A ∈ Rd×d, all invariants, guards and initial sets are closed polytopes and
all resets are a�ne transformations r(x) = Rx+ c where R ∈ Rd×d and c ∈ Rd.

Note that also �ows of the form ẋ = Ax + b can be encoded in LHA by adding
an additional constant variable. In particular we allow the �ows for variables to be
constant and if all �ows in all locations are constant we say that H is an LHA I. The
more general class we de�ned as LHA is sometimes referred to as LHA II, but since
we will almost always work with this class we simply call them LHA for brevity. In
addition to LHA we assume that the set of bad states is a polyhedron in each location,
i.e., Bad = ∪`∈Loc(`,Bad `), where Bad ` are potentially empty polyhedra.

We will now describe the �owpipe-construction based reachability analysis algo-
rithm [CK98, Gue09], which is summarized in Algorithm 1. Here, we follow the
presentation in [Ábr17] and [Sch19]. The idea is to compute an over-approximative
set of states Reach′(H) that contains all actually reachable states Reach(H). Safety
can then be veri�ed by checking that Reach′(H)∩Bad = ∅. Note that if Reach′(H)∩
Bad 6= ∅ then we don't know whether the system is safe or unsafe since the bad states
could lie only in Reach′(H) \ Reach(H). Algorithm 1 starts with the set of initial
states Init and alternatingly computes the states that are reachable by letting time
elapse or by taking a discrete transition. This is repeated until either no new jump
successors are found or until the jump depth is reached, at which point all computed
states are returned. Time successors, up to a time bound, are computed with the
computeFlowPipe function and jump successors with computeJumpSuccessors. We
will next explain how these functions work in more detail.

Algorithm 1: Forward reachability analysis
Input : A linear hybrid automaton H with initial set Init .
Output: Over-approximation of Reach(H).

1 R := Init ;
2 Rnew

:= {Init};
3 while Rnew 6= ∅ do
4 Let stateset ∈ Rnew;
5 Rnew

:= Rnew \ {stateset};
6 R′ := computeFlowPipe(stateset);
7 if !jumpDepthReached() then
8 Rnew

:= Rnew ∪ computeJumpSuccessors(R′);
9 end

10 R := R ∪R′;
11 end

12 return R

10 Chapter 2. Preliminaries

X0 eδAX0

(a) The red trajectory is not contained
in the convex hull of X0 and eδAX0.

Ω0

(b) The �rst segment after bloating.

Figure 2.4: Bloating is used to include non-linear trajectories in the �rst segment.

Flowpipe-construction. We �x an initial state set (`,X0) where X0 is a closed
polytope. The goal is to compute an over-approximation of the time successors within
a given time horizon T .

The �owpipe algorithm discretizes the time interval [0, T] into N ∈ N>0 time
steps of equal size [0, δ], [δ, 2δ], . . . , [(N − 1) · δ,N · δ] where δ = T

N . We then compute
the segments Ωi such that each Ωi covers the states reachable in the time interval
[i · δ, (i + 1) · δ]. The union of the segments then gives an over-approximation of the
time successors of the initial states.

To compute the segments, recall that the �ow of a location in an LHA is given by
an ODE of the form ẋ(t) = Ax(t). A solution to this ODE is given by x(t) = etAx(0).
Therefore the segments Ωi can be computed with the recurrence relation

Ωi+1 = eδAΩi,

which can be approximated using the formula

eδA =

∞∑
n=0

An

n!
.

To compute the �rst segment we need to over-approximate the states reachable
from X0 in the time interval [0, δ]. A �rst approach is to take the convex hull of X0

and the states reachable at time δ, given by Xδ = eAδX0. This however does not
include the non-linear trajectories described by the ODE as can be seen in Figure 2.4.
Therefore we use non-uniform bloating which means that Xδ enlarged using a ball B
where the radius depends on δ, A and X0:

Ω0 = chull(X0 ∪ (Xδ ⊕ B)).

For a detailed description of the bloating technique we refer to [Gir05] and for details
on non-uniform bloating to [Gue09].

Finally, to take the invariant Inv(`) into account, each segment is intersected with
the polyhedron induced by the invariant. Note that if for some i there is an empty
intersection Ωi ∩ Inv(`) = ∅, we don't need to compute subsequent Ωj for j > i
because the states are no longer reachable.

2.3. Reachability Analysis 11

Jump successors computation. Given a set of segments Ω0, . . . ,ΩN−1 in a loca-
tion ` we want to compute the states that are reachable by executing a discrete jump.
Multiple outgoing transitions from ` are treated independently so we explain how to
deal with a single transition e = (`, g, r, `′).

The basic approach is to intersect each segment with the polyhedron generated
by the guard g of e, which results in a family of polyhedra, called jump predecessors.
The reset, de�ned by an a�ne transformation, can then be applied to each of the
jump predecessors, giving the jump successors in `′.

Figure 2.5: Flowpipe-construction
with aggregation from initial set X0.

x

y

invg

r
X0

Treating each segment individually can
however lead to an exponential blowup in
computation time, since for each jump suc-
cessor the time successors have to be com-
puted again. This can be improved by us-
ing aggregation or clustering. Aggregation
means that all jump predecessors are treated
simultaneously by applying the reset to the
convex hull of the predecessors. The advan-
tage is that we only get one jump succes-
sor, however aggregation can also lead to ad-
ditional over-approximation. Clustering on
the other hand is a middle ground approach
where the number of jump successors is lim-
ited by an upper bound c. The jump prede-
cessors are divided into at most c families of
sets which are then aggregated respectively.

The �owpipe-construction algorithm with
aggregation is illustrated in Figure 2.5, where
the �owpipe segments for one time elapse
and the jump successors for a discrete jump
are computed.

Reachtrees and path analysis. The alternating computation of continuous and
discrete successors motivates a natural datastructure to store the computed reachable
sets and the corresponding paths. A reachtree of a hybrid automaton H is a graph
whose nodes represent states that are reachable by letting time elapse in a location
from an initial set and whose edges represent discrete transitions. Reachtrees are
useful whenever we want to backtrack in the computation, e.g., to �nd potentially
unsafe paths. We de�ne reachtrees similarly to [Sch19].

De�nition 2.3.2. For a hybrid automaton

H = (Loc,Var ,Flow , Inv ,Edge, Init),

we de�ne a reachtree as a tuple

TH = (Nodes,Root ,Succ,State,Trace),

where

� Nodes is a �nite set of nodes,

� Root ∈ Nodes is the root of the tree,

12 Chapter 2. Preliminaries

� Succ ⊆ Nodes ×Nodes is a set of edges, such that (Nodes,Root ,Succ) is a tree,
i.e., contains no circles,

� State : Nodes → Loc × 2R
d

assigns each node an initial set,

� Trace : Succ → Edge × IR assigns each edge in TH an edge in H and a real
interval I ∈ IR, indicating the time of the jump.

Note that the nodes of the tree only store the initial state set and not all time
successors, which can di�er from actual implementation where it may be useful to
store the computed �owpipes as well. In the theoretical treatment we assume that
�owpipes can be computed on demand: For a node N in a reachtree, we de�ne the
operator FP(N), which is the set of segments computed by the �owpipe-construction
algorithm. Similarly, we write JS(N) to denote the set of jump successors of N , i.e.,
the state sets resulting from applying guard intersections and resets to the segments
in FP(N). Note that both FP(N) and JS(N) depend on the used analysis parameters
such as time step size or whether aggregation or clustering is used. In the following
we assume that these parameters are �xed beforehand and never modify them, so
that the operators are well de�ned.

Given a reachtree TH we call a node N ∈ Nodes complete in TH if N has a
corresponding child for every jump successor i.e., if

JS(N) = {State(N ′) | (N,N ′) ∈ Succ}.

Similarly, a reachtree TH is called complete of depth J if every node of TH with depth
at most J is complete.

Instead of computing the reachable states on every path, it will also be useful to
only analyze speci�c analysis paths:

De�nition 2.3.3. An analysis path is a tuple p = (τ1, e1, τ2, e2, . . . , τn, en) where
each τi is a real interval and ei ∈ Edge. We write |p| = n for the length of the path
and denote the unique path of length 0 with ∅.

The intervals τi are time intervals in which the transition ei can be taken. For an
analysis path p we therefore de�ne the set of nodes nodes(p) belonging to p inductively:

� If |p| = 0 then nodes(p) := {Root}.

� If p = (τ1, e1, . . . , τn, en) for n ≥ 1 then

nodes(p) := nodes(p′) ∪ {N ′ |∃N ∈ nodes(p′). depth(N) = n− 1∧
(N,N ′) ∈ Succ∧
Trace(N,N ′) = (τ, e) ∧ τ ∩ τn 6= ∅ ∧ e = en},

where p′ = (τ1, e1, . . . , τn−1, en−1).

In other words, we iteratively add all nodes that can be reached by taking the next
transition on the path in the given time interval.

We call p complete in TH , if every node N ∈ nodes(p) is complete in TH . Thus,
if an analysis path is complete in TH then the �owpipes of the nodes in TH contain
all states that are reachable on any run in H that is induced by p. We denote the

2.3. Reachability Analysis 13

corresponding state set by ReachTH
(p), which is de�ned by the �owpipes of the nodes

belonging to p:
ReachTH

(p) =
⋃

N∈nodes(p)
S∈FP(N)

S.

If TH is clear from the context, we may omit it and write Reach(p) instead.
Note that we explicitly di�erentiate between runs of an automaton and analysis

paths although both are related: An analysis path induces arbitrarily many runs,
while each run induces a unique analysis path. In Chapter 4 it will however turn out
bene�cial to tie analysis paths to the explored reachtree rather than the automaton
because the latter may change during re�nement.

Given an analysis path p, Algorithm 2 creates a reachtree in which p is complete
and returns Reach(p) as the result. Here, we use the node-operator that creates a
node with the given initial state set and parent node. Since the root node has no
parent in TH , we set it as Null . Additionally, we assume that the node-operator
correctly sets the values for Trace, although in practice some additional bookkeeping
has to be done to keep track of the jump timings.

Algorithm 2: Path analysis algorithm
Input : An analysis path p.
Output: Reach(p).

1 R := ∅;
2 Q := {node(`0, Init ,Null)};
3 while Q 6= ∅ do
4 N := pop(Q); // Removes N from Q

5 R := R ∪
(⋃

S∈FP(N) S
)
;

6 if depth(N) ≤ |p| then
7 for (`′, S′) ∈ JS(N) do
8 N ′ := node(`′, S′, N);
9 if isOnPath(N ′, p) then
10 push(Q,N ′); // Adds N ′ to Q
11 end

12 end

13 end

14 end

15 return R;

Reachtrees and path analysis will be important tools for formalizing the CEGAR
approach to handle urgency in Chapter 4. Before that we will extend hybrid automata
with urgent transitions and describe how to apply the �owpipe-construction based
analysis algorithm to this new class of automata in the next chapter.

14 Chapter 2. Preliminaries

Chapter 3

Urgent Hybrid Automata

After introducing hybrid automata in general and particularly the subclass of linear
hybrid automata for which we described an analysis method we will next move on to
the main focus of this thesis, which are urgent hybrid automata. The �rst step is to
de�ne urgent automata and their semantics in Section 3.1. We will also highlight their
usefulness when modeling hybrid systems and reference related analysis approaches.
Next, we will discuss the problem of computing the set di�erence of convex sets in
Section 3.2, which is a key ingredient in the analysis method for urgent LHA we present
in Section 3.3. Here we essentially extend the �owpipe-construction based algorithm
from Section 2.3 to handle urgency. Finally we discuss a specialized analysis algorithm
that can be used for automata with constant dynamics in Section 3.4.

3.1 De�nition and Applications.

The general idea of urgency in hybrid systems is to enforce discrete change, which
e�ectively restricts the set of states from which time is allowed to elapse. There
are several approaches to formalize this idea for hybrid automata. Here we extend
automata with a set of urgent transitions which impede time elapse as soon as they
are enabled, as is done for example in [NÁW15]. Another common approach is to
de�ne urgent locations in which time is not allowed to elapse as soon as any discrete
transition or some urgency condition is enabled [MF14].

De�nition 3.1.1. An urgent hybrid automaton is a tuple

H = (Loc,Var ,Flow , Inv ,Edge,Urg , Init),

such that (Loc,Var ,Flow , Inv ,Edge, Init) is a hybrid automaton and Urg ⊆ Edge.

Subclasses such as urgent linear hybrid automata are de�ned analogously to sub-
classes of hybrid automata without urgency, in that they are extended by the set of
urgent transitions Urg . The semantic di�erence between a non-urgent and an urgent
transition is that if an urgent transition is enabled, time can no longer elapse. We
therefore de�ne the semantics for urgent hybrid automata as follows by the two rules:

16 Chapter 3. Urgent Hybrid Automata

e = (`, µ, `′) ∈ Edge x, x′ ∈ Rd (x, x′) ∈ µ x′ ∈ Inv(`′)

(`, x)
e−→ (`′, x′)

Rulediscrete

x, x′ ∈ Rd ` ∈ Loc f ∈ Flow(`)
f(0) = x f(t) = x′ ∀ε ∈ [0, t].f(ε) ∈ Inv(`)

∀ε ∈ [0, t). ∀e = (`, µ, `′) ∈ Urg .
(
@x′′. (`, f(ε))

e−→ (`′, x′′)
)

(`, x)
t−→ (`, x′)

Ruletime

Note that Rulediscrete is the same as for hybrid automata without urgency (see
De�nition 2.1.2) and that Ruletime is extended with the additional premise

∀ε ∈ [0, t). ∀e = (`, µ, `′) ∈ Urg .
(
@x′′. (`, f(ε))

e−→ (`′, x′′)
)
.

This premise says that as soon as any urgent transition is enabled, time can no longer
elapse and thus a discrete transition must be taken. Note that (i) the time interval
[0, t) in which no urgent transition can be enabled is half open and does not include
t, which means that an urgent transition can be enabled at exactly one point on a
trajectory and (ii) multiple urgent transitions can be enabled at the same time, in
which case any of them, or even some non-urgent transition can be taken.

Applications of urgency. Urgency can signi�cantly help accurately modeling sys-
tems as hybrid automata and is useful whenever we want to enforce discrete change.
As an intuitive example we consider again the vehicle modeled in Example 2.1.1.
Here, we may want to add an urgent transition from the driving to braking state, so
that the vehicle stops accelerating when going above a certain velocity threshold.

As another example consider a water tank in a factory that can only be drained as
long as the �lling level is high enough or other, more complex conditions are satis�ed.
Here, the draining process may also have to stop instantly, which can be enforced by
adding urgency to the model. Such situations are common in practice when analyzing
programmable logic controllers (PLCs), which are often used to control the behavior
of plants, where the need for urgency can arise as explained in [NÁW15]. Here,
PLCs are speci�ed using sequential function charts (SFC) which can be de�ned using
urgent semantics, i.e., steps in a SFC are only active as long as no transition is
enabled [NÁ12]. These semantics are most accurately modeled as hybrid automaton
by using urgent transitions.

Another source of urgency is the translation of deterministic simulation models
used by modeling environments such as Simulink orModelica to hybrid automata.
This is an important application, because it is hard to cover all possible behaviors of a
system using simulation. Veri�cation of hybrid automata on the other hand allows to
prove safety of a system, considering all possible input combinations. The derivation
of hybrid automata from deterministic modeling languages is therefore a crucial step
in verifying safety-critical systems. The translation of simulation models to hybrid
automata has been explored in [SJ12] and [MF16a]. In [MF16b] the tool SL2SX is
presented which automatically translates Simulink to SpaceEx models and makes
use of urgent transitions in the resulting automaton.

Similarly, in [BMPW14, BMMW15], Bogomolov et al. apply hybrid model check-
ing to planning problems by translating instances in the PDDL+ language to hybrid

3.2. Set Di�erence Computation 17

automata with urgency. PDDL+ [FL06] is an extension of the Planning Domain Def-
inition Language (PDDL) which is widely used in the domain of arti�cial intelligence
and has applications in e.g., robotics and embedded systems.

Related work. In the following sections we want to develop a reachability analysis
algorithm for urgent automata, where we again focus on the subclass of urgent lin-
ear hybrid automata, which we denote by ULHA. We brie�y highlight some related
algorithms, some of which we will explore in more detail later as well.

One common approach to handling urgency in hybrid systems is explored in [SJ12]
and [BMMW15]. The goal here is to construct an equivalent automaton without
urgency, for which one of the classical reachability algorithms can be used. The idea
to do this is to replace each location with an outgoing urgent transition by multiple
new locations whose invariants are extended by the inverted halfspaces of the guard.
This ensures that time can only elapse as long as the interior of the guard is not
entered, however some over-approximation is introduced by trajectories that touch
the boundary of the guard. In [BMMW15] a way to minimize this over-approximation
is presented. Here we discuss this issue in more detail in Section 3.3.

An algorithm for handling urgency in the class of rectangular automata is given
in [MF14]. Here, urgency is realized by an urgency condition, which when satis�ed
impedes time elapse. To perform reachability analysis, the complement of the ur-
gency condition is added as invariant, which reduces the problem to automata with
non-convex invariants. The algorithm has been implemented in the tool PHAVer
and later been extended to a�ne hybrid automata [MF16a]. We discuss the latter
algorithm in more detail in Section 3.3 and present an analysis algorithm for LHA I
in Section 3.4 which is closely related to the approach in [MF14].

3.2 Set Di�erence Computation

A central part of the reachability algorithm for linear hybrid automata will be the
computation of the set di�erence operator, which is de�ned as

P \Q := {x ∈ P | x 6∈ Q}, (3.1)

for sets P,Q ⊆ Rd. In this section we outline an algorithm for computing the set
di�erence between polytopes, however the implementation and optimization of the
operation is beyond the scope of this thesis. More details and in particular the
implementation of the set di�erence operation used in later parts of this thesis are
developed in [Amf21].

We now consider the case where P and Q are convex polyhedra and want to obtain
P \ Q. The main di�culty is that the result of Equation (3.1) is not necessarily a
convex set again, which can be seen at the example of intervals where [0, 3] \ [1, 2] =
[0, 1) ∪ (2, 3] is not convex.

To circumvent this problem, the simplest idea is to use the convex hull of the set
di�erence, which can in some cases be su�cient, but may not be precise enough in
general. In particular, we may end up with the original set, as in the example above
chull([0, 1) ∪ (2, 3]) = [0, 3].

A more precise result can be obtained by computing the set di�erence as a union of
a �nite number of polyhedra. Let P,Q ⊆ Rd be closed polyhedra, where Q is de�ned

18 Chapter 3. Urgent Hybrid Automata

by the inequalities
∧n
i=1 c

T
i x ≤ di. We follow the approach presented in [BMDP02]

and de�ne the sets

R1 := {x ∈ P | cT1 x > d1}
Ri := {x ∈ P | cTi x > di ∧ ∀j ∈ {1, . . . , i− 1}. cTj x ≤ dj},

(3.2)

for i = 2, 3, . . . , n. Then P \ Q = ∪ni=1Ri. We brie�y illustrate an example of this
algorithm in Figure 3.1.

