
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

EFFICIENT DATA STRUCTURES FOR CYLINDRICAL

ALGEBRAIC COVERINGS

Philip Kroll

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Jasper Nalbach

Aachen, Date

October 26, 2020

Abstract

The Cylindrical Algebraic Covering (CAC) algorithm is a decision procedure
that is used to decide the satisfiability of problems from the theory for non-linear
real arithmetic. It is intended for use in Satisfiability Modulo Theories (SMT)
solving, which is often used in Verification of Hardware and Software. However,
this approach underperforms when compared to other decision procedures in the
same setting. In this thesis, two changes to the CAC algorithm are presented
and implemented with increased performance in mind. These changes include a
data structure to store and reuse calculations on polynomials and the addition
of incrementality.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennze-
ichnet.

vi

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Boolean Satisfiability Problem . 11
2.2 Real Arithmetic . 12
2.3 Satisfiability Modulo Theories . 14
2.4 Cylindrical Algebraic Covering . 14

3 Algorithm 21
3.1 Projection Memory . 21
3.2 Incrementality . 22
3.3 Example . 27

4 Implementation 35
4.1 Projection Memory . 36
4.2 Incrementality . 37

5 Test Results 41
5.1 Projection Memory . 41
5.2 Incrementality . 45
5.3 Incrementality and Projection Memory 46

6 Conclusion 49

Bibliography 51

viii Contents

Chapter 1

Introduction

Computer systems are used in areas where correctness and certainty that a particular
property holds are required. Correctness and certainty can be acquired by modeling
the system in an abstract way to an arithmetic formula and formally reason that
those particular properties of the system hold. These properties can often be re-
duced to questions such as "Is there a variable assignment, such that the formula
evaluates to true?". Depending on the problem, a specific underlying theory is used
to model the formula. SMT-Solvers are then used to answer these kinds of ques-
tions. The Cylindrical Algebraic Covering (CAC) algorithm, recently introduced by
Ábrahám, Davenport, England, and Kremer [ÁDEK20] can be used in SMT-Solvers
for solving quantifier-free non-linear real arithmetic (QF_NRA). This algorithm was
implemented over the course of a master thesis in SMT-RAT [Fra20]. Over the course
of this thesis, we will present two modifications to the CAC algorithm with an increase
of performance in mind. For this purpose, a data structure is introduced, which stores
calculations on polynomials so that they can be reloaded if necessary without recal-
culating them. Additionally, the algorithm is adapted to work incrementally. The
intermediate information of the algorithm is stored so that this information can be
reused in the next call of the algorithm. The motivation of these modifications is to
reduce the number of repeated, time-consuming calculations. The modifications can
be used individually, but also in combination. These modifications are also applied
to the existing implementation of the CAC algorithm.

In Chapter 2, the theoretical basis for this work is presented. Satisfiability Modulo
Theories (SMT) with the theory of real arithmetic and the working of the CAC
algorithm are presented. Subsequently, in Chapter 3, the proposed modifications
are discussed in more detail. In Chapter 4 of this thesis, the implementation of the
modification in the SMT Solver SMT-RAT [CKJ+15] is presented. In Chapter 5,
the results of the changes are evaluated and discussed. Finally, the work is briefly
summarized in Chapter 6, followed by a summary of the results and an outlook for
future improvements.

10 Chapter 1. Introduction

Chapter 2

Preliminaries

In this chapter, the necessary theoretical knowledge for this thesis is explained. First,
the Boolean Satisfiability Problem (SAT) is introduced. Afterwards, the theory of
interest for this thesis, Non-linear Real Arithmetic (NRA) is described followed by
an introduction of Satisfiability Modulo Theories (SMT). For a better understanding
of the main part, the Cylindrical Algebraic Decomposition (CAD) and the cylindrical
algebraic covering (CAC) are introduced which are decision procedures for deciding
NRA.

