WindProof: A Validation Framework for Wind Farm Simulations

Arne Leon

RWTH Aachen University

November 8, 2024

Is this good?

Is this good? Maybe.

Motivation

Preliminaries

Windroses

Motivation

- Windroses
- Turbine Data

Motivation

- Windroses
- Turbine Data
- Jensen Wake Model

Motivation

- Windroses
- Turbine Data
- Jensen Wake Model
- Wind Proof's Design

Motivation

- Windroses
- Turbine Data
- Jensen Wake Model
- Wind Proof's Design
- Evaluation & Example Application

Motivation

- Windroses
- Turbine Data
- Jensen Wake Model
- Wind Proof's Design
- Evaluation & Example Application
- Conclusion

Windroses

Windroses

Turbine Data

Turbine Data

$$1 - \frac{u_w}{v_r} = \left(1 - \sqrt{1 - T_{ct}(v_r)}\right) \cdot \left(\frac{r}{r + x \cdot k}\right)^2$$

$$1 - \frac{u_w}{v_r} = \left(1 - \sqrt{1 - T_{ct}(v_r)}\right) \cdot \left(\frac{r}{r + x \cdot k}\right)^2 \cdot \frac{A_{int}}{A_{turb}}$$

Wake Intersection

Wake Intersection

Wake Intersection

$$\delta_{total} = \sqrt{\delta_1^2 + \delta_2^2}$$

	T 1		Т2		Т3	

$$1 - \frac{u_w}{v_r} = \left(1 - \sqrt{1 - T_{ct}(v_r)}\right) \cdot \left(\frac{r}{r + x \cdot k}\right)^2 \cdot \frac{A_{int}}{A_{turb}}$$

$$1 - \frac{u_w}{u_0} = \left(1 - \sqrt{1 - T_{ct}(v_r)}\right) \cdot \left(\frac{r}{r + x \cdot k}\right)^2 \cdot \frac{A_{int}}{A_{turb}}$$

$$1 - \frac{u_w}{u_0} = \left(1 - \sqrt{1 - T_{ct}(v_r)}\right) \cdot \left(\frac{r}{r + x \cdot k}\right)^2 \cdot \frac{A_{int}}{A_{turb}} \cdot \frac{u_0}{v_r}$$

Motivation

Preliminaries

Wind Proof's Design

- Evaluation & Example Application
- Conclusion
$\mathsf{WindProof}$

 PyWake

► 50+ Scenario Library

► 50+ Scenario Library

Random Scenarios

► 50+ Scenario Library

- Random Scenarios
- Generic; many
 Abstract classes

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many Abstract classes
- Extendable with:

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many Abstract classes
- Extendable with:

more Tools

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many Abstract classes
- Extendable with:
 - more Tools
 - more Scenarios

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many
 Abstract classes
- Extendable with:
 - more Tools
 - more Scenarios
 - more Parameters

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many
 Abstract classes
- Extendable with:
 - more Tools
 - more Scenarios
 - more Parameters
 - more Calculations

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many
 Abstract classes
- Extendable with:
 - more Tools
 - more Scenarios
 - more Parameters
 - more Calculations
 - more Analytics

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many
 Abstract classes
- Extendable with:
 - more Tools
 - more Scenarios
 - more Parameters
 - more Calculations
 - more Analytics
- Interation over Hyperparameters

- ► 50+ Scenario Library
- Random Scenarios
- Generic; many
 Abstract classes
- Extendable with:
 - more Tools
 - more Scenarios
 - more Parameters
 - more Calculations
 - more Analytics
- Interation over Hyperparameters
- Uses Pandas

Tool

Settings

Scenario

Settings

Scenario

Settings

Scenario

Binning Size

Settings

Scenario

- General Information
 - Binning Size
 - Wake Intersection Model

Settings

Scenario

- Binning Size
- Wake Intersection Model

Outline

Motivation

- Preliminaries
- Wind Proof's Design

Evaluation & Example Application

Conclusion

Measure of Accuracy

diff
$$(v_1, v_2) = \begin{cases} 0, & v_1 = v_2 = 0, \\ 100 \cdot \frac{|v_1 - v_2|}{(v_1 + v_2)}, & otherwise. \end{cases}$$

Adapted from [4]

How to WindProof

Scenario A1 Scenario B0 Scenario C2 Scenario A0 Random Scenario Scenario B3 . . .