In [RKML06] this algorithm is extended to set di�erences of unions of polyhedra
P and Q. We write P = ∪mP

i=1Pi and Q = ∪mQ
j=1Qj where the Pi and Qj are the convex

components of P and Q respectively. To compute P \Q we can then use the identities(
mP⋃
i=1

Pi

)
\ Q =

mP⋃
i=1

(Pi \ Q)

Pi \

mQ⋃
j=1

Qj

 = (((Pi \Q1) \Q2) · · ·) \QmQ ,

to reduce the problem back to computing set di�erence for polyhedra.
In [Bao05, Bao09] this approach is improved by giving a branch-and-bound algo-

rithm for computing the set di�erence for unions of polyhedra directly. The idea here
is to more e�ciently �nd the feasible constraint combinations in Equation (3.2), i.e.,
�nd the non-empty polyhedra faster.

Number of components. When using the set di�erence operation in reachability
analysis (see Section 3.3) and obtaining a covering ∪ni=1Ri of P \ Q we will con-
tinue the computation with each component Ri individually. This can cause a large
blowup in complexity, especially when set di�erence has to be computed with multi-
ple components, so we are interested in an upper bound on the number of non-empty
components Ri. As a general setting we consider a polyhedron P and a set Q, which
is the union of polyhedra Q1, . . . , QmQ and we use |Qi| to denote the number of
inequalities de�ning Qi.

If we repeatedly apply Equation (3.2) to compute the set di�erence P \Q, we get
|Q1| components in the �rst iteration. For each of those we compute the set di�erence
with Q2 which gives |Q2| new components each. Continuing this we end up with

mQ∏
i=1

|Qi|

components that represent the set di�erence P \ Q. However, as noted in [Bao05,
Bao09] some of these components are bound to be empty. An upper bound on the
number of components that can be non-empty is related to a hyperplane arrangement
problem which asks how many regions Rn can be divided into by a set of hyperplanes.
This question is studied in [Buc43] and is used in [Bao09] to bound the number of
non-empty regions Ri by

d∑
j=1

(
M

j

)
= O

(
Md

d!

)
,

3.2. Set Di�erence Computation 19

x

y
H1

H2

H3Q

P

(a) Polytopes P and Q with
de�ning halfspaces.

x

y

(b) Order: H1, H2, H3

x

y

(c) Order: H1, H3, H2

Figure 3.1: Components when using di�erent orderings of the halfspaces for comput-
ing the set di�erence P \Q shown in (a). The halfspaces H1, H2, H3 de�ne Q. When
the order in (b) is used, the result has two components while in (c) it has three.

where M =
∑mQ
i=1 |Qi| is the total number of constraints. This bound is especially

useful in lower dimension when Q consists of multiple components with many con-
straints.

In practice when computing the set di�erence of two polytopes P \ Q it can be
very relevant in which order the halfspaces de�ning Q can be considered. An example
for this can be seen in Figure 3.1, where a bad ordering of the halfspaces results in
more components than necessary.

Over-approximation. A practical issue for computing the set di�erence is that
we have used strict inequalities in Equation (3.2) but in practice often work with
representations that can only represent closed sets (such as for example V-polytopes).
To over-approximate the result we may therefore replace the strict inequalities in
Equation (3.2) with weak ones. Note that this is indeed an over-approximation,
because if cTx < d then also cTx ≤ d, i.e., we get a superset of the set di�erence.

An advantage is that in our reachability algorithm (see Section 3.3) we usually
want to compute the closure cl(P \Q) of the set di�erence which is the same as the
proposed over-approximation except for empty components. For empty components
we may indeed over-approximate the closure if we replace strict inequalities with weak
ones, which can be seen on the example R = {x ∈ R | x < 0 ∧ x ≥ 0}. Obviously,
R = ∅, but if we replace the strict inequality x < 0 in R, we get {x ∈ R | x ≤
0 ∧ x ≥ 0} = {0} 6= cl(R). It may therefore be useful to �rst check emptiness of each
component (with strict inequalities) and only if it is non-empty compute the closure
by replacing the strict inequalities.

Boxes. Lastly we want to mention a specialized algorithm which can be used when
using boxes (Cartesian products of intervals) as state set representation. In partic-
ular, [JCKK18] present an algorithm for computing the set di�erence of two boxes
A,B ⊆ Rd. The algorithm produces 2d boxes (some of which may be empty) whose
union represent the set di�erence A \ B. While this is the same number of com-
ponents created by applying the set di�erence algorithm with polytopes (B has 2d
de�ning inequalities as a polytope), the boxes are constructed directly without redun-
dant inequalities which may make the algorithm easier to implement and optimize in
practice.

20 Chapter 3. Urgent Hybrid Automata

A technical di�culty when using boxes as a state set representation for reachabil-
ity analysis arises from the conversion of sets that are not box shaped: To illustrate,
assume we want to compute the set di�erence of two sets P \Q. The straightforward
approach is to obtain box representations PB , QB for P and Q and apply the set dif-
ference algorithm to PB and QB . The issue is that the box representation is typically
over-approximative, i.e., PB ⊇ P and QB ⊇ Q, as explained in Section 2.2. Using
an over-approximative conversion for Q is problematic, because the result PB \ QB
is in general not over-approximative for P \ Q. One approach to circumvent this is
to underapproximate Q by one or multiple boxes. Some ideas for such underapprox-
imations can be found in [BFT04]. Here, we instead restrict application of the set
di�erence algorithm for boxes to cases where Q is already box shaped in which case
the representation QB is exact. In all other cases we compute the set di�erence using
the polytope based algorithm and convert the resulting polytopes back to boxes.

3.3 Utilizing Set Di�erence

Throughout this section we �x an urgent linear hybrid automaton (ULHA) H and
the goal is to compute the set of reachable states of H. We mainly focus on how
the time successors of an initial state set up to a time bound T can be computed
by adapting the �owpipe-construction detailed in Section 2.3. Note that the discrete
semantics for urgent hybrid automata are the same as for hybrid automata without
urgency. It is therefore su�cient to compute the set of reachable states by letting time
elapse and compute the discrete successors analogously to regular LHA as described
in Section 2.3.

For each urgent transition e = (`, g, r, `′) we de�ne the jump enabling set

Je := g ∩ r−1(Inv(`′)), (3.3)

where r−1(X) denotes the pre-image of a set X ⊆ Rd, de�ned as r−1(X) := {x ∈
Rd | r(x) ∈ X}. Note that if x ∈ Je then x

e−→ r(x), which follows directly from the
de�nition of the discrete semantics. We further de�ne

J` :=
⋃

(`,g,r,`′)∈Urg

Je,

as the union of the jump enabling sets for ` ∈ Loc.
Assume now that we are given an initial state set (`,X0), a time bound T and a

step size δ = T
n for some n ∈ N. We assume that all initial states satisfy the invariant,

i.e., X0 ⊆ Inv(`). Since H is a LHA, the set of �ow functions in ` can be given as the
solution set of an ODE

ẋ = Ax. (3.4)

Recall from Section 2.3 that solutions to eq. (3.4) are of the form x(t) = eδAx(0).
We construct the �rst segment Ω0 analogously to regular �owpipe-construction by
applying the a�ne transformation eδA to X0, bloating the result and taking the
convex hull with X0.

Ω0 = chull(X0 ∪ (eδAX0 ⊕ B)).

To account for the invariant and the urgent transitions we de�ne

Ω′0 = cl((Ω0 ∩ Inv(`)) \ J`),

3.3. Utilizing Set Di�erence 21

The following segments Ω′i for i = 1, . . . , n− 1 are de�ned by the recurrence relation

Ωi = eδAΩ′i−1,

Ω′i = cl((Ωi ∩ Inv(`)) \ J`).
(3.5)

The proposed algorithm for computing time successors consists of successively
computing the constrained segments Ω′i. We show correctness of the algorithm by
proving the following lemma:

Lemma 3.3.1. Let R[0,T] = {x ∈ Rd | ∃t ∈ [0, T]. ∃x0 ∈ X0. (`, x0)
t−→ (`, x)} be the

set of reachable states in the time interval [0, T] and let Ω′i be de�ned as above. Then

R[0,T] ⊆ X0 ∪
n−1⋃
i=0

Ω′i.

Proof. We �rst show that R[0,δ] ⊆ X0 ∪ Ω′0. By construction of Ω0 it holds that
R[0,δ] ⊆ Ω0. Since states that do not satisfy the invariant are by de�nition not
reachable we have that R[0,δ] ⊆ Ω0 ∩ Inv(`).

Now let x ∈ R[0,δ]. Then for some f ∈ Flow(`) and a time point t ∈ [0, δ] the
identity f(t) = x holds. If t = 0 then x ∈ X0 and we are done, so we assume in the
following that t > 0. We want to show that x ∈ Ω′0 which is equivalent to showing
that for all ε > 0,

Bx(ε) ∩ ((Ω0 ∩ Inv(`)) \ J`) 6= ∅. (3.6)

Assume to the contrary that for some ε > 0 Equation (3.6) does not hold, i.e., the
left hand side is empty. By continuity of f there exists some t′ ∈ [0, t) such that
the distance between x = f(t) and f(t′) is smaller than ε, i.e., f(t′) ∈ Bx(ε). Since
Equation (3.6) is assumed to not hold and because f(t′) ∈ R[0,T] ⊆ Ω0 ∩ Inv(`) it
follows that f(t′) ∈ J`, which means that at time t′ some urgent jump is enabled. By
de�nition of the urgent semantics it follows that from f(t′) time cannot elapse, and
so x is in fact not reachable, in contradiction to x ∈ R[0,δ]. Therefore, we get by proof
of contradiction that x ∈ Ω′0. Since this argument holds for all x ∈ R[0,δ], it follows
that R[0,δ] ⊆ X0 ∪ Ω′0.

Note that we only needed X0 to contain valuations at time 0 and we showed that
Ω′0 contains all valuations in the time interval (0, δ]. Thus it follows by induction for
i > 0 that R(i·δ,(i+1)·δ] ⊆ Ω′i. In conclusion, by taking X0 and all Ω′i, we get a covering
of the whole time interval [0, T] which proves the lemma.

A similar approach to compute time successors with urgent semantics is described
in [MF16a]. Here, an urgency condition U(`) is given as a (possibly non-convex) subset
of Rd for every location `. Semantically, when a state satis�es the urgency condition,
time can no longer elapse so in our setting U(`) = J`. In [MF16a], the closure of
the complement cl(U(`)) is added to the invariant of ` and a way to compute time
successors with non-convex invariants is described. While this is equivalent to our
approach in most cases, there are some cases where intersecting with the closure of
the complement of J` would give a slightly larger result (see for example Figure 3.2).

22 Chapter 3. Urgent Hybrid Automata

Ω

J`

(a) Segment Ω and jump
enabling set J`

(b) cl(Ω \ J`) (c) Ω ∩ cl(J`)

Figure 3.2: Set di�erence with J` in (b) and intersection with the complement of the
closure of J` in (c), which additionally contains the dashed edges.

Computing the segments. Now that we have described an approach to construct
time successors for urgent LHA, we now want to focus on how they can be computed in
practice. First, we need to obtain the set J` of jump enabling sets, which comes down
to computing the sets Je for outgoing urgent transitions of ` (see Equation (3.3)).
The most interesting part of eq. (3.3) is the set r−1(Inv(`′)) which is pre-image of
the invariant in the target location `′ under the reset function r. Recall that we are
working with LHA, where the invariant in `′ is a convex closed polytope Ix ≤ c, with
I ∈ Rn×d and c ∈ Rn, given as the matrix-vector pair (I, c). The reset function on
the other hand is given as an a�ne transformation x′ = Ax + b with A ∈ Rd×d and
b ∈ Rd.

We compute the set r−1(Inv(`′)) as follows:

r−1(Inv(`′)) = {x ∈ Rd | r(x) ∈ Inv(`′)}
= {x ∈ Rd | Ir(x) ≤ c}
=
{
x ∈ Rd | I (Ax+ b) ≤ c

}
=
{
x ∈ Rd | IAx ≤ c− Ib

}
.

This is again a convex closed polytope de�ned by the matrix-vector pair (IA, c− Ib).
To obtain Je we only need to compute the intersection with the guard g, which is
easily done because g is also given as a closed convex polytope.

Next we use the set di�erence operation in eq. (3.5) to obtain the sets Ω′i. Both
input sets Ωi as well as J` are unions of polyhedra, for which we have described a
way to compute the set di�erence in Section 3.2. Our approach to computing the
�owpipe with urgent semantics is summarized in Algorithm 3. Here, we use the term
fragment to describe the multiple components of a segment that can be created by the
set di�erence operator. In particular, the fragments of a segment are used to cover
the reachable states in the same time interval. In Algorithm 3 we use the function
�setdifference� which returns a set of fragments representing the closure of the set
di�erence.

3.3. Utilizing Set Di�erence 23

Algorithm 3: Flowpipe time successor computation for urgent LHA

Input : A location ` with �ow ẋ = Ax, an initial set X0 ⊆ Inv(`), a time
bound T and a time step δ = T

n .
Output: Flowpipe of segments whose union contains the set of reachable

states from X0 within the time bound T .

1 FP := {X0};
2 Ω0 := firstSegment(X0, δ) ∩ Inv(`);
3 /* setdifference creates multiple (closed) fragments */
4 previousFragments = setdifference(Ω0, J`);
5 previousFragments = removeEmptyFragments(previousFragments);
6 FP := FP ∪ previousFragments;
7 for i← 1 to n do
8 if previousFragments = ∅ then
9 return FP ;

10 end

11 nextFragments := ∅;
12 for Ωji−1 ∈ previousFragments do

13 nextFragments := nextFragments ∪ cl
((
eδAΩji−1 ∩ Inv(`)

)
\ J`

)
;

14 end

15 nextFragments := removeEmptyFragments(nextFragments);
16 FP := FP ∪ nextFragments;
17 previousFragments := nextFragments;
18 end

19 return FP ;

Shadow of J`. While the descibed method to compute time successors for ULHA
is correct, it can introduce additional over-approximation. The �rst source of over-
approximation can be described as the �shadow� of the jump enabling set J` that may
not be correctly excluded from the computed set of reachable states. The shadow of J`
is the set of states that is only reachable from the initial state set by trajectories that
pass through J`. In the computation of a single segment however, only the interior of
J` is excluded by computing the set di�erence and states that lie in the shadow of J`
may not be detected. Figure 3.3 illustrates this complication on two examples. Here,
the �rst segment Ω0 is constructed from an initial set X0 and then the set cl(Ω0\J`) is
computed. In (a) it is clear that the shaded states are not reachable from X0 because
any trajectory from X0 must pass through J`. In (b) the situation is somewhat less
clear, because in principal some non-linear trajectory could move around J` to reach
a state in the shaded area. If we for simplicity assume a linear �ow as indicated by
the arrow, then the shaded area is again not reachable.

Detecting states that lie in the shadow of J` and are therefore unreachable is
hard in a general setting. In Section 3.4 we describe methods that work for urgent
LHA I, i.e., for automata where the dynamics are constant. Here we brie�y sketch
an approach that can in some cases be used to check whether a fragment computed
by the set di�erence operation is entirely unreachable, which can in particular detect
situations such as Figure 3.3a.

24 Chapter 3. Urgent Hybrid Automata

x

y

Ω
J`

X0

(a)

x

y

Ω

J`

X0

f

(b)

Figure 3.3: The shadow of J` can introduce additional over-approximation. In (b)
the direction of the linear �ow is indicated by the arrow. The shaded fragments are
contained in the computed set cl(Ω \ J`) but are not reachable.

For i ≥ 0 let Ω1
i , . . . ,Ω

ni
i be a family of convex closed sets that covers R(i·δ,(i+1)·δ]

as computed by Algorithm 3. For ease of notation we here write Ω1
−1 = X0 for the

single fragment that covers the initial states. If a fragment Ωki is reachable then
by continuity of the �ow functions there must be a trajectory from some previous
fragment Ωli−1 to Ωki that only moves through fragments

Ω1,Ω2,Ω3, . . . ,Ωm, (3.7)

where Ω1 = Ωli−1 and Ωm = Ωki and the fragments Ωj belong to the time interval
(i · δ, (i+ 1) · δ], i.e., Ωj = Ω

pj
i for some indices pj ∈ {1, . . . , ni} and 2 ≤ j ≤ m. This

means that the intersection Ωj ∩ Ωj+1 must be non-empty for all j ≥ 1, so that a
continuous trajectory can move through them. To check for which fragments Ωki such
a trajectory exists, which is necessary for them to be reachable, we can build a graph
where the fragments Ωki are the nodes with an edge between them if the intersection
of the corresponding fragments is non-empty. The nodes whose fragments have a
non-empty intersection with some previous fragment Ωli−1 are designated as starting
nodes. If we look at the connected components of the constructed graph, then only
the fragments whose node belongs to a component with a starting node are potentially
reachable. For the other fragments on the other hand no sequence such as described
in Equation (3.7) exists and they are certainly not reachable.

In Figure 3.3a the tree for i = 0 has two nodes corresponding to the fragments
left and right of J` respectively. The nodes are not connected, because the fragments
have empty intersections and the node corresponding to the left fragment is a starting
node, as it has non-empty intersection with X0. Since there is no path from a starting
node to the node corresponding to the right fragment, it can be discarded as it is un-
reachable. Note that the existence of such a path is only necessary and not su�cient.
As an example consider the splitting indicated by the dashed lines in Figure 3.3b.
Then the graph for i = 0 has three nodes in a single connected component i.e., no
fragments can be discarded although the shaded fragment is in fact not reachable.

Note that the over-approximation caused by the shadow of J` can in a lot of cases
be mitigated by choosing a su�ciently small time step. In Figure 3.3a for example,
if the time step is chosen su�ciently small no computed segment will include points

3.4. Urgent LHA I 25

x

y

x

J`

(a) Non-linear trajectory

x

y

x

J`

(b) Linear trajectory

Figure 3.4: Trajectories that touch the boundary of J` but do not enter the interior.
In both examples the dashed (red) part of the trajectory is not reachable.

from both left and right of J`. Instead, some segment may be contained completely
in J`, at which point the computation stops because the computed set di�erence is
empty.

In particular, the shadow of J` becomes a major problem when the time successor
computation is done in a single iteration, which is possible for automata with constant
dynamics. We discuss this case in more detail in Section 3.4.

Touching the boundary of J`. The second source of over-approximation we want
to bring up is caused by trajectories that touch the boundary of J` but don't move
on to its interior. An example for this behavior is shown in Figure 3.4a. From an
initial point x, the trajectory hits the boundary of J` at which point the semantics
forbid time to elapse further. The points that lie on the dashed part of the trajectory
are therefore not reachable from x, which is undetected by our �owpipe-construction
algorithm. Note that this problem is not limited to non-linear dynamics, as can be
seen in Figure 3.4b where again time can not longer elapse after the boundary J` has
been touched and the points on the dashed line are not reachable.

Detecting this behavior for non-linear dynamics seems even harder than identify-
ing points in the shadow of a guard since we have no way to notice at which point J`
was �rst reached when using a geometric approach. In [BMMW15], where urgency is
handled by constructing auxiliary locations whose invariants are extended by the in-
verted halfspaces of the guard, this problem is mitigated by introducing an additional
clock t. The variable t ensures that after the guard has been satis�ed once, less than
ε > 0 more time units can be spent in `, which means that with a su�ciently small ε
the problem of touching the guard and moving out of it again is almost eliminated.

3.4 Urgent LHA I

We now consider a special case of reachability analysis with urgent transitions, which
is the subclass of urgent LHA I. Recall that LHA I are automata with constant
dynamics, i.e., in every location `, the dynamics are given by an ODE of the form

ẋ = f,

where f ∈ Rd.

