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Abstract

We elaborate an idea for efficient determination of satisfiability of quantifier-
free non-linear real arithmetic formulas which we also refer to as (multivariate)
polynomial constraint sets. The main goal is transforming a set of polynomial
constraints into a single equisatisfiable polynomial equation which is suitable
for the subtropical real root finding method [FOSV17] [Stu15]. We analyze a
proposal for such a transformation and prove that it is incorrect for conjunctions
of equational constraints which are a crucial part of SMT solving. We present
alternative ideas and perspectives as well, but a solution or proof for the im-
possibility of the main idea has yet to be found. We still lay out the necessary
details for subtropical satisfiability checking from the International Symposium
on Frontiers of Combining Systems [FOSV17] and depict an optional method
for constructing a model using the cylindrical algebraic decomposition [Jir95].
We test implementation ideas for utilities and efficiency improvements for the
SMT-RAT solver that are a byproduct of this research and discussions. Finally,
we also conduct other benchmarks for the edge case of a single polynomial equa-
tion to see how the subtropical real root finding method [Stu15] compares to
another used strategy of SMT-RAT. The results coincide with the foundings
in [FOSV17] and [Stu15]; they show that SMT-RAT using the subtropical real
root finding method is significantly more efficient for this case. The empirical
evidence implies that an efficient realization of the main idea could lead to great
improvement in SMT solving efficiency.
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Chapter 1

Introduction

Satisfiability modulo theory solvers, or SMT solvers for short, have a variety of uses as
they are capable of tackling any kind of problem that can be described as a first-order
formula. It ranges from pure mathematical questions, like finding an intersection
of two circles, to more practical real-world applications, like program analysis or
software verification [Fit12]. Those applications have important roles because they
ensure the correctness of the intended behavior of computer programs. This does not
only include programs of businesses or industries with economic interests but also
securing a stable infrastructure for the safety of a city or treating people with the use
of medical devices. To name a few examples, the barrier Maeslantkering [maeb] is
handled by a computer system that evaluates weather data and measures the sea level.
It is responsible for opening the barrier, making port traffic possible, and for closing
the barrier, protecting South Holland with a population of over 3.7 million people (as
of January 2021) [Sta] against disastrous storm surges [maea]. The next example is a
case which occurred during 1985 to 1987 [LT93]. The Therac-25, produced in 1982,
was a medical machine that was used for radiation therapy. It killed cancer cells by
applying doses of radiation directly to the patient. Due to a race condition, i.e. a
programming error, the Therac-25 applied hundred times greater radiation doses than
necessary which resulted into severe injuries or even fatal cases.

Example 1.0.1. Description of the intersection of two circles

φ(x,y) := x2 + y2 − 1 = 0 ∧ (x+ 2)2 + y2 − 5 = 0

This formula is satisfied by the interpretation x = 0 and y = 1.

An SMT instance can be understood as an advanced SAT instance which allows for
the interpretation of functions, predicates, and quantification over variables using any
kind of domain. It has therefore a greater expressiveness as an SAT instance. SMT
solving is NP-hard because SAT solving is NP-complete already (see Cook’s theorem)
proven by Stephen A. Cook in 1971 [Coo71]. On top of that, depending on the theory,
the task may become undecidable. This is to be expected because satisfiability of first-
order formulas, in general, is already undecidable [Grä11].

We consider quantifier-free non-linear real arithmetic (QF NRA in short) which is
decidable proven by Alfred Tarski [Tar98]. In other words, we look at formulas (i.e.
statements) without quantified variables which are described using polynomials over



10 Introduction

the reals. We refer to them as polynomial constraints and a finite collection of QF
NRA formulas as polynomial constraint sets. A polynomial constraint set is said to be
satisfiable if the conjunction of its elements is satisfiable. Notice that disjunctions and
conjunctions within QF NRA formulas are equivalent to satisfiability of polynomial
constraint sets: For example, for two atomic QF NRA formulas φ,ψ is the satisfiability
of φ∨ψ equivalent to the satisfiability of {φ} or {ψ} and the satisfiability of φ∧ψ is
equivalent to {φ} ∪ {ψ}.

In the mid-chapter, we discuss and elaborate a certain idea for the improvement of
SMT solving. It proposes to compress a set of polynomial constraints into a single
equisatisfiable polynomial equational constraint for the application of the subtropical
real root finding method, described in [FOSV17] [Stu15]. We explain the necessary
parts of the subtropical satisfiability from [FOSV17] and how to construct a model
for a satisfiable polynomial equational constraint using methods of the cylindrical
algebraic decomposition for univariate polynomials. At the end of this paper, we
depict some statistics of other related implementations within the SMT solver SMT-
RAT, which is under the care of the research group Theory of Hybrid Systems at
RWTH Aachen University, and conclude our results.
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1.1 Notation
We use the notation from International Symposium on Frontiers of Combining Sys-
tems [FOSV17] within this paper for coherence:

• f,g,h are polynomials.

• x,y,z are real-valued variables.

• f(x), g(x) refer to polynomial functions.

• a represents a real value.

• x is a vector (x1,...,xd) of variables x1,...,xd (notice the bold notation).

• p, q are points such as (p1,...,pd) ∈ Rd.

• For p, q ∈ Rd, pq is the set {((1− λ)p+ λq) ∈ Rd : λ ∈ [0,1]}

• For a value a ∈ R and point p ∈ Rd, ap is the point (ap1 ,...,apd).
If p = (1,...,1) then we abbreviate ap to a = (a,...,a) ∈ Rd

(for example: 0 = (0,...,0) ∈ Rd).

• For a vector x and a point p ∈ Rd, xp is the vector (xp1

1 ,...,x
pd

d ) .

• fp ∈ Z \ {0} is the coefficient at the monomial (of a polynomial f) that has
exactly the powers xp. Implicitly, this means that we have a strict variable
ordering to prevent ambiguity. A monomial can also be referred as fp · xp.

We also introduce additional notation:

• F represents a set of polynomials.

• r ∈ Rd is a root of a polynomial f .

• ξ ∈ R represents a real value.

• Substitutions of a variable x in a polynomial f for a real value ξ are written as
f [x/ξ].

• φ,ψ denote polynomial constraints.

• Φ denotes a polynomial constraint set.

• Substitutions of variables x = x1,...,xd in a logical formula φ for values M(x),
whereM is a structure that maps x1,...,xd to real values, is written as φ[x/M(x)].

• λ ∈ [0,1] is a real-valued variable between zero and one.

• For two points p, q ∈ Rd the univariate polynomial λi ∈ Q[λ] is equal to:

(1− λ)pi + λqi
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Chapter 2

Preliminaries

2.1 Subtropical Satisfiability

The Broad Idea

This section introduces the subtropical satisfiability proposed in [FOSV17] in a sum-
marized manner along with different examples and additional explanations.

As the name suggests, subtropical real root finding is a method to calculate a solution
to a (polynomial) equation. This method is incomplete but still very efficient in its
use and is therefore optimal as a heuristic [FOSV17]. The idea for finding a solution
to a polynomial equation f = 0, where f ∈ Q[x1,...,xd], can be broken down into
three steps [FOSV17]:

1. Compute the value f(1). Evaluate f(1) and follow the substeps accordingly:

• If f(1) = 0 then we have found a solution.

• If f(1) > 0 then start over but consider −f instead.

• Otherwise, proceed with the next step.

2. Find a point p with positive entries such that f(p) > 0.

3. Find a point r ∈ 1p such that f(r) = 0.

As we gather a negative and a positive value of the polynomial function, we can make
use of the fact that polynomial functions are continuous and therefore the intermediate
value theorem guarantees a root, i.e. a solution to the equation.
The second step is done by performing a reduction from the original problem to a
linear programming problem (also called LP). An LP aims to maximize a function
cT · x for c ∈ Rd; the solution x is restricted by linear constraints [RAUa]. We
only need to solve the LP to some relatively little extent since an optimal solution is
not required. The solution to the reduced problem can then be used to construct a
solution for the original equation.
The reason why a point with positive entries is required in the second step is not
arbitrary, nor a restriction due to the computation. There are practical reasons: In
chemistry and biology are constraints with very large polynomials common and the
desired solution needs to be positive for any practical use [Stu15]. Of course, there is
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a way to find more general solutions, i.e. non-positive solutions. However, explaining
this in more detail later would exceed the scope of this thesis. For the interested
reader, we leave a reference to [FOSV17] instead.

There are three additional uses that can be extracted from the above mentioned idea
structure:

• If we are only interested in satisfiability of inequations and finding a respective
model then we can omit step 1 and step 3.

• If we are only interested in satisfiability of inequations then we only need to
determine satisfiability of the LP.

• If we are only interested in satisfiability of equations then we can omit step 3.

