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Abstract

As the need for renewable energy rises, so does the need for proper planning and op-
timization. A renewable energy farm, such as a wind farm, can be simulated to ease
and accelerate these processes. Several simulation tools that work with multiple wind
models are already available. But, of course, the simulation results require high accuracy
for such high-stakes calculations. To validate the tools, this thesis presents WindProof.
WindProof is a general framework that enables a user to empirically examine wind farm
simulations by only implementing the access point of that tool into WindProof. Then,
WindProof tests the tool on a broad range of test cases and compares simulation results
between tools. This process will either validate the tool or support the troubleshooting
process of the found differences.
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Introduction

Wind energy production is on the rise worldwide. As of 2022, the worldwide production
of wind energy has risen to 2.098 petawatt hours. This amount is even more impressive
because compared to only five years earlier, the production has risen by more than 85%
[16].
The number of wind turbines in Germany grows yearly, with 745 installed just last

year [1]. With that, wind power became Germany’s most significant source of electricity,
with 31% of total energy production [2]. To conclude, wind power is an essential player
in renewable energies.
It follows that the development of new wind farms is significant. These wind farms

should also be as efficient as possible to ensure maximal power output. Once a suitable
site has been chosen, one of the available optimization algorithms is used [18]. These
algorithms fine-tune the turbine positions within the site to maximize the Annual Energy
Production (AEP). To optimize the turbine layout, it follows that the algorithm needs
to calculate the AEP of a concrete layout.
Typically, wind farm simulations are used to fulfill this purpose. These wind farm

simulations use different wind models as a basis for their calculations [6]. One approach
is the modeling of the wind as a fluid using Computational Fluid Dynamics (CDF)
models based on Large Eddy Simulations (LES) [17] or Reynolds-averaged Navier-Stokes
(RANS) equations. However, these models are untypical for optimizing wind farms due
to their high computational intensity compared to other methods. The second approach
is using analytical models, such as the Gaussian wake model [5, 12] or the Jensen wake
model [7, 9], which are based on observations and correlations of empirical data [6]. The
Jensen wake model will be the focus of this thesis.
Numerous papers validate and compare analytical models and CDF models with mea-

sured wind farm data [4, 8, 15]. While this research is essential for ensuring correct wind
farm models, there is another step to an accurate simulation. This step is the imple-
mentation of the wind farm models, which can introduce many errors. However, to our
knowledge, no paper compares and validates the implementation of these wind farm
simulation models.
This thesis addresses this gap. However, it would be shortsighted to only compute

and compare the results of a handful of wind farm simulation software, especially given
the amount of recent research in this area. With these developments in mind, this thesis
presents WindProof, a general framework for validating wind farm simulation software.
WindProof’s goal is to allow for accessible empirical validation of several wind farm
simulation tools. WindProof’s general design allows more straightforward extensions
of new simulation software, wake models, and test cases. The validation is based on a
library of test cases WindProof provides and many randomly generated test cases, which
point out and isolate errors. This information then allows for a systematic error search,
identifying any error introduced during implementation.
The simulation tools considered for the comparison are: PyWake, an open-source

wind farm simulation tool from the DTU Wind, Technical University of Denmark [13].
WindFarm3D, a wind farm planning tool developed by LuFG Theory of Hybrid Systems
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at RWTH University [19]. Moreover, WindPro, a commercial wind farm simulation tool
from EMD International [3]. Alas, gaining sufficient access to WindPro through its
Python API was impossible. More details can be found in Section 4.1. Unfortunately,
this thesis could only consider tools with a Python access point, as WindProof is written
in Python.

▶ Outline

Section 1 will reiterate the foundations needed for WindProof and describe the Jensen
wake model used in this thesis in detail. Section 2 will then describe the design of
WindProof and note implementation details that align WindProof with its design goals.
In Section 3, WindProof’s library of test cases is presented. As an empirical validation
framework, a significant focus lies on this section since WindProof’s success is directly
tied to the quality of the test cases. The thesis will also mention how and what part
of the calculations each test case covers. Section 4 will then use WindProof to compare
two wind farm simulation tools and identify any difference in their implementations.

8



1 Preliminaries

The preliminaries will make definitions of the mathematical concepts used in this thesis
as well as the Jensen wake model.

1.1 Mathematical Foundations

This first subsection will define all the mathematics needed.

1.1.1 Probability Distributions

Let dist be a probability distribution andX be a random variable. WhenX is distributed
like dist, it is noted as X ∼ dist. X ∼ dist is then defined by the point density function,
abbreviated to PDF, of dist being fX(x). fX(x) describes how likely the value of X falls
into a small area around x; please note that the PDF does not represent the probability
of X taking the value x, which would be P (X = x). Instead, the probability of X can
be calculated assuming a value within an interval, e.g., P (2 ≤ X ≤ 5), which denotes
the probability of X having a value between 2 and 5.
A distribution function or cumulative density function FX(x), abbreviated to CDF, is
needed to calculate this probability. The value of FX(x) tells you how likely it is that
X assumes a value less or equal to x, so FX(x) = P (X ≤ x). The CDF is calculated
based on the PDF. As the name suggests, one sums all the probabilities of all values x
or less in the discrete case. In the continuous case, FX(x) =

∫ x

−∞ fX(x)dx defines the
CDF.

1.1.2 Squared Sum

Let x1, . . . , xn ∈ R, then the squared sum of x1, . . . , xn is xss =
√∑n

i=1 x
2
i .

1.1.3 Measure & Negligible Errors

As a measurement of accuracy, this thesis will take the relative percentage difference in
AEP of the two simulation tools, based on [11]:

diff(v1, v2) =

0, v1 = v2 = 0,

100 · |v1−v2|
(v1+v2)

, otherwise.
(1.1)

In this thesis, this difference measure is interpreted the following way: diff(v1, v2) = 0
states that the results are identical, diff(v1, v2) = 100 means that one result is zero and
the other has a non-zero value. In general a lower diff(v1, v2) is desirable.
Floating point errors often occur in the evaluation; therefore, any error e < 10−10 is
negligible.

1



1.2 Wind Data Foundations

This section will define structures for describing and modeling wind behavior.

1.2.1 Weibull Distribution

The Weibull distribution is defined by two parameters, k and λ, and the PDF:

f(x) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k , x ≥ 0,

0, x < 0.
(1.2)

It follows that the CDF of Weib(k, λ) is defined by:

F (x) =

{
1− e−(x/λ)k , x ≥ 0,

0, x < 0.
(1.3)

The λ parameter controls the shift of the curve. By increasing it, the PDF’s curve
flattens.
The k parameter controls the shape of the curve. By increasing it, the curve of the PDF
forms a steeper but thinner spike. Figure 1 depicts the PDF curves of some Weibull
distributions.

1.2.2 Distribution Vector

0 5 10 15 20 25 30 35 40
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X ∼Weib(k = 1;λ = 10)

X ∼Weib(k = 2;λ = 10)

X ∼Weib(k = 2;λ = 15)

X ∼Weib(k = 3.6;λ = 10)

Figure 1: Point density functions of different Weibull dis-
tributions

In this thesis, a distribu-
tion vector denotes the rela-
tive probability of each wind
speed occurring. Since the
space of wind speeds is con-
tinuous, binning is applied to
discretize the wind speeds.

1.2.3 Surface Roughness

Another value needed later is
surface roughness, which de-
scribes how rugged a terrain
is. It is quantified by the
mean squared error of the
terrain’s elevation relative to
a plane, minimizing this er-
ror.
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1.2.4 Windroses

A windrose is a widespread way to describe the local wind at a site. Since the angle
of the incoming wind is continuous, a windrose bins the angles of the incoming wind.
Therefore, the windrose separates the surrounding area into several evenly distributed
wind sectors. For example, if a windrose has 12 sectors, each of those sectors would
have a width of 30◦. The wind coming from a sector is combined and then assumed to
originate from the center line of its corresponding sector. This thesis always places the
first wind sector so the center line points to 0◦ north.
The windrose holds a different wind distribution for each sector, represented by either
a distribution vector or a Weibull distribution.
Additionally, each sector 1, . . . , n also has a sector probability pi, which denotes the
relative frequency of the wind coming from the i-th sector. Since the sector probabilities
are relative, it holds true that

∑n
i=1 pi = 1.

1.2.5 Wind Turbines

Each wind turbine has a hub height, the height of the turbine hub, the part of a wind
turbine where the rotor blades are mounted and the generator is located. Additionally,
each turbine has a rotor diameter.
Each turbine T also has performance data in the form of three curves provided by the
manufacturer after testing: The power-, ct-, and cp-curve. Figure 2 displays the curves
of the Vestas V112-3.45 turbine.
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Figure 2: Power-curve (red), ct-curve (blue) and cp-
curve(yellow) of the Vestas V112-3.45 turbine

The power-curve Tp of a
turbine defines the hourly
power output of a turbine in
terms of wind speed. The ct-
curve Tct defines the thrust
coefficient of the turbine for
each wind speed. This value
is the percentage of loss in
wind thrust when power-
ing the rotor blades. The
third curve, the cp-curve Tcp;
its value, the power coef-
ficient, depicts how much
wind potential energy is con-
verted into rotational energy
at each wind speed.
All curves are continuous, but values are only supplied at specific anchor points; there-
fore, the values are interpolated linearly between anchors. The three curves implicitly
define the last two defining values of a turbine. These are the cut-in and cut-out speeds,
the lower and upper limits of the wind turbine’s operative wind speed interval. Outside
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of the interval defined by the cut-in and cut-out speeds, the turbine is not producing
electricity. Therefore, all three curves have a value of 0 outside of this interval.

1.2.6 AEP Calculation

AEP itself stands for Annual Energy Production, and, as the name suggests, this is the
energy output of a wind farm or turbine over a full year. In this thesis, the calculation
assumes that one year has exactly 365 days, meaning any leap days are ignored.
To calculate the AEP of a stand-alone turbine T using a windrose with n sectors and
wind speed distributions X1, . . . Xn, the following formula is used:

(24 · 365) ·
n∑

i=1

pi ·
∑

v∈bins

Tp(v) · P (Xi = v)

where bins is the set of median speeds of each wind speed bin used.