26 Chapter 3. Urgent Hybrid Automata

For LHA I the time successors of an initial state set (`,X0) can be computed
exactly in one step [ACH+95] as

T+ = (`,X0 ⊕ F ∩ Inv(`)),

where F := {tf | t ∈ [0, T]} is the cone generated by the �ow vector f , and ⊕ is
the Minkowski-sum operator, de�ned in Section 2.2. The jump successors J+ of the
computed state set T+ can be computed [ACH+95] with the formula

J+ =
⋃

(`,g,r,`′)∈Edge

(`′, r(T+ ∩ g) ∩ Inv(`′)),

which implies that the bounded reachability problem is decidable for LHA I.
In this section we want to outline an approach how to compute the reachable

states for LHA I with urgent transitions, i.e., without over-approximation. This is
particularly important, because if we were to apply the same approach as described
in Section 3.3 and simply take cl(T+ \J`) as the set of constrained time successors, we
can potentially get a large over-approximation. This is caused by the shadow of J`,
which as already mentioned becomes more problematic the larger the selected time
step size is and in the case of LHA I the time step is essentially equal to T .

A closely related method to the one we presented here is described in [MF14].
It works even for rectangular automata, in which the dynamics may be given as an
interval of possible derivatives for each variable. We will �rst describe our approach
and then compare it with the algorithm from [MF14].

We start with an initial state set (`,X0) and our goal is to exactly compute the
set of reachable states by letting time elapse and taking a single discrete transition.
By applying this method iteratively, the reachable states can be computed up to a
given jump depth. To simplify the problem we �rst assume that the initial location
` has exactly one outgoing urgent transition e and will later discuss how the method
can be extended to multiple urgent transitions. For ease of notation we also assume
that X0 ⊆ Inv(`), and otherwise consider X0 ∩ Inv(`) as initial set.

Jump predecessors. The �rst step of our approach is to compute the jump pre-
decessors J−e , i.e., the set of states from which the transition e can be taken. Since e
is urgent, these states are the time successors of X0 where Je is �rst entered:

J−e = {x(t) | x ∈ X0 ∧ x(t) ∈ Inv(`) ∧ x(t) ∈ Je ∧ ∀t′ < t. x(t′) 6∈ Je},

where we use the notation x(t) = x + ft for t ≥ 0 to describe the time successor
of some x ∈ Rd after letting t time units elapse. To construct J−e we consider each
halfspace of Je independently and take for each halfspace H the states where H is �rst
satis�ed. Formally, let H be a halfspace de�ned by the inequality aTx ≤ b for a ∈ Rd
and b ∈ R. We de�ne the sets H∼ = {x ∈ Rd | aTx ∼ b} for ∼∈ {<,≤,=,≥, >}, and
in particular H = H≤. The set where H is �rst entered from X0 can be described by
the equation

entry(H) =
((
X0 ∩H>

)
⊕ F

)
∩H=.

Intuitively, we want H to not be satis�ed initially and capture the point in time where
it is �rst satis�ed. By linearity of the �ow and convexity of H, the entry point must
be on the border H=. Note that entry(H) does not include states that are initially
in Je, so we will have to handle X0 ∩ Je separately. We summarize our results in the
following lemma.

3.4. Urgent LHA I 27

Lemma 3.4.1. Let Je be de�ned as the intersection of halfspaces Je = H1∩· · ·∩Hn.

We de�ne the set

entry(Je) =

n⋃
i=1

(entry(Hi) ∩ Inv(`) ∩ Je) .

Then J−e = entry(Je) ∪ (X0 ∩ J).

Proof. We �rst prove the inclusion J−e ⊆ entry(Je)∪ (X0 ∩ Je). For that let x′ ∈ J−e .
Since J−e ⊆ Je, it follows that if x′ ∈ X0 then x′ ∈ X0 ∩ Je and we are done. We
therefore assume without loss of generality that x′ 6∈ X0. Then there exists some
initial state x ∈ X0 such that x′ = x(t) = x + tf for some t > 0. We make the
following observation:

� The premise x(t) ∈ Je is equivalent to x(t) ∈ Hi = H≤i for all i. If it were true
that x(t) 6∈ H=

i for all i, then x(t) ∈ H<
i for all i, which together with the fact

that the sets H<
i are open means that there is some t′ < t such that x(t′) ∈ Je.

But then x(t) is not reachable from x at all since the urgent jump was enabled
at an earlier time t′. Thus there exists some i such that x(t) ∈ H=

i . In the
following we denote the indices for which this holds by i1, . . . , ik, i.e., x(t) ∈ H=

ij
for j = 1, . . . , k.

We want to show that x(t) ∈ entry(Hij)∩ Je for some j ∈ {1, . . . , k}. Since J−e ⊆ Je,
we have x(t) ∈ Je. By selection of the halfspaces Hij it also holds that x(t) ∈ H=

ij
for

all j. It therefore remains to show that x(t) ∈
(
X0 ∩H>

ij

)
⊕ F for some j, for which

it is su�cient to prove that the initial value x ∈ H>
ij
for some j.

Assume to the contrary that x ∈ H≤ij for all j. Since also x(t) ∈ H=
ij
⊂ H≤ij it

follows by convexity that x(t′) ∈ H≤ij for all t′ < t. For all other halfspaces, for which
x(t) ∈ H<

i must hold, we can �nd some smaller value t′ such that x(t′) ∈ H<
i for all

i. This is because the sets H<
i are open and the �ow is continuous. It follows that

for some t′ < t we have that x(t′) ∈ Je, which means that again x(t) is not reachable
from x.

We have derived a contradiction from the assumption that x ∈ H≤ij for all j ∈
{1, . . . , k}. Thus x ∈ H>

ij
for some j which as stated above proves that x(t) ∈

entry(Je). Since x′ = x(t) was arbitrarily chosen from J−e the inclusion follows.
For the other inclusion we only need to show that

entry(Hi) ∩ Inv(`) ∩ Je ⊆ J−e , (3.8)

for all halfspaces Hi. The fact that X0 ∩ Je ⊆ J−e follows directly from the semantics
because it is allowed to jump immediately after entering a location.

Let H ∈ {H1, . . . ,Hn} be one of the halfspaces de�ning Je and

x′ ∈ entry(H) ∩ Inv(`) ∩ Je.

Then by de�nition of entry(H) there exists an x ∈ X0 ∩H> and a t > 0 such that
x′ = x(t). By linearity of the �ow it holds that x(t′) ∈ H> for all t′ < t. In particular,
this means that x(t′) 6∈ Je, or in other words, x(t) ∈ Je is the �rst time successor
of x at which e is enabled. Thus, x(t) ∈ J−e and consequently eq. (3.8) holds for H.
Since H was an arbitrary halfspace we get that entry(Je) ⊆ J−e , which proves the
lemma.

28 Chapter 3. Urgent Hybrid Automata

x

y

Je

X0

(a) Jump predecessors entry(Je)

x

y

X0

(b) The shadow shadow(entry(Je))

Figure 3.5: Unconstrained time successors of an initial state set X0 and a jump
enabling set Je with its de�ning halfspaces in (a). The set of entry points entry(Je)
consists of the bold orange lines. In (b) the corresponding shadow shadow(entry(Je))
is indicated by the orange hatched area. Note that entry(Je) is not included in
shadow(entry(Je)).

Excluding the shadow. Now that we have obtained the states from which e can
be taken, we need to make sure that time cannot elapse after that. In other words,
we want to exclude the shadow of J−e which is the set

shadow(J−e) := J−e ⊕ {ft | t > 0}.

Note that we only allow values t > 0, which means that J−e itself will not be excluded.
The set of time successors is then given by

T+ = ((X0 ⊕ F) ∩ Inv(`)) \ shadow(J−e).

To see that R[0,T] = T+, note �rst that R[0,T] ⊆ (X0 ⊕ F) ∩ Inv(`) and that such
a state x(t) is reachable if and only if x(t′) 6∈ J−e for all t′ < t, or equivalently,
x(t) 6∈ shadow(J−e). An example for the computation of the jump predecessors and
the corresponding shadow is depicted in Figure 3.5.

Finally, the jump successors of the urgent transition e can be obtained by applying
the reset to J−e . For all other jumps, we can intersect T+ with the guard and apply the
reset analogously to the case without urgency to obtain J+. For the case that there
is one urgent transition we have therefore described a way to compute the reachable
states without over-approximation. The main problem when applying this method
to multiple urgent transitions is that the jump enabling sets may lie in the shadows
of each other. One idea to solve this is to compute the sets entry(Jei) for all urgent
transitions independently and exclude the shadows of all other urgent transitions, i.e.,
take the set

entry(Jei) \

⋃
j 6=i

shadow
(
entry(Jej) ∪

(
Jej ∩X0

)) .

Note that we take the set di�erence with the shadows of the unconstrained sets
entry(Jej), which may not all be jump enabling states, because they may lie in the
shadow of another urgent jump. To see that this is correct assume that we have

3.4. Urgent LHA I 29

x

y

J`

X0

Figure 3.6: An example where states in the shadow of entry(J`) are reachable when
rectangular dynamics are present. The �ow is indicated by the arrows in the top left
corner and a trajectory from the initial set X0 to the shadow of entry(J`) (orange
hatched area) is given by the large arrow.

three urgent jumps e1, e2 and e3. If some subset P ⊆ entry(Je1) lies in the shadow of
entry(Je2), then even if entry(Je2) lies completely in the shadow of entry(Je3), which
means that it is not a jump enabling set at all, then also P ⊆ shadow(entry(Je3)).
This means that taking the set di�erence with shadow(entry(Je2)) is still correct.

As a subject of future work it could be interesting to explore whether the sets of
jump predecessors can be computed directly without taking the pairwise set di�er-
ences.

A related approach. In [MF14] a similar approach to exactly compute reachable
states for LHA I with urgency is presented. Here, an urgency condition U is assumed,
which when satis�ed forbids further time to elapse. For the sake of time successor
computation, U plays the same role as the set of jump enabling states J` in our setting.
In contrast to the method described here, [MF14] do not compute the shadow of the
states where U is entered explicitly. Instead, the complement U is added to the
invariant, which ensures that U is never entered and the shadow is not included in
the time successors in the �rst place. The entry points of U are then added separately
and are constructed as the boundary between the time successors (with invariant U)
and U . Some additional care has to be taken to include only those points on the
boundary that are reachable from (X0 ⊕ F) ∩ U while letting time elapse. In our
setting the obtained set is the same as entry(J`).

To compute the time successors with the non-convex invariant Inv(`)∩U , [MF14]
iterate over all convex components Pi of Inv(`)∩U and compute the time successors
that lie in that component as well as potential entry points to other components Pj ,
for which the time successors are computed in the next iteration. This process is
repeated until no new entry points are obtained.

The main advantage of the algorithm in [MF14] is that it can also be applied
to rectangular automata, or non time deterministic LHA I, where the dynamics for
a variable x are de�ned as an interval of possible derivatives. In our approach, the
exclusion of the shadow doesn't work with rectangular dynamics, because states that
lie in the shadow of J` may still be reachable, which is shown in Figure 3.6. An
advantage of the presented method is that we do not have to compute time successors
multiple times if the complement J` is not convex, whereas if we used the algorithm
in [MF14], time successor computation is performed for each component of J`.

30 Chapter 3. Urgent Hybrid Automata

Chapter 4

CEGAR

In this chapter we describe an approach for analyzing urgent LHA using the Counter-
example-guided abstraction re�nement [CGJ+00] technique. We do this by integrat-
ing it into the �owpipe-construction analysis algorithm described in Section 3.3. We
�rst describe the CEGAR technique in a general setting in Section 4.1 where we also
highlight related applications to hybrid systems. In Section 4.2 we discuss why apply-
ing CEGAR to the analysis of urgent LHA in particular can be an improvement and
describe how we integrate re�nement into the analysis algorithm. Here, we also lay
the formal foundation for Section 4.3, where we focus solely on the counterexample
analysis and re�nement step. Finally, in Section 4.4 we present optional improvements
and heuristics for re�nement.

4.1 The CEGAR Technique

Counterexample-guided abstraction re�nement, or CEGAR, is an analysis technique
for model checking. It was �rst proposed in [CGJ+00] and has since then applied to
various problems. We �rst outline the general idea and then highlight some applica-
tions to hybrid systems related to our approach.

The �rst step of CEGAR is to create an abstraction of the original model. Here,
an abstraction describes a simpli�ed model that keeps the properties of interest of the
original model. For safety analysis this means that if the abstraction is safe then so
is the original model. The abstraction is then analyzed instead of the original, more
complex model. If analysis of the abstraction indicates that the system is unsafe, a
counterexample is constructed. A counterexample is a concrete execution run that
can be mapped to a run in the original model. In the context of hybrid systems this
is often a path to an unsafe state. The next step is to analyze the counterexample,
which means checking whether the counterexample can exist in the original model in
which case we say that it is real. In case the counterexample is real then CEGAR
indicates failure, i.e., the analysis property is not satis�ed by the model. Otherwise, if
the counterexample only exists in the current abstraction, we say that it is spurious.
In that case the abstraction is re�ned, i.e., it is made more precise by adding more
properties of the original model. Counterexample guidance means that re�nement is
done in a way such that the counterexample does not exist anymore in the re�ned
abstraction. After re�nement the new abstraction is analyzed again until either no
counterexamples are found or a real counterexample is found. The analysis loop is
depicted in Figure 4.1.

32 Chapter 4. CEGAR

Model checkingInitial
abstraction

Construct coun-
terexample

Validate coun-
terexample

Re�ne abstraction

Success

Failure

Unsafe

Spurious

Safe

Real

Figure 4.1: General CEGAR loop.

Related approaches. The CEGAR technique has been applied to the reachability
problem in the past in di�erent ways. We brie�y sketch the main ideas of some
approaches and in particular the abstraction and re�nement process.

In [CFH+03] the abstraction consists of using di�erent approximations of reachable
states. The initial abstraction for example eliminates all continuous variables and thus
only considers the discrete part of the analyzed automaton. If a counterexample, i.e.,
a run to a bad state is found, other approximations of that path are computed. For
re�nement the abstract state space is then split into states that are reachable in
all approximations and those that are not, which allows to refute the reachability of
states. This is improved in [FCJK05] to only consider fragments of the counterexample
which are partial runs of shorter length. A related approach is presented in [ADI03]
where the abstraction consists of dividing the state space into regions by a set of
predicates. Re�nement then adds more predicates to this set which means that a
more precise approximation can be computed.

Somewhat similar to the initial abstraction of [CFH+03], the authors in [JKWC07]
use an abstraction for LHA that eliminates a set of variables from the constraints of the
automaton, such as invariants, �ows or guards. Re�nement makes the set of ignored
variables smaller, which means that the abstraction gets more precise. This re�nement
is counterexample guided by using linear programming to identify a minimal set of
variables and constraints to refute the current counterexample.

The CEGAR approach in [DKL07] focuses on PLC programs that are modeled by
timed automata and uses a similar abstraction re�nement by ignoring the values of
a shrinking set of abstracted variables. A related method is presented in [NÁW15],
where PLC programs with dynamic plant behavior are considered. In their initial
abstraction all variables are assumed to have chaotic behavior and in the re�nement
step concrete dynamics for a subset of variables is added. A notable feature of this
approach is that re�nement is done on the �y and analysis is not restarted from
scratch after a counterexample is refuted. This is achieved by building a reachtree
during analysis and removing subtrees that are a�ected by re�nement while leaving
the rest of the reachtree unchanged.

In [SÁ18] the partial-path-re�nement method is presented which, as the name
suggests, only re�nes speci�c paths in the reachtree. If an unsafe path is found, it is
iteratively analyzed with increasingly precise analysis settings such as a smaller time
step size or smaller clustering size.

In this work we will use ideas similar to [NÁW15] and [SÁ18] to re�ne along paths
in a search tree without restarting analysis.

4.2. CEGAR for Urgent Automata 33

4.2 CEGAR for Urgent Automata

We start this section by motivating why we want to use a CEGAR approach for
analysis of urgent LHA. One of the main issues when analyzing urgent LHA (see
Section 3.3) is that the set di�erence of two convex sets is not generally convex and
thus creates multiple fragments for each segment. For each of these fragments the
time successors have to be computed again which can cause an exponential blowup
in the number of fragments and thus computation time. To circumvent this we make
use of the fact that it may not be necessary to respect urgency of all transitions,
i.e., urgency of some transitions can be ignored. We illustrate this situation on an
example.

Example 4.2.1. Recall the vehicle automaton from Example 2.1.1. The vehicle can

be either driving or braking and can brake at any time. Here, we consider a modi�ed

version in which the vehicle brakes in speci�c regions. These can for example be

regions in which the driver can see speed limit signs which causes them to slow down.

This can be modeled by an urgent transition for each region Xbrake with guard x ∈
Xbrake . Assume we want to analyze safety of this model with a set of bad states

Bad = {(`, (x, v, a)) | x ≥ xlimit ∧ v ≥ vmax}, which means that after driving some

distance xlimit the vehicle must not go above the speed vmax . Then it may not be

necessary to respect every braking region to satisfy the safety condition, since e.g.,

braking once is enough. In that case the urgency of all other transitions can be ignored.

The bene�t of ignoring urgency is that no set di�erence computation is necessary
and therefore analysis is potentially faster. At the same time however this leads to
additional over-approximation of the analyzed automaton, which may not be su�-
cient to prove safety. We therefore want to apply CEGAR to the analysis of urgent
LHA, where the abstraction essentially consists of removing urgent transitions and
re�nement adds back more and more urgent transitions until safety can be veri�ed.
Note that such an abstraction is indeed an over-approximation, i.e., if H is an urgent
LHA and H ′ is a copy of H with a smaller set Urg ′ of urgent transitions then any run
in H is also a run in H ′, because urgency only impedes time elapse and thus makes
the set of reachable states smaller. In particular, if H ′ is safe then so is H. Note also
that since the reachability problem is undecidable we can again only get a decisive
answer if the model is safe and the analysis is precise enough to prove it. The goal
of our CEGAR analysis is therefore to return the same safety result as reachability
analysis applied to the original automaton would. This also makes the presented algo-
rithm somewhat independent of the used reachability algorithm, although it is aimed
at the analysis method in Section 3.3. As subject of future work however the ideas
can be transferred to e.g., the analysis method in Section 3.4, resulting in a CEGAR
algorithm for urgent time deterministic LHA I.

As observed in [NÁW15], a major drawback of applying CEGAR in a straightfor-
ward manner to the reachability problem is that after each re�nement step analysis
is restarted and the entire reachtree has to be computed again. Parts of the reachtree
may however be una�ected by the re�nement step, or re�nement may not be necessary
to verify safety on some paths. The goal is therefore to only re�ne along unsafe paths
in the tree, while leaving the rest unchanged. In [NÁW15] this is achieved by deleting
and recomputing subtrees that are a�ected by the re�nement step. Another approach
is presented in [SÁ18], where the nodes have multiple levels, each corresponding to a
re�nement level of the model on the given path. We will explore a method to re�ne
paths in Section 4.3.

34 Chapter 4. CEGAR

To formalize path re�nement we �rst extend reachtrees to store re�nement infor-
mation, i.e., which urgent transitions were used to compute successor nodes. Here
we also extend analysis paths from De�nition 2.3.3 to store similar information. The
plan is then to use analysis paths to describe counterexamples as runs leading to a
bad state and to re�ne the model along these unsafe paths.