A modular implementation of the steps of the subtropical real root finding method
makes it possible to input constraints not only of the form f = 0. It is also possible
to input constraints of the form f ∼ 0 where ∼∈ {>,≥, <,≤, ̸=}, using the following
adjustments:

• f > 0 does not need to be adjusted.

• The weak constraint f ≥ 0 becomes the strict constraint f > 0. If no solution is
found due to the incompleteness of this method then the remaining constraint
f = 0 cannot be applied in the first place as this also requires a positive point
of f therefore the answer of f ≥ 0 would become "Unknown".

• The constraint f < 0 is changed to −f > 0.

• The case for the constraint f ≤ 0 can be inferred from the above mentioned
cases.

• The last constraint f ̸= 0 becomes f > 0 ∨ −f > 0.

The Intuition for Finding Positive Values of a Polynomial

Any non-constant polynomial f with a single indeterminate x has this property:

lim
x→∞

f(x) =

{
∞, if leading coefficient is greater than 0
−∞, if leading coefficient is less than 0

The term with the leading coefficient includes by definition the greatest exponent and
grows therefore faster than the sum of the remaining terms. In other words, there
exists some value x0 such that for all x > x0 the absolute value of the leading term
at x is greater than the sum of all other terms at x. Now, because x > x0 > 0
the leading coefficient is the only deciding factor whether the function is positive or
negative at f(x). The following examples provide more insight on how we can utilize
this knowledge to find positive values.

Example 2.1.1.
f(x,y,z) := x3 − 3y2 − 60z

This polynomial function has more than one indeterminate, but by choosing two
variables and setting them to 0 we receive a polynomial function with a single inde-
terminate:
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• f(0,0,z) = −60z, the leading coefficient is less than 0.

• f(0,y,0) = −3y2, the leading coefficient is less than 0.

• f(x,0,0) = x3, the leading coefficient is greater than 0.

However, polynomial functions in multiple indeterminates are not that conveniently
constructed. In general cases, variables appear together in the majority of terms.

Example 2.1.2.
f(x,y) := −x4 + xy2 − y

Setting one of the variables to 0 results in a polynomial with a negative leading
coefficient, as the only monomial with a positive coefficient vanishes. Letting both
variables approach infinity at the same rate causes the monomial −x4 to dominate.
The solution is letting one variable grow faster than the other. Suppose we substitute
y for y2. The substitution results in the polynomial −x4 + xy4 − y2. Letting both
variables approach infinity at the same rate in that polynomial causes the monomial
xy4 to dominate with the desired positive coefficient. A positive point can then be
found by finding a large enough base a and calculating f(a,a2) [FOSV17]:

a = 2 =⇒ f(2,4) = −16 + 32− 4 = 12 > 0

Example 2.1.3.
f(x,y) := −x3y − x2y3 + xy

At first, one might assume that no positive point can be found using only positive
values for x and y. Also substituting x or y with greater powers does not work, as
the other monomials also grow faster.
The solution here is to substitute x and y with x−1 and y−1 respectively instead.
By doing so, each monomial becomes their multiplicative inverse, i.e. − 1

x3y ,−
1

x2y3 ,

and 1
xy respectively. As the quotients with greater exponents grow faster, the frac-

tions become smaller, resulting in 1
xy becoming the dominant term. Of course, the

expression that results from this substitution is not a polynomial because exponents
must be either zero or a natural number. Effectively, we do not actually substitute
anything but rather use this observation to find the correct input. By finding a large
enough base a, a positive value of f can be computed:

a = 2 =⇒ f(a−1, a−1) = f(
1

2
,
1

2
) = − 1

16
− 1

32
+

1

4
=

5

32
> 0

An algorithmic implementation of these intuitions for finding positive points is the
reduction to linear programming, i.e. the subtropical method.



16 Preliminaries

Finding Positive Values of a Polynomial

Before explaining how the reduction works, we recall some concepts from [FOSV17].

Definition 2.1.1. Frames

The frame of a polynomial f =
∑
fp · xp ∈ Q[x1,...,xd] is defined as:

frame(f) = {p ∈ Nd
0 : fp ̸= 0}

We can create a partition of this set by changing the condition fp ̸= 0 to fp > 0 and
fp < 0, i.e. the sign of the coefficient is considered as well:

frame+(f) = {p ∈ frame(f) : fp > 0} frame−(f) = {p ∈ frame(f) : fp < 0}

Consider the following polynomial:

fex := −x5y3 + 2x4y + 3x3y2 + x2y − 4y3 − 5

The frames of fex are:

• frame(fex) = {(5,3), (4,1), (3,2), (2,1), (0,3), (0,0)}

• frame+(fex) = {(4,1), (3,2), (2,1)}

• frame−(fex) = {(5,3), (0,3), (0,0)}

Definition 2.1.2. Convex Hull

A convex set M ⊆ Rd fulfills the following condition:

∀p, q ∈M : pq ⊆M

Let S ⊆ Rd be a set of points. The convex hull of S is the smallest convex superset
of S or equivalently:

conv(S) =
⋂

S⊆M⊆Rd

M where M is convex

x

y

1

1

x

y

1

1

Figure 2.1: {(0,0), (0,1), (1,0), (1,1)} (left) and its convex hull {(x,y) : x,y ∈ [0,1]}
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Definition 2.1.3. Newton Polytope

The Newton polytope of a polynomial f is defined as:

newton(f) = conv(frame(f))

Figure 2.2 shows the Newton polytope of fex as a shaded area. The green dots refer
to the elements of frame+(fex) and the black dots to the elements of frame−(fex).

x

y

1 2 3 4 5

1

2

3

4

5

n = (1,− 1)

Figure 2.2: Newton polytope of fex and a hyperplane with direction (1,− 1)

A polytope is a geometrical object and can be understood as a generalization of poly-
gons or polyhedrons in terms of dimensions. T. Sturm has proven in [Stu15] that
in order to find a positive value, a hyperplane h : nTx + c such that nTp > nTq
where p ∈ frame+(f) and q ∈ frame(f) \ {p} is required. In other words, we need
to compute a hyperplane that separates an element of the positive frame of a poly-
nomial from the rest of its Newton polytope. The normal vector component of such
a hyperplane contains the information to construct a solution which lets the desired
monomial to dominate over the others. The following lemma is taken from [FOSV17]
Lemma 2 which builds on [Stu15] Lemma 4.

Lemma 2.1.1. Let f be a polynomial, p ∈ frame(f), and n a normal vector such
that ∀q ∈ frame(f) \ {p} : nTp > nTq. Then there exists an a0 ∈ R+ such that for
all a ≥ a0 the following holds:

1. |fp · an
Tp| >

∑
q∈frame(f)\{p} |fq · an

T q| (monomial fp · xp dominates)

2. sign(f(an)) = sign(fp)

Proof. Assume the above mentioned conditions hold.
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Let max = max{nTq : p ̸= q ∈ frame(f)}. Consider the following quotient:

|fp · an
Tp|∑

q∈frame(f)\{p} |fq · an
T q|
≥ |fp| · an

Tp

amax ·
∑

q∈frame(f)\{p} |fq|

=
|fp|∑

q∈frame(f)\{p} |fq|
· an

Tp−max

By our assumptions, we have nTp−max > 0. Analyzing the limit of that expression
yields:

lim
a→∞

|fp|∑
q∈frame(f)\{p} |fq|

· an
Tp−max =

|fp|∑
q∈frame(f)\{p} |fq|

· lim
a→∞

an
Tp−max =∞

The limit approaches infinity and therefore the left hand side of the relation in 1.
grows faster, i.e. statement 1. is true. The second statement follows from the first
one and by the restriction that a > 0 therefore an

Tp > 0. □

The lemma validates that the problem of finding a positive (or negative) point of
a polynomial f can be reduced to finding a hyperplane h that separates a point
p ∈ frame+(f) (or frame−(f) respectively). This problem can be formulated as an
LP instance, without the need of optimization, and might therefore be solved by any
LRA (linear real arithmetic) solver. Fontaine and colleagues have shown in [FOSV17]
that the corresponding formula is:

φ(p, frame(f),n, c)=̇nTp+ c > 0 ∧
∧

q∈frame(f)\{p}

nTq + c < 0

The actual formula, in terms of syntax, generalizes frame(f) with the notion S, but
we abuse the notation for the sake of intuition. p and frame(f) are given and therefore
the formula has exactly d+ 1 real variables n1, n2, ..., nd and c [FOSV17]. The linear
constraint system, which is equivalent to the formula above, is:

n1 · p1+...+ nd · pd + c > 0

n1 · q1,1+...+ nd · q1,d + c < 0

...
n1 · qm,1+...+ nd · qm,d + c < 0

where m = |frame(f) \ {p}|.

As a hyperplane does not necessarily separate exactly one single point, we use a
definition to specify those separated sets.