2.1 Boolean Satisfiability Problem
The Boolean satisfiability problem (SAT) is the problem of determining if a given
formula in propositional logic is satisfiable. A propositional logic formula consists of
a fixed set of atomic propositions to which the values of the boolean constants {0,1}
can be assigned. A propositional logic formula can then be constructed with atomic
propositions and the logical connectives for negation ¬ and conjunction ∧.
Definition 2.1.1. Propositional Logic Formula

ϕ := x | ¬ϕ | (ϕ ∧ ϕ)

where x is a atomic proposition.

Additional logical connectives such as {∨,→,↔,⊕} can be defined based on the given
logical connectives as syntactic sugar. In the following let Φ denote the set of all
propositional logic formulae.

Example 2.1.1. Propositional Logic Formulae

ϕ1 := (x ∧ y)

ϕ2 := (x ∨ y)→ z

ϕ3 := ¬z

With atomic propositions x,y,z and ϕ1, ϕ2, ϕ3 ∈ Φ.

A variable assignment then assigns boolean constants to the respective variables and
the formula can be evaluated. A propositional logic formula is satisfiable if a vari-
able assignment exists such that the formula evaluates to true. If such an assign-
ment does not exist the formula is unsatisfiable. The boolean satisfiability problem is

12 Chapter 2. Preliminaries

NP-complete [Coo71]. Algorithms which solve the boolean satisfiability problem are
known as SAT-Solvers.

2.2 Real Arithmetic
In this section, the theory of real algebra, often also called non-linear real arithmetic
(NRA), is introduced. It is a first order logic theory over R, also called the reals,
together with addition and multiplication. It enables inequalities and equalities over
real numbers. The following definitions are taken from [BFT16], [ÁDEK20] and
[BPR06].

Definition 2.2.1. Theory of Real Arithmetic

Domain: R
Function symbols: {+,−, ·}
Comparison predicates: {≥, >,=, 6=, <,≤}

The theory of real arithmetic is decidable [Tar98]. In this thesis we only consider
the quantifier-free fragment QF_NRA as defined in [BFT16]. This means that there
are no universal quantifiers and no negations of expressions containing existential
quantifiers.

Definition 2.2.2. QF_NRA formulas
QF_NRA formulas are boolean combinations of polynomial constraints.

Terms: t := 0 | 1 | x | t+ t | t · t
Constraints: t := t < t

Formulas: ϕ := c | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

Additional comparison predicates, such as {≥, >≤,=, 6=}, can be defined based on
the given comparison predicate as syntactic sugar. We denote the coordinates of Rm

as x1,...,xm for some m ≥ 1.

Definition 2.2.3. Polynomial
A term of the form

P :=

n∑
k=0

ak

m∏
i=0

x
ek,i

i

with exponents ek,i ∈ N0, coefficients ak ∈ Q and variables xi ∈ R for 0 ≤ k ≤ n and
0 ≤ i ≤ m is called a polynomial. We assume that the variables are ordered under the
total ordering ≺ of their labels, i.e. x1 ≺ x2 ≺ ... ≺ xn.

Definition 2.2.4. Main Variable and Level

• The main variable of a polynomial is the highest variable in the ordering present
on the polynomial.

• The level of a polynomial is the position of the main variable in the variable
order x1 ≺ x2 ≺ ... ≺ xn

2.2. Real Arithmetic 13

The main variable of a polynomial P is denoted as main(P).

Example 2.2.1. Main Variable of a Polynomial

• P := 4x1x
4
2 + x2: main(P) = x2

• Q := 9x1x2 + 17
5 x5: main(P) = x5

The set of all polynomials over the real valued variables x1,...,xn is denoted as
R[x1,...,xn]. A polynomial is univariate if it contains one variable, i.e it is in R[xi] for
some variable xi. A polynomial is multivariate if it contains more than one variable,
i.e it is in R[x1,...,xn] for x > 1. A multivariate polynomial in R[x1,...,xn] can also be
interpreted as an univariate polynomials in R[x1,...,xn−1][xn], where xn in the main
variable of the polynomial.

Definition 2.2.5. Degree
The degree of a polynomial p is

deg(p) = max
0<k<n

m∑
i=0

ek,i

Polynomials can then be used to define polynomial constraints. This is an equality or
an inequality of a polynomial compared to zero.