1.2.7 Logarithmic Wind Shear

Accurate wind measurements are required to correctly calculate a turbine’s AEP. How-
ever, these measurements must be at the turbine’s hub height; otherwise, the wind speed
may differ. Unfortunately, wind measurement stations are rarely 100m above ground
level, so a method is needed to approximate the wind speed at a different height. The
logarithmic wind shear is used to do this, abbreviated to log shear. Using the surface
roughness, the log shear approximates the wind speed at the target height using the
following formula:

v(t) = u(h)
ln t−d

z0

ln h−d
z0

(1.4)

where v(x) is the wind speed at height x, t is the target height, h is the measurement
height and z0 is the surface roughness. In this thesis, the zero plane displacement d is
always assumed to be zero.

1.2.8 Downwind and Crosswind Distance

To correctly refer to relevant distances between the turbines, the downwind and cross-
wind distances need to be defined. As seen in Figure 3, the Downwind distance from
Turbine 1 to Turbine 2 is the part of the distance in the wind direction, while the
Crosswind distance is the part of the distance perpendicular to the wind direction.

1.3 Jensen Wake Model

The AEP calculation for a stand-alone turbine is relatively simple, but AEP calculations
for wind farms are the goal. The problem with the AEP calculation described earlier is
that the influence of the turbines upon each other is not considered. This influence is
called a wake; the turbulence created in the wind by the wind powering the turbine. This

4



Turbine 1

Turbine 2

Turbine 2

Projection of

Wind

Down-Wind-Distance

Cross-Wind-Distance

Figure 3: Diagram of a 2 turbine set-up outlining the down-wind and cross-wind dis-
tances between them

thesis uses the Jensen wake model [7], originally created by N. O. Jensen and improved
by Katic et. al. [9], to calculate the wake of the turbines. To calculate the reduced
wind speed u, from the free-flow wind speed u0 with a velocity deficit δ1, the following
formula is used:

v = u0 · (1− δ1) = u0 − u0 · δ1 (1.5)

1.3.1 Initial Velocity Loss

This leaves the question of how strong the velocity deficit is. The Jensen model provides
a formula to calculate the initial velocity deficit δ1 at the turbine causing it:

δ1 = 1−
√

1− Tct(u0) (1.6)

where u0 is the wind speed at the turbine. An example graph is given in Figure 4a

1.3.2 Wake Decay

The Jensen wake model models the wake of a turbine as a (conical) frustum created
in wind direction, with the turbine’s rotor area as its smaller face, as seen in Figure 5.
The frustum would be cylinder-based in an environment with perfectly smooth terrain,
meaning a surface roughness of z0 = 0m. But in most cases, the terrain is rough; in this
case, the frustum is of conical nature. Due to the momentum conservation, the velocity
deficit is getting weaker as the conical wake frustum widens. This phenomenon is called
the wake decay.
The Jensen model uses k, the wake decay factor, as a linear factor by which the wake
widens. k can be measured, but in this thesis, is approximated at each turbine by:

k =
0.5

ln z
z0

(1.7)
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(a) Graph of initial velocity deficit.
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(b) Graph of decayed velocity deficit with
wind speed of 10m s−1 and surface rough-
ness z0 = 0.05m

Figure 4: Both graphs are calculated using a Vestas V112-3.45 turbine.

Figure 5: Top-down view of a turbine and its wake as described in the Jensen Wake
model. u0 is the free-flow wind speed, ur the initially reduced wind speed and
uw the reduced wind speed at downwind distance x. D is the rotor diameter
and Dw the wake diameter with wake decay factor k. Taken from [10].

6



Where z is the turbine’s hub height and z0 is the surface roughness at the site.
The Jensen model also provides a formula for calculating the wake radius rwake(x), x
being the down-wind distance to the wake-producing turbine; it is:

rwake(x) = r + x · k (1.8)

Where r is the rotor radius of the turbine. Using Formula 1.8 in conjunction with the
energy produced by the wind, you get the formula for the wake decay at distance x,
which is:

wdecay(x) =

(
r

rwake(x)

)2

=

(
r

r + x · k

)2

(1.9)

In conclusion, to calculate the velocity deficit δ(x) at a down-wind distance x, the Jensen
model multiplies Formaluas 1.6 and 1.9; therefore:

δ(x) =
(
1−

√
1− Tct(u0)

)
· wdecay(x) =

(
1−

√
1− Tct(u0)

)(
r

r + x · k

)2

(1.10)

Figure 4b displays a graph of a decayed velocity deficit dependent on the downwind
distance.

1.3.3 Turbine Coverage

The wake coverage is the next part of the Jensen deficit model. There could be the case
that a turbine is not fully, but only partially, in the wake of another turbine. In this case,
the Jensen model calculates the intersection share regarding the rotor area and weakens
the wake’s impact accordingly. To calculate the relative area of this intersection, the
following formula is used:

β =
Aint

Aturb

(1.11)

Where Aint is the area of the intersection and Aturb is the turbine’s rotor area, which is
defined by the equation:

Aturb = π · r2 (1.12)

Where r is the rotor radius. The area of the circle intersection is more complicated to
calculate and is dependent on the cross-wind distance d between the wake-producing
and receiving turbine and the wake radius rwake at the down-wind distance of the two
turbines; the equation is:

Aint = r2 arccos
d2 + r2 + r2wake

2dr
+ r2wake arccos

d2 + r2wake − r2

2drwake

− 1

2

√
(−d+ r + rwake)(d+ r − rwake)(d− r + rwake)(d+ r + rwake)

(1.13)

The first part of the formula calculates the area of the circle segment between the
two intersection points of the ”rotor-circle”. The second part of the formula analogly
calculates the affected circle segment of the ”wake-circle”. But now, the calculated area
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has a lot of overlapping sections. The last part of the formula subtracts the area of the
kite that spans between the circle center points and the intersection points. What is left
is the area of each circle segment beyond the line between the intersection points; these
two remaining areas form the lens, that is, the circle intersection area.

1.3.4 Wake Intersections

Turbine 3

Turbine 1

Turbine 2

Wake 1

Wake 2

Wake Intersetion

Figure 6: Sketch of Turbine 3 residing the wake intersection of turbines 1 and 2

When there are three or more turbines on a site, a turbine might be in the wake of
two other turbines simultaneously. This is a Wake Intersection, depicted in Figure 6.
Turbine 3 is located within the dark blue intersection of Wake 1 and Wake 2, where they
overlap. To calculate the total velocity deficit in this intersection, the Jensen wake model
uses a superposition model to resolve the different overlapping deficits. In this thesis, the
squared sum is used as the superposition model. Meaning if a turbine would be affected
by two velocity deficits δ1, δ2, then the resulting velocity deficit of the intersection is
δtotal =

√
δ21 + δ22.

1.3.5 Speed Adaption Factor

The scenario is that three wind turbines are placed in a row, and the current wind blows
along that row. Now, let us calculate the wake produced by the second turbine upon
the third turbine. But what wind speed value should be used for equation 1.6? Since
the first turbine also projects a wake upon the second turbine, the wind speed at the
second turbine is not the free-flow wind speed. It follows that the resulting velocity
deficit of the second turbine is relative to the incident wind speed at the second turbine.
However, since the velocity deficits are later applied to the free flow wind speed. So, in
accordance with [14], a factor is added to reflect the lower incident wind at the second
turbine u2 relative to the free flow wind speed u0, which is u0

u2
.
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1.3.6 Wake Dependencies

The scenario again involves three turbines in a row, with the wind blowing along this
row. Under the directions of the Jensen Wake Model, the wake intersection of the
first and second turbines should be calculated to investigate the velocity deficits acting
on the third turbine. But logically speaking, the wake of the first turbine is already
included in the wake of the second turbine, so it follows that this should not be a wake
intersection. So only the wake of the second turbine affects the third. However, to the
current knowledge, no simulation tool correctly resolves these wake dependencies.
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2 WindProof’s Structure & Implementation

This section will review how WindProof is structured and which assumptions were made
when designing it. Please note that the classes in the UML diagrams may have been
stripped of unnecessary details or were abbreviated for clarity.

2.1 Motivation

The motivation behind WindProof was to create a framework to compare wind farm
simulations. However, the goal was not just to compare two tools but to create a general
validation framework. Therefore, this framework should not be restricted to specific
calculation types, output values, input types, or software. Following this principle, many
of its classes will be abstract, allowing for the easy addition of new tools or calculation
types. Figure 7 depicts the general structure of WindProof and an example workflow,
which will be elaborated in the next sections.

2.2 Tools

This sector begins with the main part of WindProof, the tool class. Its basic function is
displayed in Figure 8. It is an abstract class whose subclasses hold the simulation tools
used for the comparisons.
In our case, a simulation tool is a simulation software performing a specific calculation.
Assuming there exists a simulation software S, then S calculating the AEP and S calcu-
lating the Turbine Noise would be two different tools in WindProof. Each tool receives
two inputs, a Settings and a Scenario object, and produces an output, in this thesis,
the AEP. The Settings object contains everything that is not case specific, e.g., which
interpolation methods and wake intersection models are used in the simulation. Each
tool used for Simulation needs to be a subclass of the Tool class. The Tool class holds
the default settings for a tool, some utility methods, and other constant data. It also
asks every sub-class to implement the _tool_calc method, which prepares and calls the
simulations software’s calculations in the specific tool implementation.

▶ Implementation

The Tool class is abstract because the _tool_calc method is not implemented; this
method is only implemented in the subclasses, meaning the calculation call of the actual
software. Additionally, _tool_clac is ”private” since a reference to the tool’s default
settings is needed to call it properly, which are themselves private. Due to the circum-
stances, _tool_clac needs to be called by another method, the calc_scenario_single
method. Another advantage is that calc_scenario_single is not dependent on the
simulation software; therefore, it is fully implemented. In a similar fashion,
calc_scenario_single is called by calc_scenario_group.

10



Validator

Random Factory

Pipeline

Pipeline

Scenario SettingsChanges

Settings

Tool

EvalData

creates

generate
settings

extract

compute

Figure 7: Overview and example workflow of WindProof. The blue boxes are classes,
and the red nodes symbolize dataclasses. The workflow describes the
Random Factory module producing a Pipeline instance, which is given
to the Validator class. The Validator class then evokes the list of
SettingsChanges objects to generate a list of Settings objects. These
Settings objects are then together with a list of Scenario objects given to
a list of Tool classes. These compute the simulation results, which are then
returned from the Validaotr class as an EvalData instance.
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Tool

- Settings

- _tool_calc(ScenarioSingle, Settings): Any
+ calc_scenario_single(ScenarioSingle, Settings): Any
+ calc_scenario_group(ScenarioGroup, Settings): EvalData

Figure 8: UML diagram of the Tool class. Classes colored red are abstract.