Definition 2.1.4. Face

The face of a polytope P ⊆ Rd in respect to some normal vector n ∈ Rd is defined
as:

face(n, P ) = {p ∈ P | ∀q ∈ P : nTp ≥ nTq}

A face with dimension 0 (i.e. the face is a singleton) is referred to as vertex.
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Similar statements to the lemma can be applied to faces with higher dimensions. If
the sum of the coefficients of the monomials, whose exponent points are elements of
that face, is not zero then we can find a value of f with the same sign as the sum by
increasing a in f(an).

Corollary 2.1.2. Let f be a polynomial, p1, ...,pm ∈ frame(f), n a normal vector
such that ∀1 ≤ i ≤ m∀q ∈ frame(f) : nTpi ≥ nTq, and finally let

∑m
i=1 fpi

̸= 0.
Then there exists an a0 ∈ R+ such that for all a ≥ a0 the following holds:

1. |
∑m

i=1(fpi
· anTpi)| >

∑
q∈frame(f)\{p1,...,pm} |fq · an

T q|

2. sign(f(an)) = sign(
∑m

i=1 fpi
)

Proof. For all pi,pj ∈ frame(f) with 1 ≤ i ≤ j ≤ m holds: pi ≥ pj ∧ pi ≤ pj and
therefore pi = pj . Since they are all equal, an

Tpi has the same value for each pi and
we can factor it out:

|(
m∑
i=1

fpi
) · an

Tp| where p can be any pi

Using Lemma 2.1.1. it follows the statement because
∑m

i=1 fpi
̸= 0 is just a constant.

The second statement is proven analogously. □

However, if the sum is zero then the monomials fp · xp with p ∈ face(n, newton(f))
eliminate each other. Also the sign of f(an) (for increasing a) depends on the other
monomials fq · xq where q ̸∈ face(n, newton(f)).

Full example

Given below is an example to reiterate the rough idea of the procedure of the sub-
tropical method in a conclusive manner.

Example 2.1.4. Determining satisfiability of the constraint fex = 0

Reminder: fex = −x5y3 + 2x4y + 3x3y2 + x2y − 4y3 − 5

1. Evaluate fex(1) = −1 + 2 + 3 + 1− 4− 5 = −4

2. Find a positive point using the subtropical method:

(a) Iterate through the points of frame+(fex):

• p = (2,1): We can see in figure 2.2 that any point that is "inside" the
polytope cannot be separated at all.

• p = (3,2): The same reasoning for the preceding case holds for this
one.

• p = (4,1): We can see in figure 2.2 that the normal vector n = (1,−1)
is promising for a separating hyperplane that isolates the vertex (4,1).

(b) Calculating nTq for each q ∈ frame(fex) yields:

• q = (5,3)→ 2

• q = (4,1)→ 3
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• q = (3,2)→ 1

• q = (2,1)→ 1

• q = (0,3)→ −3

• q = (0,0)→ 0

The value of the point (4,1) is greater than those of the other points there-
fore the hyperplane with the normal vector (1, -1) separates that desired
point from the others.

(c) The lemma guarantees a positive value by finding a big enough a ∈ R:

a = 2 =⇒ fex(a
(1,−1)) = fex(2,

1

2
) =

29

2
> 0

The intermediate value theorem states that there must exist a root r ∈ 1p, where
p = (2, 12 ), of the continuous polynomial function fex. Therefore is fex = 0 satisfiable.
Remember that the subtropical method is incomplete [FOSV17] [Stu15] and that we
cannot conclude unsatisfiability in case the method fails to find a positive point.

When the Subtropical Heuristic Succeeds

The subtropical method is incomplete. There are two necessary conditions where at
least one needs to be fulfilled for the success of the subtropical method [FOSV17].
This characterization was one of the research goals by Fontaine and colleagues. Iden-
tifying the satisfiability of those conditions efficiently could lead to a performance
improvement as we either can guarantee to find a solution or cancel this method early
and thus saving computation time.

Let f ∈ Q[x1,...,xd] be a polynomial and Π(f) = {r ∈ (0,∞)d : f(r) > 0} the set of
its positive values. Let also Π(f) be the topological closure of Π(f) which is Π(f)
itself including limit points of Π(f). The two conditions are:

• 0 ∈ Π(f).

• Π(f) is unbounded.

These conditions can be inferred from Lemma 2.1.1. For the former condition: If the
normal vector of the separating hyperplane consists of only negative values then an

approaches 0 for increasing a. Now, because the sign of the polynomial function at
an does not change for all a ≥ a0 for some a0 ∈ R+ =⇒ 0 must belong to Π(f).
For the other condition: If the normal vector contains at least one positive entry at
the index 1 ≤ i ≤ d then the entry at i of an diverges for increasing a and therefore
Π(f) must be unbounded.
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Figure 2.3: Π(f) and Newton polytope of f(x,y) = x− y2 − 1
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Figure 2.4: Π(f) and Newton polytope of f(x,y) = −x− y2 + 2y
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Figure 2.5: Π(f) and Newton polytope of f(x,y) = −x2 + y + 1
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Figure 2.6: Π(f) and Newton polytope of f(x,y) = −x2 + 4x− y − 3
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2.2 Cylindrical Algrebraic Decomposition

In this section we want to introduce cylindrical algebraic decomposition (CAD). The
notion and the algorithm for the computation of a CAD was first introduced by
George E. Collins in 1975 [Col75]. The idea is that for a given set F of polynomials
with d variables we can decompose Rd into regions where each polynomial f ∈ F
is sign-invariant for all inputs from that region. Given the combinations of signs
each polynomial has in a specific region we can easily determine satisfiability of any
polynomial constraint systems that only includes polynomials f ∈ F . This thesis
does not cover the complete topic. We present however a broad example to grasp an
intuition, give necessary definitions, and show how to compute algebraic solutions for
univariate polynomials. For the interested reader: A more detailed introduction can
be found in e.g. "Cylindrical algebraic decomposition - an introduction" written by
M. Jirstrand, in 1995 [Jir95].

2.2.1 The Intuition for a CAD

Consider the following polynomial constraint system:

x3 − y ∼1 0

x2 + y2 − 1 ∼2 0

where ∼1,∼2∈ {=, <,≤, >,≥, ̸=}. Let f1 = x3 − y and f2 = x2 + y2 − 1. Figure
2.7 illustrates an input space and shows the roots of those polynomials. Equivalently,
if we plot those polynomials as functions in a three dimensional (x,y,z)-coordinate
system where z represents the function value then Figure 2.7 would show the segment
of the plane at z = 0.
Now, since polynomial functions are continuous, the graphs that traces the roots of
f1 and f2 separate the input space into areas in which the respective polynomial is
either only positive or negative.

The projections (shown as green dots in Figure 2.7) we are looking for in this example
are indicated by the intersections of the roots of both polynomials or if a vertical
tangent encounters a sign change along its line. To elaborate further on the latter:
For ξ ∈ R let f [x/ξ] denote the polynomial f when substituting all occurrences of the
variable x with the real value ξ. The projection needs to decompose/split the x-axis
into regions such that for all regions R ⊆ R and for each polynomial f ∈ {f1, f2} the
following holds:

∀ξ, ξ′ ∈ R : |{y ∈ R : (f [x/ξ])(y) = 0}| = |{y ∈ R : (f [x/ξ′])(y) = 0}|

In other words, the polynomial that we receive after substituting x for any ξ ∈ R
has always the same number of roots. This is among other properties something that
characterizes those projections implicitly.
Another property explains the intersection case and characterizes those projections
implicitly by having a constant number of common roots. Those and another prop-
erty (which characterizes implicitly projections by having a constant number of dis-
tinct roots) of a decomposition for a set of polynomials are formalized by the concept
of delineability which is introduced by M. Jirstrand in [Jir95] chapter 4. The necessity
of delineability can be seen when looking at the final results of this example.
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Figure 2.7: Roots of x2 + y2 − 1 (unit circle) and x3 − y (cubic function)
and projections onto the x-axis.

The projection yields the following values:

−1, − α, α, 1 where α ≈ 0.826

With these values we can create a decomposition of the x-axis with 9 regions R1,...,R9:

{(−∞,−1)︸ ︷︷ ︸
R1

, {−1}︸ ︷︷ ︸
R2

, (−1,−α)︸ ︷︷ ︸
R3

, {−α}︸ ︷︷ ︸
R4

, (−α, α)︸ ︷︷ ︸
R5

, {α}︸︷︷︸
R6

, (α, 1)︸ ︷︷ ︸
R7

, {1}︸︷︷︸
R8

, (1,∞)︸ ︷︷ ︸
R9

}

The next steps can be broken down to:

• Take one sample point ξ from each region R1,...,R9.

• Substitute x in each f1, f2 for each sample point ξ to gather in total 2 · 9 = 18
polynomials.