Definition 2.2.6. Polynomial constraint
An expression

p ./ 0

with p ∈ R[x1,...,xn] for some n ≥ 1 and ./ ∈ {≥, >,=, 6=, <,≤} is called polynomial
constraint.

Example 2.2.2. QF_NRA formula

ϕ := 2x21 + 5x31 · x2 > 0︸ ︷︷ ︸
Polynomial Constraint

∧ − x1 · x42 + 5 ≤ 0

With the variable ordering x1 ≺ x2 . Both polynomials have the main variable x2

A constraint with a polynomial c ∈ R[x1, ..., xn] can be evaluated at a (partial) vari-
able assignment. The variables are substituted for the corresponding values. If there
are no variables left, the truth value of the (in-)equation is given.

Example 2.2.3. Evaluation
Let c1 := −x1 · x42 + 5 ≤ 0 ∈ R[x1,x2].

• c1(x1 7→ 1) := −1 · x42 + 5 ≤ 0 ⇐⇒ −x42 + 5 ≤ 0

• c1(x1 7→ −1, x2 7→ 2) := 1 · 24 + 5 ≤ 0 ⇐⇒ 21 ≤ 0 ⇐⇒ False

• c1(x1 7→ 1, x2 7→ 2) := −1 · 24 + 5 ≤ 0 ⇐⇒ −11 ≤ 0 ⇐⇒ True

14 Chapter 2. Preliminaries

2.3 Satisfiability Modulo Theories
In this section, Satisfiability Modulo Theories (SMT) is introduced. The boolean
satisfiability problem is limited by the fact that the used variables may only be binary.
However, there are many problems where this is not sufficient. In Satisfiability modulo
theory (SMT) formulae are boolean combinations of constraints which are defined over
some theory. Here the theory of interest is QF_NRA which is defined in Section 2.2
Algorithms which solve satisfiability modulo theory problems for given theories are
known as SMT-Solvers. A SMT-Solver that follows the DPLL(T) framework consists
of a SAT-Solver and a Theory Solver. The SAT-Solver checks the boolean skeleton of
the input formula as described in Definition 2.3.1. If a satisfying assignment is found,
the set of constraints that are marked as true and the negation of the constraints that
are marked as false are passed to the Theory-Solver. The theory solver then checks if
the conjunction of the passed constrains is satisfiable in the given underlying theory.
In the context of this thesis, the Cylindrical Algebraic Covering (CAC) algorithm as
described in Section 2.4 is used as a theory solver.

Definition 2.3.1. Boolean skeleton
The boolean skeleton ϕskeleton ∈ Φ of a SMT formula ϕ is obtained by replacing each
constraint p in ϕ by a fresh propositional variable Xp.

When a satisfying assignment for the boolean skeleton is found the according set of
constraints are passed to the theory-solver. The theory-solver checks if the passed
set of constraints is consistent, i.e. if a variable assignment exists such that the con-
junction of the constraints evaluates to true. Such a satisfying variable assignment is
also called a satisfying witness. If the constraints are consistent a satisfying witness
for the SMT-formula is provided. If the constraints are not consistent a reason for
unsatisfiability is provided, which should be the smallest possible set of constraints,
which are already unsatisfiable. The SMT-formula is then extended such that simi-
lar unsatisfying assignments are ruled out. This is repeated until either a satisfying
assignment is found or until enough information has been gathered to conclude un-
satisfiability. An illustration of how a SMT-solver works is shown in Figure 2.1. In
order for Theory-solvers to work efficiently they should have the following properties:

• Incrementality: When SAT has been returned for a given set if constraints
and the theory solver is called again for an extended set of constraints, the
information that is already known is reused.

• Infeasible subsets: Compute a (minimal) subset of the constraints which are
already unsatisfiable.

• Backtracking: The theory solver should be able to remove constraints in in-
verse chronological order.

2.4 Cylindrical Algebraic Covering
The cylindrical algebraic covering (CAC) algorithm, presented in [ÁDEK20], is a deci-
sion procedure for non-linear real algebra and in particular can be used as an Theory-
Solver in SMT-solvers for QF_NRA. More precisely, it takes a set of constraints as
input and searches for a satisfying variable assignment for the conjunction of these
constraints regarding the underlying theory of the reals as described in Section 2.2.