2.3 Settings

Moving on to the first input of the Tool class, which is the Settings class. The Settings
class holds all the overarching information, which is not case-specific. The Settings class
of WindProof, as seen in Figure 9, consists of a list of values and a list of Range objects.
The values contain the actual settings, such as the wind bin size binsize = 1. While the
ranges define the allowed range of values for the settings, such as 0.1 ≤ binsize ≤ 1. If
a change to a setting is out of the defined bounds, such as binsize → 10, the change is
nullified.
These characteristics prevent unrealistic inputs, but they also have an additional pur-
pose. They allow one to iterate over all possible values of a setting or combinations of
settings, fine-tune hyperparameters, or quickly examine value changes between settings,
which could contain clues for an error source.

▶ Implementation

Each setting in the Settings class has a name, or more specifically, a string key. Before
a setting (a dictionary entry) is set to a new value, the Settings class checks whether
it is in its Range. To do that quickly, WindProof requires all Ranges to implement the
system function __contains__(item), which is usually used in Collections such as Lists
or Dictionaries.
WindProof provides four kinds of ranges, which are subclasses of the abstract Range
class.

1. The DiscRange, or discrete range, consists of a list of all possible values.

2. The ContRange or contiouns range, has a start value, an end value and a stepsize,
the stepsize is required when iterating over a Range.

3. The AllRange is ignored when iterating over it. It always returns true on a
__contains__(item) call, and therefore, when used for a setting, allows that
setting to take any value.

4. The NoneRange is also ignored when iterated over. It always returns false on a
__contains__(item) call, and therefore, when used for a setting, allows a setting
never to take any other value. Essentially, making a setting static.
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1

*

Settings

- values: dict[str, Any]
- ranges: dict[str, Range]

+ get_setting(key)
+ set_setting(key, value)

Range

+ __contains__(item)
+ get_all_values_in_range() : list[Any]

DiscRange

- values: list[Any]

ContRange

- range_min: float
- range_max: float
- range_stepsize: float

AllRange

NoneRange

Figure 9: UML diagram of the Settings class and its associated Range objects. The
subclasses of the Range class are also depicted. Classes colored red are abstract.
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2.4 Scenarios

The Scenario class contains all the other information needed for a simulation. The
class structure is depicted in Figure 10. The Scenario base class is abstract and has the
basic information needed for a wind park simulation, meaning the information about
the turbines, the turbines placements, and the wind data.
The turbine data, as described in section 1.2.5, is saved in a suited data class, the
Turbine class. Each turbine’s placement is saved as a point in 3D space.
How the wind data is saved depends on which subclass of the Scenario class is used.
There are two subclasses, the SecnarioSingle and the ScenarioGroup:

▶ ScenarioSingle

The ScenarioSingle class is the most basic form of a scenario. Its wind data is a
single windrose, as described in the section 1.2.4.

▶ ScenarioGroup

The ScenarioGroup class combines several scenarios using the same turbine types
and placements, i.e., the same wind park setup but different wind. This is often used
when one wants to simulate the same setup through several different wind speeds and
directions to examine the different results. Therefore, a ScenarioGroup object has a list
of windroses as its wind data.

▶ Implementation

The Scenario class itself is abstract to allow for easy extension to fit more complex
calculations than the AEP calculation. In the Scenario class, the wind is not defined;
that happens in the subclasses as described earlier. The ScenarioGroup class also has
a class method to transform all scenarios into ScenarioGroups for uniform handling of
the scenarios.

2.5 Pipeline & SettingsChanges

The Pipeline class is a way to hold the tool inputs for several simulations simultaneously
and is also the preferred input for the Validator class, which the next section covers.
As one may expect, and as depicted in Figure 7, the Pipeline class holds a list of
scenarios. But it does not have a list of settings, but a list of SettingsChanges. A
SettingsChanges is a class which, when called with a tool, returns a copy of the tool’s
default settings with some settings, defined in the SettingsChanges instance, changed
to a new value. A SettingsChanges does not alter the tool’s default settings but creates
a single-use copy. This is designed this way for two reasons:
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Scenario

- turbines: list[Turbine]
- placements: list[Point]

ScenarioSingle

- wind: WindRose

ScenarioGroup

- wind: list[WindRose]

+ collapse_to_scenario_list() : list[ScenarioSingle]

Figure 10: UML Diagram of Scenario class and its subclasses. Classes colored red are
abstract.

1*

1

*

SettingsChange

- new_value: Any
- settings_name: dict[ToolNames, str]

+ __call__(Settings, tool_name): Settings

SettingsChanges

- new_name: str
- changes: list[SettingsChange]

+ __call__(Tool) : Settings

NoChange

- changes: list[]
- new_name: None

Pipeline

- name: str
- cases: list[Scenario]
- setting_changes: list[SettingsChanges]

+ __iter__() : self
+ __next__() : tuple[Scenario, SettingsChanges]
+ to_dataframe() : DataFrame

Figure 11: UML Diagram of Pipeline, SettingsChanges, SettingsChange, and
NoChange classes.
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1. Most of the time, only a single setting will deviate from the default. Using a
SettingsChanges instance, the user does not have to re-enter all the default set-
tings and must only change what must be altered.

2. The settings do not need to be reverted back to the default settings after the
scenario is finished. This also improves the readability.

Pipelines can also dump themselves into a Pandas DataFrame. This is important for
exporting random pipelines and analyzing the results of a random comparison.

▶ Implementation

To allow for easier syntax and use of the SettingsChanges class, the system function
__call__(Tool) was implemented. When a SettingsChanges object, e.g., would be
called ”increase roughness” and a Tool called ”WindSim AEP”, the call to receive the
to be used Settings object, would look like increase_roughness(WindSim_AEP).
The NoChange class was implemented to beautify the process of defining no change from
the default settings. The class is essentially an empty SettingsChanges object and has
an easier constructor, being __init__(). To use the default settings in a Pipeline, just
create NoChange().
To make it easier and cleaner to integrate the cases in a pipeline, it has implemented the
system functions __iter__() and __next__(). Therefore, to iterate over the Scenarios
and SettingsChanges in a pipeline, a simple for-in loop is sufficient.

2.6 EvalData

The EvalData class is a subclass of the abstract Data class, as seen in Figure 12. The
Data class itself is intended as a wrapper around a Pandas DataFrame.
The EvalData class is WindProof’s way of saving and delivering data between mod-

ules and simulations. It specifies the format and column names of the DataFrame and
provides additional utility functions to easily load and save data. The EvalData class is
supposed to be used to save data across several different tools. It is also the output of
the Validator class when inputting a Pipeline object.

▶ Implementation

The Data class and its subclasses are wrappers around a Pandas DataFrame. This was
done to ease and simplify the process of data management, and the Pandas DataFrame
is a great basis for several reasons:

• Familiarity The Pandas DataFrame is a widely used class when dealing with data
in Python. It can also be used in various data science packages to analyze data
further, especially from random test cases.

• User Interface The Pandas DataFrame has a powerful and user friendly access
point.
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Data

- name
- data: DataFrame

EvalData

+ set_value(scenario_id, setting_id, tool_id, value, runtime)
+ get_value(scenario_id, setting_id, tool_id) : DataFrame
+ merge(EvalData)
+ export_data_csv()

Figure 12: UML Diagram of Data and EvalData classes. Classes colored red are ab-
stract.

• Space efficiency The Pandas DataFrame also has the advantage of being able to
be exported to efficient data types, e.g., the .feather type.

The wrapper shortcuts the interaction process and defines static column names to make
the data more uniform for workability. The names are setting_name, scenario_name,
runtime, and the value’s name, in this thesis, the AEP. The last column name of the
EvalData class is tool_name; in the ToolData class, this is not needed since the tool’s
name is an attribute.

2.7 Validator

Figure 13 depicts the Validator class, which is the module of WindProof used to execute
the simulations.
Therefore, the Validator class manages all the tools used in a comparison. It takes
a Pipeline object or both a Scenario and a SettingsChanges instance and runs the
tools on the data given. The results are then saved in an EvalData instance. In the
case of calculating a whole pipeline, the Validator also evokes the SettingsChanges
objects defined in the Pipeline instance.

▶ Implementation

The Validator class has a list of Tool objects and methods to compare the tools on
Senario or Pipeline objects. In each comparison, the user can whitelist or blacklist
certain tools. In the validate function, one Tool object is compared to the census,
which is the average of all other tools available.
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Validator

- tools: list[Tool]

+ compare(Scenario, SettingsChanges) : EvalData
+ comp_compare(Pipeline) : EvalData
+ validate(Pipeline, validatee_name)

Figure 13: UML Diagram of the Validator class.

2.8 Random Factory

This WindProof module helps the user to examine the overall correctness of their tool.
The module randomly generates test cases within realistic confines. These random
pipelines can be used to examine the general error between two tools. In combination
with the Plotter module or additional analytic resources, these random pipelines may
also help to narrow down the source of an error, which can then be isolated with the
help of WindProof’s predefined test cases.

▶ Implementation

The random scenarios are created using the pythons random package. For the turbines,
a random turbine type is chosen among the three ”real” constant Turbine objects, being
the Vestas V112-3.45, Enercon E115 3.000, and the Nordex N90/2500. The number of
trubines is chosen by adding two random integers between 1 and 6. It is done in this
way to decrease variance.
The random turbine placements are created, as illustrated in Figure 14, by generating
random points and checking for sufficient space between turbines.
The random WindRose is defined as follows: The sector width is locked at 1◦. The
measurement height is created by adding two random integers between 5 and 50; this
is done to lower variance. The sector propabilities are chosen in a monte-carlo-
simulatio-ish manner. n points are randomly placed in a sector, then let ni denote the
number of points in the i-th sector, then the sector probability is pi =

ni

n
. Finally,

each sector has a wind distribution with a random constant wind speed between 0
and 30 m s−1.

2.9 Plotter

This module takes EvalData instances to create different plots of the collected data
using seaborn. It helps to draw conclusions out of simulated random pipelines.

▶ Implementation

The seaborn package was chosen due to its simple use and great synergy with the Pandas
package
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unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

Choose (t, r) ∈ T

T = ∅Return T ′

Create random point p ∈ R2

∀(t′, r′, p′) ∈ T ′ : dist(p, p′) > r + r′

T ′ = T ′ ∪ (t, r, p)
T = T/(t, r)

true

false

false true

Figure 14: Flowchart of the random placement process. For each turbine, a random
placement is generated; if a placement is too close to another turbine, a new
placement is generated.