• Evaluate the sign changes
(
(f1[x/ξ])(y)
(f2[x/ξ])(y)

)
for y : −∞→∞

Table 2.1 concludes these steps:
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Region ξ f1[x/ξ] f2[x/ξ]

sign((f1[x/ξ])(y))
sign((f2[x/ξ])(y))

 , y : −∞→∞

(−∞,−1) -2 −y − 8 y2 + 3

+ 0 −

+ + +


{−1} -1 −y − 1 y2

+ 0 − − −

+ + + 0 +


(−1,−α) -0.9 −y − 0.729 y2 − 0.19

+ 0 − − − − −

+ + + 0 − 0 +


{−α} −α −y − α3 y2 + α2 − 1

+ 0 − − −

+ 0 − 0 +


(−α, α) 0.5 −y + 0.125 y2 − 0.75

+ + + 0 − − −

+ 0 − − − 0 +


{α} α −y + α3 y2 + α2 − 1

+ + + 0 −

+ 0 − 0 +


(α,1) 0.9 −y + 0.729 y2 − 0.19

+ + + + + 0 −

+ 0 − 0 + + +


{1} 1 −y + 1 y2

+ + + 0 −

+ 0 + + +


(1,∞) 2 −y + 8 y2 + 3

+ 0 −

+ + +


Table 2.1: Substitutions for each sample point and sign changes for each substitution
pair.

The sign pairs in the table can easily identify satisfiability for any given combination
∼1,∼2∈ {= , < , ≤ , > , ≥ , ̸=}. Consider these examples:

• Suppose we want to solve the polynomial constraint system for
(∼1,∼2) = (< , <). We can see that those constraints are satisfiable using
the table if and only if x ∈ R3 ∪ R4 ∪ R5. We can choose a sample point
freely from those regions without changing the sign behavior (this is ensured by
delineability). Let x = 0 ∈ R5 then the system simplifies to:

−y < 0

y2 − 1 < 0

}
=⇒ 0 < y < 1
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• If (∼1,∼2) = (> , =) then x must be in either of the regions R5, R6, R7 or R8.
Let x ∈ R8 = {1} then the system simplifies to:

1− y > 0

y2 = 0

}
=⇒ y = 0

The importance of delineability now becomes clear as this concept ensures that for
any sample point taken from a specific region the same sign behavior is gathered. We
also do not miss any potential solutions.

The decomposition of course is not a decomposition of R2. In order to achieve this
we need to construct the CAD using the information gained from the projections.
Explaining this in detail for the general case would exceed the scope of this thesis.
Nevertheless, we give a simplistic explanation for our example:
For each region Ri where 1 ≤ i ≤ 9 consider the set R′

i = {(x,y) ∈ R2 : x ∈ Ri}.
Then partition R′

i into non-empty connected sets where each polynomial f1 and f2
has a constant sign. Figure 2.8 illustrates those new regions (we omit the axes for
better visual perception).

Figure 2.8: CAD of {f1, f2} with 47 cells (12 line-/6 arc-/5 curve segments, 8 points,
and 16 areas).

2.2.2 Terminology
Definition 2.2.1. Algebraic Number

A real (or complex) number α is an algebraic number if there exists a univariate
polynomial f ∈ Q[x] such that:

f ̸= 0 ∧ f(α) = 0
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This property with the addition of intervals can be used to represent algebraic num-
bers. This representation must specify exactly one algebraic number. Therefore the
interval must be restricted to contain only one algebraic number for the given poly-
nomial. For example, let f = x2 − 2. The representation of the algebraic numbers√
2 and −

√
2 are:

√
2 : (f, [1, 1.5]) and −

√
2 : (f, [−1.5,−1])

The advantage of using this representation is that we can precisely express numbers
which cannot be represented as radicals.
For example, the algebraic number (x5−x−1, [1, 1.2]). The existence of such numbers
has been proven by Paolo Ruffini and Niels Henrik Abel and is referred to the Abel-
Ruffini theorem [Ayo80] [Ruf13] [Abe24] [Abe26].

Definition 2.2.2. Region

A region R is a non-empty connected subset of Rd.

Definition 2.2.3. Decomposition

A decomposition of Rd is a finite set C ⊆ 2R
d

. Its elements are pairwise disjoint regions
C ⊆ Rd when united results in Rd.

Definition 2.2.4. Semi-algebraic

A set is semi-algebraic if it is the result of finitely many unions, intersections, and/or
complementation on sets of the form:

{x ∈ Rd : f(x) ∼ 0} where ∼∈ {=, >} and f ∈ Q[x1,...,xd]

A set is algebraic if it can be constructed the same way but:

• with the restriction that ∼∈ {=}, i.e. only polynomial equational constraints
may be used.

• complex numbers may also be considered.

Definition 2.2.5. Cylindrical

Let C of Rd be a decomposition. If d = 1 then C is cylindrical. If d > 1 then let C′ be
the set that results from projecting the regions of C to the first d− 1 entries. If C′ is
a cylindrical decomposition then C is cylindrical.

Definition 2.2.6. Sign-invariance

Let f ∈ Q[x1,...,xd] and S ⊆ Rd. S is f -sign-invariant if:

∃ ∼∈ {=, >,<}∀x ∈ S : f(x) ∼ 0

Analogously, we can define this property for a set of polynomials F = {f1, ..., fm} ⊂
Q[x1,...,xd]. S is F -sign-invariant if S is f -sign-invariant for each f ∈ F .

Definition 2.2.7. Cylindrical Algebraic Decomposition

A cylindrical algebraic decomposition of Rd is a cylindrical and semi-algebraic decom-
position of Rd. Its elements are also referred to as cells. A CAD of F ⊆ Q[x1,...,xd]
is a CAD in that each cell is F -sign-invariant.
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2.2.3 Computing Algebraic Real Root Solutions for Univariate
Polynomials

In this section we explain how to construct a CAD using Cauchy bounds and Sturm
sequences for a univariate polynomial set.

Cauchy Bound

The Cauchy bound, named after Augustin-Louis Cauchy, specifies an upper and lower
bound for all roots of a given univariate polynomial f =

∑n
i=0 cix

i ∈ Q[x]. Let r ∈ R
be a root of f then [RAUb]:

|r| ≤ 1 +max{| c0
cn
|,| c1
cn
|, ..., |cn−1

cn
|}

Proof. If |r| ≤ 1 then the statement is true. Let |r| > 1 and cmax = max{|c0|,...,|cn−1|}
then:

f(r) = 0 ⇐⇒ |cn · rn| = |
n−1∑
i=0

ci · ri| ≤
n−1∑
i=0

|ci · ri| ≤
n−1∑
i=0

|cmax · rn|

Factoring cmax out and using the formula for a geometric series results in:

cmax ·
n−1∑
i=0

|r|n = cmax ·
|r|n − 1

|r| − 1
≤ cmax ·

|r|n

|r| − 1

Finally:

|cn · rn| ≤ cmax ·
|r|n

|r| − 1
| : |cn|

|rn| ≤ |cmax

cn
· |r|

n

|r| − 1
| | : |rn|

1 ≤ |cmax

cn
· 1

|r| − 1
| | · (|r| − 1)

|r| − 1 ≤ |cmax

cn
| |+ 1

|r| ≤ 1 + |cmax

cn
|

□

Sturm sequence

Let f ∈ Q[x] be a square-free polynomial (i.e. the number of roots f has is equal to the
number of distinct roots f has). The Sturm sequence, named after Jacques Charles
François Sturm, is a sequence of univariate polynomials f0,f1,...,fn ∈ (Q[x])n+1 that
allows us to count the number of roots f in a real interval (a,b] has [RAUb] [Rag]
[Stu09]. It is inductively defined using a derivative and a variant of the Euclidean
algorithm:
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1. f0 := f, f1 := f ′ = d
dxf .

2. For i ≥ 2 is fi := −rem(fi−2,fi−1) where rem(fi−1,fi−2) is the remainder of
fi−1 divided by fi−2. The sequence stops as soon as −rem(fi−2,fi−1) = 0 then
fn := fi−1.

The construction of these polynomials fulfill certain properties which ensures the
correctness of the following theorem [Rag].

Theorem 2.2.1. Sturm’s Theorem

For a given Sturm sequence f0,...,fn ∈ (Q[x])n+1 of a square-free polynomial f let
σ(ξ) count the number of sign changes in

(f0(ξ),...,fn(ξ))

ignoring zeros. Then the number of distinct real roots f in a real interval (a,b] has is
equal to [RAUb] [Rag] [Stu09]:

σ(a)− σ(b)

We can extend this theorem for unbounded intervals. Let LC0,...,LCn denote the
leading coefficients and LE0,...,LEn the exponents of the leading terms of each poly-
nomial f0,...,fn respectively. Then define

• σ(∞) to count the number of sign changes in (sign(LC0),...,sign(LCn)) and

• σ(−∞) to count the number of
sign changes in (sign(LC0(−1)LE0),...,sign(LCn(−1)LEn)).

Then the number of roots f has is equal to σ(−∞)− σ(∞).