How to WindProof

Testing	Scenario A1
	Scenario B0
	Scenario C2
	Scenario A0
	Random Scenario
	Scenario B3

Error

Arne Leon, RWTH

Wake Decay Factor k Approximated through $k \approx \frac{0.5}{\ln \frac{z}{z_0}}$

Arne Leon, RWTH

360 Sectors Condensed:

WindProof

WindProof

360 Sectors Condensed:

360 Sectors Condensed:

No Error

360 Sectors Distributed:

360 Sectors Condensed:

► No Error

36 Sectors:

Significant Error

360 Sectors Distributed:

360 Sectors Condensed:

No Error

36 Sectors:

- Significant Error
- ► AEP equal to:

360 Sectors Distributed:

360 Sectors Condensed:

No Error

36 Sectors:

- Significant Error
- ► AEP equal to:
- $\ \Leftarrow \ {\tt for WindFarm3D}$

360 Sectors Distributed:

360 Sectors Condensed:

No Error

36 Sectors:

- Significant Error
- ► AEP equal to:
- \leftarrow for WindFarm3D

for PyWake \Rightarrow

360 Sectors Distributed:

Random 2 Turbine Scenarios

Random 2 Turbine Scenarios

Difference 4: Circle Intersection

Difference 5: Speed Adaption Factor

(WF) $\delta_{\rightarrow 3} = 0.463935$

(PW) $\delta_{\rightarrow 3} = 0.356844$

Arne Leon, RWTH

(WF)
$$\delta_{\rightarrow 3} = 0.463935 = \sqrt{0.173072^2 + \delta_{2\rightarrow 3}^2}$$

(PW) $\delta_{\rightarrow 3} = 0.356844 = \sqrt{0.173072^2 + \delta_{2\rightarrow 3}^2}$

Arne Leon, RWTH

(WF)
$$\delta_{\rightarrow 3} = 0.463935 = \sqrt{0.173072^2 + \delta_{2\rightarrow 3}^2} \Rightarrow \delta_{2\rightarrow 3} = 0.430444$$

(PW) $\delta_{\rightarrow 3} = 0.356844 = \sqrt{0.173072^2 + \delta_{2\rightarrow 3}^2} \Rightarrow \delta_{2\rightarrow 3} = 0.312064$

Arne Leon, RWTH

$\frac{0.430444}{0.312064}$

 $\frac{0.430444}{0.312064}\approx 1.376872$

$$\frac{0.430444}{0.312064} \approx 1.376872 \approx \frac{10}{7.26284}$$

Difference 6: Elevation

Difference 6: Elevation

WindProof; a Validation Framework

- WindProof; a Validation Framework
 - Easily extendable

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake
 - Power Curve Interpolation

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake
 - Power Curve Interpolation
 - Wake Decay Factor

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake
 - Power Curve Interpolation
 - Wake Decay Factor
 - Sector Width

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake
 - Power Curve Interpolation
 - Wake Decay Factor
 - Sector Width
 - Circle Intersection Area

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake
 - Power Curve Interpolation
 - Wake Decay Factor
 - Sector Width
 - Circle Intersection Area
 - Speed Adaption Factor

- WindProof; a Validation Framework
 - Easily extendable
 - ► 50+ Scenario Library
 - Random Scenarios
- Using WindProof on WindFarm3D and PyWake
 - Power Curve Interpolation
 - ► Wake Decay Factor
 - Sector Width
 - Circle Intersection Area
 - Speed Adaption Factor
 - Elevation

WindProof's Limitations

WindProof's Limitations

Requires knowledge of Wind Model

WindProof's Limitations

- Requires knowledge of Wind Model
- Requires programming

WindProof's Limitations

- Requires knowledge of Wind Model
- Requires programming
- Only empirical

- WindProof's Limitations
 - Requires knowledge of Wind Model
 - Requires programming
 - Only empirical
 - Scenario quality

- WindProof's Limitations
 - Requires knowledge of Wind Model
 - Requires programming
 - Only empirical
 - Scenario quality
- Future Work