2.4. Cylindrical Algebraic Covering 15

(Partial) Solution

Boolean Abstraction ϕskeleton

Input formula ϕ

SAT-Solver

Set of Constraints

Theory-Solver

(Partial) Assignment /
Explanation for UNSAT

SAT/UNSAT

Figure 2.1: Structure of a SMT-Solver

The CAC algorithm is sound and complete. In case the passed set of constraints is
consistent the algorithm returns SAT as well as the corresponding satisfying witness.
Otherwise, if UNSAT is concluded, the output includes a subset of the input con-
straints which conjunction is already unsatisfiable. The CAC algorithm is based on
the cylindrical algebraic decomposition (CAD) [Col75] and therefore to understand
how the CAC algorithm works a fundamental understanding of the CAD algorithm
has to be established. A detailed explanation of how the CAD algorithm works can
be seen in [Jir95]. The CAD algorithm has a doubly exponential runtime complexity
in the number of variables[Col75]. The CAD algorithm determines a finite amount of
possible variable assignments, at which the input formula is evaluated. For obtaining
the samples, a sign-invariant, cylindrical algebraic decomposition is computed. This
decomposition consists of a finite amount of cells, from which one test point each is
used as a variable assignment. If none of these assignments is a satisfying witness, it
can be concluded that the constraints are not consistent.

Definition 2.4.1. Cell

1. A cell is a non-empty connected subset of Rn.

2. A cell is (semi-)algebraic if it can be described as a solution set of a conjunction
of polynomial constraints with relation {<,>,=}.

3. A set of cells of Rn is cylindrically arranged if for each pair of cells the projec-
tions onto the dimension Rn−1 are either identical or disjoint.

4. A cell is UNSAT for a polynomial constraint if and only if the constraint eval-
uates to False at every point in the cell.

The CAD algorithm and likewise the CAC algorithm only considers cells which are
both algebraic and cylindrically arranged.

Definition 2.4.2. Decomposition
A decomposition D of Rn is a finite partitioning into a set of pairwise disjoint cells.

16 Chapter 2. Preliminaries

D = {C1,...,Cm} of Rn with Rn =
m⋃
i=1

Ci

1. A decomposition is algebraic if each of its cells is algebraic.

2. A decomposition is cylindrical if its cells are cylindrically arranged.

Definition 2.4.3. Sign-invariance A cell C ⊆ Rn is sign-invariant for a polynomial
p ∈ R[x1,...,xn] if exactly one of the following properties holds.

• ∀x ∈ C.p(x) > 0

• ∀x ∈ C.p(x) = 0

• ∀x ∈ C.p(x) < 0

C is sign-invariant for a set of polynomials if it is sign-invariant for each polynomial.

A decomposition of Rn is sign-invariant for a set of polynomials if each cell is sign-
invariant on the set of polynomials.
The algorithm to construct such a sign-invariant, cylindrical and algebraic decompo-
sition of Rn is split into three phases.

1. Projection phase: The projection phase consists of a number of steps, in each
of which a new set of constraints is constructed. The input of the projection
phase are multivariate polynomials in R[x1,..., xn]. In each step the amount of
variables of the polynomials is decreased by one. Polynomials in R[x1, ..., xi+1]
are mapped to polynomials in R[x1, ..., xi]. This is done iteratively until all
polynomials are univariate, i.e. are in R[x1].

2. Base phase: In the base phase, i.e. CAD for R[x1], the real roots of the univari-
ate polynomials are isolated. Every root and any point in the interval between
roots is chosen as a sample point. These cover all cells of a decomposition of
R1.

3. Construction phase: In the construction phase, sample points of R1 are used to
construct the CAD cells of Rn.

In Figure 2.2 an illustration of how the three phases work can be seen. The CAD
algorithm first generates all algebraic information of the given set of constraints we
want to prove consistency of. The CAD algorithm for constraints in R[x1, ..., xn] first
constructs all cells in Rn. From each of these finitely many cells one point, a so called
sample point is chosen. These sample points are then iteratively used to check the
consistency of the constraints. If one of these sample points satisfies all constraints, it
is returned and SAT is reported. Otherwise, if for each of the sample points at least
one constraint evaluates to False, UNSAT is returned.