The following proof uses and builds on the proof given in [Rag]. Consider these
statements about the Sturm sequence:

1. No consecutive polynomials have a common root:

∀0 ≤ i ≤ n : fi(r) = 0 =⇒ fi+1(r) ̸= 0

2. If a polynomial in the sequence other than f0 or fn has a root r then its successor
and predecessor have opposite signs at r:

∀0 < i < n : fi(r) = 0 =⇒ (sign(fi−1(r)), sign(fi+1(r))) ∈ {(+,−), (−,+)}

3. fn ̸= 0 has a constant sign along its domain:

∀x ∈ R : fn(x) > 0 ∨ fn(x) < 0

We first prove them:
Statement 1):

i = 0 f is square-free and has therefore no common roots with f ′ [sul15].
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i > 0 Suppose fi and fi+1 have a common root r and let g1, g2 be two polynomials
such that fi = g1(x− r) and −fi+1 = g2(x− r). However:

fi−1 = g1(x− r) + g2(x− r) = (g1 + g2)(x− r)

This implies that r is also a common root of fi−1. This is however a contradiction
if i = 1. Therefore f1 and f2 cannot share common roots and by induction the
same contradiction occurs for all i > 0.

Statement 2):
Let r be the root of fi for 0 < i < n then we have:

fi−1(r) = g(r) · fi(r)︸ ︷︷ ︸
=0

+(−fi+1(r)) = −fi+1(r)

because no consecutive polynomials in the sequence share a root fi−1 and fi+1 are
not 0 at r and therefore have opposite signs at r.

Statement 3):
Suppose fn ̸= 0 has not the same sign over its domain then it must have at least one
root r and we can write fn as g(x− r) where g ∈ Q[x]. Since fn is a greatest common
divisor of f and f ′ we can write them as:

f = g1(x− r), f ′ = g2(x− r)

which is a contradiction to 1). Therefore fn must have a constant sign over its domain.

We claim an equivalent statement to the theorem: "For a given Sturm sequence of a
univariate polynomial f , σ(x) decreases if and only if f(x) = 0". The number of sign
changes at σ(x) may only change if an fi in the sequence changes its sign near the
neighborhood of its roots. Consider the following cases:

• r is a root of f0 = f then there exists a small enough 0 < ϵ < 1 such that f(r−ϵ)
and f(r+ϵ) have opposite signs since f is square-free. Assume f(r−ϵ) > 0 then
f ′(r−ϵ) must be negative as f approaches 0 "from above the x-axis". Therefore
f is decreasing within the interval [r − ϵ, r] . Now because f1 = f ′, observing
the course of the signs of the Sturm sequence from r − ϵ to r + ϵ yields:

(+,− ,...)︸ ︷︷ ︸
r−ϵ

→ (0,− ,...)︸ ︷︷ ︸
r

→ (−,− ,...)︸ ︷︷ ︸
r+ϵ

σ(x) decreases exactly by one at each root r of f . The observation for f(r−ϵ) < 0
is analogous.

• r is a root of fi for an 0 < i < n. Similarly, there exists an 0 < ϵ < 1 such
that fi(r − ϵ) and fi(r + ϵ) have opposite signs. Statement 2) implies that
fi−1(r) · fi+1(r) < 0, i.e. those polynomials do not have the same sign at r.
Observing the course of the signs of the Sturm sequence from r−ϵ to r+ϵ yields
multiple cases (we show only the signs of fi−1, fi, and fi+1 in the sequence):

– fi−1(r) < 0 and fi(r − ϵ) < 0:

(..,− ,− ,+ ..)︸ ︷︷ ︸
r−ϵ

→ (..,− ,0,+ ..)︸ ︷︷ ︸
r

→ (..,− ,+ ,+ ..)︸ ︷︷ ︸
r+ϵ
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– fi−1(r) < 0 and fi(r − ϵ) > 0:

(..,− ,+ ,+ ..)︸ ︷︷ ︸
r−ϵ

→ (..,− ,0,+ ..)︸ ︷︷ ︸
r

→ (..,− ,− ,+ ..)︸ ︷︷ ︸
r+ϵ

– fi−1(r) > 0 and fi(r − ϵ) < 0:

(..,+ ,− ,− ..)︸ ︷︷ ︸
r−ϵ

→ (..,+ ,0,− ..)︸ ︷︷ ︸
r

→ (..,+ ,+ ,− ..)︸ ︷︷ ︸
r+ϵ

– fi−1(r) > 0 and fi(r − ϵ) > 0:

(..,+ ,+ ,− ..)︸ ︷︷ ︸
r−ϵ

→ (..,+ ,0,− ..)︸ ︷︷ ︸
r

→ (..,+ ,− ,− ..)︸ ︷︷ ︸
r+ϵ

We observe that for each case that σ(x) does not decrease nor increase.

• Statement 3) =⇒ fn has no real roots and has no influence on σ.

Statement 1) ensures that no consecutive polynomials in the sequence can simultane-
ously change their signs so those cases can be neglected. □

Example 2.2.1. Creating a CAD for a simple univariate polynomial constraint set.

Let f := x2 − x − 6 and g := 2x − 2. Their respective Cauchy bounds are 7 and 2.
Their Sturm sequences are (x2 − x − 6, 2x − 1, 254 ) and (2x − 2, 2) respectively. The
following table shows the sign sequences along some given points:

x Signs of the Sturm sequence of f σ(x) Signs of the Sturm sequence of g σ(x)

-7 (+,− ,+) 2 (−,+) 1

-2 (0,− ,+) 1 (−,+) 1

0 (−,− ,+) 1 (−,+) 1

2 (−,− ,+) 1 (+,+) 0

7 (+,+ ,+) 0 (+,+) 0

Table 2.2: Signs of the Sturm sequence of f and g at given points and their number
of sign changes

f has in total σ(−7)− σ(7) = 2 roots and g has σ(−2)− σ(2) = 1 root. The roots of
f lie in the intervals [−7,0] and [0,7] and the root of g in [−2,2]. We can depict these
roots using the representation for algebraic numbers:

α := (f, [−7,0]), β := (g, [−2,2]), γ := (f, [0,7])

We can see from the σ-entries in table 2.2 that α < β < γ. The CAD for a single
univariate polynomial can be easily constructed as they are exactly the sign-invariant
intervals or singletons for that polynomial:

• The CAD for {f} is CADf = {(−∞, α), {α}, (α, γ), {γ}, (γ,∞)}.
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• The CAD for {g} is CADg = {(−∞, β), {β}, (β,∞)}.

The CAD for {f,g} is the set that contains the non-empty intersections of each element
in CADf with each element in CADg or formally expressed:

CADf,g = {(I1 ∩ I2) ̸= ∅ : I1 ∈ CADf ∧ I2 ∈ CADg}

The enumeration of CADf,g is:

{(−∞,α), {α}, (α, β), {β}, (β, γ),{γ}, (γ,∞)}



Chapter 3

The Transformation and
Equisatisfiability

The main focus of this research is to analyze and implement a transformation, sug-
gested by Dr. Hamid Rahkooy, that should map polynomial constraints, their nega-
tion, their disjunction, and their conjunction to equisatisfiable equations. The ul-
timate goal is to achieve a single (quantifier-free) polynomial equational constraint
whose satisfiability could be determined using the subtropical real root finding method.

In this chapter we introduce that transformation and give some elaboration. We also
give a short overview of some necessary terminology. Let φ,ψ be formulas:

• φ,ψ are logically equivalent if every model that satisfies φ also satisfies ψ and
vice versa. We denote this relation by φ ≡ ψ.

• ψ is a logical consequence of φ if every model that satisfies φ also satisfies ψ.
We denote this relation by φ ⊨ ψ.

• φ,ψ are equisatisfiable when φ is satisfiable if and only if ψ is satisfiable. We
denote this relation by φ ≡sat ψ.

