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Turbine Data
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Velocity Deficit

2.2.2. PARK Wake Model

We use a simple representation for the wake, based on the PARK model originally
created by Jensen [25] in 1983 and further developed by Katic et. al [26] in 1986.
As mentioned in Section 1.2, this model is well suited for wind farm simulations,
mainly due to its balanced delivery of simplicity and accuracy [5]. It only considers
velocity changes downstream from a turbine as a function of the distance x, as shown
in Figure 6. Therefore, we do not perform an exact calculation of the velocity flow
field with different directions. Furthermore, the PARK model was designed for the far
wake case, i.e. turbines must be spaced at least 3 rotor diameters apart.

x

D Dw = D + 2kx

u0

uwur

Figure 6: A top-view illustration of the wake effect as described in PARK. u0 is the free
stream wind velocity (also the incident velocity). ur is the decreased velocity
directly downstream from the turbine where airflow is highly turbulent. uw
is the wake-affected velocity where the airflow becomes steadier relative to
that of ur. Source: Heiming [22]

The wind speed data that was used had been measured at 100 meters above sea level,
while the turbine features used in testing the model include hub heights around 80 m.
While it would be ideal that wind speeds are measured at different heights directly, we
can estimate these changes in speed using the Logarithmic Law [24]. This law can be
used to approximate the wind speed at any height ≤ 100 m, given a reference speed
and height. To estimate the speed at turbine height z knowing the wind speed at zm:

u(z) = u(zm) ln((z − d)/z0)
ln((zm − d)/z0) , (4)

where u(zm) is the reference wind speed, d is the zero plane displacement, and z0 is the
surface roughness. d accounts for large obstacles such as trees or buildings, therefore
it is 0 for offshore wind farms.
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Wake Intersection
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Wake Intersection
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Measure of Accuracy

diff(v1, v2) =

0, v1 = v2 = 0,

100 · |v1−v2|
(v1+v2)

, otherwise.

Adapted from [4]
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▶ Ranges restrict setting to sensible values