2.10 Constants

A tool with the WindProof framework is tested and compared with other tools in a list
of test cases to validate it. WindProof provides a library of predefined test cases to ease
this process. These are found in the constants module, which provides over 50 test cases,
presented in detail in Section 3. WindProof also provides some predefined instances of
each atomic component of a scenario to allow the user to easily build new test scenarios
specific to their needs.
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3 Test Scenarios

This section presents the different predefined scenarios in WindProof, how they are set
up, and what errors they are trying to isolate. These scenarios are needed to validate
tools with WindProof. Since WindProof works on an empirical basis, its validation
processes are only as effective as its test cases. Errors that are not covered by WindProof
can not be detected. Therefore, using a broad spectrum of test cases and considering as
many edge cases as possible is essential. Additionally, random test cases should be used
to catch any errors that the test cases may have missed.

3.1 Base Cases

These test cases use only one turbine. They test basic Annual Energy Production (AEP)
calculations without any turbulence, interpolation methods, and different combinations
of wind speeds. They will also serve as a control case or comparison basis for many more
complex cases.

3.1.1 Vestas Single Direction Group

This test group features a single Vestas V112-3.45 turbine. The scenario group consists
of a collection of windroses based on Distribution Vectors, where the wind always comes
from the north, and the measurement height equals the turbine’s hub height. The wind
varies in speed within the group, as seen in Table 1.

Scenario Name Wind
Speed
[m s−1]

Expected
AEP
[MWh]

Tests (for)

No Constant Wind 0 0 constant bias; structural errors

Too Low Constant Wind 2.9 0 cut-in definition

Low Constant Wind 4.5 1892.16 power curve interpolation

Too High Constant Wind 25.1 0 cut-out definition

Medium Constant Wind 10 23590.68 basic AEP calculation

Low & Medium Wind 4.5; 10 12741.42 multiple wind speed

Table 1: This table gives an overview of the Vestas Single Direction Group’s scenarios.

▶ Too Low Constant Wind

This scenario’s wind speed is just below the cut-in-speed cin of the Vestas V112-3.45,
with a cin = 3.0m s−1. It checks for a proper cut-in of the power curve Vp(x) since if the
speed is interpolated from Vp(3) = 7kW and Vp(2) = 0kW , it will be greater than 0.
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3.1.2 Enercon Single Direction Group

This scenario group provides similar test cases to the Vestas Single Direction Group.
In contrast to the latter, this scenario group uses a single Enercon E115 3.000. This
turbine has a lower cut-in-speed cin = 2 m s−1, and the frequency of the data curves’
anchor points is halved. An overview of the cases is displayed in Table 2.

Scenario Name Wind
Speed
[m s−1]

Expected
AEP
[MWh]

Tests (for)

No Constant Wind 0 0 constant bias; structural errors

No Wind 1 Sector 0 0 correct use of sector probabili-
ties

Constant 2 Wind 2 26.28 comparison; cut-in definition
Enercon

Too Low Constant Wind 2.9 385.002 complex power curve interpo-
lation

Low Constant Wind 4.5 2163.72 power curve interpolation

Medium Constant Wind 10 22600.8 basic AEP calculation

High Constant Wind 19.8 26280 interpretation of power curve
near rated wind speed

Too High Constant Wind 25.1 0 cut-out definition

Table 2: This table gives an overview of the Enercon Single Direction Group’s scenarios.

▶ No Wind Single Sector

This Scenario has only one sector with a width of 360◦. It tests whether the tool can
work with wind roses that do not have exactly 12 sectors.

3.1.3 Multiple Directions Group

This is the first scenario group that does not have the wind coming from only one
direction. A Vestas V112-3.45 with hub height equal to the measurement height is used.
This scenario group intends to isolate errors that happen during the summing of the
sector-wise AEPs, interpretation of the sector probabilities, and using different wind
distributions for each sector.

▶ 12 Sectors Medium Constant Winds

This windrose has 12 sectors. The sectors 1, 3, 5, 7, and 9 all have a constant wind speed
of 10m s−1 and a sector probability of 0.2. The remaining sectors remain at 0m s−1.
This scenario splits the scenario Vestas Single Direction Group (Table 1): Medium
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Wind into 5 from 12 sectors. It will detect any errors that occur while interpreting
sector probabilities and summing up the resulting sector-wise AEPs.

▶ 8 Sectors Medium Winds

This scenario differentiates itself from the previous one in only one point. It has only 8
sectors in total. Four of them have a wind speed of 10m s−1 and a probability of 0.25.
This Scenario checks if the tool can handle different sector widths.

▶ 8 Sectors Medium Winds Inverted

Now, the sector probabilities of the previous scenario are inverted. That means that
each non-zero speed has a zero sector probability. This windrose tries to catch all the
tools that ignore or incorrectly use the sector probabilities but pass the previous two
tests.

▶ 8 Sectors Multiple Constant Winds

This windrose also has 8 sectors; sectors 1 to 4 have a sector probability of 0.25. Sectors
1 and 5 have wind speeds of 0m s−1, sectors 2 and 6 have 4.5m s−1, 3 and 7 have 10m s−1,
and finally, sectors 4 and 8 have a speed of 19.8m s−1. So, this scenario checks if a tool
can handle different constant wind speeds.

3.2 Wake Model Test Cases

These cases cover all the basic wake interactions between groups of turbines. As de-
scribed in the Preliminaries, WindProof evaluates its tool based on the Jensen Wake
model.

3.2.1 Jensen Wake Intensity Group

This Scenario group tests the most simple Scenario where a turbine is impacted by wake.
It uses 2 Vestas V112-3.45 turbines. Where the second turbine is located 300m westward
of the first. This group tests the correct application of the Jensen model formulas and
helps set up some more complex cases.

▶ No Interference

This is a control case for the next windrose. It uses a constant northbound wind with
a wind speed of 10m s−1. Since the turbines are aligned on the x-axis, the two turbines
are parallel to the wind. Therefore, there should be no wake interaction between the
turbines. Figure 15 also depicts this turbine setup.
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V1 V2

Figure 15: Jensen Wake Intensity Group turbine setup with a north wind. Blue trape-
zoids symbolize wake turbulence. The letter of a turbine denotes its type,
while the number is the turbine number referenced in the text.

V1 V2

Figure 16: Jensen Wake Intensity Group turbine setup with west wind. Blue trapezoids
symbolize wake turbulence. The letter of a turbine denotes its type, while
the number is the turbine number referenced in the text.

▶ Full Wake

This Scenario simulates the wake interaction between the two Vestas V112-3.45 Tur-
bines, as seen in Figure 16. It uses a constant west wind with a speed of 10m s−1 and
a sector width of 1◦. It follows that Turbine 2 is fully in the wake of Turbine 1. This
scenario aims to isolate any mistakes when applying the basic wake deficit formulas of
the Jensen wake model.

3.2.2 Multiple Turbine Types Group

This Multiple Turbine Types Group is an extension of the previous scenario group.
It also explores the basic wake interactions between turbines but covers more edge
cases, as displayed in Table 3. This begins with having two different turbines instead
of one. The turbine setup uses one Vestas V112-3.45 and one Enercon E115 3.000. The
Enercon E115 3.000 is set up 300m east from the Vestas V112-3.45.

▶ Basic Wake

This scenario aims to test the basic wake interaction for two different turbine types. The
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Scenario Name Wind
Speed
[m s−1]

Wind Direc-
tion

Purpose

No Interference 10 North (0◦) control

Basic Wake 10 West (270◦) c. basic wake calculation

36 Sector Wake 10 West (270◦) c. Sector/Wind Direction
Interpretation

Wake 19 Degree 10 complex s.
below

c. Sector/Wind Direction
Interpretation

No Wake 2 West (270◦) c. cut-in of ct-curve

No Wake Interpolation 2.9 West (270◦) c. interpolation of ct-curve

Table 3: This table gives an overview of the Multiple Turbine Types Group’s scenarios.

windrose defines a constant west wind with a speed of 10m s−1 and a sector width of 1◦.
The result is expected to differ from scenario Jensen Wake Intensity Group: Full Wake
since the power and ct curves of the two turbine types differ.

▶ 36 Sector Wake

The only difference to scenario Multiple Turbine Types Group: Basic Wake is that the
sector width is 10◦, instead of 1◦.

▶ Wake 19 Degree

The Wake 19 Degree windrose has a special sector probability distribution. The sector
probability of sector 270 is 0.1. The neighboring sectors’ probability decreases by 0.01
in each direction until it hits 0.

▶ No Wake

This Scenario is defined by a constant west wind with a constant wind speed of 2m s−1.
This is special because of the different cut-in-speeds of the two turbines. The
Vestas V112-3.45 will stand still at this speed while the Enercon E115 3.000 spins.

3.2.3 Full Coverage

The Full Coverage scenario, also displayed in Figure 17, utilizes two Vestas V112-3.45
turbines, which are placed 500m apart on the x-axis, a west-bound constant wind with
a speed of 10m s−1 and 1◦ sector width. The AEP is expected to be slightly higher in
comparison to the scenario Jensen Wake Intensity Group: Full Wake since the turbines
are an extra 200m further apart.
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V1 V2

Figure 17: Full Coverage turbine setup with west wind. Blue trapezoids symbolize wake
turbulence. The letter of a turbine denotes its type, while the number is the
turbine number referenced in the text.

V1

V2

Figure 18: Partial Coverage turbine setup with west wind. Blue trapezoids symbolize
wake turbulence. The letter of a turbine denotes its type, while the number
is the turbine number referenced in the text.

3.2.4 Partial Coverage

In combination with the previous scenario, this checks if the correct rotor blade coverage
is calculated and applied to the wake deficit. The same windrose was used to test this
effect. As Figure 18 depicts, Turbine 1 is placed at 500m west of the second turbine and
has been shifted to 89m north. The intent of this placement is that with the wind used,
Turbine 1’s wake should hit the hub of Turbine 2. In this simulation, the effect of the
wake is expected to be marginally stronger than half the wake strength of Full Coverage
test case.