Re�nement trees. We extend De�nition 2.3.2 to abstractions of urgent automata:

De�nition 4.2.1. For a hybrid automatonH = (Loc,Var ,Flow , Inv ,Edge,Urg , Init)
a re�nement reachtree is a tuple

TH = (Nodes,Root ,Succ,State,Trace,Refined),

such that (Nodes,Root ,Succ,State,Trace) is a reachtree of H and

Refined : Nodes → 2Urg

is a function such that Refined(N) ⊆ Urg` for all N ∈ Nodes where State(N) = (`, S)
and Urg` is the set of outgoing urgent transitions of `. We call a transition t ∈ Urg`
re�ned in N if t ∈ Refined(N) and otherwise unre�ned in N . A node N ′ re�nes
another node N if State(N ′) = State(N) and Refined(N ′) ⊇ Refined(N).

Semantically, we treat unre�ned transitions the same as non-urgent transitions,
which means that they do not impede time elapse. In particular, we assume that
the operators FP(N) and JS(N), which compute the �owpipe and jump successors
of the initial state set of N , are modi�ed accordingly. Analogously to reachtrees we
call a node N complete if the successor nodes contain all jump successors, i.e., if
JS(N) = {State(N ′) | (N,N ′) ∈ Succ}. Next we extend analysis paths to include the
re�nement of transitions:

De�nition 4.2.2. An analysis path p is a tuple

p = (U0, τ0, e0, U1, τ1, e1, . . . , Un−1, τn−1, en−1, Un),

where n ≥ 0 and τi ∈ IR, ei ∈ Edge for i = 0, . . . , n − 1 and Ui ⊆ Urg for all
i = 0, . . . , n. We write |p| := n for the length of p. We denote the components of p by
Ui(p), ei(p) and τi(p).

For an analysis path p = (U0, τ0, e0, U1, τ1, e1, . . . , Un−1, τn−1, en−1, Un), the set
Ui is the set of re�ned or urgent transitions at depth i. The tuple (τi, ei) is the trace
between the nodes at depth i and i + 1. A node N in a re�nement tree induces
an analysis path p(N), which encodes the computations that were done to construct
N . Similarly, if R is an ancestor of N then p(R,N) is the analysis path obtained
by following the edges from R to N . For examples of the construction of p(N) and
p(R,N), see Example 4.2.2.

We now formalize re�nement of paths as a partial order on the set of all analysis
paths. Intuitively, paths are similar if they encode the same jumps and jump-timings
and a path re�nes another path if it has more re�ned transitions.

De�nition 4.2.3. Let p, p′ be analysis paths. We say that p and p′ are similar and
write p ∼ p′ if |p| = |p′| and for all i = 0, . . . , |p| − 1 it holds that ei(p) = ei(p

′) and
τi(p) = τi(p

′). If additionally Ui(p) ⊆ Ui(p′) for all i = 0, . . . , |p| then p′ re�nes p and
we write p′ v p.

4.2. CEGAR for Urgent Automata 35

Finally, we de�ne the set of nodes that belong to an analysis path in a given
re�nement tree TH , in order to de�ne the nodes that must be completed to refute a
counterexample. Here we assume that the path can start at some node R ∈ Nodes,
which will be useful when reasoning about partial paths, i.e., paths that do not start
in the root node. The nodes of an analysis path p then include R and all descendant
nodes with the trace induced by the components of p. Additionally, the nodes must
have the re�ned transitions as they are given in p. Formally, we de�ne the nodes of
p inductively:

De�nition 4.2.4. Let p be an analysis path, TH a re�nement tree and R ∈ Nodes a
node of TH with Refined(R) = U0(p). We de�ne the set nodesR(p) of nodes belonging
to p starting in R:

� If p = (U0) is of length 0 then nodesR(p) := {R}

� If |p| ≥ 1 then

nodesR(p) := nodesR(p′) ∪ {N ′ |∃N ∈ nodes(p′R).d(N) = d(R) + n− 1∧
(N,N ′) ∈ Succ ∧ Trace(N,N ′) = (τ, e)∧
τ ∩ τn−1 6= ∅ ∧ e = en−1∧
Refined(N ′) = Un(p)},

where p′ = (U0, τ0(p), e0(p), . . . , Un−1(p)) and d(N) is the depth of N .

For brevity we sometimes omit R and mean nodes(p) = nodesRoot(p) in that case,
which means that paths start in the root node by default.

An analysis path p is complete in TH if every node of p is complete in TH . The
reachable states of p is the union of all �owpipes of the nodes of p, i.e.,

Reach(p) =
⋃

N∈nodes(p)
Ω∈FP(N)

Ω.

Since re�nement makes analysis more precise we have the following useful lemma.

Lemma 4.2.1. Assume that p′ v p and that p and p′ are complete in TH . Then

Reach(p′) ⊆ Reach(p).

We illustrate some of the concepts de�ned so far at the hand of an example re-
�nement tree.

Example 4.2.2. Consider the following re�nement tree with node set Nodes =
{Root , R1, R2, R3, N1, N2}. We color the completed nodes Root , R1, R2 and N2 green

and the unexplored nodes R3 and N1 white. The edges between nodes are labeled with

the corresponding Trace value and the nodes are annotated with their set of re�ned

nodes, which means that Refined(N1) = {eN} and Refined(R1) = Refined(R2) =
{eR}. If all transitions are unre�ned we omit this annotation, for example we have

Refined(N) = ∅. Similarly, we omit the initial states of the nodes as they are usually

not relevant to us.

Root

R3R2, {eR}

N2

τ ′1, e
′
1

R1, {eR}

N1, {eN}

τ1, e1

τ0, e0 τ0, e0 τ0, e0

36 Chapter 4. CEGAR

We now consider the example paths

p1 = (∅, τ0, e0, {eR}, τ1, e1, {eN}),
p2 = (∅, τ0, e0, {eR}, τ1, e1, ∅).

The set of nodes of p1 is nodes(p1) = {Root , R1, R2, N1}. Note that R3 does not

belong to p1 because eR is not re�ned in R3. Since N1 is not complete and belongs to

p1, it is not complete. If we instead consider the path p2 then N1 does not belong to

p2 anymore, so p2 is complete.

The path induced by N2 is

p(N2) = (∅, τ0, e0, {eR}, τ ′1, e′1, ∅).

Note that R1 also belongs to p(N2). Finally, the path from R2 to N2 is given by

p(R2, N2) = ({eR}, τ ′1, e′1, ∅).

Integration of CEGAR. We now explain how the CEGAR loop depicted in Fig-
ure 4.1 is integrated into the analysis algorithm. For that we assume that reachability
analysis indicates potential unsafety of the abstracted automaton and the goal is to
construct a counterexample and re�ne the model if it is spurious. A counterexample

for safety can be considered as a run from an initial state to an unsafe state. Since our
analysis method is over-approximative we here de�ne a counterexample as an analysis
path from the root to an unsafe node, i.e., a node whose segments contain bad states.
Alternatively, we also call the unsafe node itself a counterexample and mean the path
induced by the node. If an unsafe node is found, the analysis path can then easily be
constructed from the re�nement tree we build during analysis. We call a counterex-
ample path p spurious if there is a complete analysis path p′ ∼ p such that p′ is safe,
i.e., contains only safe nodes. Note that by Lemma 4.2.1, spurious counterexamples
cannot exist in the original, completely re�ned automaton and therefore the automa-
ton is safe if a complete re�nement tree contains only spurious counterexamples. If
the counterexample is not spurious we say that it is real, which means that it cannot
be refuted by further re�nement, so safety cannot be veri�ed. However, this does not
mean that there must exist a concrete unsafe run in the original automaton, since our
analysis method is still over-approximative.

After constructing a counterexample, the next step is to validate or refute it and if
it spurious, re�ne the abstraction by adding in more re�ned urgent transitions. Instead
of doing counterexample validation and re�nement as separate steps we consider them
as interleaved steps, as proposed in [CFH+03]. A counterexample path is therefore
refuted by re�ning the automaton along the path and checking if a bad state is still
potentially reachable. If further re�nement is not possible, or cannot improve precision
further, the counterexample cannot be refuted and the algorithm indicates failure.

The analysis algorithm is shown in Algorithm 4, where analysis is executed nor-
mally until an unsafe node is found. In that case, the refine step attempts to refute
the counterexample by implicitly re�ning the given analysis path. If the counterex-
ample can be refuted, it will also push successor nodes of the re�ned path to the
global queue Q, so that analysis can continue.

4.3. Path Re�nement 37

Algorithm 4: CEGAR Reachability algorithm

Input : Urgent LHA H with initial state set (`0, Init) and bad states Bad .
Output: Safety of H.

1 Q := {node(`0, Init , ∅,Null)} ; // global queue
2 while Q 6= ∅ do
3 N := pop(Q);
4 if ! Safe(FP(N)) then
5 success = refine(N) ; // modifies Q
6 if !success then
7 return UNSAFE;
8 else

9 for successorState ∈ JS(N) do
10 push(Q,node(successorState, ∅, N)) ; // unrefined children
11 end

12 end

13 return SAFE;

4.3 Path Re�nement

In this section we discuss how the refine step in Algorithm 4 works in detail. Through-
out this section we �x a partially explored re�nement tree TH and an unsafe node N
with analysis path p = p(N).

Let p′ ∼ p be a similar analysis path which we want to complete in the re�nement
tree in order to refute the counterexample. The choice of p′ is a matter of re�nement
strategy in that multiple options are possible to construct it. Here, we �x a strategy S
which maps an analysis path p to a similar path S(p) ∼ p. We require that repeated
application of S eventually reaches a �xpoint in order to guarantee termination of the
algorithm. Ideally, S is also counterexample guided in order to improve performance.
The plan is to analyze S(p), i.e., complete it in the re�nement tree. If this proves
safety of S(p) then p is spurious and we are done and otherwise we apply S iteratively
until safety can be veri�ed or S reaches a �xpoint in which case the counterexample
is declared real.

A simple example strategy chooses some unre�ned transition e 6∈ Uk(p) for some
k and returns the analysis path p′ ∼ p with Uk(p′) = Uk(p) ∪ {e} and Ui(p′) = Ui(p)
for i 6= k. If all transitions are re�ned, the strategy returns p, so that termination is
guaranteed. We will explore a counterexample guided re�nement strategy later, but
�rst focus on how the completion of a chosen p′ 6= p is integrated into the re�nement
tree.

Now let k be the smallest index such that Uk(p′) 6= Uk(p) and let R be the unique
ancestor of N with depth k. The �rst step is to create a node R′ with Refined(R′) =
Uk(p′). Here, we make the decision to create R′ as a sibling node of R. We could
also attempt to replace R with R′, delete the subtree rooted at R and recompute
it. This is a similar idea to [NÁW15], however we can only do this if R′ has strictly
more re�ned transitions than R. Another possible disadvantage is that the deleted
subtree could already be large and only contain a single unsafe path which results in
redundant computation steps. Other options include using multi-leveled tree nodes
similar to what is done in the partial path re�nement algorithm in [SÁ18], so that

38 Chapter 4. CEGAR

R and R′ are summarized in one node as di�erent re�nement levels. The problem
with this approach is that in contrast to [SÁ18], our re�nement levels are not totally
ordered, since it is not clear which set of re�ned transitions gives more precise analysis
results. Additionally, re�nement levels are di�erent for each node, since their locations
have di�erent outgoing urgent transitions. Finally, another idea suggested in [SÁ18]
is to create a new re�nement tree for each re�nement iteration. This adds additional
challenge in keeping track of the individual trees and also creates redundancy since
the ancestors of R and R′ are identical in both trees. We therefore only build the
subtree starting at R′ and integrate it into the existing tree by making R′ a sibling
of R. This makes it easy to keep track of and reuse re�nement levels, i.e., variations
of the set of urgent transitions, since we know that they are siblings of each other. A
technicality that needs to be considered in practice is what happens when R = Root .
In that case we create a separate re�nement tree, with root R′, i.e., we consider the
roots of these multiple re�nement trees as siblings.

After R′ has been created, note that it is su�cient to complete the tail of p′

starting at R′. This is because any nodes of depth less or equal than R′ belong to p
and will be completed in the outer analysis loop, i.e., outside of the current re�nement
iteration. If any of those nodes are also unsafe, an additional re�nement iteration will
be triggered for them. In order to reduce redundancy we thus consider only the tail
of p′ and complete it as subtree of R′. For that we use a similar algorithm as the
path analysis in Algorithm 2, with the only adaption that transitions on the path
are re�ned accordingly to p′. In particular, we use a second queue Qr which is local
to the re�nement algorithm. If a new unsafe node is found, the re�nement strategy
is applied again until it returns a �xpoint, in which case the counterexample is real.
Finally, successors of nodes that lie at the end of the path need to be completed as
well, but they do not belong to p′ anymore. They are therefore pushed to the global
queue Q after the counterexample is successfully refuted.

Example 4.3.1. We give an example of a successful re�nement iteration. The initial

situation is depicted in the left re�nement tree below. The node N1 is unsafe, indi-

cated by the red coloring. The counterexample path is p(N1) = (∅, τ0, e0, ∅, τ1, e1, ∅).
For re�nement we choose the path p′ = (∅, τ0, e0, {eR}, τ1, e1, ∅). Thus the node R′

with re�ned transition eR is created as sibling of R. The re�nement tree after path

re�nement is shown on the right hand side. The nodes R′, N3 and N4 are completed

because they lie on p′.

Root

R

N2N1

τ1, e1 τ ′1, e
′
1

τ0, e0

Root

R′, {eR}

N5N4N3

τ1, e1 τ1, e1 τ ′1, e
′
1

R

N2N1

τ1, e1 τ ′1, e
′
1

τ0, e0
τ0, e0

Note that R′ has three children while R only has two. This can for example happen

because the set di�erence computation creates more fragments and thus more jump

successors. Note also that the node N5 is created, so that R′ is complete but not

explored because it does not belong to p′.

4.3. Path Re�nement 39

The re�nement algorithm is summarized in Algorithm 5. It keeps a local queue Qr
to hold nodes that still need to be completed. Additionally, we use a list endOfPath
to remember nodes that lie at the end of the �nal analysis path. Lines 1 to 8 are the
initial re�nement step where the �rst new node R′ is created and pushed to Qr. In
lines 10 to 28 the analysis path starting at R′ is analyzed and if new unsafe nodes are
found, more re�nement iterations are triggered in lines 14 to 19. Finally, in lines 30
and 31 the unre�ned path successors are pushed to the global queue so that analysis
can continue.

Algorithm 5: re�ne
Input : Unsafe node N and re�nement strategy S.
Output: Indicate whether N could be refuted.

1 p = path(N);
2 p′ = S(p);
3 k = min({k | Uk(p′) 6= Uk(p)});
4 if k ==∞ then

5 return false ; // fixpoint reached
6 end

7 R = ancestor(N, k) ; // ancestor of depth k
8 Qr := {node(`R, InitR, Uk(p′), parent(R))};
9 endOfPath = ∅;
10 while Qr 6= ∅ do
11 p = p′;
12 M := pop(Qr);
13 if ! Safe(FP(M)) then
14 p′ = S(p);
15 k = min({k | Uk(p′) 6= Uk(p)});
16 if k ==∞ then

17 return false;
18 end

19 push(Qr,node(`R, InitR, Uk(p′), parent(R)));
20 end

21 else

22 if depth(M) == |p| then
23 push(endOfPath,M);
24 end

25 else

26 createAndPushChildrenOnPath(Qr, N, p
′);

27 end

28 end

29 end

30 for M ∈ endOfPath do

31 createAndPushChildren(Q,M) ; // unrefined children
32 end

33 return true;

40 Chapter 4. CEGAR

Avoiding redundancy. While Algorithm 5 correctly analyzes counterexamples it
can do some redundant computation steps. We cover two sources of redundancy and
explain how they can be minimized.

The �rst source of redundancy occurs if a node M is in the queue Qr but an
ancestor RM of M was the re�nement node, in a previous step. With re�nement

node we here refer to the node of depth k for which a sibling is created in lines 8
and 19 of Algorithm 5. In this case M does not need to be completed anymore,
because the path will also be completed below the re�ned node R′M . We illustrate
this on an example:

Example 4.3.2. We continue Example 4.3.1 but assume that we just �nished com-

pleting R′. The current re�nement queue is Qr = {N3, N4}. Assume here that N3

turns out to be unsafe, so that another re�nement iteration is triggered. Depending

on the order that the nodes are explored, this may result in the following re�nement

tree.

Root

R′′, {eR, e′R}R′, {eR}

N5N4N3

τ1, e1 τ1, e1 τ ′1, e
′
1

R

N2N1

τ1, e1 τ ′1, e
′
1

τ0, e0 τ0, e0 τ0, e0

Here, re�nement of e′R had the e�ect that R′′ has no children, so the re�ned path is

immediately complete. In the end N4 is still unexplored and in the queue Qr but the
original counterexample is already refuted, so we can ignore N4.

We therefore keep an additional list refined which holds all the re�nement nodes.
Whenever a re�nement iteration is triggered in Algorithm 5, lines 14 to 19, R is added
to this list. For every nodeM that is taken from the queue, we �rst check whether an
ancestor ofM is in that list and if so we can skip analysis ofM . Similarly, only nodes
in endOfPath that do not have any ancestors in refined are pushed to Q in lines 30
and 31.

The second source of redundancy is that often we choose the same re�nement
nodes over and over again. To avoid multiple computations of the same path analysis
the algorithm therefore checks whether the re�ned node R′ already exists. This is
easy to do because R′ must be a sibling of R if it exists. If R′ exists it can also happen
that successor nodes that lie on the path p′ have already been explored in previous
re�nement iterations. The algorithm therefore follows these nodes as long as possible
and only computes successors for unexplored nodes.

Re�nement strategy. We now explain the counterexample guided re�nement strat-
egy S we use in Algorithm 5. The �rst step is to �nd a node R and an unre�ned
transition e in R such that the pair (R, e) is suitable for re�nement, a condition we will
de�ne in a moment. If no such pair exists, p is returned as �xpoint which indicates
that further re�nement is pointless. Otherwise, we return the path S(p) = p′ ∼ p
with re�ned transitions

Ui(p
′) =


Ui(p) if i < k

Ui(p) ∪ {e} if i = k

∅ if i > k.

(4.1)

4.3. Path Re�nement 41

We �rst de�ne a necessary condition that the pair (R, e) must satisfy in which case
we say that it is suitable for re�nement. After that we explain why we de�ne p′ this
way.

Let R be an ancestor of N and e = (`, g, r, `′) be unre�ned in R. Since N is unsafe
there are segments of FP(R) and subsets of those segments that lead to a bad state in
N when following the path p. For a segment Ω we call this set of predecessors Ωbad .
Assume that for all segments Ω we have that Ωbad ∩Je = ∅, where Je is the transition
enabling set

Je = g ∩ r−1(Inv(`′)),

that is removed from Ω when re�ning e (see Equation (3.5)). In that case re�ning e
in R cannot help because the same predecessors Ωbad will lead to bad states again. A
necessary condition is therefore that

Ωbad ∩ Je 6= ∅, (4.2)

for some segment Ω ∈ FP(R). Note that this condition is not su�cient, i.e., even if
it is satis�ed re�ning R with e may not be enough to verify safety.

To check whether Equation (4.2) holds for some segment Ω we compute the set
Ω∩Je and complete the partial path p(R,N) from R to N , starting from a fresh node
with initial set Ω ∩ Je. If this is safe for every segment then Equation (4.2) cannot
hold and thus the pair (R, e) is not suitable for re�nement.