Let f, g ∈ Q[x1,...,xd] be polynomials. The transformation t is defined as follows:

1. t(¬(f ∼ 0)) := t(f ̸∼ 0) where ∼∈ {=, <,≤, >,≥, ̸=} and:

• If ∼∈ {=} then ̸∼∈ {≠}
• If ∼∈ {<} then ̸∼∈ {≥}
• If ∼∈ {≤} then ̸∼∈ {>}
• If ∼∈ {>} then ̸∼∈ {≤}
• If ∼∈ {≥} then ̸∼∈ {<}
• If ∼∈ {≠} then ̸∼∈ {=}

2. t(f = 0) := (f = 0)

3. t(f < 0) := (y2f +1 = 0) where y is a fresh new variable, i.e. does not occur as
variable in f . The same holds for the transformation rules 4 to 7.
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4. t(f > 0) := (y2f − 1 = 0)

5. t(f ≤ 0) := (f + y2 = 0)

6. t(f ≥ 0) := (f − y2 = 0)

7. t(f ̸= 0) := (yf + 1 = 0)

8. t(f = 0 ∨ g = 0) := (fg = 0)

9. t(f = 0 ∧ g = 0) := t(¬(t(t(f ̸= 0) ∨ t(g ̸= 0))))

We can generalize rule 8 and 9 for m > 1:

• Disjunction: t(
∨m

i=1 fi = 0) := (
∏m

i=1 fi = 0)

• Conjunction: t(
∧m

i=1 fi = 0) := t(¬(t(
∨m

i=1 t(¬fi = 0)))

The transformation rule 9 for two constraints fully evaluated results in:

t(f = 0 ∧ g = 0) = t(¬(t(t(f ̸= 0) ∨ t(g ̸= 0)))) Rule 9
= t(¬(t(y1f + 1 = 0 ∨ y2g + 1 = 0))) Rule 7
= t(¬(y1f + 1)(y2g + 1) = 0)) Rule 8
= t((y1f + 1)(y2g + 1) ̸= 0)) Rule 1
= y3(y1f + 1)(y2g + 1) + 1 = 0 Rule 7

Similarly, the transformation of m > 1 constraints yields:

t(

m∧
i=1

fi = 0) = ym+1(

m∏
i=1

(yifi + 1)) + 1 = 0

3.1 Transformation Properties

3.1.1 Termination

An algorithm that uses the proposed transformation halts on every correct input. The
following recursive pseudo-algorithm exemplifies this.
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Algorithm 1 Pseudo code of the transformation
Input QF NRA formula φ
Output Single polynomial equational constraint
1: if φ is not in CNF then
2: φ′ ← φ in CNF.
3: return call transformation on φ′

4: end if
5: if φ is a literal then
6: if φ has negation then
7: φ′ ← move negation into relation of φ
8: return call transformation on φ′

9: else
10: f ← polynomial in φ
11: y ← fresh new variable
12: switch Relation of φ do
13: case EQUAL
14: return φ

15: case LESS
16: return y2 · f + 1 = 0

17: case LESS_OR_EQUAL
18: return f + y2 = 0

19: case GREATER
20: return y2 · f − 1 = 0

21: case GREATER_OR_EQUAL
22: return f − y2 = 0

23: case NOT_EQUAL
24: return y · f + 1 = 0

25: end if
26: end if
27: if φ is a disjunction then
28: L← literals in φ
29: f ← 1
30: while L ̸= ∅ do
31: ψ ← Element of L
32: L← L \ {ψ}
33: ψ′ ← transformation on ψ
34: f ← f · ( polynomial in ψ′)
35: end while
36: return f = 0
37: end if
38: if φ is a conjunction then
39: D ← disjunction in φ
40: f ← 1
41: while D ̸= ∅ do
42: ψ ← Element of D
43: ψ′ ← transformation on ψ
44: g ← polynomial in ψ′

45: y′ ← fresh new variable
46: f ← f · (y′ · g + 1)
47: D ← D \ {ψ}
48: end while
49: y ← fresh new variable
50: return y · f + 1 = 0
51: end if
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Proof of termination. Let φ be a quantifier-free non-linear real arithmetic formula.
Distinguish the following cases:

• φ is not in CNF. Now, since φ does not contain any quantifier it is similarly
structured like a propositional formula. Therefore exists a formula ψ such that:

ψ is in CNF and ψ ≡ φ

The next call of the function is guaranteed to fall under one of the following
cases.

• φ is a literal. If φ is a negation of an atomic formula then the same algorithm
is called on the adjusted formula which is an atomic formula with the same left-
and right hand side and its relation changed accordingly.
Otherwise, φ is an atomic formula and the function returns a single polynomial
constraint. The algorithm terminates on literals.

• φ is a disjunction of literals. The loop is bounded by the constant amount of
literals φ has. The argument in the function call within the loop is a literal and
terminates therefore as well. Therefore the algorithm terminates on disjunctions
of literals.

• φ is a conjunction of disjunctions of literals. The loop is bounded by the constant
amount of disjunctions φ has. Analogously, the function call within the loop has
a disjunction of literals as argument and terminates therefore as well. Finally,
the algorithm terminates for every QF NRA formula.

3.1.2 Equisatisfaction
The transformation needs to be equisatisfiable to its input in order to determine
satisfiability. The given table below is a quick overview for the its relation to the
original formula (we assume for rule 9 that the transformation is fully evaluated).

φ t(φ) ≡sat φ t(φ) ⊨ φ φ ⊨ t(φ) φ ≡ t(φ)
f = 0 Yes Yes Yes Yes
f < 0 Yes Yes No No
f > 0 Yes Yes No No
f ≤ 0 Yes Yes No No
f ≥ 0 Yes Yes No No
f ̸= 0 Yes Yes No No

f = 0 ∨ g = 0 Yes Yes Yes Yes
f = 0 ∧ g = 0 No No No No

Table 3.1: Relations to the transformation

The first transformation rule is omitted because the act of moving the negation inside
the relation yields a logically equivalent formula and therefore we need to consider
the other rules only.

The reason why rule 2 fulfills all relations is trivial since that transformation rule is
the identity.
The transformations of rule 3 to rule 7 are not logically equivalent as they introduce
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new variables. A model that satisfy the original formula does not necessarily satisfy
the transformation as we can choose the freshly introduced variable freely such that
the transformation can be falsified. However, they are equisatisfiable which is the
necessary trait for determining satisfiability.
Transformation rule 8 on the other hand is logically equivalent because the reals with
its addition and multiplication is a field. This means that it’s also an integral domain
and therefore fulfills the following condition:

∀a,b ∈ Domain : (a ̸= 0 ∧ b ̸= 0 ⇐⇒ a · b ̸= 0)

which is equivalent to:

∀a,b ∈ Domain : (a = 0 ∨ b = 0 ⇐⇒ a · b = 0)

The transformation rule 9 is the only one that does not return an equisatisfiable
formula (this means that the constraint returned by the pseudo-algorithm is in general
not equisatisfiable). Consider the following counterexample.

Let m > 1 and f1,...,fm ∈ Q[x1,...,xd] be polynomials such that
∧m

i=1 fi = 0 is
unsatisfiable. Then

t(

m∧
i=1

fi = 0) = ym+1(

m∏
i=1

(yifi + 1)) + 1 = 0, y1,...,ym+1 are fresh variables

can be satisfied by y1 = ... = ym = 0 and ym+1 = −1. The other variables can
be chosen at random as they do not matter. In conclusion, even if

∧m
i=1 fi = 0 is

unsatisfiable the transformation is not.

Notice that we cannot add more restrictions (i.e. constraints) to the fresh real vari-
ables. Otherwise, we would not receive a single constraint. This is because they
would need to be considered as well in the transformation. This would lead back to
the original problem of having multiple constraints.

3.2 Further Analysis

The transformation rule 9 seems at the first glance correct. It utilizes a variation
of De Morgan’s law and under the assumption that the other transformations are
correct, it should return an equisatisfiable formula as well. This fallacy occurs since
the following was overseen:

¬∀φ,ψ ∈ FO({0,1,+ , · , <}) : φ ≡sat ψ ⇐⇒ ¬φ ≡sat ¬ψ

In other words, if two formulas are equisatisfiable then their negation does not have
to be as well. This equivalence only holds true if:

• φ and ψ are a tautology.

• φ and ψ are unsatisfiable.

• φ,ψ,¬φ , and ¬ψ are satisfiable.



38 The Transformation and Equisatisfiability

Therefore even if t(φ) ≡sat φ then ¬t(φ) ≡sat ¬φ is not necessarily true. Another
example is the constraint ¬(x2 + 1 ≥ 0) which is unsatisfiable. However:

¬(t(x2 + 1 ≥ 0)) = ¬((x2 + 1)− y2 = 0) ≡ (x2 + 1− y2 ̸= 0)

can be satisfied by the interpretation x = y = 0.

3.2.1 Alternative Ideas
A correct transformation is by no means impossible since

m∧
i=1

(fi = 0) ≡
m∑
i=1

f2i = 0

however, such a transformation renders the subtropical method less useful because
that polynomial has no negative points 1. Essentially, a complete and correct trans-
formation of a polynomial constraint set Φ must yield a polynomial f that fulfills the
following conditions for the application of the subtropical real root finding method:

• f = 0 ≡sat

∧
Φ

• If
∧
Φ is satisfiable then there exists p and q such that f(p) > 0 and f(q) < 0.