3.2.5 Basic Wake Intersection

The intent of the current scenario is to test the correct calculation of wake intersections.
As seen in Figure 19, three Vestas V112-3.45 turbines arranged in a triangle are used to
validate this interaction.
The windrose is defined by a constant westbound wind with a speed of 10m s−1.
Note that the velocity deficits of Turibine 1 and 2 onto Turbine 3 are equal. For the
resulting wake, it holds that δtotal =

√
δ21 + δ22 =

√
δ21 + δ21 =

√
2δ21 =

√
2
√
δ21 =

√
2δ1.

The wake influence is expected to be
√
2 times stronger than the wake influencing the
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Figure 19: Basic Wake Intersection turbine setup with a west wind. Blue trapezoids
symbolize wake turbulence. The letter of a turbine denotes its type, while
the number is the turbine number referenced in the text.

Turbine 2 in scenario Jensen Wake Intensity Group: Full Wake.

3.2.6 Complex Wake Intersection

V1

V2

V3

Figure 20: Complex Wake Intersection turbine setup with a west wind. Blue trapezoids
symbolize wake turbulence. The letter of a turbine denotes its type, while
the number is the turbine number referenced in the text.

The Complex Wake Intersection scenario is similar to the scenario Basic Wake Inter-
section. It also uses 3 Vestas V112-3.45 turbines, arranged as seen in Figure 20. The
wind is a constant westbound wind with a speed of 10 m s−1.
In conclusion, this Scenario combines three concepts of the AEP calculation using the
Jensen wake model. It checks wake decay by having the wake-producing turbines at
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different distances, wake coverage by having different lateral shifts in the turbine place-
ment, and wake intersection by having two turbines, both influencing the third.

3.2.7 Three in a Row Group

This group tests for the resolution of wake dependencies. The three Vestas V112-3.45
turbines used in this scenario group are placed along the x-axis with a distance of 300m
between them. Table 4 displays additional information.

scenario name wind speed
[m s−1]

wind direc-
tion

purpose

No Interference 4 North(0◦) control

Turbine 2 Inoperable 4 West(270◦) c. Wake Decay

Turbine 3 Inoperable 4.5 West(270◦) c. Wake Dependency below cin

All Turbines Operable 10 West(270◦) c. Wake Dependency

Table 4: Overview of the Three in a Row Group’s scenarios

▶ No Interference

V1 V2 V3

Figure 21: Three in a row turbine setup with north wind. Blue trapezoids symbolize
wake turbulence. The letter of a turbine denotes its type, while the number
is the turbine number referenced in the text.

The wind speed of this windrose is specially calibrated for this scenario, which is
important for the next windrose. This rose serves as a comparison basis since, due to
the wind coming from the north, the wind turbines will not interfere with each other.

▶ Turbine 2 Inoperable

At the used wind speed, the west-most turbine is creating enough turbulence to keep
the wind speed below 3m s−1 at a distance of 300m. Since the cut-in-speed of the
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Figure 22: Three in a row turbine setup with slow west wind. Blue trapezoids symbolize
wake turbulence. The letter of a turbine denotes its type, while the number
is the turbine number referenced in the text.

Vestas V112-3.45 is cin = 3ms−1, it follows that the second turbine is not operating.
But the wake from the first turbine is weak enough that at a distance of 600m, the wind
speed has again risen above the 3m s−1 mark due to the wake decay. Note that this
windrose has a sector width of 1◦.

▶ Turbine 3 Inoperable

V1 V2 V3

Figure 23: Three in a row turbine setup with medium west wind. Blue trapezoids sym-
bolize wake turbulence. The letter of a turbine denotes its type, while the
number is the turbine number referenced in the text.

The increase in wind speed changes the interaction of the turbines. This time, the
wake turbulence reduces the speed at the second turbine to barely above 3 m s−1. Con-
sequentially, the second turbine is above its cut-in-speed and, therefore, is operative.
But this ensures that with the additional turbulence the second turbine adds, that the
third turbine is now inoperable.

▶ All Turbines Operable
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Figure 24: Three in a row turbine setup with a fast west wind. Blue trapezoids symbolize
wake turbulence. The letter of a turbine denotes its type, while the number
is the turbine number referenced in the text.

The second increase in wind speed also changes the scenario’s behavior. The wake
from the first turbine is not strong enough to bring the second turbine to a halt, and
neither are the combined wakes strong enough to stop the third turbine from spinning.

3.3 Special Test Cases

The following test cases are stand-alone tests that cover specific errors that did not fit
into the other sections.

3.3.1 Low Measurement Height Group

This scenario group tests the tool’s ability to adjust to a lower measurement height. It
uses a single Vestas V112-3.45 to achieve this.

▶ Control Wind

This scnario’s windrose provides a comparison basis to check if the AEP is changing
when altering the measurement height. The measurement height of this Scenario is
100m, and the wind is a constant west wind with a speed of 10m s−1.

▶ Low Height Wind

As the prior, this uses a constant 10m s−1 wind speed. The measurement height is set to
10m, which requires log shear to approximate the wind speed at the Vestas V112-3.45 ’s
hub height, which is 100m. With this windrose, the AEP is expected to be higher than
the previous one since the starting wind speed is the same but is now measured closer to
the ground. This means that the wind speed at hub height will be significantly higher.

3.3.2 Super Rough Group

This scenario group tests if all the calculations that are dependent on the surface rough-
ness use the given value correctly. The surface roughness is relevant in two parts of the
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calculations: First, the log shear, which means a low measurement height must be used
again. Second is the wake decay factor. It follows that at least two turbines are required
to test the correct use of the surface roughness. For that purpose, two Vestas V112-3.45
turbines are used, with one being 300m north of the other. Additionally, this scenario
uses an unrealistically high surface roughness of 5m.

▶ Wake Decay

This windrose uses a constant north wind with a speed of 10m s−1. It checks if the
changed surface roughness is correctly affecting the wake deficit decay. The AEP of this
scenario is to be compared to the AEP of the scenario Jensen Wake Intensity Group:
Full Wake since it has the same starting conditions. The AEP is expected to be slightly
higher since, with a higher surface roughness, the wake decay factor is also greater, which
in turn increases the wake radius at the affected turbine. This, in effect, raises the wake
deficit decay, so it follows that the wind speed returns faster to the free flow speed.

▶ Log Shear

This time, a constant west wind with a speed of 10m s−1 is used. It is chosen so as
not to affect any turbine with wake. The measurement height is 10m. The results of
this simulation are to be compared to the results of scenario Low Measurement Height
Group: Low Height Wind since it uses similar conditions, not including the higher
surface roughness. Note that the low-measurement height group only uses one turbine,
while this group uses two Vestas V112-3.45. The AEP of this simulation is expected to
be much higher.

3.3.3 Raised Turbine

This scenario aims to test if a tool can handle turbines that are not on z = 0 but raised off
the ground, e.g., through a hill. It uses a single Vestas V112-3.45 with 50m of elevation.
The windrose consists of a west-bound constant 10m s−1 wind. No difference is expected
compared to scenario Vestas Single Direction Group (Table 1): Medium Constant Wind
since both the wake decay factor as well as the log shear use the distance to the ground.

3.3.4 Terrain Wake Group

The Terrain Wake Group tests if a tool has implemented the 3D properties of a wake.
It does this by using two Vestas V112-3.45 turbines. Turbine 2 is placed at 300m east
of Turbine 1 and at 70m lower. That means that the wake of the Turbine 1 should only
hit the top half of Turbine 2’s rotor area.

▶ No Interference

This windrose is used to generate a control value. Since the wind is a constant north
wind of 10m s−1, the turbines should not interfere with each other. The AEP should be
the same as in scenario Jensen Wake Intensity Group: No Interference
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▶ Basic Wake

This windrose will test the wake interaction between the two turbines. The AEP is
expected to be lower than in the control but not as low as in scenario Jensen Wake
Intensity Group: Full Wake.

3.4 Other Test Cases

In this final section, I will review some scenarios that were created to test interactions,
help create other tests, or further investigate errors.

3.4.1 Close Turbines

This was added to WindProof to further investigate the error presented and fixed in
Section 4.2.4. One Nordex N90/2500 and Enercon E115 3.000 turbine are featured and
placed 125m apart on the x-axis. The Nordex N90/2500 is placed in the West. This
distance is just big enough for the turbines to not touch each other. The used wind blows
with a constant speed of 4.5m s−1 from SWW (240◦), which means the Nordex N90/2500
turbine is the wake-producing turbine.

3.4.2 Nordex Control

This control case’s purpose is to calculate the AEP of one Nordex N90/2500 turbine
using a constant 4.5m s−1 wind speed. The simulation result aids in a calculation in
section 4.2.4.

3.5 Random Scenarios

There is one last way to test tools, which is provided by WindProof. These are the
randomly generated scenarios and pipelines provided by the random factory module. It
creates a scenario with between 2 and 12 turbines, with models picked randomly be-
tween the Vestas V112-3.45, Nordex N90/2500, or Enercon E115 3.000. These turbines
are placed on a 2000m by 2000m square, keeping just enough distance to not destroy
each other. Then, a wind rose is created, which has 360 sectors with normed sector
probabilities, and for each sector, a random constant wind speed between 0 and 30m s−1

is picked.
These random scenarios can be used to calculate the overall accuracy of a tool and try
to cover all errors the test cases may have missed.
To achieve a more insightful conclusion, you can limit the randomness in several places,
such as the number of turbines, or by only using single-direction winds.
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4 Evaluation & Example Application

Tests must be conducted to evaluate WindProof’s effectiveness in validating and com-
paring wind farm simulation tools. In this section, WindProof is applied to wind farm
simulation tools, and then the results are evaluated.

4.1 Considered Tools

To serve that purpose in this thesis, two simulation tools are implemented into Wind-
Proof. The tools are the open-source python package PyWake [13] and WindFarm3D.
WindProof implemented the Tool-subclasses for these simulation tools; they can be
found in the WindProof modules WindFarm3D and PyWake.

4.1.1 PyWake

The first tool integrated into WindProof is PyWake [13], an open-source wind farm sim-
ulation tool from the DTU Wind, Technical University of Denmark. The tool is based
on Python and is still actively improved. PyWake can simulate wind farms using several
different models and calculate its AEP. The calculations are mostly implemented as
matrix multiplications. This leads, with the use of multiple numerical Python libraries,
to fast computation times.