The CAC algorithm is based on the CAD algorithm but uses a different approach
to generate variable assignments. It is a conflict driven approach where sample points
are guessed and cells are created incrementally. For a detailed description of the CAC
algorithm, please refer to the original paper [ÁDEK20]. The correctness of the CAC
algorithm is based on the correctness of the CAD algorithm. The CAC algorithm
uses sub-algorithms which are analogous to the phases of the traditional CAD. The

2.4. Cylindrical Algebraic Covering 17

Projection Phase

Base Phase

Construction Phase

Polynomials over R[x1,...,xn]

Polynomials over R[x1,...,xn−1]

Polynomials over R[x1]

CAD for Rn

CAD for Rn−1

CAD for R1

Figure 2.2: Structure of the CAD algorithm

algorithm construct_characterizationcorresponds to the projections phase in
the traditional CAD and the algorithm interval_from_characterization cor-
responds to the construction phase in the traditional CAD. The cells are constructed
by generalizing the sample point to a cylindrical interval around it. The cells that
are created are not necessarily disjoint. Therefore a covering, see Definition 2.4.4 is
created.

Definition 2.4.4. Covering

A covering of Rn is a finite set of cells D = {C1,...,Cm} of Rn with Rn =
m⋃
i=1

Ci

1. A covering is algebraic if each of its cells is algebraic.

2. A covering is cylindrical if its cells are cylindrically arranged.

3. A covering D is UNSAT if every cell is UNSAT for at least one constraint.

The coverings found by the CAC algorithm are all UNSAT coverings for the given set
of constraints. New samples from outside of the existing cells are selected until either
a satisfying witness is found or until a set of possibly overlapping cells forms a cover
for the entire space. Information about these cells are stored in a data structure I,
see Definition 2.4.5.

Definition 2.4.5. Object I
Let s ∈ Ri−1 be a (partial) sample point. I represents an interval of S×R and carries
additional algebraic information. I has six attributes.

• The lower bound: l ∈ Ri

• The upper bound: u ∈ Ri

• A set of polynomials L with p(s× l) = 0 for all p ∈ L

• A set of polynomials U with p(s× u) = 0 for all p ∈ U

• A set of polynomials with the main variable xi: Pi

• A set of polynomials with the main variable smaller than xi: P⊥

18 Chapter 2. Preliminaries

In the following I also denotes the interval [l,u]. The sets of polynomials L,U are mul-
tivariate polynomials which become univariate when evaluated at S with the bounds
l,u as a real root. The sets of polynomials Pi, P⊥ are used for the generalization of S
to a region of unsatisfiability. Information about the current covering are stored in a
data structure I which is a set of cells {C1, ..., Cn} , each of which are represented by
an object of the data structure I. So we have I := {I1, ..., In}. When ∪I∈Ixj

I = R we
also say that I covers R. The main part of the CAC algorithm works by recursively
generating UNSAT coverings for the respective dimensions. At the i-th recursive
depth, the polynomials of level i are being processed. The main loop of the algorithm

Algorithm 1: get_unsat_cover(S) [ÁDEK20]
Data: Constraints over Rn

Input: Sample point s = (s1,...,si−1) ∈ Ri−1. If s = () then i = 1
Output: Either (SAT, S) where S ∈ Rn is a satisfying witness or (UNSAT, I)

where I is a covering with algebraic information.
1 I := get_unsat_intervals(I)
2 while

⋃
I∈I I 6= R do

3 si := sample_outside(I)
4 if i = n then // Found satisfying witness

5 return (SAT,((s1,...,si−1, si))
6 (f,O) := get_unsat_cover((s1,...,si−1, si)) // recursive call

7 if f = SAT then
8 return (SAT,O) // Pass on SAT

9 else // Generalize si to cell

10 R = construct_characterization((s1,...,si−1, si), O)
11 I = interval_from_characterization((s1,...,si−1), si, R)
12 I := I ∪ I // Add cell to covering