- WindProof's Limitations
 - Requires knowledge of Wind Model
 - Requires programming
 - Only empirical
 - Scenario quality
- Future Work
 - Fix errors

- WindProof's Limitations
 - Requires knowledge of Wind Model
 - Requires programming
 - Only empirical
 - Scenario quality
- Future Work
 - Fix errors
 - Extend WindProof

References

- Jensen, N. O. A Note on Wind Generator Interaction. Risø-M 2411. Roskilde, Denmark, 1983.
- Katic, I., Højstrup, J., and Jensen, N. O. "A simple model for cluster efficiency". In: European wind energy association conference and exhibition. A. Raguzzi. 1987, pp. 407–410.
- Maghnie, M. "Simulation and Layout Optimization of Offshore Wind Farms". MA thesis. LuFG Theory of Hybrid Systems at RWTH Aachen University, 2019.
- Miller, H. R. Optimization: Foundations and Applications. 2011.

Back-Up Slides

Random Single Trubine Scenarios

Random Single Trubine Scenarios

Random 2 Turbine Scenarios

Random 3 Turbine Scenarios

Random Flat Wind Parks

Random Flat Wind Parks

Energy Production in Germany

Energy Production in Germany

Model Types

Log Shear

Each setting has a value and a Range

Each setting has a value and a Range

Example settings and Ranges

Each setting has a value and a Range

Example settings and Ranges

Each setting has a value and a Range

Example settings and Ranges

• Wind Bin Size: $1 \in [0.1, 1]$

Each setting has a value and a Range

Example settings and Ranges

• Wind Bin Size: $1 \in [0.1, 1]$

▶ Shear Method: Log Shear ∈ [Log Shear; Power Shear; No Shear]

Each setting has a value and a Range

Example settings and Ranges

• Wind Bin Size: $1 \in [0.1, 1]$

▶ Shear Method: Log Shear ∈ [Log Shear; Power Shear; No Shear]

Ranges restrict setting to sensible values

Each setting has a value and a Range

Example settings and Ranges

• Wind Bin Size: $1 \in [0.1, 1]$

▶ Shear Method: Log Shear ∈ [Log Shear; Power Shear; No Shear]

Ranges restrict setting to sensible values

Allow iteration over possible values

Pipeline

Class for saving and delivering data

Wrapper-class around pandas DataFrame

Class for saving and delivering data

Wrapper-class around pandas DataFrame

Familiarity

Class for saving and delivering data

Wrapper-class around pandas DataFrame

- Familiarity
- User Interface

Class for saving and delivering data

Wrapper-class around pandas DataFrame

- Familiarity
- User Interface
- Space Effciency

Class for saving and delivering data

Wrapper-class around pandas DataFrame

- Familiarity
- User Interface
- Space Effciency

Ensures proper format and shortcuts interaction

unplaced turbines $T \subset (\mathbb{N} \times \mathbb{R})^*$ placed turbines $T' = \varnothing \subset (\mathbb{N} \times \mathbb{R} \times \mathbb{R}^2)^*$

WindProof
Random Factory

WindProof

Eval

Scenario Name	Difference
Vestas Single Direction Group	
Low Constant Wind	$3.7037037037036953\ \times 10^{0}$
Enercon Single Direction Group	
Low Constant Wind	$2.842170943040401 \times 10^{-14}$
Multiple Directions Group	
8 Sectors Multiple Constant Winds	$0.12580594433084968\times10^{0}$

- Cut-in Speed
- Rotor Diameter

Possible Causes:

Rotor Diameter

- Cut-in Speed
- Rotor Diameter
- \blacktriangleright C_t/C_p Curve

- Cut-in Speed
- Rotor Diameter

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

$$(24[\mathsf{h}/\mathsf{d}] \cdot 365[d]) \cdot \sum_{i=1}^{n} p_i \cdot \left(\sum_{v \in supp(X)} p(X=v) * T_p(v)\right)$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

8760[h]
$$\cdot \sum_{i=1}^{12} p_i \cdot \left(\sum_{v \in supp(X_i)} p(X_i = v) * V_p(v) \right)$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