4.1.2 WindFarm3D

WindFarm3D is the second tool implemented into WindProof in this thesis. The tool
is developed by LuFG Theory of Hybrid Systems at RWTH University, with a partial
student contribution. The tool’s backend is programmed in Python. In addition to
simulating wind farms and calculating the AEP, WindFarm3D also automatically fetches
the site’s terrain and building data. It also checks the wind turbines to ensure compliance
with German government regulations.

4.1.3 WindPro

It was planned to use a third, commercially used simulation software, WindPro. Unfortu-
nately, it was not possible to implement WindPro, in its current state, into WindProof.
The problem is that WindPro is designed for commercial use and aims to make its
processes and calculations as user-friendly as possible. To do that, WindPro sacrifices
customizability in its calculation.
Only one type of calculation in WindPro meets the required level of custom inputs.
Unfortunately, that calculation type has been deprecated. When doing a Jensen cal-
culation with WindPro using its Python API, a calculation type must be set; since
the required calculation type is deprecated, the calculation type is ParkTypeUnknown.
However, ParkTypeUnknown harbors multiple deprecated algorithms; it follows that the
required calculation can not be properly defined using the API. This renders WindPro
unusable.
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4.2 Tool Comparision & Troubleshooting

This section will evaluate and compare PyWake and WindFarm3D using WindProof. The
goal is to find all the differences/errors between the two tools.

4.2.1 Base Cases

The evaluation starts with the base cases.

Scenario Name Difference

Vestas Single Direction Group (Table 1)

No Constant Wind 0.000 000 000 000 000 00× 100

Too Low Constant Wind 0.000 000 000 000 000 00× 100

Low Constant Wind 3.703 703 703 703 695 3 × 100

Medium Constant Wind 1.421 085 471 520 200 4 × 10−14

Too High Constant Wind 0.000 000 000 000 000 00× 100

Enercon Single Direction Group (Table 2)

No Constant Wind 0.000 000 000 000 000 00× 100

No Wind 1 Sector 0.000 000 000 000 000 00× 100

Constant 2 Wind 0.000 000 000 000 000 00× 100

Too Low Constant Wind 1.421 085 471 520 200 4 × 10−14

Low Constant Wind 2.842 170 943 040 401 × 10−14

Medium Constant Wind 0.000 000 000 000 000 00× 100

High Constant Wind 0.000 000 000 000 000 00× 100

Too High Constant Wind 0.000 000 000 000 000 00× 100

Multiple Directions Group

12 Sectors Medium Constant Winds 1.421 085 471 520 200 4 × 10−14

8 Sectors Medium Winds 0.000 000 000 000 000 00× 100

8 Sectors Medium Winds Inverted 0.000 000 000 000 000 00× 100

8 Sectors Multiple Constant Winds 0.125 805 944 330 849 68× 100

Table 5: This table shows the scenarios of the base test cases, which use
DistributionTable objects as wind distribution and their respective differ-
ence measure, which is calculated with the AEPs of PyWake and WindFarm3D.
The marked cells show non-negligible errors.

To test the example Tools (PyWake and WindFarm3D), WindProof runs a Validator
of these two tools on all of the base cases, with a constant wind speed. WindProof
then calculates the relative difference as defined in Section 1.1.3 of the AEPs for each
Scenario. Table 5 shows the results.
The value in the red cell is too high and will be investigated. The error source of
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the yellow cell may be the same since the wind used in scenario Vestas Single Direction
Group (Table 1): Constant Low Wind also occurs in scenario Multiple Directions Group:
8 Sectors Multiple Constant Winds, but with a lower probability. Therefore, the yellow
cell is ignored until the error of the red cell is resolved.
The first observation made is that the scenario Enercon Single Direction Group (Table 2):
Constant Low has a perfect score, disregarding the floating point precision. Since the
only difference between the scenarios is that the Enercon Single Direction Group uses a
Enercon E115 3.000 instead of a Vestas V112-3.45, it follows that the error depends on
the turbine data. Comparing the two turbines yields the following differences:

• Cut-in Speed: Since the wind speed of 4.5m s−1 is above the cin of both turbines,
which are 2m s−1 and 3m s−1, the cin speed is irrelevant.

• Rotor Diameter: Because there is only 1 turbine, no wake calculation is needed.
Therefore, the rotor diameter is also irrelevant.

• Ct/Cp Curve: For the same reason as the prior difference, the ct and cp curves
have no influence over this error.

• Power Curve: By the process of elimination, the different power curves must be
responsible. However, the turbine types are only compared to themselves, which
means the actual values of the power curve have no influence over the difference.
This leaves only the fact that the power curve of the Vestas V112-3.45 turbine
has double the frequency of anchor points compared to the power curve of the
Enercon E115 3.000, which only has anchor points at integer wind speeds.

Using the simulation results of the scenario Vestas Single Direction Group (Table 1):
Low Constant Wind and calculating the result by hand, the tool causing the problem is
determined. The correct AEP according to the Jensen model is defined by:

(24[h/d] · 365[d]) ·
n∑

i=1

pi ·

 ∑
v∈supp(X)

p(X = v) ∗ Tp(v)


=8760[h] ·

12∑
i=1

pi ·

 ∑
v∈supp(Xi)

p(Xi = v) ∗ Vp(v)


p9=1
= 8760[h] ·

 ∑
v∈supp(X9)

p(X9 = v) ∗ Vp(v)


P (X9=4.5)=1

= 8760[h] · Vp(4.5)

=8760[h] · 208[kW]

=1822080[kWh]

=1822.08[MWh]

34



Scenario Name Difference

Vestas Single Direction Group (Table 1)

Low Constant Wind 0.000 000 000 000 000 00× 100

Multiple Directions Group

8 Sectors Multiple Constant Winds 0.000 000 000 000 000 00× 100

Table 7: This table shows the scenarios of the base test cases, which use
DistributionTable objects as wind distribution and their respective differ-
ence measure, which is calculated with the AEPs of PyWake and WindFarm3D.
These results are calculated with PyWake’s restricted access to power curve data.
Only values that differ from Table 5 are shown.

It follows that WindFarm3D is faulty in this case. Plugging the wrong AEP in the equation
gives the wrong power curve value that WindFarm3D uses, denoted as V ∗

p (v):

1892.16[MWh] = 8760[h] · V ∗
p (4.5) ⇒ V ∗

p (4.5) = 216[kW] (4.1)

What becomes apparent when investigating V ∗
p (4.5) is that:

V ∗
p (4.5) =

Vp(4) + Vp(5)

2
=

123[kW] + 309[kW]

2
= 216[kW] (4.2)

Tool Name AEP [MWh]

WindFarm3D 1892.16

PyWake 1822.08

Table 6: Simulation results of sce-
nario Vestas Single Direc-
tion Group (Table 1): Low
Constant Wind

It can be deduced that WindFarm3D interpo-
lates at a point where it should not. Presumably,
WindFarm3D only uses the integer anchor points of
the Vestas V112-3.45 power curve. To prove this
assumption, PyWake’s access to the turbine power
curves is restricted; now, only the integer anchor
point is given to PyWake. The simulation of the
base cases now yields the results in Table 7.
The red cell now has a perfect score, which means

the earlier assumption is correct. The yellow cell
now also has a perfect score, meaning that its error
originated from the same source.
No longer does any test case of the base cases show a significant error. This should
lead to the assumption that both tools perform correctly on the 1-turbine cases. The
tools will be simulated on 5000 random single turbine scenarios to validate that. The
diff values are then calculated and plotted in a boxplot, which is Figure 25. Even the
maximum outlier is less than 2.6 · 10−13, meaning all errors are negligible. It follows,
with very high certainty, that the tools operate correctly on any single turbine scenario.
The restriction of PyWake’s power curve access is now permanent.

4.2.2 Wake Decay Factor

The 2-turbine cases’ differences are listed in Table 8.
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Scenario Name Difference

Jensen Wake Intensity Group

No Interference 1.421 085 471 520 200 4 × 10−14

Full Wake 7.259 577 323 929 676 × 100

Multiple Turbine Types Group (Table 3)

No Wind 0.000 000 000 000 000 00× 100

No Interference 0.000 000 000 000 000 00× 100

Basic Wake 8.023 289 129 267 496 × 100

36 Sector Wake 8.150 410 878 579 066 × 100

Wake 19 Degree 7.190 617 965 615 274 × 100

No Wake 0.000 000 000 000 000 00× 100

No Wind Interpolation 1.421 085 471 520 200 4 × 10−14

Full Coverage 8.046 184 311 817 555 × 100

Partial Coverage 0.428 264 702 225 789 05× 100

Table 8: This table shows the scenarios of the deficit test cases, which use 2 turbines
and their respective difference measure, which is calculated with the AEPs of
PyWake and WindFarm3D. The green cells contain the scenarios with negligible
or no errors.
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Figure 25: Boxplot of diff values from 1 tur-
bine random pipeline. Simulated
with WindFarm3D and PyWake

Note that all acceptable values, those in
the green cells, are from scenarios where
the winds are too weak to spin both tur-
bines or where the winds come from the
north, and therefore, the turbines have no
impact on each other. It is concluded that
there is a grave systematic error in cal-
culating the wake strength. Comparing
the scenario JensenWake Intensity Group:
Full Wake with scenario Multiple Turbine
Types Group: Basic Wake, which only
differ in the distances of the turbines in
untested properties, yields the insight that
the error intensifies as the distance lowers.
This suggests that the error source must
be the wake decay factor.
Investigating this manner reveals that PyWake does not approximate its wake decay
factor but rather draws it from user input. With a default value of 0.1 this differs sig-
nificantly from the value of WindFarm3D, which would be k = 0.5

ln 100
0.05

≈ 0.066, in the case

of the Vestas V112-3.45. Approximating the k-parameter in WindProof before starting
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Scenario Name Difference

Jensen Wake Intensity Group

Full Wake 2.842 170 943 040 401 × 10−14

Multiple Turbine Types Group (Table 3)

Basic Wake 2.842 170 943 040 401 × 10−14

36 Sector Wake 1.034 155 051 941 766 6 × 100

Wake 19 Degree 2.256 683 728 774 078 2 × 10−11

Full Coverage 4.263 256 414 560 601 × 10−14

Partial Coverage 2.842 170 943 040 401 × 10−14

Table 9: This table shows the scenarios of the deficit test cases, which use 2 turbines
and their respective difference measure, which is calculated with the AEPs of
PyWake and WindFarm3D. The wake decay factor of PyWake is now approximated
by WindProof. The green cells contain scenarios with negligible or no errors.
Only values that differ from Table 8 are shown.

the simulation in PyWake resolves this issue. But this fix creates a new issue because
PyWake’s wake decay factor is used project-wide, while in Windfarm3D, the k-parameter
is approximated individually for each turbine. To resolve this follow-up error, Wind-
Proof sets each turbine’s hub height to 100m. Another data set from WindProof proves
this assumption, which can be investigated in Table 9.
As seen in the data, this change eliminated nearly every error in this group of cases.