An algorithm to �nd a suitable re�nement node is given in Algorithm 6.

Algorithm 6: �ndRe�nementNode
Input : Unsafe node N .
Output: A pair (R, e) suitable for re�nement.

1 for (R, e) ∈ ancestors(N)×Urg do

2 if e 6∈ Refined(R) then
3 for Ω ∈ FP(R) do
4 Re := node(`R, Je ∩ Ω, ∅,Null);
5 if isUnsafe(completePath(Re, p(R,N))) then
6 return (R, e);
7 end

8 end

9 end

10 return (Null ,Null)

It works in a straightforward manner by iterating over all pairs (R, e) and the
segments Ω ∈ FP(R) and checking whether p(R,N) is safe when starting from Ω∩Je.
The path analysis is done using Algorithm 2. To order the pairs (R, e) we make the
choice of starting at the root node Root and increasing in depth until N is reached.
The ordering of the transitions in each node is left arbitrary for now. Another option
would be to go in reverse order starting with N , with the advantage that shorter paths
p(R,N) are considered �rst. On the other hand it is also reasonable to re�ne nodes
closest to the root as soon as possible. This is because if multiple transitions have
to be re�ned to refute the counterexample then a su�cient analysis path is found
in fewer iterations than if nodes closest to N are re�ned �rst, which we illustrate

42 Chapter 4. CEGAR

in Example 4.3.3. In Section 4.4 we will present some more advanced heuristics for
ordering the pairs (R, e).

Example 4.3.3. Assume that N is a counterexample with path p = (τ1, e1, ∅, τ2, e2, ∅).
Assume further that to refute N we need the path p′ = (τ1, e1, {e1}, τ2, e2, {e2}), i.e.,
re�ning only e1 or e2 is not su�cient. Then both e1 and e2 are suitable for re�nement.

If e2 is re�ned �rst, then the paths

(τ1, e1, ∅, τ2, e2, {e2}), (τ1, e1, {e1}, τ2, e2, ∅), (τ1, e1, {e1}, τ2, e2, {e2}),

are attempted until p′ is found. If on the other hand e1 is re�ned �rst then only two

re�nement iterations

(τ1, e1, {e1}, τ2, e2, ∅), (τ1, e1, {e1}, τ2, e2, {e2}),

are necessary.

After �nding a suitable pair (R, e) our strategy constructs the path p′ as in Equa-
tion (4.1). Here, we made the decision of setting Ui(p′) = ∅ for i > k, even though
Ui(p) may be non-empty, which means that all descendants of R′ are again initially
unre�ned. We do this because transition re�nement can change the tree structure,
as in Example 4.3.1, so that it may not be necessary to include all re�nements of p.
Our strategy therefore aims at doing as few unnecessary re�nements as possible, and
thus transitions are only re�ned on demand.

4.4 Improvements

This section covers some optional variations of the re�nement algorithm presented
in Section 4.3 that aim at improving the performance. In Chapter 5 we will then
benchmark these variations and compare them with the base version to see which
ones are actually an improvement.

Pruning segments and re�ning halfspaces. One simple possible improvement
that we can make is pruning segments. Here, we check for each computed segment
whether it is completely contained in the jump enabling set Je of an urgent jump
e. In that case, set di�erence computation with Je would yield the empty set and in
particular would not create multiple fragments. Thus we can simply drop the segment
and stop time successor computation in that case, regardless of whether e is re�ned
in the current node or not.

Similarly, it can be reasonable to always re�ne transitions for which Je is a half-
space. In that case, set di�erence of a segment with Je results in a single fragment,
which means that the reasoning for using CEGAR does not apply to e. This can be
achieved by adding all such transitions to the set Refined(N) for all nodes N upon
creation.

Heuristics. We now consider some heuristics for ordering the re�nement candidates
in Algorithm 6. Recall that by default we order the nodes by depth in ascending
order and assume an arbitrary ordering of the urgent transitions in each node. Here,
we present three heuristics, which we call the count, volume and constraint-count

heuristics.

4.4. Improvements 43

The count heuristic keeps a counter for each transition and orders the pairs (R, e)
by the counter values for e in descending order. Each time the pair is found suitable
for re�nement, the counter for the chosen transition is increased by one. To break
ties between nodes, we fall back to the default ordering and take the node with lower
depth. A motivation for the count heuristic is that candidates that were often suitable
for re�nement may be more likely to work in the future as well. Additionally, we can
potentially save time because it is more likely that nodes on the re�nement path are
already complete.

An alternative implementation of the count heuristic is to only increase the counter
for the last transition that was re�ned before the counterexample is refuted. The
reasoning here is that the re�nement candidate was not only suitable for re�nement
but actually helped in refuting a counterexample. In practice we observed that both
heuristics lead to similar results so we only consider the �rst variant.

Next we consider the volume heuristic. Here, we want to compute the sum∑
Ω∈FP(R)

volume(Ω ∩ Je), (4.3)

and order the candidates in descending order. A problem is that the sum in Equa-
tion (4.3) may have to be computed for many candidates. Since the exact computation
of the volume of arbitrary polytopes is likely too much overhead, we approximate it
roughly by taking the volume of the bounding box of Ω ∩ Je. The bounding box here
is the smallest box containing Ω∩ Je. The volume of the box can then easily be com-
puted as the product of the volume of the individual intervals. The idea behind the
volume heuristic is that a large intersection with Je means that set di�erence compu-
tation with Je will exclude a large set. It may therefore be more likely that re�nement
excludes more predecessors of bad states, so that re�nement is more helpful.

Finally, we present the constraint-count heuristic. This heuristic is rather static,
especially compared to the volume heuristic. The idea is to order the candidates
(R, e) by the number of halfspaces de�ning Je in ascending order. Ties between nodes
are again broken by taking the node with the lower depth. If one node has multiple
transitions with the same number of halfspaces we again assume an arbitrary ordering
of these transitions. The reason it may be useful to consider transitions with low
constraint-count value �rst is not that they are more likely to be suitable for re�nement
but that re�nement may be easier. This is because set di�erence computation in the
worst case creates one fragment for each halfspace of Je, as explained in Section 3.2.
Therefore, re�ning transitions where the jump enabling set has few halfspaces can
result in less fragmentation and thus faster successor computation.

Re�nement levels. We now introduce a new re�nement level for urgent transi-
tions. Let R be a node in a re�nement tree and e an urgent transition. So far, e can
be either unre�ned in R, which means that it is treated as a non-urgent transition,
or it is re�ned. This can also be considered as two re�nement levels and we want to
introduce a third one that is a middle ground between the two. The aim is to adapt
the time successor computation by replacing each segment Ω with a convex set Ω′

such that Ω \ Je ⊆ Ω′ ⊆ Ω. Since we compute a single convex set, this does not have
the fragmentation problem of set di�erence, but makes the analysis more precise than
taking the entire segment. By de�nition, the smallest convex set we can obtain for
Ω′ is the convex hull of Ω \ Je. A basic approach to compute the convex hull is to
�rst compute the set di�erence as a collection of polytopes and take the convex union

44 Chapter 4. CEGAR

of them. However, if we use H-polytopes to compute the set di�erence as assumed
in Section 3.2, then computation of Ω′ involves taking the union of potentially many
H-polytopes. This can be costly in higher dimensions when there are many polytopes,
as it is usually done by converting each polytope into V-representation, taking their
union and converting back to H-polytopes [Sch19].

We here consider an alternative approach for which we only need to compute the
vertices of a single H-polytope. It is based on the following lemma.

Lemma 4.4.1. Let Ω = chull{v1, . . . , vn+1} ⊆ Rd be a polytope and let J ⊆ Rd be

convex such that vn+1 ∈ J . Let α1, . . . , αn ∈ [0, 1] be maximal such that ui ∈ Ω ∩ J
for all i ∈ {1, . . . , n}, where

ui := αivi + (1− αi)vn+1.

We de�ne Ω′ := chull{v1, . . . , vn, u1, . . . , un}. Then Ω \ J ⊆ Ω′.

Intuitively, the idea is to replace each vertex of Ω that lies in Je with new vertices
that are obtained by maximizing in the direction of the other vertices of Ω, while
staying inside Ω∩Je. By Lemma 4.4.1 this results in an over-approximation of Ω \Je
and as we will show later, doing this for all vertices gives the closure of the convex
hull. To prove it we require Farkas' Lemma [Far02], which is a classic lemma about
solvability of systems of linear equations. Di�erent equivalent variations of the lemma
exist and we here use a formulation from [Zie95], where a proof can be found as well.

Lemma 4.4.2 (Farkas' Lemma). Let A ∈ Rm×d be a matrix and z ∈ Rm a vector.

Either there exists a point x ∈ Rd with Ax = z and x ≥ 0, or there exists y ∈ Rm
such that AT y ≥ 0 and yT z < 0.

Here, we understand inequalities between vectors component-wise. With Farkas'
Lemma we are ready to prove Lemma 4.4.1. The main steps of the proof are illustrated
in Figure 4.2.

Proof of Lemma 4.4.1. We can assume without loss of generality (after shifting Ω)
that vn+1 is the origin point. Let J ′ := chull({vn+1, u1, . . . , un}). We claim that
Ω′ ∪ J ′ = Ω. The inclusion Ω′ ∪ J ′ ⊆ Ω is clear since Ω is convex and contains
all vertices of Ω′ and J ′. For the other inclusion �rst note that if any αi = 0 then
ui = vn+1 and the claim is obvious because Ω′ contains all vertices of Ω. We therefore
assume that αi 6= 0 for all i ∈ {1, . . . , n}. Let x ∈ Ω be arbitrary and we want to show
that x ∈ Ω′ or x ∈ J ′. Since Ω is the convex hull of {v1, . . . , vn+1} and vn+1 = 0, there
are coe�cients λ1, . . . , λn ≥ 0 such that x =

∑n
i=1 λivi and

∑n
i=1 λi ≤ 1. Further,

because all αi are nonzero we can write x =
∑n
i=1

λi

αi
ui. Thus if

∑n
i=1

λi

αi
≤ 1 then

x ∈ J ′.
We assume otherwise x 6∈ J ′ and that

∑n
i=1

λi

αi
> 1. We want to show that

x ∈ Ω′. By de�nition of Ω′, we know that x ∈ Ω′ if and only if there are coe�cients
µ1, . . . , µ2n > 0 such that x =

∑n
i=1 µivi +

∑n
i=1 µn+iui and

∑2n
i=1 µi = 1. Substi-

tuting ui = αivi the �rst equation is equivalent to x =
∑n
i=1(µi + αiµn+1)vi. Thus

if we can �nd µ1, . . . , µ2n > 0 such that µi + αiµn+1 = λi for i ∈ {1, . . . , n} and∑2n
i=1 µi = 1 then x ∈ Ω′.

4.4. Improvements 45

We therefore want to show that the system of equations
1 0 0 . . . 0 α1 0 0 . . . 0
0 1 0 . . . 0 0 α2 0 . . . 0
...

...
... . . .

...
...

...
... . . .

...
0 0 0 . . . 1 0 0 0 . . . αn
1 1 1 . . . 1 1 1 1 . . . 1



µ1

µ2

...
µ2n

 =


λ1

λ2

...
λn
1

 (4.4)

has a solution with µ = (µ1, µ2, . . . , µ2n
)T ≥ 0. Assume that eq. (4.4) has no such

solution. By Farkas' Lemma, there exists y ∈ Rn+1 such that

1 0 0 . . . 0 1
0 1 0 . . . 0 1
...

...
... . . .

...
...

0 0 0 . . . 1 1
α1 0 0 . . . 0 1
0 α2 0 . . . 0 1
...

...
... . . .

...
...

0 0 0 . . . αn 1




y1

y2

...
yn+1

 ≥ 0 and
n∑
i=1

λiyi + yn+1 < 0. (4.5)

There are two cases to consider:

Case 1: yn+1 ≥ 0. Let yj be minimal, i.e., yi ≥ yj for all i. Note that yj < 0 because
otherwise the second inequality in eq. (4.5) cannot hold. Then

∑n
i=1 λiyi + yn+1 ≥

(
∑n
i=1 λi) yj + yn+1 ≥ yj + yn+1 ≥ 0 which is a contradiction. The last inequality

comes from the j-th row in the �rst inequality of eq. (4.5).

Case 2: yn+1 < 0. In this case, all other yi ≥ 0 for i ∈ {1, . . . , n}. Let j =
argmini{αiyi}, i.e., αjyj ≤ αiyi for all i 6= j. Then

n∑
i=1

λiyi + yn+1 =

n∑
i=1

αi
λi
αi
yi + yn+1

≥ αjyj

(
n∑
i=1

λi
αi

)
+ yn+1

≥ αjyj + yn+1 ≥ 0,

which is again a contradiction. In the last step we used the earlier assumption∑n
i=1

λi

αi
> 1.

Since both cases lead to a contradiction, the system eq. (4.5) has no solution and
therefore the system eq. (4.4) has a solution which means that x ∈ Ω′ and we have
proved the claim that Ω = Ω′ ∪ J ′.

Finally, since J is convex and contains all vertices of J ′ we have that J ′ ⊆ J . In
conclusion we have Ω \ J = (Ω′ ∪ J ′) \ J = Ω′ \ Ω ∪ Ω′ \ Ω︸ ︷︷ ︸

= ∅

⊆ Ω′.

46 Chapter 4. CEGAR

x

y

v2

v1 v4

v3

Ω

Je

(a) The vertex v4 of Ω lies inside
Je and will be replaced.

x

y

v2

v1 v4

v3

Ω

Je

(b) Maximization in direction of
other vertices.

x

y

v2

v1 v4

v3

u1

u2 u3

Ω′

J ′
e

(c) Replacement vertices
u1, u2, u3 and the sets J ′

e and
Ω′ whose union is Ω.

x

y

Ω′

Je

(d) The resulting segment Ω′.

Figure 4.2: The computation steps of the cut-o� operation. The vertex v4 of the
original segment Ω inside the jump enabling set Je is replaced by the new vertices
u1, u2, u3. The vertices are obtained by maximizing from v4 in the direction of the
vertices v1, v2 and v3 respectively.

To construct the over-approximation Ω′ we therefore proceed as follows: First,
we compute the vertices {v1, . . . , vn} of Ω. For each vertex vi that is contained in
Je we replace vi with the vertices ui,j = (1 − λi,j)vi + λi,jvj for j 6= i where λi,j is
maximal such that ui,j ∈ Ω∩Je. Note that pairs (i, j) can be skipped if both vi and vj
are in Je, because both vertices can be replaced if applying Lemma 4.4.1 iteratively.
Additionally to computing the vertices of Ω, an upper bound on the number of linear
optimization problems we need to solve is therefore given by n2. This is however a
generous approximation because in practice many vertices do not lie in Je at all and
pairs (i, j) with vi, vj ∈ Je are skipped as well. We illustrate the presented method
in Figure 4.2.

Next we show that the method in fact computes the convex hull of Ω \ Je.

4.4. Improvements 47

Lemma 4.4.3. Let Ω′ be obtained as described above. Then Ω′ = chull(cl(Ω \ Je)).

Proof. Since Ω \ Je ⊆ Ω′ and Ω′ is convex and closed it follows by de�nition that
chull(cl(Ω \ Je)) ⊆ Ω′. On the other hand, every vertex of Ω′ is by construction a
limit point of Ω \ Je and therefore contained in cl(Ω \ Je). As Ω′ is the convex hull of
its vertices it follow that chull(cl(Ω \ Je)) ⊆ Ω′.

In the following we refer to Ω′ as the cut-o� of Ω and Je, motivated by the way
that parts of Je are cut o� from Ω. This is to contrast it to the computation of
the convex hull, even though both algorithms result in the same set. To integrate
re�nement levels into our analysis algorithm we extend the Refined function from
the re�nement tree to map a node to a subset of Urg × {0, 1, 2}, where for (e, r) the
number r is the re�nement level of e. Similarly, analysis paths are extended to hold
not only the re�ned transitions but also their level. Here, zero stands for the lowest
re�nement level where urgent transitions are treated as non-urgent, one represents the
cut-o� level which computes the cut-o� as described above and two is the most precise
level which means computing the set di�erence. To compute the time successors we
compute the cut-o� for each segment with each jump enabling set Je if e is re�ned
at level one and afterwards the set di�erence for each transition at level two. For
re�nement we �rst re�ne all suitable re�nement candidates to the cut-o� level and if
that is not su�cient to verify safety, they are re�ned to the next level.

Note that this approach can also easily be extended to include arbitrarily many
re�nement levels: in general, we �rst re�ne every suitable candidate to a level r and
then start re�ning to level r + 1 and so on.

48 Chapter 4. CEGAR

Chapter 5

Experimental Results

The analysis algorithm for urgent LHA developed in this thesis has been implemented
in the HyPro library [Sch19] and integrated in the corresponding tool HyDRA. In
this chapter we want to evaluate their e�ciency at the hand of several benchmark
models. In particular, we want to compare the basic analysis algorithm described
in Chapter 3 with the CEGAR algorithm from Chapter 4 and also the potential
improvements described in Section 4.4. We start by brie�y describing HyPro and
some implementation details in Section 5.1, where we also introduce our benchmark
suite. After that we analyze the performance of the improvements from Section 4.4 in
Section 5.2 to obtain re�nement strategies for the benchmark instances. We use these
to compare the CEGAR algorithm with the non-CEGAR algorithm in Section 5.3.

5.1 Setup

In this section we brie�y describe the HyPro library for which we implemented the
presented analysis algorithm and introduce the benchmark suite which we use in
Section 5.2 and Section 5.3 to test the algorithms and compare their e�ciency.

The HyPro library. HyPro [Sch19] is a C++ library in which various state set
representations and operations on them are implemented. These operations are used
to implement a �owpipe-construction based reachability algorithm for linear hybrid
automata in the HyDRA tool. Additional features include dedicated analysis al-
gorithms for subclasses of LHA, parallelization support, decomposition of automata
in subspaces and the partial path re�nement algorithm which we sketched in Sec-
tion 4.1. HyPro also allows to select between di�erent linear optimization backends
and between inexact and exact arithmetic.

For our implementation we used the box and H-polytope representations provided
by HyPro, which means that we mainly focused on the high level implementation
of the analysis algorithms. In particular we did not implement the set di�erence
operation for boxes and polytopes but used the implementation developed as part
of [Amf21]. The CEGAR algorithm presented in this thesis has similarities to the
partial path re�nement algorithm [SÁ18] included in HyDRA, so the coarse structure
of our implementation is similar as well. In particular we reused the implementation
of a reachtree and extended it to implement re�nement trees.

50 Chapter 5. Experimental Results

no rod

ẋ = 0.1 · x − 50
ċ1 = 1
ċ2 = 1

x ≤ 550

x = 0
c1 = 20
c2 = 20

rod 1

ẋ = 0.1 · x − 56
ċ1 = 1
ċ2 = 1

x ≥ 510

rod 2

ẋ = 0.1 · x − 60
ċ1 = 1
ċ2 = 1

x ≥ 510

x ≥ 530 ∧ c1 ≥ 20x ≥ 530 ∧ c2 ≥ 20

x ≤ 510

c1 := 0

x ≤ 510

c2 := 0

Figure 5.1: Rod reactor with urgency. Urgent transitions are indicated by dashed
lines.