13 return (UNSAT, I)

is in the function get_unsat_cover, given in Algorithm 1 which takes a partial
sample point S = (s1,...,si−1) ∈ Ri−1 for which none of the constraints over Ri−1

evaluates to False as input. Either SAT is reported with a full dimensional witness
S ∈ Rn or UNSAT with I when S can not be extended to a satisfying sample in
Ri. UNSAT is returned for a dimension when a UNSAT Covering is calculated for
it. The algorithm works by recursively calling itself with an extended sample point
S = (s1,...,si−1, si) ∈ Ri where si is a point outside of the intervals defined I. When s
is extended to be a satisfying witness it is returned and SAT is returned. Otherwise
I is extended accordingly by the algorithms construct_characterization and
interval_from_characterization. The algorithm construct_characterization
represents the projection phase of the CAC algorithm. It is called when an UNSAT
has been determined for the next higher dimension. Let Ixi+1

be an UNSAT Cover
for xi+1, this knowledge can be used to exclude not only the current sample point for
xi, but an interval around it. The algorithm construct_characterization is
used to construct a new set of polynomials which are used to ensure that the UNSAT
covering stays valid when the underlying sample point for xi is generalized. This new
set consists partly of resultants and discriminants (see Definition 2.4.6) of polynomi-
als which define the created object I (see Definition 2.4.5). The zero points of the
discriminant indicate where the original polynomial has multiple zeros and as such

2.4. Cylindrical Algebraic Covering 19

ensure that the lower and upper bounds continue to exists and no other varieties are
spawned. The resultants ensure that the lower and upper bounds are the closest ones
possible. These calculations can be complex and the running time depends on the
degree of the polynomials used. In the following, these calculations are also referred
to as projections. The following definitions of the resultant and the discriminant and
the property of the resultant are taken from [BPR06].

Definition 2.4.6. Resultant and Discriminant
Let P and Q be two non-zero polynomials:

P = apX
p + ap−1X

p−1 + ...+ a0

Q = bqX
q + bq−1X

q−1 + ...+ b0

And let P ′ be the derivative of P . The Sylvester matrix of P and Q is defined as:

Syl(P,Q) =

ap . . . a0 0 . . . 0
0 ap a0
...

.
0 . . . ap . . . a0
bq . . . b0 0 . . . 0
0 bq b0
...

.
0 . . . bq . . . b0

The resultant of P and Q and the discriminant of P is defined as:

res(P,Q) = det(Syl(P,Q))

disc(P) =
(−1)

p(p−1)
2

ap
res(P,P ′)

Lemma 2.4.1. Resultant Property
Let P and Q be two non-zero polynomials. Then it holds that:

res(P,Q) = (−1)deg(p)·deg(q) res(Q,P)

A detailed explanation of how the resultant of two polynomials is calculated and a
precise complexity analysis is given in [Duc00].

20 Chapter 2. Preliminaries

Chapter 3

Algorithm

In this chapter we present two changes to the CAC algorithms presented in [ÁDEK20].
These changes intend to improve the running time of the CAC algorithm. In Sec-
tion 3.1 we present how projections can be saved so that they can be used in the
future and not have to be recalculated. In Section 3.2 we adapt the CAC algorithm
to work incrementally. In order to achieve this, it is shown which information has to
be saved or forgotten in which parts of the algorithm. In addition, we show when the
stored information based on the added constraints can be deleted or retained.

3.1 Projection Memory

In this section we present a data structure to save projections. To do this, we must look
at the projection phase of the CAC algorithm, the algorithm construct_characterization.
The CAC algorithm (re-)calculates all discriminants and resultants for each variable
assignment, although there is a possibility that these calculations have already been
done previously. Accordingly, this calculation would be redundant and it would be
more efficient to store these calculations and then load them if necessary.