There is also the alternative to allow for quantifiers. The following transformation
also yields a logically equivalent (and therefore equisatisfiable) formula:

m∧
i=1

(fi = 0) ≡ ∀y : ((

m∏
i=1

(y · fi + 1))− 1 = 0)

Proof. Let φ =
∧m

i=1(fi = 0) and ψ = ∀y : ((
∏m

i=1(y · fi + 1))− 1 = 0). Consider the
following cases:

• Claim: φ ⊨ ψ
Let M be a model of φ (or M ⊨ φ for short). Substituting the free variables
x = (x1,...,xn) in ψ with the interpretation of M we get:

ψ[x/M(x)] = (∀y : (

m∏
i=1

(y · fi + 1))− 1 = 0)[x/M(x)]

⊢ ∀y : (

m∏
i=1

(y · 0 + 1))− 1 = 0

⊢ ∀y : (
m∏
i=1

(0 + 1))− 1 = 0

⊢ ∀y : (

m∏
i=1

1)− 1 = 0

⊢ ∀y : 1− 1 = 0

⊢ ∀y : 0 = 0

0 = 0 is a true sentence and y does not occur in 0 = 0 therefore M ⊨ ψ.
1but by further transformation due to other constraints this might change
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• Claim: ψ ⊨ φ
Let M ⊨ ψ and ci = fi[x/M(x)] for each 1 ≤ i ≤ m. Consider the following
interpretation:

ψ[x/M(x)] = (∀y : (

m∏
i=1

(y · fi + 1))− 1 = 0)[x/M(x)]

⊢ ∀y : (

m∏
i=1

(y · ci + 1))− 1 = 0

≡ ∀y : ((

m∏
i=1

ci) · ym + ...+ (

m∑
i=1

ci) · y + 1)− 1 = 0

⊢ ∀y : (

m∏
i=1

ci) · ym + ...+ (

m∑
i=1

ci) · y = 0

The polynomial in that formula is equivalent to a univariate polynomial with the
indeterminate y with real coefficients. The semantic statement of the formula is
"That polynomial is the zero polynomial" which means that all coefficients must
be zero. We prove now that M ⊨ φ by contradiction. Suppose M ̸⊨ φ then there
exist non-zero ci1 ,..., cik such that each cil belongs to a different polynomial fil
for 1 ≤ l ≤ k ≤ m. Now consider the coefficient at yk:

– k = m
Then the coefficient

∏m
i=1 ci ̸= 0 (because R is an integral domain) which

is a contradiction to the statement of the formula.
– k < m

Let Ik denote the set containing all combinations of k indices (i1,...,ik) from
a set {1,...,m} and let (j1,...,jk) ∈ Ik be the indices where cj1 ̸= 0,..., cjk ̸=
0. Then the coefficient at yk is:∑

(i1,...,ik)∈Ik

(ci1 · ... · cik)

Each term in that sum that contains at least one ci with i ̸∈ {j1,...,jk}
vanishes and the coefficient simplifies to:

cj1 · ... · cjk ̸= 0

which is a contradiction to the statement of the formula.

Therefore M ⊨ φ. □

3.3 Model Construction for a Polynomial Equation
Within this section we present a recipe how to construct a model for a polynomial
constraint set Φ, assuming that we do gather a single satisfiable quantifier-free poly-
nomial equation φ such that φ ⊨

∧
Φ.

Let the above mentioned assumptions hold and φ = (f = 0). Let also p be a point,
which is computed using the subtropical method, such that f(p) > 0 and f(1) < 0:
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1. Construct a univariate polynomial fu(λ) which is a restriction of f in form of a
linear combination between f(1) and f(p):

fu(λ) := f(λ1,...,λn) λi := (1− λ) + λpi for 1 ≤ i ≤ m

The domain of fu is [0,1] and we have fu(0) = f(1) and fu(1) = f(p).

2. Proceed to solve the univariate polynomial using the CAD method from Section
2.2.3 to find a real root r which may be represented as an algebraic number
(fu, [a,b]) of fu. Notice that we cannot use the (fu, [0,1]) as a solution because
we cannot guarantee that fu has only one root in that interval.

The model of Φ is then the solution to the simpler polynomial constraint system:

λ− a ≥ 0

λ− b ≤ 0

fu = 0

x1 − λ1 = 0

... = 0

xm − λm = 0

The polynomials in this system have at most 2 variables and the all of them are
linear with the only exception being the univariate polynomial which is in general not
bounded to be linear. Equivalently, we can also represent the model using expressions
whose values are dependent on the substitution used:

∀1 ≤ i ≤ m : xi = λi[λ/r] where r = (fu, [a,b])

3.4 Outlook

We reiterate our results in this section and present a couple of outlooks.

3.4.1 Gröbner Basis

It’s possible to transform a given polynomial constraint set Φ into an equisatisfiable
polynomial equation set ΦEQ. In general, ΦEQ introduces new variables and has
a greater degree than within its elements than Φ. Although, ΦEQ in turn can be
simplified again using a Gröbner basis [BK10]. The Gröbner basis is a generating
set G = (g1,...,gm) ⊆ Q[x1,...,xd] of an ideal I ⊆ Q[x1,...,xd] if each f ∈ I can be
represented as a linear combination using G and polynomials h1,...,hm ∈ Q[x1,...,xd]:

∀f ∈ I : f =

m∑
i=1

hi · gi

A Gröbner basis can be computed with Buchberger’s algorithm [oM] which also can
be used to construct a Gröbner basis for ΦEQ. The Gröbner basis G = (g1,...,gm) of
ΦEQ may induce a simplified polynomial equation set ΦG with less degree and less
amount of variables (not to be confused with less variables). The solution to ΦG is
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exactly the solution to ΦEQ because for each polynomial f with φ = (f = 0) ∈ ΦEQ

holds:

f =

m∑
i=1

hi · gi︸︷︷︸
=0

= 0

Finally, since each formula φ ∈ Φ is a logical consequence of
∧

ΦEQ the model that
fulfills ΦG and therefore ΦEQ also satisfies Φ.

3.4.2 Gradient Equation Solving
Consider the following transformation for m > 1 again:

m∧
i=1

(fi = 0) ≡
m∑
i=1

f2i = 0

As we already mentioned, the subtropical real root finding method is always unsuc-
cessful for such a constraint. Instead, we could attempt to solve and evaluate the
gradient of that transformation. The root r of a non-negative polynomial f is a
global minimum because it fulfills:

∀x ∈ dom(f) : f(r) = 0 ≤ f(x)

A necessary condition for a global minimum m is that the gradient ∇f of a given
polynomial f evaluates to the null vector 0 at m or simply put:

∇f(m) = 0

We can determine unsatisfiability of a polynomial constraint set Φ if the polynomial
equation system induced from ∇f , where φ = (f = 0) and φ ⊨

∧
Φ , has no solutions.

Proof. Let Φ be a polynomial constraint set such that m = |Φ| > 1, i.e. we have
at least one conjunction. Let also φi = (fi = 0) be the transformed constraints for
1 ≤ i ≤ m and f ∈ Q[x1,...,xd] the above mentioned transformation of the conjunction
of f1,...,fm:

f =

m∑
i=1

f2i

If the polynomial equation system gathered from ∇f has no solutions then:

∀x ∈ Rd : f(x) ̸= 0

=⇒ ∃1 ≤ i ≤ m∀x ∈ Rd : f2i (x) > 0

=⇒ ∃1 ≤ i ≤ m∀x ∈ Rd : fi(x) > 0

=⇒
m∧
i=1

(fi = 0) is unsatisfiable

=⇒ Φ is unsatisfiable

□
The converse of this condition is not true. A global minimum does not necessarily
have to be a root of f . Take for example x2+1, it has no roots but a global minimum
at 0. Another example is g = 2x4 + 6x2 + 5 = (x2 + 1)2(x2 + 2)2. Its gradient or
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rather derivative is g′ = 8x3 + 12x which has a root at 0, however, g has no roots.

There is one major downside to this approach. Going from determining satisfiability
of a polynomial constraint set to attempting to solve the polynomial equation system
induced by the gradient is by no means a reduction to a simpler problem. It rather
becomes even more difficult as we introduce more variables which increase the number
of entries in the gradient. The following constraint system exemplifies this:

x1 + x2 > 0

x2 + 5 < 0

The complete transformation with variable ordering x1 < x2 < y1 < y2 to a single
polynomial yields:

x21y
4
1 + 2x1x2y

4
1 − 2x1y

2
1 + x22y

4
1 + x22y

4
2 − 2x2y

2
1 + 10x2y

4
2 + 2x2y

2
2 + 25y42 + 10y22 + 2

The corresponding polynomial equation system induced by the gradient of that trans-
formed polynomial is:

2x1y
4
1 + 2x2y

4
1 − 2y21 = 0

2x1y
4
1 + 2x2y

4
1 + 2x2y

4
2 − 2y21 + 10y42 + 2y22 = 0

4x21y
3
1 + 8x1x2y

3
1 − 4x1y1 + 4x22y

3
1 − 4x2y1 = 0

4x22y
3
2 + 40x2y

3
2 + 4x2y2 + 100y32 + 20y2 = 0

3.4.3 Quantifier Elimination
There are methods to eliminate quantifiers in non-linear real arithmetic formulas and
receive equivalent QF NRA formulas [Neu18]. Regarding the main goal of this thesis,
we cannot make use of such quantifier elimination for QF NRA formulas. The reason
for this is that this procedure does not guarantee to not introduce any conjunctions,
disjunctions, negations, or changes of relations. For example the parametric parabola
problem [Neu18] is a quantified equational constraint:

∃x(c+ bx+ ax2 = 0)

The QEPCAD quantifier elimination described in the bachelor thesis [Neu18] by T.
Neuhäuser returns an equivalent quantifier-free formula but also discards the "single-
equation-constraint" property:

(ac− b2 ≤ 0) ∧ (c = 0 ∨ a ̸= 0 ∨ 4ac− b2 < 0)

3.4.4 NRA SMT solvers
Although the subtropical method in its current state cannot handle general NRA
formulas that contain quantifiers other SMT solvers that benefit from less formulas
and are sturdy against a large number of variables may improve on that.
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Utility for SMT-RAT

SMT-RAT is an Open Source C++ Toolbox for SMT solving and is capable of strate-
gic and parallel solving. It is under the care of the Theory of Hybrid Systems group
at RWTH Aachen University. It makes use of different solving techniques each en-
capsulated in a module and tackling an SMT instance differently and efficiently. For
example, the simplex method is appropriate for linear real constraints of the form∑n

i=1 ai · xi ≤ bi while other SAT-solving modules are appropriate for boolean con-
straints. Each module is designed to work incrementally and support backtracking.
The main advantage of this approach is remembering certain formulas and important
properties (for example, reasons for unsatisfiability in form of formula sets) from the
previously considered constraints. So even if the constraint set is changed by adding
or removing formulas, the solver does not need to consider the whole set again but
rather utilizes those properties to make significantly faster decisions.

Although we are not successful in advancing SMT-RAT by the solving technique pro-
posed by Dr. Rahkooy, during our research and discussions another idea came up
which we tested and analyzed statistics of. It consists of increasing the efficiency of
the subtropical module of SMT-RAT by changing the reduction to an LRA instance
slightly.
Currently, the subtropical module constructs a hyperplane formula using the described
methods in [FOSV17]. It is capable of finding general solutions most of the times (due
to incompleteness) for multiple polynomial inequations. For reference, the subtrop-
ical real root finding method failed only in less than 8 percent of several hundreds
of benchmarks with over 800.000 monomials in up to 10 variables with a maximum
degree of 12 [Stu15]. In order to solve constraints of the form f ̸= 0 the module splits
that constraint into f < 0 ⊕ f > 0 (XOR). The hypothesis in our discussion was
whether the module performs differently if we instead transform such constraints into
yf > 0 where y is a fresh new variable. The difference being is that for n constraints
of this form instead of considering 2n constraints, we only check n constraints with n
new variables.

4.1 Tests

Notice: The tests were measured on a local machine and do not represent SMT-
RAT’s performance in a competitive sense and should therefore not be used to com-
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pare SMT-RAT to other SMT solvers that are not tested under the same conditions.
They are merely shown to compare the performance of different methods within SMT-
RAT.

For the analysis we used over 10,000 benchmarks of QF NRA formulas from SMT-
LIB, an international facility that thrives to improve research and development of
SMT solving and provides a large variety of SMT benchmarks [smtb] [smta]. In order
to measure the performance of the subtropical module precisely, the strategy is only
composed of the SAT-module followed by the subtropical module. The tests were con-
ducted on a local machine provided with 3 gigabytes and 20 seconds of computation
time.

0.63%

12.36%

24.33%

54.59%8.09%

SAT
UNSAT
Unknown
Timeout
Memory issues

0.74%

12.25%

24.33%

54.56%8.13%

Figure 4.1: Results of the original subtropical method (left) and variation (right).
Rounded to four decimals. 10,668 benchmarks used.

The comparison shows that there is no significant difference between the computed an-
swers, however the slight contrast between variation and original hints that SMT-RAT
performs worse with the variation. This is already reason enough to not introduce
the proposed change. The tables 4.1 and 4.2 show the difference in time and memory
performance:

Time performance

Subtropical module Min. Max. Avg. Median LQ UQ
Original 12 20,094 1,857.4 17 15 91
Variation 12 20,084 1,859.28 17 14 94

Table 4.1: Computation time in milliseconds (LQ/UQ = lower/upper quartal)

Memory performance

Subtropical module Min. Max. Avg. Median LQ UQ
Original 19,432 3,131,648 161,566.21 20,984 20,124 27,804
Variation 19,372 3,131,664 161,721.67 21,008 20,148 28,416

Table 4.2: Required memory in kilobytes
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4.2 Other Implementations

Within this section we want to present some other implementations that are a byprod-
uct of this research.

4.2.1 Transformation to a NRA formula

We programmed a method that realizes the transformation in Section 3.2.1 which
introduces a quantifier to the formula but also transforms the polynomial constraint
set Φ into a single equisatisfiable formula ψ. This can be done in two steps:

1. Create a polynomial set F and transform each constraint φ in Φ into an equi-
satisfiable polynomial equational constraint φ′ using the transformation rules
1 to 7 in Section 3. Let g be the polynomial that appear in the transformed
constraint φ′ and y a fresh new variable. Add for each transformed constraint
the polynomial (y · g + 1) to F .

2. Finally, construct ψ = (∀y(
∏

f∈F f)− 1 = 0).

Similarly, we used over 10,000 benchmarks to measure the performance of such a
transformation. We also used 3 gigabytes of memory but increased the computation
time available from 20 seconds to 1 minute. All transformation steps are the same
with the only exception that a quantifier is added. We can therefore get at least a
rough expectation of how much computation time and memory are required for a
similar transformation.

Min. Max. Avg. Median LQ UQ
12 60,216 19,169.32 213 28 60,062

Table 4.3: Computation time in milliseconds

Note: From 11,552 benchmarks around 3,314 (which is approx. 29%) resulted in
timeouts.

Min. Max. Avg. Median LQ UQ
18,924 3,130,748 731,054.78 43,012 21,128 1,774,060

Table 4.4: Required memory in kilobytes

4.2.2 Edge case: Single Polynomial Equation

In the following, we depict some statistics of satisfiability checking, described in this
thesis, for the rare case that the polynomial constraint set is a single equation. Equiv-
alently, we provide statistics for the subtropical real root finding method described in
[Stu15] [FOSV17]. It is questionable if such a module even fits into the structure for
SMT-RAT or SMT solving in general as most SMT instances won’t consist of a singu-
lar constraint. That is why we compare our method with the strategy SMTCOMP of
SMT-RAT. The strategy is composed of 22 modules at the time of our research. For
the benchmarks, we used 3,000 satisfiable SMT instances with up to 10 monomials,
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5 variables, and an expected degree of 15 (max. 40). Both strategies were given 3
gigabytes of memory and 1 minute of computation time.

SAT Unknown Timeout and other Total time Avg. time
Default strategy 2,391 0 609 37,137,210 12,379.07
Proposed method 2,974 0 26 2,132,670 710.89

Table 4.5: Comparison of SMT-RAT default strategy and proposed method for single
constraints

We can see that at least for the edge case that SMT-RAT with the proposed method
for polynomial constraint singletons is significantly performing better in terms of
computation time and gathered answers. The results also agree with the results of
[Stu15][FOSV17] that the subtropical method is indeed significantly more efficient.
There is a total time difference of 583 minutes and approximately 25 seconds (around
10 hours in total). The method therefore at least provides great utility for such
edge cases which may not appear in general SMT instances but could be useful for
determining satisfiability of singular constraints whose variables do not originate from
the considered SMT instance.

An efficient transformation that transforms polynomial constraint sets into a single
equisatisfiable quantifier-free polynomial equation while also not restricting the output
space to solely non-negative values (or non-positive values) could lead to significant
computation time improvements for SMT solving.
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Conclusion

In conclusion, we attempted to advance SMT-RAT and SMT solving in general by the
capability of solving QF NRA using the subtropical method without being restricted
to disregard conjunctions that include polynomial equational constraints. We intro-
duced the subtropical real root finding method [Stu15] [FOSV17] and the cylindrical
algebraic decomposition [Jir95] for univariate polynomial constraint sets. The analy-
sis of the transformation showed that the initial idea regarding the conjunction rule
does not yield an equisatisfiable formula which is an absolute necessity. Upon that,
we elaborated alternative approaches such as the Gröbner base and gradient equation
solving. We analyzed other closely related implementations using statistical measures
to check for efficiency improvements within the subtropical satisfiability, to measure
the computation time for a transformation that introduces quantifiers, and to see how
SMT-RAT with the proposed method compares to another of its strategies in an edge
case.
The empirical results of the last tests coincide with the results in [FOSV17] and [Stu15]
and shows: If future research ever finds a possibility to realize such a transformation
efficiently then the performance for SMT solving of NRA formulas could be greatly
improved.

Even though we are not successful to realize this idea, we still hope that this thesis
provides new perspectives for the development of SMT solving.
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