This leaves just the scenario Multiple Turbine Types Group (Table 3): 36 Sector Wake
as the only case with a significant error.

4.2.3 Sector Width

The AEP values of the cases scenario Multiple Turbine Types Group (Table 3): Basic
Wake, scenario Multiple Turbine Types Group (Table 3): 36 Sector Wake, and scenario
Multiple Turbine Types Group (Table 3): 19 Degree Wake are pulled and displayed in
Table 10 to gain further insights into the problem.
Note that for Basic Wake and Wake 19 Degree scenarios, PyWake and WindFarm3D

have identical results. The difference lies in the way 36 Sector Wake is interpreted.
Since WindFarm3D has the same result in Basic Wake and 36 Sector Wake, it can be
concluded that WindFarm3D always assumes that the wind is aligned with the sector
middle line. WindProof interprets this the same way.
On the other hand, PyWake has the same results in 36 Sector Wake and Wake 19 Degree,
which alludes that PyWake spreads the probability over the whole sector, with decreasing
density towards the edges of the sector. While this is a more realistic behavior, it creates
errors in these edge cases and, therefore, is suppressed from now on. To achieve this,
each following scenario will have a sector width of 1◦.
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Tool Name Scenario Name AEP [mWh]

Multiple Turbine Types Group

WindFarm3D Basic Wake 30 920.600 090 478 023× 100

PyWake Basic Wake 30 920.600 090 478 034× 100

WindFarm3D 36 Sector Wake 30 920.600 090 478 023× 100

PyWake 36 Sector Wake 31 243.708 480 139 347× 100

WindFarm3D Wake 19 Degree 31 243.708 480 132 293× 100

PyWake Wake 19 Degree 31 243.708 480 139 343× 100

Table 10: This table shows the AEPs of PyWake and WindFarm3D on three different
scenarios.

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

d
iff

er
en

ce

(a) Boxplot of difference values. No box nor
whiskers can be seen since the median and
both quantiles are zero.
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(b) Graph of difference values dependent on
the distance between turbines.

Figure 26: Data from the simulations results of a 2500 scenario 2 turbine random
pipeline.

4.2.4 2 Turbine Cases

The test cases up to this point show no unexplained difference anymore. A pipeline of
2500 random 2-turbine scenarios is simulated to validate this result. Figure 26a displays
a box plot of the differences. Note that there are significant errors. The differences
are plotted depending on the distance between the two turbines in each scenario to
investigate this error source. Figure 26b displays this plot. It is immediately clear
that all scenarios with exceptionally high differences have a small distance between
turbines. To investigate further, a function is added to WindProof’s Random Factory.
This function creates a pipeline, named ”increasing distance pipeline”, with random
scenarios but with a fixed distance between the turbines; the distance iterates over a
given interval, creating n random scenarios at each distance d. WindProof now simulates
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(b) Graph of mean difference values of all
wind speeds dependent on wind direction
angle.

Figure 27: Data from the simulations of custom pipelines using the Random Factory
module

this custom pipeline and plots the differences dependent on d, as seen in Figure 27a.
It is apparent that the difference is anti-proportional to the distance between the

turbines. Note that over a certain threshold, the difference is insignificant. The re-
lationship between distance and difference is now known. To check the relationship
between wind direction and speed, a function to create the ”close turbines pipeline”
is added to the Random Factory. In this pipeline, the distance between the two tur-
bines is fixed at 125m while it iterates over each combination of angle (0 to 359) and
speed (0 to 30 in 0.1 steps). But this makes the size of the pipeline problematic with
360 · 301 = 108360 different scenarios. Therefore, WindProof limits the angles to the
range [90, 270]◦ since the setup is symmetric on the x-axis and the windspeeds to the
interval [2.9, 5]m s−1. This reduces calculations to the more manageable number of
181 · 31 = 5611 scenarios.
The simulation results, presented in Figure 27b, show that when the angle is near 90◦ or
270◦, the error is near 0; going further away from the endpoints first increases the error,
but then it decreases again when approaching 180◦.
This suggests that the error source is in the turbine coverage calculation since there is
no error when the coverage is either 1 or 0. This is unexpected since when taking a look
at Table 9, the error in the partial coverage test case is negligible. The only difference
is that the coverage test cases use the same turbine twice, while in the random pipeline,
two different turbine types could be involved.
To investigate this assumption, another function is added to the Random Factory mod-
ule. The function creates the ”close turbine combinations” custom pipeline. In addition
to the other custom pipeline, this pipeline also fixes the wind direction at 240◦ and
iterates over all combinations of turbine types and all windspeeds v ∈ [1.9, 5]m s−1. The
results can be seen in Figure 28.
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Figure 28: Line plot matrix of difference over wind speed. Type 1 is the turbine
type of the wake-producing turbine, while type 2 is the turbine type of
the wake-receiving turbine. The turbine types are abbreviated to V for
Vestas V112-3.45, E for Enercon E115 3.000, and N for Nordex N90/2500.

These results prove the earlier assumption that the error only occurs in specific turbine
combinations; more precisely, it occurs only when a Nordex N90/2500 influences another
turbine type. To elaborate on this problem, a special test case is added to WindProof,
scenario Close Turbines. The case will now be validated by hand.

Table 11 shows the test case results. To find the correct value, the wind speed is
reverse-engineered. To do that, another special test case, scenario Nordex Control, is
created; it has the same windrose but features only one Nordex N90/2500 turbine. The
case has no error, but the result is used to calculate the Enercon E115 3.000’s AEP
in the prior case by subtracting the AEP of the Nordex N90/2500 from the result in
Table 11. Then both results are divided 8760 and multiplied by 1000 to calculate the
Enercon E115 3.000’s wattage:

(WF) 282.71 −81.468 = 201.242 201.242/8760 · 1000 = 22.973

(PW) 258.282 −81.468 = 176.814 176.814/8760 · 1000 = 20.185
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Tool Name AEP [mWh]

WindFarm3D 282.71

PyWake 258.282

Table 11: This table shows the sim-
ulation results of scenario
Close Turbines using dif-
ferent tools

Since Nct(3.1) = 1, it follows that the initial loss
is 1.
This turbine setup’s downwind and crosswind dis-
tances are calculated using trigonometry, resulting
in a downwind distance of 108.253m and a cross-
wind distance of 62.5m. With these values and a
wake decay factor approximation, the wake radius
is determined:

rwake(108.253) = 45 + 108.253 · 0.5

ln 100
0.05

= 52.121

Using this value, the wake decay factor and the turbine coverage are calculated:

wdecay(108.253) =

(
45

52.121

)2

= 0.74542

β =
Aint

Aturb

=
3007.61

10513.7
= 0.28607

This results in a velocity deficit of 1 · 0.74542 · 0.28607 = 0.2132422554 at the
Enercon E115 3.000.
When inversing the linear interpolation of the Enercon E115 3.000’s power curve, the
incoming wind speed at the turbine can be calculated. Which is:

(WF) 3 + 45.5 · (v − 2) = 22.973 ⇒ v = 2.438967

(PW) 3 + 45.5 · (v − 2) = 20.185 ⇒ v = 2.37767

When that speed is divided by the final velocity deficit, the free flow wind speed is
retrieved, which is:

(WF) 2.438967/0.2132422554 = 3.1000023041579

(PW) 2.37767/0.2132422554 = 3.0221121422602324

This validation reveals that, in this case, WindFarm3D has the correct result. To in-
vestigate why the circle intersection function of PyWake calculates a wrong result, the
methods that calculate the circle intersection area are extracted from both programs
and are executed with several inputs.
The data in Table 12 suggests that PyWake calculates the wrong area if the radius of

the receiving turbine is greater than the wake radius at a distance. To confirm this, the
wake radii for all cells in Figure 28 are calculated as seen in Table 13.
When comparing these radii with the graphs in 28, it becomes apparent that the as-

sumption for the error’s trigger was right. In this thesis, the minimal distance of turbines
in the random scenarios is lifted to this no-error threshold, which is now calculated to
stop the error from occurring. The threshold should be the distance d where the wake
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Tool Name Wake Radius Receiving Tur-
bine Radius

Area [m2]

WindFarm3D 52.121 57.85 3007.6114

PyWake 52.121 57.85 3286.4581

WindFarm3D 52.121 45 1779.9863

PyWake 52.121 45 1779.9863

WindFarm3D 52.121 53 2519.5157

PyWake 52.121 53 2563.3179

Table 12: This table shows the circle intersection area calculated by WindFarm3D and
PyWake with different parameters. Distance between circles is fixed at 62.5m.

from

to
Vestas Enercon Nordex

Vestas (63.121; 56) (63.121; 57.85) (63.121; 45)

Enercon (64.971; 56) (64.971; 57.85) (64.971; 45)

Nordex (52.121; 56) (52.121; 57.85) (52.121; 45)

Table 13: This table shows the radii of each case in Figure 28. The radii are presented
in the format (r1, r2), where r1 is the wake radius, and r2 is the rotor radius
of the receiving turbine. In the red cells, r1 < r2 holds.
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(a) Boxplot of difference values.
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(b) Graph of difference values dependent on
the distance between turbines.

Figure 29: Data from the simulations results of a 2500 scenario 2 turbine random
pipeline, with updated parameters.

radius of a Nordex N90/2500 equals the rotor radius of an Enercon E115 3.000, and it
is calculated by the following:

Nr +
0.5

ln 100
0.05

· d = Er

⇒ 0.5

ln 100
0.05

· d = Er −Nr

⇒d =
Er −Nr

0.5
ln 100

0.05

⇒d ≈ 195.343

To account for calculation inaccuracies and the downwind distance being a bit higher
than the turbine distance with some angles and regarding Figure 27a, the threshold is
set to 200m. Additionally, the rotor radius of the Nordex N90/2500is raised to 50m.
Another 2500 random scenario pipeline is run to confirm the effectiveness. Figure 29
shows the results. Considering these and that the maximum difference with ≈ 7.5 ·
10−11 < 10−10 is negligible, the 2 turbine cases are considered fixed.