▶ Allow iteration over possible values

Arne Leon, RWTH WindProof 9 / 25



Pipeline & SettingsChanges

Pipeline

Arne Leon, RWTH WindProof 10 / 25



Pipeline & SettingsChanges

Pipeline

Scenario SettingsChanges

Arne Leon, RWTH WindProof 10 / 25



Pipeline & SettingsChanges

Pipeline

Scenario SettingsChanges

Arne Leon, RWTH WindProof 10 / 25



Pipeline & SettingsChanges

Pipeline

Scenario SettingsChanges

Settings

generate

settings

Arne Leon, RWTH WindProof 10 / 25



EvalData

▶ Class for saving and delivering data

Arne Leon, RWTH WindProof 11 / 25



EvalData

▶ Class for saving and delivering data

▶ Wrapper-class around pandas DataFrame

Arne Leon, RWTH WindProof 11 / 25



EvalData

▶ Class for saving and delivering data

▶ Wrapper-class around pandas DataFrame

▶ Familiarity

Arne Leon, RWTH WindProof 11 / 25



EvalData

▶ Class for saving and delivering data

▶ Wrapper-class around pandas DataFrame

▶ Familiarity

▶ User Interface

Arne Leon, RWTH WindProof 11 / 25



EvalData

▶ Class for saving and delivering data

▶ Wrapper-class around pandas DataFrame

▶ Familiarity

▶ User Interface

▶ Space Effciency

Arne Leon, RWTH WindProof 11 / 25



EvalData

▶ Class for saving and delivering data

▶ Wrapper-class around pandas DataFrame

▶ Familiarity

▶ User Interface

▶ Space Effciency

▶ Ensures proper format and shortcuts interaction

Arne Leon, RWTH WindProof 11 / 25



Validator

Validator

Arne Leon, RWTH WindProof 12 / 25



Validator

Validator

Pipeline

Arne Leon, RWTH WindProof 12 / 25



Validator

Validator

Pipeline

Scenario SettingsChanges

extract

Arne Leon, RWTH WindProof 12 / 25



Validator

Validator

Pipeline

Scenario SettingsChanges

extract

Settings

generate

settings

Arne Leon, RWTH WindProof 12 / 25



Validator

Validator

Pipeline

Scenario SettingsChanges

extract

Settings

generate

settings

Tool

Arne Leon, RWTH WindProof 12 / 25



Validator

Validator

Pipeline

Scenario SettingsChanges

extract

Settings

generate

settings

Tool

EvalData

compute

Arne Leon, RWTH WindProof 12 / 25



Random Factory

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅Return T ′ true

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅Return T ′ true

Choose (t, r) ∈ T

false

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅Return T ′ true

Choose (t, r) ∈ T

false

Create random point p ∈ R2

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅Return T ′ true

Choose (t, r) ∈ T

false

Create random point p ∈ R2

∀(t′, r′, p′) ∈ T ′ : dist(p, p′) > r + r′

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅Return T ′ true

Choose (t, r) ∈ T

false

Create random point p ∈ R2

∀(t′, r′, p′) ∈ T ′ : dist(p, p′) > r + r′
false

Arne Leon, RWTH WindProof 13 / 25



Random Factory

unplaced turbines T ⊂ (N× R)∗
placed turbines T ′ = ∅ ⊂ (N× R× R2)∗

T = ∅Return T ′ true

Choose (t, r) ∈ T

false

Create random point p ∈ R2

∀(t′, r′, p′) ∈ T ′ : dist(p, p′) > r + r′
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T = T/(t, r)
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Eval

Scenario Name Difference

Vestas Single Direction Group

Low Constant Wind 3.703 703 703 703 695 3 × 100

Enercon Single Direction Group

Low Constant Wind 2.842 170 943 040 401 × 10−14

Multiple Directions Group

8 Sectors Multiple Constant Winds 0.125 805 944 330 849 68× 100
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Power Curve Interpretation

Possible Causes:
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

Vestas

4.5ms−1
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

(24[h/d] · 365[d]) ·
n∑

i=1

pi ·

 ∑
v∈supp(X)

p(X = v) ∗ Tp(v)


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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

8760[h] ·
12∑
i=1

pi ·

 ∑
v∈supp(Xi)

p(Xi = v) ∗ Vp(v)


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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

8760[h] ·

 ∑
v∈supp(X9)

p(X9 = v) ∗ Vp(v)


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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

8760[h] · Vp(4.5)
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

8760[h] · 208[kW]
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

1822080[kWh]
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

1822.08[MWh]
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

Tool Name AEP [MWh]

WindFarm3D 1892.16

PyWake 1822.08

1822.08[MWh]
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

Tool Name AEP [MWh]

WindFarm3D 1892.16

PyWake 1822.08

1892.16[MWh] = 8760[h] · V ∗
p (4.5)
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

Tool Name AEP [MWh]

WindFarm3D 1892.16

PyWake 1822.08

1892.16[MWh] = 8760[h] · V ∗
p (4.5) ⇒ V ∗

p (4.5) = 216[kW]
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

Tool Name AEP [MWh]

WindFarm3D 1892.16

PyWake 1822.08

V ∗
p (4.5) = 216[kW] =

123[kW] + 309[kW]

2
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Power Curve Interpretation
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter
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Power Curve Interpretation

Possible Causes:

▶ Cut-in Speed

▶ Rotor Diameter

▶ Ct/Cp Curve

▶ Power Curve

W
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Wind Speed [m s−1]

4.5m s−1
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2 Turbine Test Cases

Scenario Name Difference

Jensen Intensity Group

No Interference 1.421 085 471 520 200 4 × 10−14

Full Wake 7.259 577 323 929 676 × 100

Multiple Turbine Types Group

No Wind 0.000 000 000 000 000 00× 100

No Interference 0.000 000 000 000 000 00× 100

Basic Wake 8.023 289 129 267 496 × 100

36 Sector Wake 8.150 410 878 579 066 × 100

Wake 19 Degree 7.190 617 965 615 274 × 100

No Wake 0.000 000 000 000 000 00× 100

No Wake Interpolation 1.421 085 471 520 200 4 × 10−14

Full Coverage 8.046 184 311 817 555 × 100

Partial Coverage 0.428 264 702 225 789 05× 100
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Closing on Wake Decay Factor

Scenario Name Difference

Jensen Wake Intensity group

Full Wake 2.842 170 943 040 401 × 10−14

Multiple Turbine Types Group

Basic Wake 2.842 170 943 040 401 × 10−14

36 Sector Wake 1.034 155 051 941 766 6 × 100

Wake 19 Degree 2.256 683 728 774 078 2 × 10−11

Full Coverage 4.263 256 414 560 601 × 10−14

Partial Coverage 2.842 170 943 040 401 × 10−14
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Increasing Distance Pipeline

T1 T2

x
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Increasing Distance Pipeline Results
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Increasing Angle Pipeline

T1 T2

125m

φ
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Turbine Combinations Pipeline
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Circle Intersection Calculations

from

to
Vestas Enercon Nordex

Vestas (63.121; 56) (63.121; 57.85) (63.121; 45)