Consider the case that an UNSAT cover for the dimension xi+1 is found. This
cover gets processed for the dimension xi and some projections are calculated based
on the reasons of unsatisfiability for the dimension xi+1. If a new sample point is
now considered for xi and an UNSAT cover for xi+1 is found again, this covering can
contain intervals which have the same polynomials as the reason for unsatisfiability
as in the previous iteration. Thus, when calculating the characterization for this
UNSAT cover partly the same projections as in the previous iteration are calculated.
An example when this happens in practice is presented in Section 3.3.

The calculation of the resultant and discriminant is deterministic and independent
from the current sample point and can therefore be saved for later use, see Defini-
tion 2.4.6. Thus, before a resultant or a discriminant is calculated, one can check
whether this calculation has already been carried out and the result is known. In
Algorithm 2 we describe such an algorithm to load and store the result of a discrimi-
nant calculation accordingly. If the result is stored, it is loaded from the memory and
returned. If the result is not stored, it is calculated, stored and returned.
Only the roots of the resultants and discriminants are considered and therefore the
sign of these polynomials does not matter because it does not change the roots. It

22 Chapter 3. Algorithm

Algorithm 2: get_disc(p)
Input: Polynomial p.
Output: Polynomial d with d = disc(p).

1 if disc(p) is stored, then
2 return Load disc(p)
3 else
4 d := disc(p)
5 Store (p,d)
6 return d

can thus be used that the resultant of two polynomials remains the same except for
possibly the sign if the order of the parameters is reversed. This property is presented
in Lemma 2.4.1. So, when the result of a resultant calculation is to be loaded, the order
of the parameters should not matter. In Algorithm 3 we describe an algorithm to load
and store the resultant when necessary. This works the same way to Algorithm 2 to
store the discriminants with the addition that the order for parameters do not matter
when loading the according result. Overhead such as memory usage as well as the

Algorithm 3: get_res(p,q)
Input: Polynomials p,q.
Output: Polynomial r with either r = res(p,q) or r = res(q,p).

1 if res(p,q) or res(q,p) is stored then
2 return Load res(p,q) or res(q,p)
3 else
4 r := res(p,q)
5 Store (p,q,r)
6 return r

complexity for insertion, deletion and searching have to be considered. Thus, for
practical usage different heuristics can be used. Heuristics for for insertion could be
that only calculations which exceed a certain minimum calculation time or from given
dimensions are inserted. In addition, to reduce the memory usage, elements that have
not been used for a certain time could be deleted.

In Algorithm 4 we formulate the modified construct_characterization al-
gorithm using the memory for resultants and discriminants.

In Line 7 the algorithm required_coefficients is called. The specifics of
this algorithm are out of the scope of this thesis, but the output of this algorithm
depends on the current sample point and thus can not be reused in potential future
iterations.

3.2 Incrementality

In this section we describe what changes and data structures are necessary in order for
the CAC algorithm, as described in [ÁDEK20] to work incrementally. The incremen-
tal implementation extends the non-incremental implementation. When satisfiability

3.2. Incrementality 23

Algorithm 4: construct_characterization(s, I)
Input: Sample point s = (s1,...,si) ∈ Ri and data structure I describing

UNSAT covering over s in dimension i+1.
Output: A set of polynomials R ⊆ R[x1,...,xi] that characterizes a region

around s that is already unsatisfiable for the same reasons.
1 I := compute_cover(I)
2 R := ∅
3 foreach I ∈ I do
4 Extract l = Il, u = Iu, L = IL, U = IU , Pi+1 = Ii+1, P⊥ = IP⊥
5 R := R ∪ P⊥
6 R := R ∪ get_disc(Pi+1)
7 R := R ∪ {required_coefficients(p) | p ∈ Pi+1)}
8 R := R ∪ {get_res(p,q) | p ∈ L, q ∈ Pi+1, q(s× α) = 0 for some α ≤ l}
9 R := R ∪ {get_res(p,q) | p ∈ U, q ∈ Pi+1, q(s× α) = 0 for some α ≥ u}

10 for j ∈ {1, ..., |I| − 1} do
11 R := R ∪ {get_res(p,q) | p ∈ Uj , q ∈ Lj+1}
12 Perform standard CAD simplifications to R
13 return R

of the constraints is concluded, the intermediate results within the different dimen-
sions are stored. When the CAC algorithm is called again, with an extended set of
constraints, as much as possible of these intermediate results are reused. Here, we
only consider the the case that new constraints are added and no constraints which
have been already considered are deleted. To do this, for each dimension the set of
determined unsatisfiable intervals must be kept across theory calls. In addition, the
satisfying variable assignment found must be saved. In the following we split the set
of total constraints according to Definition 3.2.1.