8760[h]
$$\cdot \left(\sum_{v \in supp(X_9)} p(X_9 = v) * V_p(v)\right)$$

Possible Causes:

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

 $8760 [\mathsf{h}] \cdot V_p(4.5)$

Possible Causes:

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

 $8760[\mathsf{h}]\cdot 208[\mathsf{kW}]$

Possible Causes:

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

1822080[kWh]

Possible Causes:

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

 $1822.08 [\mathsf{MW}\,\mathsf{h}]$

Possible Causes:

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

Tool Name	AEP [MW h]
WindFarm3D	1892.16
PyWake	1822.08

1822.08[MW h]

Possible Causes:

- Cut-in Speed
- Rotor Diameter

Power Curve

Tool Name	AEP [MW h]
WindFarm3D	1892.16
PyWake	1822.08

$$1892.16[\mathsf{MW}\,\mathsf{h}] = 8760[\mathsf{h}] \cdot V_p^*(4.5)$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

Tool Name	AEP [MW h]
WindFarm3D	1892.16
PyWake	1822.08

$$1892.16[\mathsf{MW}\,\mathsf{h}] = 8760[\mathsf{h}] \cdot V_p^*(4.5) \Rightarrow V_p^*(4.5) = 216[\mathsf{kW}]$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

Tool Name	AEP [MW h]
WindFarm3D	1892.16
PyWake	1822.08

$$V_p^*(4.5) = 216[\mathsf{kW}] = \frac{123[\mathsf{kW}] + 309[\mathsf{kW}]}{2}$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

Tool Name	AEP [MW h]
WindFarm3D	1892.16
PyWake	1822.08

$$V_p^*(4.5) = 216 [\text{kW}] = \frac{123 [\text{kW}] + 309 [\text{kW}]}{2} = \frac{V_p(4) + V_p(5)}{2}$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

Tool Name	AEP [MW h]
WindFarm3D	1892.16
PyWake	1822.08

$$V_p^*(4.5) = 216 [\text{kW}] = \frac{123 [\text{kW}] + 309 [\text{kW}]}{2} = \frac{V_p(4) + V_p(5)}{2}$$

- Cut-in Speed
- Rotor Diameter
- $\blacktriangleright C_t/C_p$ Curve
- Power Curve

2 Turbine Test Cases

Scenario Name	Difference
Jensen Intensity Group	
No Interference	$1.4210854715202004\ \times 10^{-14}$
Full Wake	$7.259577323929676\qquad \times 10^{0}$
Multiple Turbine Types Group	
No Wind	$0.000000000000000000\times 10^{0}$
No Interference	$0.000000000000000000\times 10^{0}$
Basic Wake	$8.023289129267496 \times 10^{0}$
36 Sector Wake	$8.150410878579066 \times 10^{0}$
Wake 19 Degree	$7.190617965615274 \times 10^{0}$
No Wake	$0.000000000000000000 \times 10^{0}$
No Wake Interpolation	$1.4210854715202004\ \ \times 10^{-14}$
Full Coverage	$8.046184311817555 \times 10^{0}$
Partial Coverage	$0.42826470222578905\times10^{0}$

Closing on Wake Decay Factor

Scenario Name	Difference	
Jensen Wake Intensity group		
Full Wake	2.842170943040401	$ imes 10^{-14}$
Multiple Turbine Types Group		
Basic Wake	2.842170943040401	$ imes 10^{-14}$
36 Sector Wake	1.0341550519417666	$ imes 10^0$
Wake 19 Degree	2.2566837287740782	$\times \ 10^{-11}$
Full Coverage	4.263256414560601	$ imes 10^{-14}$
Partial Coverage	2.842170943040401	$ imes 10^{-14}$

Increasing Distance Pipeline Results

Arne Leon, RWTH

WindProof

Turbine Combinations Pipeline

Circle Intersection Calculations

to from	Vestas	Enercon	Nordex
Vestas	(63.121; 56)	(63.121; 57.85)	(63.121; 45)
Enercon	(64.971; 56)	(64.971; 57.85)	(64.971; 45)
Nordex	(52.121; 56)	(52.121; 57.85)	(52.121; 45)