Enercon (64.971; 56) (64.971; 57.85) (64.971; 45)

Nordex (52.121; 56) (52.121; 57.85) (52.121; 45)
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Circle Intersection Calculations

Tool Name Wake Radius Receiving Turbine
Radius

Area [m2]

WindFarm3D 52.121 57.85 3007.6114

PyWake 52.121 57.85 3286.4581

WindFarm3D 52.121 45 1779.9863

PyWake 52.121 45 1779.9863

WindFarm3D 52.121 53 2519.5157

PyWake 52.121 53 2563.3179
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3 Turbine Cases
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3 Turbine Cases

Scenario Name Difference

Basic Wake Intersection 2.842 170 943 040 401 × 10−14

Complex Wake Intersection 2.842 170 943 040 401 × 10−14

Three in a Row Group

No Interference 0.000 000 000 000 000 00× 100

Turbine 2 Inoperable 4.263 256 414 560 601 × 10−14

Turbine 3 Inoperable 1.421 085 471 520 200 4 × 10−14

All Turbines Operable 7.180 730 119 283 453 × 100
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All Turbines Operable

T1 T2 T3
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All Turbines Operable

T1 T2 T3

(WF) 36270.36304[MWh]

(PW) 39076.32874[MWh]
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All Turbines Operable

T1 T2 T3

(WF) 36270.36304[MWh] −32748.42776[MWh]

(PW) 39076.32874[MWh] −32748.42776[MWh]

Arne Leon, RWTH WindProof 25 / 25



All Turbines Operable

T1 T2 T3

(WF) 36270.36304[MWh] −32748.42776[MWh] = 3521.93528[MWh]

(PW) 39076.32874[MWh] −32748.42776[MWh] = 6327.90098[MWh]
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All Turbines Operable

T1 T2 T3

(WF) 3521.93528[MWh]

(PW) 6327.90098[MWh]
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All Turbines Operable

T1 T2 T3

(WF) 3521.93528[MWh]/8760[h]

(PW) 6327.90098[MWh]/8760[h]
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All Turbines Operable

T1 T2 T3

(WF) 3521.93528[MWh]/8760[h] · 1000
(PW) 6327.90098[MWh]/8760[h] · 1000
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All Turbines Operable

T1 T2 T3

(WF) 3521.93528[MWh]/8760[h] · 1000 = 402.04741[kW]

(PW) 6327.90098[MWh]/8760[h] · 1000 = 722.36313[kW]
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All Turbines Operable

T1 T2 T3

(WF) 402.04741[kW]

(PW) 722.36313[kW]
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All Turbines Operable

T1 T2 T3

(WF) 402.04741[kW] = 309 + (567− 309) · (v − 5)

(PW) 722.36313[kW] = 567 + (927− 567) · (v − 6)
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All Turbines Operable

T1 T2 T3

(WF) 402.04741[kW] = 309 + (567− 309) · (v − 5) ⇒ v = 5.36065ms−1

(PW) 722.36313[kW] = 567 + (927− 567) · (v − 6) ⇒ v = 6.43156ms−1
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All Turbines Operable

T1 T2 T3

(WF) 5.36065ms−1

(PW) 6.43156ms−1
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All Turbines Operable

T1 T2 T3

(WF) 5.36065ms−1 = 10ms−1 · (1− δ)

(PW) 6.43156ms−1 = 10ms−1 · (1− δ)
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All Turbines Operable

T1 T2 T3

(WF) 5.36065ms−1 = 10ms−1 · (1− δ) ⇒ δ = 0.463935

(PW) 6.43156ms−1 = 10ms−1 · (1− δ) ⇒ δ = 0.356844
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All Turbines Operable

T1 T2 T3

(WF) 0.463935

(PW) 0.356844
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All Turbines Operable

T1 T2 T3

(WF) 0.463935 =
√

0.1730722 + δ2

(PW) 0.356844 =
√

0.1730722 + δ2
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All Turbines Operable

T1 T2 T3

(WF) 0.463935 =
√
0.1730722 + δ2 ⇒ δ = 0.430444

(PW) 0.356844 =
√

0.1730722 + δ2 ⇒ δ = 0.312064
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All Turbines Operable

T1 T2 T3

0.430444

0.312064
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All Turbines Operable

T1 T2 T3

0.430444

0.312064
≈ 1.376872
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All Turbines Operable

T1 T2 T3

0.430444

0.312064
≈ 1.376872 ≈ 10

7.26284
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