Benchmark suite. To analyze and test the developed algorithms we use example
models of hybrid automata. While there are many models available to test reachability
algorithms for LHA, there are few benchmarks that focus on urgency in hybrid sys-
tems. One of the few existing benchmarks of a batch reactor can be found in [MF14],
however we were not able to verify this model with a non trivial jump depth in a
reasonable time, as it is designed for algorithms focusing on LHA I.

We thus adapted existing models by adding and modifying urgent transitions.
To ensure that re�nement is necessary in most cases, in order to test the CEGAR
algorithm, we experimentally adapted the sets of initial and bad states until they could
not be veri�ed without specialized treatment of urgent transitions. We now brie�y
describe each benchmark instance. The models can also be found in Appendix A.

Vehicle. This model is a variation of the vehicle automaton explained in Exam-
ple 2.1.1 and Example 4.2.1. Here, we consider a vehicle represented by a point in
x, y position moving with velocity vx in x direction that starts at x = 0. At several
regions constrained by the x, y position, the vehicle brakes for one second which is
modeled by urgent transitions with the help of an addition clock variable. By choos-
ing a large initial set for y we ensure that some splitting occurs when computing the
set di�erence with these regions. By arranging the regions in a way such that every
trace moves through at least one brake cycle we ensure that the vehicle cannot reach
a position with x = 15 and maximal velocity which gives the safety speci�cation.

Rod reactor. The rod reactor system [JLHM91, ACH+95] models a simpli�ed
reactor core of a nuclear power plant and its temperature. One of two cooling rods
can be inserted in the system which causes the temperature of the core to decrease.
After a cooling rod has been inserted and removed from the system it cannot be
inserted again for 20 seconds. The temperature x increases as long as no cooling rod
is inserted and the safety speci�cation is to verify that the temperature cannot exceed
an upper limit of 550 while no cooling rods can be inserted.

To add urgency to the system we made the insertion of both rods urgent which
means they are inserted whenever possible. The resulting automaton is depicted in
Figure 5.1. In order to make the system unsafe if urgency is not respected, the unsafe
state has been modi�ed to x > 550, so the constraints c1 < 20 and c2 < 20 are
dropped. Since HyPro does not currently support strict inequalities in bad state
speci�cations this has been further approximated by x ≥ 550.1.

5.1. Setup 51

Bouncing ball. The bouncing ball [JELS99] is a classical example for hybrid sys-
tems and models the height and vertical velocity of a ball that bounces on the ground.
Each time the ball hits the ground it loses kinetic energy and slows down, whereas
while falling it accelerates due to the gravitational force.

Here, we use a modi�ed version of the bouncing ball with three instead of one
dimension. The ball moves with a constant velocity in x direction and bounces in y
direction where y is the height of the ball. The velocity in z direction is constantly
zero. At x = 0 and x = 2 the x direction is instantly inverted and the ball again loses
some of its kinetic energy in that direction. Intuitively, the ball therefore bounces in
a room with walls at x = 0 and x = 2. Figure 5.2 shows plots for all benchmarks
including the bouncing ball which illustrates this idea as well.

To introduce urgency in the system we assume that there is a horizontal beam
positioned at y = 1 in the area z ∈ [−0.5, 0.5]. This is modeled by an urgent transition
that forces the ball to bounce when the beam is hit while falling. This can cause
fragmentation of the segments into the sets with z ≤ −0.5 and z ≥ 0.5, where the
jump is not enabled and the set with z ∈ [−0.5, 0.5]. We therefore use an initial
stateset with z ∈ [−1, 1], so that the urgent transition in fact causes splitting. As
safety speci�cation we want to verify that the region below the beam at x ∈ [1, 1.1]
with y = 0 and z = 0 cannot be reached.

The bouncing ball with horizontal beam is adapted to a second instance, the
bouncing ball with tilted beam. Here, the beam is tilted which seems like a minor
di�erence at �rst but is actually relevant since the jump enabling set is not box shaped
anymore as is the case with a horizontal beam.

In the following we call the �rst instance �BB horizontal� and the second �BB
tilted�.

Lawn mower. Finally, we consider two instances of a lawn mower benchmark which
is adapted from the models presented in [ZSR+12, pro10]. The original model is a
probabilistic system in which a lawn mower, represented by x, y coordinates, moves on
a lawn and randomly chooses between di�erent x, y-velocities when it reaches the edge
of the lawn. The locations of this model therefore represent the di�erent directions
in which the mower can move. Only when the edge of the lawn is reached, the mower
switches directions which is modeled by discrete transitions to the other directions.
As a safety speci�cation it is assumed that a tarpaulin covers a region of the lawn
which should not be reached.

To analyze the model we �rst replace all randomized transitions by assigning a
probability of 1 to one of them. To add urgency we add an enclosing tolerance region
around the tarpaulin, where the mower senses that it is close to the tarpaulin. If
the region is entered, it immediately switches directions which is modeled by urgent
transitions to the other locations, so that the region with the tarpaulin can never be
reached. The tightness of the tolerance region can be used to adjust the di�culty of
the benchmark.

We use two instances of the lawn mower benchmark. The �rst, which is referred to
as �Lawn mower 1�, has one unsafe set with an enclosing rectangular tolerance region.
The second instance �Lawn mower 2� has an additional unsafe set with a polytopal,
non-rectangular tolerance region. As initial states we use [10, 10.5]×[20, 20.5] for both
instances.

We summarize the main characteristics of each benchmark instance in Table 5.1.

52 Chapter 5. Experimental Results

Table 5.1: Benchmark properties and parameters.

Instance #Var #Loc #Edge #Urg Time horizon Jump depth

Vehicle 4 2 7 6 20 ∞
Rod reactor 3 3 4 2 20 5

BB horizontal 5 2 7 1 10 9

BB tilted 5 2 7 1 10 9

Lawn mower 1 2 4 16 8 50 6

Lawn mower 2 2 4 24 16 50 6

Settings. We analyze the benchmarks using the box and H-polytope representa-
tions. For analysis with H-polytopes it is necessary to convert between H and V
polytopes and this operation tends to be numerically, so we use exact arithmetic. For
boxes it would also be possible to use inexact arithmetic, i.e., �oating point numbers
which is generally faster. The comparison between results is however very similar as
the relations don't change signi�cantly and so we only include the running times with
�oating point numbers for boxes in the appendix in Table B.2.

Table 5.2: Time step sizes used for veri�cation. Ag-
gregation is used for all instances.

Instance Representation Time step

Vehicle
Box 0.2
HPol. 0.2

Rod reactor
Box 0.1
HPol 0.1

BB horizontal
Box 0.001
HPol 0.01

BB tilted
Box 0.001
HPol 0.01

Lawn mower 1
Box 0.15
HPol 0.15

Lawn mower 2
Box 0.1
HPol 0.15

We use aggregation for all
benchmark instances and the
time step sizes shown in Ta-
ble 5.2. In some instances we
use di�erent time step sizes for
boxes and polytopes so that
safety can be veri�ed with boxes
while polytopes are still reason-
ably fast.

The results in the next sec-
tions were obtained on an Intel
core i5-7200U at 2.50 GHz with
8 GB RAM. We set a time limit
of 20 minutes and averaged the
running times over �ve execu-
tions.

5.2 Re�nement Strategies

We now discuss the results obtained from applying the developed algorithms to the
benchmark suite. First we will compare di�erent re�nement strategies for the CE-
GAR algorithm by using the heuristics presented in Section 4.4. After that we will
compare running times for using di�erent re�nement levels which also means that
we compare the CEGAR approach with the non-CEGAR approach where urgency is
always considered.

5.2. Re�nement Strategies 53

Table 5.3: Veri�cation times in seconds with di�erent heuristics with and without
pruning of segments contained in urgent jump enabling sets. The numbers in brackets
are the number of re�nement iterations. Heuristics are None (default strategy), Count,
Vol. (Volume) and CC (Constraint-count). Timeout (TO) is 20 minutes.

Heuristic
Instance Rep. Prune None Count Vol. CC

Vehicle
Box

No 3.17 (4) 3.10 (4) 2.35 (2) 3.15 (4)
Yes 3.02 (3) 3.07 (3) 2.22 (1) 3.00 (3)

HPol
No 290.75 (6) 289.05 (6) 215.56 (2) 288.96 (6)
Yes 264.60 (6) 264.24 (6) 181.85 (1) 266.54 (6)

Rod reactor
Box

No 1.23 (7) 1.43 (8) 1.65 (8) 1.23 (7)
Yes 1.39 (7) 1.62 (8) 1.83 (8) 1.39 (7)

HPol
No 17.48 (7) 20.15 (8) 20.99 (8) 17.47 (7)
Yes 20.03 (7) 22.60 (8) 23.77 (8) 19.92 (7)

BB horizontal
Box

No 4.28 (1) 4.30 (1) 4.36 (1) 4.32 (1)
Yes 4.43 (1) 4.54 (1) 4.52 (1) 4.44 (1)

HPol
No 286.97 (1) 286.65 (1) 287.72 (1) 289.09 (1)
Yes 288.35 (1) 291.01 (1) 292.05 (1) 288.85 (1)

BB tilted
Box

No 6.39 (2) 6.43 (2) 6.36 (2) 6.34 (2)
Yes 6.77 (2) 6.75 (2) 6.77 (2) 6.74 (2)

HPol
No 349.25 (1) 349.82 (1) 349.23 (1) 349.77 (1)
Yes 350.67 (1) 350.53 (1) 352.27 (1) 352.34 (1)

Lawn mower 1
Box

No 10.39 (506) 3.92 (228) 43.74 (1646) 10.46 (506)
Yes 2.89 (2) 2.85 (2) 2.84 (2) 2.85 (2)

HPol
No 242.77 (468) 66.84 (90) 190.53 (186) 243.68 (468)
Yes 73.35 (0) 74.09 (0) 73.55 (0) 73.72 (0)

Lawn mower 2
Box

No 191.73 (2013) 113.18 (1130) TO (4900) 189.75 (3205)
Yes 189.90 (1702) 181.12 (1418) TO (4495) 191.28 (2766)

HPol
No TO (1758) 408.31 (495) TO (1284) TO (1819)
Yes 447.78 (86) 388.50 (47) 569.73 (124) 407.74 (66)

Pruning segments. The running times for the selected benchmarks when choosing
di�erent heuristics are listed in Table 5.3. We additionally compare the running times
between enabled and disabled pruning of segments contained in the jump enabling
set of an urgent transition. We �rst discuss the impact of pruning and then each
heuristic in more detail.

While pruning improves the precision it introduces computational overhead, be-
cause we need to check for every segment Ω and jump enabling set Je whether Ω ⊆ Je,
which is done by computing the intersection Ω∩Je and comparing it to Ω. In practice
the intersection can be done in two steps: First, we intersect the segment with the
guard Ω∩ ge and only if the result is equal to Ω the intersection with Je is computed.
The advantage is that the result of the �rst intersection can be reused as jump prede-
cessor for the computation of discrete successors. However, for the nodes of maximal
depth, i.e., when the maximal jump depth is reached, the intersection is not reused
which may result in unnecessary intersection steps.

We observe this especially in the rod reactor and bouncing ball benchmarks where
only few segments at the end of �owpipes could be pruned. In these cases the com-
putational overhead outweighs the bene�ts.

54 Chapter 5. Experimental Results

For the vehicle benchmark, pruning is bene�cial for all re�nement strategies be-
cause more segments are contained in jump enabling sets. The improvement here
is more signi�cant for polytopes, with a speedup of about 1.1, where time successor
computation is slower and more segments can be pruned due to higher fragmenta-
tion. For boxes, the highest observed speedup is 1.05 so the running times are almost
identical.

Pruning is very advantageous for the lawn mower benchmark. In particular for
the �rst instance no further re�nement is necessary when using polytopes as state set
representations and only two additional re�nement iterations are necessary for boxes,
both of which use the same re�nement candidate. This explains the considerable
performance improvement with a speedup of 3.6 for boxes and 3.3 for polytopes with-
out using re�nement heuristics. Only when using the count heuristic with polytopes,
pruning segments is slightly worse for this benchmark, which can only be explained by
the discussed computational overhead for nodes of maximal depth. This overhead can
be signi�cant here because the lawn mower benchmark has a relatively high branching
factor in the reachtree and thus many nodes at maximal depth.

Similarly, in the second lawn mower instance pruning segments is a considerable
improvement for polytopes, so much that without pruning only one heuristic is able
to verify safety within the time limit, whereas with pruning all strategies can verify
safety. For boxes, pruning is again less impactful and worse when using the count
heuristic. Interestingly, pruning caused more re�nement iterations in this last case,
with 1418 iterations with pruning and 1130 without. This suggests that pruning
can result in a worse re�nement strategy. Speci�cally we observed that more �nested�
re�nements were necessary by which we mean cases where refuting a single counterex-
ample required multiple re�nement iterations. It is somewhat di�cult to trace why
this happens, but a possible explanation is that it is sometimes better to re�ne early,
which increases the precision in all descending subtrees, than continuing computation
and re�ning multiple paths later. Without pruning we may encounter an unsafe state
earlier, which means that more re�nement needs to be done early but consequently
fewer re�nement iterations are necessary later compared to enabled pruning. Since
the accumulated error along paths is more signi�cant for boxes than for polytopes,
mostly due to higher imprecision in the union operation, this could also explain why
pruning is less advantageous for boxes than for polytopes.

All in all, pruning segments is an improvement in most cases, especially for poly-
topes where it only causes slight computational overhead in some instances. On the
other hand we have also seen that pruning can result in a worse re�nement strategy
where more re�nement iterations are necessary in the long run, especially when using
over-approximating representations such as boxes.

Heuristics. We now discuss the e�ect of the di�erent re�nement heuristics in more
detail. Here we ignore the bouncing ball benchmark since in all instances at most
two re�nement iterations are done which means that heuristics have essentially no
e�ect. Additionally, it should be noted that in all benchmark instances except the
second lawn mower benchmark all guards of urgent transitions have the same number
of constraints, which means that the constraint count heuristic behaves the same as
using the default ordering without heuristics.

For the vehicle benchmark the volume heuristic performs best with a speedup of
around 1.3 for both representations compared to using no heuristic. This is because
to verify safety it is su�cient for every trace to move through one brake cycle. By
picking the largest regions �rst, fewer regions need to be considered to cover every

5.2. Re�nement Strategies 55

trace, which results in fewer re�nement iterations. The count heuristic has no impact
on this instance since no transition is re�ned more than once.

Both heuristics lead to a slightly worse re�nement strategy when used on the
rod reactor benchmark, as they cause more re�nement iterations. While the volume
heuristic �nds suitable candidates in fewer iterations it has the additional overhead
of computing the intersection-volumes which takes around 10% of the running time
in this instance.

In the lawn mower benchmarks we see the biggest impact of the heuristics since
the number of re�nement iterations is much greater in both instances. We can see
that the count heuristic is a major improvement with a speedup of 2.6 for boxes
and 3.6 for polytopes in the �rst instance without segment pruning. In the second
instance the improvement is less signi�cant for boxes with a speedup of 1.6 without
pruning and almost the same running times with pruning. For polytopes without
pruning the count heuristic is the only strategy that can verify safety within the time
limit and gives a slight performance boost with pruning enabled. The primary reason
why the count heuristic performs so well on this benchmark is that many of the
urgent transitions have the same guards. The count heuristic essentially only tests
one �representative� transition with the highest counter for each of the guards and
ignores the other transitions.

Interestingly, the volume heuristic performs very poorly on the lawn mower bench-
marks when using boxes as state set representations and is somewhat volatile for
polytopes. While the overhead of computing the volume is a contributing factor as
it takes up to 50% of the running time for boxes, the heuristic also causes a worse
re�nement strategy here - even if volume computation was instant, using it would
still be considerably slower compared to the default strategy. An explanation for this
is that the volume heuristic tends to re�ne nodes closer to the counterexample node
�rst, because the segments are larger due to accumulated error and thus nodes with
higher depth are considered �rst as candidates. This is problematic when multiple
re�nements are necessary to refute a counterexample since more backtracking has to
be done as already illustrated in Example 4.3.3. Indeed, looking at the �rst instance,
it took 9.9 re�nement iterations on average to refute a single counterexample when
using the volume heuristic and the average distance between the unsafe node and the
chosen re�nement candidate was 1.55. In contrast, it only took 5.7 iterations on av-
erage without using heuristics, where the average distance was considerably higher at
2.12. This means that more backtracking was done when using the volume heuristic.
This is not the case for polytopes where the distance between re�nement node and
unsafe node is still lower with an average of 1.5 versus 1.9, but the average number
of re�nement iterations is lower with 2.5 versus 6.2 without heuristics. The di�er-
ence between boxes and polytopes can be explained by the large over-approximation
caused by using boxes: to see why, note that in some cases it is actually bene�cial
to re�ne nodes close to the counterexample node �rst, since the path to the unsafe
node is shorter. This is true if only few re�nement steps are necessary to refute a
counterexample and thus no backtracking is done, which is more likely to occur with
polytopes than with boxes as they are more precise.

Finally, we consider the constraint count heuristic for the second lawn mower
instance. Here, it makes a di�erence as one of the jump enabling regions has 4
constraints while the other has 8. Thus the �rst one is prioritized with the goal of
causing fewer splits in the set di�erence operations. This goal is achieved for all
considered instances, for example using boxes without pruning we have on average

56 Chapter 5. Experimental Results

2.56 fragments if set di�erence causes a split and 2.66 without using the constraint
count heuristic. For polytopes with pruning the di�erence is more signi�cant with an
average of 2.12 fragments with heuristic and 2.46 without. For boxes this is however
not a huge performance boost and is mostly o�set by more total re�nement iterations.
This is similar to the case of the volume heuristic where nodes at higher depth are
prioritized for re�nement since this is when the transitions with fewer constraints are
encountered more often.

Conclusion. We can see that the optimal re�nement strategy depends heavily on
the system and even on the chosen representation. The volume heuristic tends to �nd
suitable re�nement candidates in few iterations and can improve the strategy when
only few re�nement iterations are necessary. On the �ip side it leads to signi�cant
backtracking when that is not the case and also has a considerable computational
overhead which often o�sets its advantages.

In contrast, the count heuristic shines when many re�nement iterations are nec-
essary as previous results can often be reused. The count heuristic should also be
considered when multiple transitions have similar or even the same jump enabling
sets, since it naturally leads to �representative� transitions for each of these sets rather
than testing each individually.

More testing should be done for the constraint count heuristic, but from our
experiments it seems to reduce the splitting caused by set di�erence computation.
However, it remains to be seen whether this is relevant in practice, since many systems
tend to have guards with one or only few constraints where the heuristic makes little
di�erence and from our experiments it seems that a good re�nement strategy may be
more impactful.

5.3 Re�nement Levels

We now compare the di�erent re�nement levels with each other. Recall that we have
three re�nement levels for each transition in each node: The �rst and least precise is
called the �unre�ned� level, which does not consider urgency at all. The second level,
described in detail in Section 4.4, we call the �cut-o�� level and it partially handles
urgency by taking the convex hull of the set di�erence of a segment with the jump
enabling sets of urgent transitions. Finally, we have the third �set di�erence� level
which computes the set di�erence and can cause splitting of segments into multiple
fragments.

By enabling only the set di�erence level we get a non-CEGAR algorithm that
computes the reachable sets of urgent LHA. Plots created by using this algorithm on
our benchmark suite are shown in Figure 5.2 with boxes as representation. Plots with
polytopes as representations are shown in Figure 5.3 for benchmark instances where
the increased precision of polytopes is signi�cant. For the CEGAR algorithm we
include the plots in Figure 5.4, where we omit �owpipes of spurious counterexample
nodes which means in particular that no unsafe segments are shown.