4.2.5 Speed Adaption Factor

With all the errors of the 2-turbine cases identified, only the 3-turbine scenarios of the
deficit cases remain. Table 14 depicts their difference values:
The only test case with a relevant error is scenario Three in a Row Group: All Tur-

bines Operable. Since the rest of the scenarios of the Three in a Row Group have no
relevant differences, it can be assumed that the error source is the resolution of the
wake dependency found in the faulty scenario. Because scenario Jensen Wake Intensity
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Scenario Name Difference

Basic Wake Intersection 2.842 170 943 040 401 × 10−14

Complex Wake Intersection 2.842 170 943 040 401 × 10−14

Three in a Row Group (Table 4)

No Interference 0.000 000 000 000 000 00× 100

Turbine 2 Inoperable 4.263 256 414 560 601 × 10−14

Turbine 3 Inoperable 1.421 085 471 520 200 4 × 10−14

All Turbines Operable 7.180 730 119 283 453 × 100

Table 14: This table shows the scenarios of the deficit test cases, which use 3 turbines
and their respective difference measure, which is calculated with the AEPs of
PyWake and WindFarm3D. The green cells contain scenarios with negligible or
no errors.

Tool Name AEP [mWh]

WindFarm3D 36 270.363 04

PyWake 39 076.328 74

Table 15: This table shows the simulation results of scenario Three in a Row Group: All
Turbines Operable using different tools. Values rounded to 10−5.

Group: Full Wake shows no relevant error, the problem must lie with the third turbine.
Table 15 the concrete AEPs of scenario Three in a Row Group: All Turbines Operable
so that the relevant values of the third turbine can be extracted by hand.
Subtracting the AEP of scenario Jensen Wake Intensity Group: Full Wake gives the

AEP of just the third turbine. Dividing that by 8.760 results in the third turbine’s power
output in [kW]:

(WF) 36270.36304 −32748.42776 = 3521.93528 3521.93528/8.760 = 402.04741

(PW) 39076.32874 −32748.42776 = 6327.90098 6327.90098/8.760 = 722.36313

By reversing the interpolation of the power curve, the speed at the turbine is calcu-
lated:

(WF) 309 + (567− 309) · (v − 5) = 402.04741 ⇒ v = 5.36065

(PW) 567 + (927− 567) · (v − 6) = 722.36313 ⇒ v = 6.43156
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The resulting velocity deficits for the third turbine are:

(WF) 10 · (1− δ) = 5.36065 ⇒ δ = 0.463935

(PW) 10 · (1− δ) = 6.43156 ⇒ δ = 0.356844

By using the formulas of section 1.3.2, the wake deficit from turbine 1 onto turbine 3
with k ≈ 0.0657 is calculated:(

1−
√
1− Vct(10)

)(
56

56 + 600 · k

)2

= 0.173072

This velocity deficit is now used in combination with the squared sum to extract the
wake influence from turbine 2 onto turbine 3:

(WF)
√
0.1730722 + δ2 = 0.463935 ⇒ δ = 0.430444

(PW)
√
0.1730722 + δ2 = 0.356844 ⇒ δ = 0.312064

To confirm which result is correct, the wake influence from turbine 2 onto turbine 3
is calculated using k ≈ 0.0657 and the wind speed at turbine 2, ≈ 7.26284m s−1:(

1−
√
1− Vct(7.26284)

)(
56

56 + 300 · k

)2

· 10

7.26284
≈ 0.430444

It follows that WindFarm3D delivers the correct result, investigating the factor multi-
plied with the velocity deficit by WindFarm3D yields:

0.430444

0.312064
≈ 1.376872 ≈ 10

7.26284

This reveals that PyWake is missing the speed adaption factor. To confirm this as-
sumption the factor is disabled from WindFarm3D’s calculation. To validate that this was
the error source, WindProof recalculates the results. Table 16 displays the difference
values.
Now that all 3-turbine test cases are resolved, WindProof runs a pipeline containing

2500 random 3-turbine scenarios. As seen in Figure 30a, the results show no significant
errors.

4.2.6 Special Test Cases

Table 17 displays the Special Test Cases simulation results. The only test case with a
significant error is scenario Terrain Wake Group: Basic Wake. The concrete AEP values
are displayed in Table 18 to investigate the error further.
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Scenario Name Difference

Three in a Row Group (Table 4)

All Turbines Operable 1.421 085 471 520 200 4×10−14

Table 16: This table shows the scenarios of the deficit test cases, which use 3 turbines
and their respective difference measure, which is calculated with the AEPs of
PyWake and WindFarm3D. For this calculation, WindFarm3D’s velocity deficits
are also calculated respective to the free-flow windspeed. The green cells
contain scenarios with negligible or no errors. Only values that differ from
Table 14 are shown.
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(a) Boxplot of difference values.The number
of turbines is fixed at three.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
iff

er
en

ce

×10−11

(b) Box plot of difference values. The number
of Turbines varies between 2 and 10.

Figure 30: Data from 2500 random scenarios simulated by WindFarm3D and PyWake
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Scenario Name Difference

Low Measurement Height Group

Control Wind 1.421 085 471 520 200 4× 10−14

Low Height Wind 0.000 000 000 000 000 00×100

Super Rough Group

Wake Decay 1.421 085 471 520 200 4× 10−14

Log Shear 0.000 000 000 000 000 00×100

Raised Turbine 1.421 085 471 520 200 4× 10−14

Terrain Wake Group

No Interference 1.421 085 471 520 200 4× 10−14

Basic Wake 16.964 602 467 354 44 × 100

Table 17: This table shows the scenarios of the special test cases and their respec-
tive difference measure, which is calculated with the AEPs of PyWake and
WindFarm3D. The green cells contain scenarios with negligible or no errors.

Tool Name AEP [mWh]

WindFarm3D 39 439.117 207

PyWake 32 748.427 756

Table 18: This table shows the sim-
ulation results of scenario
Terrain Wake Group: Basic
Wake using different tools

Note that PyWake calculates the same AEP
for scenario Terrain Wake Group: Basic Wake
and scenario Jensen Wake Intensity Group:
Full Wake, which have the same setup but
without the height difference. It follows that
PyWake ignores the elevation levels of turbines.
This result is also in accordance with the other
special test cases regarding elevation. In the
Raised Turbine test case, no difference to sce-
nario Vestas Single Direction Group (Table 1):
Medium Constant Wind is expected because the log shear is based on the turbine height
relative to the ground. Analogously, no difference is expected between scenario Terrain
Wake Group: No Interference and scenario Jensen Wake Intensity Group: No Interfer-
ence because the wake decay factor is also based on the height relative to the ground.
PyWake meets both of these expectations.
In conclusion, PyWake can not calculate 3D Wake properties. This means that level
PyWake will calculate faulty results in most cases with different elevations. To be able to
check for other errors in the test cases, WindFarm3D will also ignore all elevation changes
from now on.

4.2.7 Flat Constant Speed Wind Parks

To close on the constant-speed wind parks, WindProof runs a pipeline with 2500 random
scenarios. This time, the number of turbines varies between 2 and 10. As seen in Figure
30b, no error in this final validation reaches a significant level.
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Conclusion and Outlook

This thesis presented WindProof, a validation framework for wind farm simulations
with its general and extendable design. WindProof can compare different wind farm
simulation tools and check them for errors. Section 3 unveiled the vast library of test
cases WindProof provides to achieve this. These test cases cover the different aspects of
wind farm simulation and AEP calculation, allowing for systematic troubleshooting on
these simulation software. For any aspects the test cases might have missed, WindProof
also provides a module to generate random test cases.
Finally, section 4 showed the application of WindProof onto the simulation tools

PyWake and WindFarm3D. In this evaluation, WindProof discovered six differences be-
tween the tools, which are the following:

• Power Curve Interpolation: Windproof discovered a faulty interpretation of
the power curve data in WindFarm3D, which led to an interpolation error.

• Wake Decay Factor: While PyWake took the site-wise Wake Decay Factor as a
user input, WindFarm3D approximates it for each turbine.

• Sector Width: When the sector width is larger than 1◦, WindFarm3D assumes
the wind is coming from the sector middle line, while PyWake interpolates the
probabilities for a smooth transition to the neighboring sectors.

• Cirle Intersection: A mistake was found in PyWake, where the circle intersection
was not correctly determined if the wake radius was smaller than the radius of the
wake-affected turbine.

• Wind Speed Adaption Factor: PyWake calculates the velocity deficit in rela-
tion to the wind speed at the wake-inducing turbine. In contrast, WindFarm3D
determines the velocity deficit relative to the free flow wind speed.

• Flat Terrain: PyWake cannot process different elevations and assumes a flat ter-
rain.

These differences caused the simulation results to differ significantly. Even one of these
differences alone could produce relative errors of up to 16 %.

▶ Limitations

Unfortunately, WindProof has its limitations. The framework is constraint by the fol-
lowing:

• Since WindProof’s analysis is empirical, the quality of this analysis depends on
the quality of the test cases used. WindProof will not discover an error source if no
test cases cover it. This problem was encountered several times while evaluating
PyWake and WindFarm3D, where additional test cases were added while assessing.
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• WindProof provides no standard values to which the simulation results can be
compared. In this thesis, these values were calculated by hand when needed. It
follows that to use WindProof effectively, the user is required to be proficient with
the calculation model.

• The used tools must have an API for Python, or they can not be integrated into
WindProof.

• WindProof has no automated analysis, which means that to draw the correct
conclusions from the simulation results, the user must be familiar with the test
cases and, therefore, with WindProof’s data structures.

▶ Outlook & Future Work

To apply the results of this thesis, PyWake and WindFarm3D should fix these errors.
WindProof could then be used to verify the effectiveness of the improvements.
Additionally, WindProof could be extended in several areas. Firstly, WindProof’s test
case collection can be extended to mitigate the effects of its limitations. Second, an auto-
matic analysis module could be added to WindProof to help draw quick conclusions. It
would also decrease the difficulty of using WindProof. Finally, a list of referential AEP
values for each scenario could be added to WindProof. It would provide a comparison
basis for the simulation results and decrease the difficulty of using WindProof.
To conclude this thesis, hopefully, WindProof could support the improvement and trou-
bleshooting of wind farm simulation tools. It would also help to improve the planning
and optimization of wind farms, making renewable energy more widely available and
cheaper.
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