Circle Intersection Calculations

Tool Name	Wake Radius	Receiving Turbine Radius	Area $[m^2]$
WindFarm3D	52.121	57.85	3007.6114
PyWake	52.121	57.85	3286.4581
WindFarm3D	52.121	45	1779.9863
PyWake	52.121	45	1779.9863
WindFarm3D	52.121	53	2519.5157
PyWake	52.121	53	2563.3179

3 Turbine Cases

3 Turbine Cases

Scenario Name	Difference
Basic Wake Intersection	$2.842170943040401 \times 10^{-14}$
Complex Wake Intersection	$2.842170943040401 \times 10^{-14}$
Three in a Row Group	
No Interference	$0.000000000000000000\times 10^{0}$
Turbine 2 Inoperable	$4.263256414560601 \times 10^{-14}$
Turbine 3 Inoperable	$1.4210854715202004\ \ \times 10^{-14}$
All Turbines Operable	$7.180730119283453 \times 10^{0}$

(WF) 36270.36304[MW h] (PW) 39076.32874[MW h]

(WF) 36270.36304[MW h] (PW) 39076.32874[MW h] -32748.42776[MW h] -32748.42776[MW h]

Arne Leon, RWTH

(WF) 36270.36304[MW h] (PW) 39076.32874[MW h] $\begin{array}{l} -32748.42776 [{\sf MW}\,{\sf h}] = 3521.93528 [{\sf MW}\,{\sf h}] \\ -32748.42776 [{\sf MW}\,{\sf h}] = 6327.90098 [{\sf MW}\,{\sf h}] \end{array}$

(WF) 3521.93528[MW h] (PW) 6327.90098[MW h]

(WF) 3521.93528[MW h]/8760[h] (PW) 6327.90098[MW h]/8760[h]

(WF) 3521.93528[MW h]/8760[h] · 1000 (PW) 6327.90098[MW h]/8760[h] · 1000

(WF) $3521.93528[MW h]/8760[h] \cdot 1000 = 402.04741[kW]$ (PW) $6327.90098[MW h]/8760[h] \cdot 1000 = 722.36313[kW]$

(WF) 402.04741[kW] (PW) 722.36313[kW]

(WF)
$$402.04741$$
[kW] = $309 + (567 - 309) \cdot (v - 5)$
(PW) 722.36313 [kW] = $567 + (927 - 567) \cdot (v - 6)$

(WF) 402.04741[kW] = $309 + (567 - 309) \cdot (v - 5) \Rightarrow v = 5.36065 \text{m} \text{s}^{-1}$ (PW) 722.36313[kW] = $567 + (927 - 567) \cdot (v - 6) \Rightarrow v = 6.43156 \text{m} \text{s}^{-1}$

(WF) 5.36065m s^{-1} (PW) 6.43156m s^{-1}

(WF)
$$5.36065 \text{m} \text{s}^{-1} = 10 \text{m} \text{s}^{-1} \cdot (1 - \delta)$$

(PW) $6.43156 \text{m} \text{s}^{-1} = 10 \text{m} \text{s}^{-1} \cdot (1 - \delta)$

(WF)
$$5.36065 \text{m} \text{s}^{-1} = 10 \text{m} \text{s}^{-1} \cdot (1 - \delta) \Rightarrow \delta = 0.463935$$

(PW) $6.43156 \text{m} \text{s}^{-1} = 10 \text{m} \text{s}^{-1} \cdot (1 - \delta) \Rightarrow \delta = 0.356844$

Arne Leon, RWTH

(WF) 0.463935 (PW) 0.356844

(WF)
$$0.463935 = \sqrt{0.173072^2 + \delta^2}$$

(PW) $0.356844 = \sqrt{0.173072^2 + \delta^2}$

(WF)
$$0.463935 = \sqrt{0.173072^2 + \delta^2} \Rightarrow \delta = 0.430444$$

(PW) $0.356844 = \sqrt{0.173072^2 + \delta^2} \Rightarrow \delta = 0.312064$

 $\frac{0.430444}{0.312064}$

 $\frac{0.430444}{0.312064}\approx 1.376872$

$$\frac{0.430444}{0.312064} \approx 1.376872 \approx \frac{10}{7.26284}$$