5.3. Re�nement Levels 57

Figure 5.2: Plots for the benchmark instances with box representation. The jump depth for
the bouncing ball benchmarks is reduced to 3 and for the second lawn mower instance to 4.
Red regions indicate unsafety and orange regions are urgent jump enabling sets. In the plots
for the bouncing ball, the orange beam and green segments are exclusive to z ∈ [−0.5, 0.5]
while segments below the beam are exclusive to z 6∈ [−0.5, 0.5].

58 Chapter 5. Experimental Results

Figure 5.3: Plots for the lawn mower benchmarks with polytope representation. The
jump depth of the second instance is reduced to 4.

Figure 5.4: Plots generated by the CEGAR algorithm for the �rst lawn mower bench-
mark with box representation (left) and polytope representation (right). Flowpipes
of refuted counterexamples are not shown.

5.3. Re�nement Levels 59

Table 5.5: Veri�cation times in seconds with di�erent enabled re�nement levels. Re-
�nement levels are labeled SD (set di�erence), C (cut-o�) and U (unre�ned). The
used heuristic for the CEGAR algorithms are listed in Table 5.4. Timeout (TO) is 20
minutes.

Re�nement levels
Instance Rep. Prune SD U, SD U, C, SD

Vehicle
Box

No 4.24 2.35 2.59
Yes 2.22 2.33

HPol
No TO 215.56 208.80
Yes 181.85 180.07

Rod reactor
Box

No 0.68 1.23 1.85
Yes 1.39 2.00

HPol
No 10.38 17.48 22.42
Yes 20.03 24.98

BB horizontal
Box

No 3.44 4.28 6.71
Yes 4.43 6.80

HPol
No TO 286.97 295.40
Yes 288.35 292.83

BB tilted
Box

No TO 6.39 11.66
Yes 6.77 11.93

HPol
No TO 349.25 350.02
Yes 350.67 351.33

Lawn mower 1
Box

No 4.28 3.92 4.13
Yes 2.85 2.85

HPol
No 132.97 66.84 47.71
Yes 74.09 74.02

Lawn mower 2
Box

No 272.24 113.18 297.90
Yes 181.12 301.57

HPol
No 544.13 408.31 461.01
Yes 388.50 372.91

Table 5.4: Selected heuristics
for each benchmark.

Instance Heuristic

Vehicle Volume

Rod reactor None

BB horizontal None

BB tilted None

Lawn mower 1 Count

Lawn mower 2 Count

In Table 5.5 the running times of the non-CEGAR
algorithm are compared with the running times of the
CEGAR algorithm and with the addition of the cut-o�
level. In order to keep the table at a reasonable size we
use a selected re�nement heuristic for each benchmark.
The selection is based on the results from Section 5.2
and is listed in Table 5.4. Exhaustive tables with all
possible combinations can be found in Appendix B.

We �rst compare the non-CEGAR algorithm with
the CEGAR algorithm, i.e., the re�nement levels SD
and U, SD in Table 5.5. In the vehicle benchmark we
note that it is feasible to not use CEGAR with boxes
while for polytopes safety could only be veri�ed in time

60 Chapter 5. Experimental Results

(a) Non-CEGAR algo-
rithm re�nement tree.

(b) CEGAR algorithm re�nement trees.

Figure 5.5: Re�nement trees generated for the rod reactor benchmark by the non-
CEGAR and CEGAR algorithms.

when using CEGAR. This means that CEGAR is a much more considerable improve-
ment for polytopes than for boxes in this instance. The reason why the non-CEGAR
algorithm is reasonably fast for boxes but slow for polytopes is that all jump enabling
sets are box shaped in this instance and we observed that using the box-based set dif-
ference algorithm causes considerably less splitting than the polytopal set di�erence
algorithm. This is likely also caused by more optimization in the box algorithm as it
is in general less complex. In fact, only 0.08% of set di�erence operations resulted in
more than one fragment for boxes while it was almost twenty times as high for poly-
topes with 1.5% of the set di�erence operations resulting in multiple fragments. Using
CEGAR the splitting rate for polytopes is almost as high with 1.2% but fewer total
set di�erence operations are necessary than without CEGAR: while without CEGAR
more than 120 000 set di�erence operations are executed before the timeout only 1499
are needed in the CEGAR algorithm, which highlights the exponential blowup that
set di�erence can cause.

In the rod reactor benchmark CEGAR is slower for both representations for which
there are two reasons. The �rst is that even in the non-CEGAR algorithm, set
di�erence never results in multiple fragments, which negates our motivation for using
CEGAR in the �rst place. Additionally, all set di�erence computations are necessary
to verify safety which means that the CEGAR algorithm involves the computation
of the fully re�ned re�nement tree. The re�nement trees created by both algorithms
are shown in Figure 5.5. Here, we denote the re�ned transitions in each node by
their target location, which means that for example in the root node in (a) the two
outgoing urgent transitions to rod1 and rod2 are re�ned. Note that (b) depicts
multiple re�nement trees since the root node is re�ned multiple times. Here, the
subtree generated by the highlighted nodes induces the same �owpipes as the non-
CEGAR re�nement tree in (a), where the additional re�ned transitions at depths 2
and 4 have no e�ect as the intersection of their jump enabling sets is empty with all
segments. Thus the CEGAR algorithm essentially has the non-CEGAR algorithm as
a subroutine which makes it obvious that it should be slower.

5.3. Re�nement Levels 61

On the bouncing ball benchmark a similar e�ect to the vehicle benchmark can be
observed, where veri�cation is even slower for boxes with CEGAR than without, while
CEGAR is again a major improvement for polytopes where without CEGAR safety
cannot be veri�ed within the time limit. The reason is again that the jump enabling
set of the urgent transition is box shaped, so set di�erence causes a lot less splitting
for boxes than for polytopes. However, switching to a non box shaped jump enabling
set in the instance with the tilted beam we observe that even with boxes the time limit
was exceeded without CEGAR, while CEGAR barely slows down. In this instance it
was necessary to use the polytope based set di�erence algorithm for boxes to assure
over-approximation (see �Boxes� on Page 19), which causes exponential splitting.

The same e�ect can be observed between the two lawn mower benchmarks: While
the �rst instance with boxes can be veri�ed almost as fast without CEGAR since
it only has rectangular jump enabling sets, CEGAR causes a signi�cant speedup of
2.4 in the second instance, where an additional non-rectangular jump enabling set
is present. Because the lawn mower benchmarks are only two-dimensional and even
polytopal set di�erence doesn't cause too much splitting here, both instances can also
be veri�ed without CEGAR and with polytopes, although CEGAR is still faster.

Finally, we want to evaluate the addition of the cut-o� re�nement level, where the
motivation was to obtain a convex over-approximation of the set di�erence to negate
the exponential blowup in the number of segments. Note that the cut-o� operation
doesn't have any e�ect in the bouncing ball benchmarks, so the same re�nement steps
as without cut-o� level still need to be done. It is therefore unsurprising that using
the cut-o� level in this benchmark is always slower.

Unfortunately, it also has an adverse e�ect on all instances with boxes, even though
the cut-o� level is enough to verify the rod reactor, vehicle and �rst lawn mower
benchmarks, i.e., no set di�erence was computed in these instances. The main reason
is that the cut-o� operation itself is slower than set di�erence computation and set
di�erence doesn't create a lot of fragments for boxes. For example a single cut-o�
computation took 1.32 ms on average in the vehicle benchmark while a set di�erence
operation took 0.07 ms on average. Since few fragments are created and additionally
time elapse is extremely fast for boxes, this computational overhead is not worth it.
The worst e�ect can be observed in the second lawn mower benchmark. Here the
cut-o� operation is not su�cient to verify safety, so that multiple transitions need to
be re�ned to the last level which causes a lot of backtracking.

For polytopes on the other hand we have seen that splitting is more of an issue, so
the additional re�nement level may be an improvement in some cases. But, same as
for boxes the cut-o� operation is generally slower than computing the set di�erence.
Thus if set di�erence doesn't cause any splits such as in the rod reactor benchmark it
is expected that adding the cut-o� level is disadvantageuous. Here, a cut-o� operation
took 3.59 ms on average while a set di�erence operation only took 0.66 ms on aver-
age. On the other benchmarks, cut-o� has a mostly positive e�ect with polytopes,
especially in the vehicle and �rst lawn mower benchmark. Here, the most signi�cant
speedup of 1.39 is obtained in the �rst lawn mower instance without pruning. On
the second lawn mower benchmark cut-o� is again slower because while it is enough
to verify safety, more re�nement iterations are necessary than when taking the set
di�erence (664 vs. 495 iterations).

62 Chapter 5. Experimental Results

Conclusion. We have seen that CEGAR can be a vast improvement when the
computation of set di�erence causes a lot of splitting. This mostly happens when
polytopal set di�erence computation is necessary, e.g., when the urgent jump enabling
sets are not box shaped or when the H-polytope representation is used. However, this
is not a necessary condition as we have seen on the rod reactor benchmark, where no
splitting is caused. This shows that it is rarely easy to say beforehand on which models
CEGAR will perform better. Note also that we used the results from Section 5.2 to
determine the optimal heuristic beforehand and that choosing a bad heuristic can
make a huge di�erence as well.

The addition of the cut-o� level was only an improvement for polytopes in some
instances. This mainly stems from the fact that computing the cut-o� is generally
much slower than computing the set di�erence which means that it is only advanta-
geous if set di�erence would cause a lot of splitting. Additionally, we need to consider
that more re�nement iterations may be necessary since the cut-o� operation is less
precise than the set di�erence operation. Even more backtracking can be caused if the
cut-o� level is not su�cient to verify safety. However, when this is not the case and
polytopes are used as state set representation then the cut-o� level can be bene�cial
since it does reduce the number of segments that are computed.

Chapter 6

Conclusion

6.1 Summary

In this thesis we extended hybrid automata with a set of urgent transitions in order
to accurately model a larger set of hybrid systems. For linear hybrid automata we
have developed an adaption of the �owpipe-construction algorithm and have also
seen a specialized �owpipe-construction algorithm for urgent LHA I, which is able
to compute the set of reachable states exactly. For both algorithms we used the set
di�erence operation to construct the �owpipe segments, which can split the segments
into multiple convex fragments. To mitigate the exponential increase in the number of
segments this can cause we applied the CEGAR technique by respecting the urgency
of transitions only on demand.

We introduced re�nement trees and analysis paths as a formalization for the CE-
GAR algorithm in order to dynamically re�ne individual nodes without restarting
analysis after re�nement while also reusing previous computation results. This re-
sulted in an analysis algorithm for urgent LHA that can be adjusted by choosing
a re�nement strategy that constructs the analysis path to be re�ned. We realized
multiple strategies by introducing di�erent heuristics for choosing re�nement candi-
dates as a combination of node and urgent transition on unsafe paths. Finally, we
presented an alternative method for computing the convex hull of the set di�erence,
which is more suited for H-polytopes. This �cut-o�� operation was used to de�ne
a third middle ground re�nement level for transitions which we integrated into the
re�nement algorithm.

Our experimental results showed that the re�nement strategy can have a sig-
ni�cant impact on the performance of the CEGAR algorithm by causing more or
fewer re�nement iterations. An important step of applying the CEGAR algorithm
is therefore to choose a suitable re�nement strategy: for our selected heuristics we
could observe that the �count� heuristic performs well when urgent jumps have similar
guards or when many re�nement iterations are necessary. The �volume� heuristic on
the other hand is better suited when few re�nement iterations are su�cient to verify
safety, although it causes overhead due to the volume computation. The additional
cut-o� re�nement level was not an improvement in most cases, which is mainly be-
cause the cut-o� operation is still much slower than the set di�erence operation, and
this can not always be outweighed by the reduced splitting.

64 Chapter 6. Conclusion

Compared to an analysis algorithm without re�nement we have seen that the
developed CEGAR algorithm can save a lot of time provided that set di�erence causes
signi�cant splitting. However, if this is not the case or when many transitions need
to be re�ned and thus lots of backtracking is necessary, CEGAR tends to perform
worse. A challenge is therefore that it is not always clear beforehand whether urgency
causes redundant splitting or not, and consequently whether the CEGAR approach
is bene�cial. In the current implementation we could observe that this is more often
the case when polytopal set di�erence has to be used, which may be necessary when
jump enabling sets are not box shaped or when a more precise state set representation
than boxes is required.

6.2 Future Work

Regarding the analysis of urgent hybrid automata, there is some room for improve-
ment by making an additional e�ort to exclude the shadows of jump enabling sets.
In this thesis we brie�y sketched an approach based on connected components in a
graph where the nodes represent segments, however this is not yet implemented in
HyPro. Excluding the shadow could make analysis more precise and faster by ex-
cluding fragments caused by the set di�erence operation. Similarly, the specialized
algorithm for urgent LHA I presented in this thesis can be implemented in HyPro
and is expected to perform much better on LHA I. Additionally, there may be room
for improvement in this algorithm considering the handling of multiple urgent transi-
tions. Here, we only suggested handling this by computing the pairwise set di�erence
of their shadows, but simpler and more e�cient methods that consider the other
urgent transitions already when computing the jump predecessors may be possible.
Once the approach is implemented, it can easily be integrated into the same CEGAR
algorithm we presented in this thesis, although it is unclear whether that would be
bene�cial as possibly fewer splits are caused by the set di�erence during �owpipe
constructing for LHA I.

It could also be bene�cial to attempt further optimization of the set di�erence
algorithms, especially for polytopes as this currently causes a lot of splitting. One
direction that future work could take in this area is the ordering of halfspaces in the
set di�erence algorithm, as we have seen that this can have an impact on the number
of created fragments. Generally, it may also be helpful for optimizations to utilize
strict inequalities which are currently not widely supported in HyPro.

Finally, the CEGAR algorithm can be extended in multiple ways. The �rst is
adding more re�nement strategies, which can be done easily by adjusting the heuris-
tics, but more elaborate strategies can be integrated as well. Additionally, the al-
gorithm can possibly be improved by adding di�erent re�nement levels, similar to
the presented cut-o� level. In particular, while the cut-o� level reduces splitting, it
has the disadvantage that the cut-o� operation is very slow. Future re�nement levels
could therefore aim at giving a coarser convex over-approximation of the set di�erence
that can quickly be computed, since we currently use the most precise one, i.e., the
convex hull. A possible idea for such an operation is to use templates [Sch19], which
can be used to over-approximate sets with a �xed number of halfspaces. While less
precise, the advantage of such an operation would be that computation of the vertices
is not necessary, so that it would be faster especially for H-polytopes.

Bibliography

[Ábr17] Erika Ábrahám. Modeling and analysis of hybrid systems. RWTH
Aachen University, Lecture Notes, 2017.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138(1):3�34, 1995.

[ADI03] Rajeev Alur, Thao Dang, and Franjo Ivancic. Counter-example guided
predicate abstraction of hybrid systems. In TACAS'03, volume 2619 of
LNCS, pages 208�223. Springer, 2003.

[Amf21] Kim Amfaldern. Computing set di�erence for the reachability analysis

of hybrid systems. Bachelor's thesis, RWTH Aachen University, 2021.
Unpublished thesis.

[Bao05] Mato Baotic. Optimal control of piecewise a�ne systems: A multi-

parametric approach. Dissertation, ETH Zurich, 2005.

[Bao09] Mato Baotic. Polytopic computations in constrained optimal control.
Automatika, 50(3-4):119�134, 2009.

[BFT04] Alberto Bemporad, Carlo Filippi, and Fabio Danilo Torrisi. Inner and
outer approximations of polytopes using boxes. Computational Geome-
try, 27(2):151�178, 2004.

[BMDP02] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pis-
tikopoulos. The explicit linear quadratic regulator for constrained sys-
tems. Automatica, 38(1):3�20, 2002.

[BMMW15] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, and Martin
Wehrle. PDDL+ planning with hybrid automata: Foundations of trans-
lating must behavior. In Proc. of ICAPS'15, pages 42�46. AAAI Press,
2015.

[BMPW14] Sergiy Bogomolov, Daniele Magazzeni, Andreas Podelski, and Martin
Wehrle. Planning as model checking in hybrid domains. In Proc. of

AI'14, volume 28, pages 2228�2234. AAAI Press, 2014.

[Buc43] Robert Creighton Buck. Partition of space. The American Mathematical

Monthly, 50(9):541�544, 1943.

66 Bibliography

[CFH+03] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Joël
Ouaknine, Olaf Stursberg, and Michael Theobald. Abstraction and
counterexample-guided re�nement in model checking of hybrid systems.
International Journal of Foundations of Computer Science, 14(4):583�
604, 2003.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction re�nement. In CAV'00,
volume 1855 of LNCS, pages 154�169. Springer, 2000.

[CK98] Alongkrit Chutinan and Bruce H Krogh. Computing polyhedral ap-
proximations to �ow pipes for dynamic systems. In Proc. of CDC'98,
volume 2, pages 2089�2094. IEEE Computer Society, 1998.

[DKL07] Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen.
Automatic abstraction re�nement for timed automata. In FORMATS'07,
volume 4763 of LNCS, pages 114�129. Springer, 2007.

[Far02] Julius Farkas. Theorie der einfachen ungleichungen. Crelle, 1902(124):1�
27, 1902.

[FCJK05] Ansgar Fehnker, Edmund M. Clarke, Sumit Kumar Jha, and Bruce H.
Krogh. Re�ning abstractions of hybrid systems using counterexample
fragments. In HSCC'05, volume 3414 of LNCS, pages 242�257. Springer,
2005.

[FL06] Maria Fox and Derek Long. Modelling mixed discrete-continuous do-
mains for planning. Journal of Arti�cial Intelligence Research, 27:235�
297, 2006.

[Gir05] Antoine Girard. Reachability of uncertain linear systems using zono-
topes. In HSCC'05, volume 3414 of LNCS, pages 291�305. Springer,
2005.

[Grü03] Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathe-

matics. Springer, 2003.

[Gue09] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear

Continuous Dynamics. PhD thesis, Joseph Fourier University, Grenoble,
France, 2009.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc. of

LICS'96, pages 278�292. IEEE Computer Society, 1996.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What's decidable about hybrid automata? Journal of Computer and

System Sciences, 57(1):94�124, 1998.

[JCKK18] Luc Jaulin, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich.
How to e�ciently compute ranges over a di�erence between boxes, with
applications to underwater localization. Technical report, The University
of Texas at El Paso, 2018.

Bibliography 67

[JELS99] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar
Sastry. On the regularization of zeno hybrid automata. Systems & control

letters, 38(3):141�150, 1999.

[JKWC07] Sumit Kumar Jha, Bruce H. Krogh, James E. Weimer, and Edmund M.
Clarke. Reachability for linear hybrid automata using iterative relax-
ation abstraction. In HSCC'07, volume 4416 of LNCS, pages 287�300.
Springer, 2007.

[JLHM91] Matthew S. Ja�e, Nancy G. Leveson, Mats Per Erik Heimdahl, and
Bonnie E. Melhart. Software requirements analysis for real-time process-
control systems. IEEE Transactions on Software Engineering, 17(3):241�
258, 1991.

[MF14] Stefano Minopoli and Goran Frehse. Non-convex invariants and urgency
conditions on linear hybrid automata. In FORMATS'14, volume 8711 of
LNCS, pages 176�190. Springer, 2014.

[MF16a] Stefano Minopoli and Goran Frehse. From simulation models to hybrid
automata using urgency and relaxation. In Proc. of HSCC'16, pages
287�296. ACM, 2016.

[MF16b] Stefano Minopoli and Goran Frehse. SL2SX translator: From simulink
to spaceex models. In Proc. of HSCC'16, pages 93�98. ACM, 2016.

[NÁ12] Johanna Nellen and Erika Ábrahám. Hybrid sequential function charts.
In MBMV'12, volume 68 of Forschungsergebnisse zur Informatik, pages
109�120. Verlag Dr. Kova£, 2012.

[NÁW15] Johanna Nellen, Erika Ábrahám, and Benedikt Wolters. A CEGAR
tool for the reachability analysis of PLC-controlled plants using hybrid
automata. In Formalisms for Reuse and Systems Integration, volume
346 of Advances in Intelligent Systems and Computing, pages 55�78.
Springer, 2015.

[pro10] ProHVer case studies. https://depend.cs.uni-saarland.de/
tools/prohver/casestudies/, 2010. Accessed: 2021-09-19.

[RKML06] Sasa V. Rakovic, Eric C. Kerrigan, David Q. Mayne, and John Lygeros.
Reachability analysis of discrete-time systems with disturbances. IEEE
Transactions on Automatic Control, 51(4):546�561, 2006.

[SÁ18] Stefan Schupp and Erika Ábrahám. E�cient dynamic error reduction
for hybrid systems reachability analysis. In TACAS'18, volume 10806 of
LNCS, pages 287�302. Springer, 2018.

[Sch19] Stefan Schupp. State set representations and their usage in the reachabil-

ity analysis of hybrid systems. Dissertation, RWTH Aachen University,
2019.

[SJ12] Peter Schrammel and Bertrand Jeannet. From hybrid data-�ow lan-
guages to hybrid automata: a complete translation. In Proc. of HSCC'12,
pages 167�176. ACM, 2012.

https://depend.cs.uni-saarland.de/tools/prohver/casestudies/
https://depend.cs.uni-saarland.de/tools/prohver/casestudies/

68 Bibliography

[Zie95] Günter M Ziegler. Lectures on polytopes, volume 152 of Graduate Texts
in Mathematics. Springer, 1995.

[ZSR+12] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and
Ernst Moritz Hahn. Safety veri�cation for probabilistic hybrid systems.
European Journal of Control, 18(6):572�587, 2012.

Appendix A

Benchmark Automata

driving

ẋ = vx
ẏ = 0
v̇x = 0
ṫ = 0

x ≤ 15

x = 0
y = [0, 5]
vx = 1
t = 0

braking

ẋ = vx
ẏ = 0
v̇x = 0
ṫ = 1

x ≤ 15
t ≤ 1

x ∈ [2, 3] ∧ y ≥ 1

x ∈ [5, 8] ∧ y ∈ [3, 4]

x ∈ [11, 12] ∧ y ≤ 2

x ∈ [6, 7] ∧ y ∈ [2, 3]

x ∈ [10, 12] ∧ y ≥ 4

x ∈ [12, 13] ∧ y ≥ 2

t ≥ 1

t := 0

Figure A.1: Vehicle. Urgent edges are indicated by dashed lines.

no rod

ẋ = 0.1 · x − 50
ċ1 = 1
ċ2 = 1

x ≤ 550

x = 0
c1 = 20
c2 = 20

rod 1

ẋ = 0.1 · x − 56
ċ1 = 1
ċ2 = 1

x ≥ 510

rod 2

ẋ = 0.1 · x − 60
ċ1 = 1
ċ2 = 1

x ≥ 510

x ≥ 530 ∧ c1 ≥ 20x ≥ 530 ∧ c2 ≥ 20

x ≤ 510

c1 := 0

x ≤ 510

c2 := 0

Figure A.2: Rod reactor. Urgent edges are indicated by dashed lines.

70 Appendix A. Benchmark Automata

falling

ẋ = vx
ẏ = vy
ż = 0
v̇x = 0

v̇y = −9.81

x ∈ [0, 2] ∧ y ≥
0 ∧ vy ≤ 0

x = 0
y = 5

z = [−1, 1]
vx = 1
vy = 0

rising

ẋ = vx
ẏ = vy
ż = 0
v̇x = 0

v̇y = −9.81

x ∈ [0, 2] ∧ y ≥
0 ∧ vy ≥ 0

y ≤ 0

vy := −0.75 · vy

vy ≤ 0

x ≥ 2

vx := −0.8 · vx

x ≤ 0

vx := −0.8 · vx

x ≥ 2

vx := −0.8 · vx

x ≤ 0

vx := −0.8 · vx

y ∈ [0.9, 1] ∧ z ∈ [−0.5, 0.5]

vy := −0.75 · vy ∧ vx := vx− 0.1

Figure A.3: Bouncing ball with horizontal beam. Urgent edges are indicated by
dashed lines.

falling

ẋ = vx
ẏ = vy
ż = 0
v̇x = 0

v̇y = −9.81

x ∈ [0, 2] ∧ y ≥
0 ∧ vy ≤ 0

x = 0
y = 5

z = [−1, 1]
vx = 1
vy = 0

rising

ẋ = vx
ẏ = vy
ż = 0
v̇x = 0

v̇y = −9.81

x ∈ [0, 2] ∧ y ≥
0 ∧ vy ≥ 0

y ≤ 0

vy := −0.75 · vy

vy ≤ 0

x ≥ 2

vx := −0.8 · vx

x ≤ 0

vx := −0.8 · vx

x ≥ 2

vx := −0.8 · vx

x ≤ 0

vx := −0.8 · vx

−0.5 · x+ y ∈ [0.9, 1] ∧ z ∈ [−0.5, 0.5]

vy := −0.75 · vy ∧ vx := vx− 0.1

Figure A.4: Bouncing ball with tilted beam. Urgent edges are indicated by dashed
lines.

71

north_east

ẋ = 10
ẏ = 9

x ∈ [0, 100] ∧
y ∈ [0, 200]

x ∈ [10, 10.5]
y ∈ [20, 20.5]

north_west

ẋ = −10
ẏ = 9

x ∈ [0, 100] ∧
y ∈ [0, 200]

south_east

ẋ = 10
ẏ = −9

x ∈ [0, 100] ∧
y ∈ [0, 200]

south_west

ẋ = −10
ẏ = −9

x ∈ [0, 100] ∧
y ∈ [0, 200]

x ≥ 100

y ≥ 200

x ≤ 0

y ≥ 200

x ≥ 100

y ≤ 0

x ≤ 0

y ≤ 0

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [70, 100]∧
y ∈ [100, 150]

Figure A.5: Lawn mower with one unsafe zone. Urgent edges are indicated by dashed
lines.

72 Appendix A. Benchmark Automata

north_east

ẋ = 10
ẏ = 9

x ∈ [0, 100] ∧
y ∈ [0, 200]

x ∈ [10, 10.5]
y ∈ [20, 20.5]

north_west

ẋ = −10
ẏ = 9

x ∈ [0, 100] ∧
y ∈ [0, 200]

south_east

ẋ = 10
ẏ = −9

x ∈ [0, 100] ∧
y ∈ [0, 200]

south_west

ẋ = −10
ẏ = −9

x ∈ [0, 100] ∧
y ∈ [0, 200]

x ≥ 100

y ≥ 200

x ≤ 0

y ≥ 200

x ≥ 100

y ≤ 0

x ≤ 0

y ≤ 0

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [10, 45]∧
y ∈ [40, 80]∧
x+ y ≥ 58∧
x− y ∈ [−62,−8]

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [10, 45]∧
y ∈ [40, 80]∧
x+ y ≥ 58∧
x− y ∈ [−62,−8]

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [10, 45]∧
y ∈ [40, 80]∧
x+ y ≥ 58∧
x− y ∈ [−62,−8]

x ∈ [70, 100]∧
y ∈ [100, 150]

x ∈ [10, 45]∧
y ∈ [40, 80]∧
x+ y ≥ 58∧
x− y ∈ [−62,−8]

Figure A.6: Lawn mower with two unsafe zones. Urgent edges are indicated by dashed
lines. Multiple guards on one line indicate separate transitions.

Appendix B

Benchmark Results

74 Appendix B. Benchmark Results

T
ab
le

B
.1
:
V
er
i�
ca
ti
on

ti
m
es

in
se
co
nd

s
w
it
h
b
ox

re
pr
es
en
ta
ti
on

us
in
g
ex
ac
t
(r
at
io
na
l)

ar
it
hm

et
ic
.

R
e�
ne
m
en
t
le
ve
ls

ar
e
la
b
el
ed

U
(u
nr
e�
ne
d)
,
C

(c
ut
-o
�
)
an
d
SD

(s
et

di
�
er
en
ce
),
he
ur
is
ti
cs

ar
e
N
on
e
(d
ef
au
lt
st
ra
te
gy
),
C
ou
nt
,
V
ol
.
(V
ol
um

e)
an
d
C
C

(C
on
st
ra
in
t-

co
un
t)
.
T
im

eo
ut

(T
O
)
is

20
m
in
ut
es
.

In
st
an
ce

P
ru
ne

R
e�
ne
m
en
t
le
ve
ls
an
d
he
ur
is
ti
c

SD
U
,
SD

U
,
C
,
SD

N
on
e

C
ou
nt

V
ol
.

C
C

N
on
e

C
ou
nt

V
ol
.

C
C

V
eh
ic
le

N
o

4
.2

4
3.

1
7

3.
1
0

2.
3
5

3.
1
5

3.
8
9

3.
9
2

2.
5
9

3.
9
2

Y
es

3.
0
2

3.
0
7

2.
2
2

3.
0
0

3.
8
9

3.
9
0

2.
3
3

3.
9
4

R
od

re
ac
to
r

N
o

0
.6

8
1.

2
3

1.
4
3

1.
6
5

1.
2
3

1.
8
5

1.
5
0

1.
6
7

1.
2
8

Y
es

1.
3
9

1.
6
2

1.
8
3

1.
3
9

2.
0
0

1.
6
8

1.
8
5

1.
4
4

B
B
ho
r.

N
o

3
.4

4
4.

2
8

4.
3
0

4.
3
6

4.
3
2

6.
7
1

6.
9
3

6.
9
8

6.
9
8

Y
es

4.
4
3

4.
5
4

4.
5
2

4.
4
4

6.
8
0

7.
0
4

7.
0
0

7.
0
9

B
B
ti
lt
ed

N
o

T
O

6.
3
9

6.
4
3

6.
3
6

6.
3
4

1
1.

6
6

1
1.

9
3

1
1.

9
8

1
1.

8
5

Y
es

6.
7
7

6.
7
5

6.
7
7

6.
7
4

1
1.

9
3

1
2.

3
4

1
2.

2
3

1
2.

2
5

L
aw

n
m
ow

er
1

N
o

4
.2

8
1
0.

3
9

3.
9
2

4
3.

7
4

1
0.

4
6

4.
1
3

4.
1
0

4
5.

8
1

1
1.

0
4

Y
es

2.
8
9

2.
8
5

2.
8
4

2.
8
5

2.
8
4

2.
8
5

2.
8
5

2.
8
4

L
aw

n
m
ow

er
2

N
o

27
2.

24
1
9
1.

7
3

1
1
3.

1
8

T
O

1
8
9
.7

5
3
1
9.

3
0

2
9
7.

9
0

T
O

4
3
8
.1

6
Y
es

1
8
9
.9

0
1
8
1.

1
2

T
O

1
9
1
.2

8
3
2
4.

1
1

3
0
1.

5
7

8
5
2.

3
3

4
29
.1

7

75

T
ab
le
B
.2
:
V
er
i�
ca
ti
on

ti
m
es

in
se
co
nd

s
w
it
h
b
ox

re
pr
es
en
ta
ti
on

us
in
g
�o
at
in
g
p
oi
nt

ar
it
hm

et
ic
.
R
e�
ne
m
en
t
le
ve
ls
ar
e
la
b
el
ed

U
(u
n-

re
�n

ed
),
C
(c
ut
-o
�
)
an
d
SD

(s
et

di
�
er
en
ce
),
he
ur
is
ti
cs

ar
e
N
on
e
(d
ef
au
lt
st
ra
te
gy
),
C
ou
nt
,
V
ol
.
(V
ol
um

e)
an
d
C
C
(C

on
st
ra
in
t-
co
un
t)
.

T
im

eo
ut

(T
O
)
is

20
m
in
ut
es
.

In
st
an
ce

P
ru
ne

R
e�
ne
m
en
t
le
ve
ls
an
d
he
ur
is
ti
c

SD
U
,
SD

U
,
C
,
SD

N
on
e

C
ou
nt

V
ol
.

C
C

N
on
e

C
ou
nt

V
ol
.

C
C

V
eh
ic
le

N
o

1.
66

0.
1
9

0.
1
9

0.
1
5

0.
1
9

0.
3
6

0.
3
6

0.
1
9

0.
3
5

Y
es

0.
2
3

0.
2
3

0.
1
7

0.
2
3

0.
4
2

0.
4
1

0.
1
8

0.
4
2

R
od

re
ac
to
r

N
o

0.
06

0.
1
1

0.
1
3

0.
1
9

0.
1
1

0.
1
6

0.
2
0

0.
2
6

0.
1
6

Y
es

0.
1
1

0.
1
4

0.
2
0

0.
1
1

0.
1
7

0.
2
0

0.
2
6

0.
1
7

B
B
ho
r.

N
o

0.
61

0.
2
8

0.
2
8

0.
2
8

0.
2
8

0.
5
1

0.
5
1

0.
5
1

0.
5
1

Y
es

0.
3
0

0.
3
0

0.
3
0

0.
3
0

0.
5
3

0.
5
3

0.
5
3

0.
5
3

B
B
ti
lt
ed

N
o

T
O

0.
6
6

0.
6
6

0.
6
7

0.
6
6

1.
3
4

1.
3
4

1.
3
5

1.
3
4

Y
es

0.
6
8

0.
6
8

0.
6
9

0.
6
8

1.
3
6

1.
3
6

1.
3
7

1.
3
6

L
aw

n
m
ow

er
1

N
o

1.
19

0.
8
7

0.
3
1

1
6.

1
9

0.
8
6

1.
1
1

0.
3
6

1
8.

1
5

1.
1
1

Y
es

0.
1
2

0.
1
2

0.
1
5

0.
1
2

0.
1
2

0.
1
2

0.
1
5

0.
1
3

L
aw

n
m
ow

er
2

N
o

17
0.

21
1
2
4.

3
2

6
3.

4
7

9
9
3.

4
0

1
1
7.

7
1

1
8
9.

3
6

1
0
8.

4
7

5
5
2.

8
8

2
4
7.

2
2

Y
es

1
2
6
.4

6
9
2.

0
7

9
3
9.

2
7

1
2
3.

4
9

1
9
7.

5
4

9
7.

4
5

4
8
7.

9
1

2
4
6.

7
3

76 Appendix B. Benchmark Results

T
ab
le
B
.3
:
V
er
i�
ca
ti
on

ti
m
es

in
se
co
nd

s
w
it
h
H
-p
ol
yt
op
e
re
pr
es
en
ta
ti
on

us
in
g
ex
ac
t
(r
at
io
na
l)
ar
it
hm

et
ic
.
R
e�
ne
m
en
t
le
ve
ls
ar
e
la
b
el
ed

U
(u
nr
e�
ne
d)
,
C

(c
ut
-o
�
)
an
d
SD

(s
et

di
�
er
en
ce
),
he
ur
is
ti
cs

ar
e
N
on
e
(d
ef
au
lt
st
ra
te
gy
),
C
ou
nt
,
V
ol
.
(V
ol
um

e)
an
d
C
C

(C
on
st
ra
in
t-

co
un
t)
.
T
im

eo
ut

(T
O
)
is

20
m
in
ut
es
.

In
st
an
ce

P
ru
ne

R
e�
ne
m
en
t
le
ve
ls
an
d
he
ur
is
ti
c

SD
U
,
SD

U
,
C
,
SD

N
on
e

C
ou
nt

V
ol
.

C
C

N
on
e

C
ou
nt

V
ol
.

C
C

V
eh
ic
le

N
o

T
O

2
9
0
.7

5
2
8
9.

0
5

2
1
5.

5
6

2
8
8.

9
6

2
9
6.

8
6

2
9
5.

7
9

2
0
8.

8
0

2
9
3.

9
6

Y
es

2
6
4
.6

0
2
6
4.

2
4

1
8
1.

8
5

2
6
6.

5
4

2
5
4.

5
5

2
5
5.

1
5

1
8
0.

0
7

2
5
4.

6
3

R
od

re
ac
to
r

N
o

10
.3

8
1
7.

4
8

2
0.

1
5

2
0.

9
9

1
7.

4
7

2
2.

4
2

2
5.

4
5

2
6.

2
0

2
2.

3
0

Y
es

2
0
.0

3
2
2.

6
0

2
3.

7
7

1
9.

9
2

2
4.

9
8

2
8.

1
5

2
9.

0
1

2
4.

4
9

B
B
ho
r.

N
o

T
O

2
8
6
.9

7
2
8
6.

6
5

2
8
7.

7
2

2
8
9.

0
9

2
9
5.

4
0

2
9
0.

1
8

2
9
3.

8
7

2
9
2.

5
6

Y
es

2
8
8
.3

5
2
9
1.

0
1

2
9
2.

0
5

2
8
8.

8
5

2
9
2.

8
3

2
9
2.

1
2

2
9
6.

7
0

2
9
4.

8
3

B
B
ti
lt
ed

N
o

T
O

3
4
9
.2

5
3
4
9.

8
2

3
4
9.

2
3

3
4
9.

7
7

3
5
0.

0
2

3
5
0.

5
3

3
5
4.

6
4

3
5
2.

7
3

Y
es

3
5
0
.6

7
3
5
0.

5
3

3
5
2.

2
7

3
5
2.

3
4

3
5
1.

3
3

3
5
2.

8
1

3
5
6.

2
5

3
5
9.

1
0

L
aw

n
m
ow

er
1

N
o

13
2.

97
2
4
2.

7
7

6
6.

8
4

1
9
0.

5
3

2
4
3.

6
8

1
1
4.

9
9

4
7.

7
1

1
2
8.

6
5

1
15
.1

8
Y
es

7
3
.3

5
7
4.

0
9

7
3.

5
5

7
3.

7
2

7
4.

3
6

7
3.

8
5

7
4.

0
2

7
3.

6
2

L
aw

n
m
ow

er
2

N
o

54
4.

13
T
O

4
0
8
.3

1
T
O

T
O

7
5
1
.8

8
4
6
1.

0
1

T
O

9
23
.1

4
Y
es

4
4
7
.7

8
3
8
8.

5
0

5
6
9.

7
3

4
0
7.

7
4

4
1
2.

6
4

3
7
2.

9
1

5
8
6.

9
6

3
6
3.

5
8

	Introduction
	Preliminaries
	Hybrid Automata
	State Set Representations
	Reachability Analysis

	Urgent Hybrid Automata
	Definition and Applications.
	Set Difference Computation
	Utilizing Set Difference
	Urgent LHA I

	CEGAR
	The CEGAR Technique
	CEGAR for Urgent Automata
	Path Refinement
	Improvements

	Experimental Results
	Setup
	Refinement Strategies
	Refinement Levels

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	Benchmark Automata
	Benchmark Results