Definition 3.2.1. Constraints in an incremental setting
We split the set of constraints into two sets:

• Processed Constraints P : For the current (partial) sample point, these con-
straints evaluate to True. The corresponding regions of unsatisfiability are
known.

• Unprocessed Constraints U : These constraints have not yet been considered.

A constraint c is said to be processed if c ∈ P . Likewise it is said to be unprocessed
if c ∈ U . A constraint must either be processed or unprocessed. Therefore it must
always hold that P ∩ U = ∅. When new constraints are added they are unprocessed.
If not, one of the unprocessed constraints could contradict the sample point found.
Only the unprocessed constraints contain unknown information. Thus, an advantage
that the incrementality brings, is that only the unprocessed constraints have to be
considered. The unsatisfiable intervals of the processed constraints have been deter-
mined in previous calls of the algorithm and can be loaded from the corresponding
data structure. Algorithm 5 shows how to store the information for a variable xj .
First the unprocessed constraints with the main variable xj are added to the set of
processed constraints and then removed from the set of unprocessed constraints, i.e.
all unprocessed constraints with the main variable xj become processed. Afterwards

24 Chapter 3. Algorithm

the intervals Ixj
are stored for the variable xj . Thus, when we store intervals for a

variable xj all constraints with the main variable xj are processed.

Algorithm 5: store_dimension(xj , Ixj
)

Data: Set of Processed Constraints P , Set of Unprocessed Constraints U
Input: Variable xj , Set of Intervals Ixj

1 P := P ∪ {c | c ∈ U with main(c) = xj} // Add to processed

2 U := U ∩ {c | c ∈ U with main(c) = xj} // Remove from unprocessed

3 Store Ixj for xj

Algorithm 6 shows how to remove the stored information for a variable xj . First
the processed constraints with the main variable xj are added to the set of unprocessed
constraints and removed from the set of processed constraints. Afterwards the stored
intervals for the variable xj are removed. Thus, when we remove the intervals for a
variable xj all constraints

Algorithm 6: remove_dimension(xj)

Data: Set of Processed Constraints P , Set of Unprocessed Constraints U
Input: Variable xj

1 U := U ∪ {c | c ∈ P with main(c) = xj} // Add to unprocessed

2 P := P ∩ {c | c ∈ P with main(c) = xj} // Remove from processed

3 Delete saved intervals for xj

In Algorithm 7 we show how the user_call algorithm can be implemented to
work in an incremental fashion. In the first call of this algorithm or if the previous
result was UNSAT, this algorithm behaves exactly like the non-incremental version.

• Line 1 - 3: The previous sample point is rechecked for the unprocessed con-
straints. If all unprocessed constraints evaluate to true, the previous sample
point is returned as a satisfying witness. The unprocessed constraints do not
need to be processed and thus no unsatisfying intervals are added. Therefore
the unprocessed constraints remain unprocessed.

• Line 4 - 8: We iterate over the unprocessed constraints which evaluated to
false for the previous sample point. We delete the of the assignment for the
main variable and all saved intervals and assignments for the higher dimensional
variables. Since all information about these dimensions is deleted, all constraints
that have these as main variables must be marked as unprocessed. This is done
by calling Algorithm 6 for all variables of an higher level.

• Line 9: We call Algorithm 8 with the current partial sample point. As the
method is recursive we start at the lowest dimension x0. In this call, the stored
intervals for this dimension are considered. We have to start at the lowest
dimension, as coverings for higher dimensions could be found and a new variable
assignment for the lowest dimension has to be considered.

• Line 10 - 15: Depending on the returned flag of Algorithm 8 we return SAT or
UNSAT. If SAT is returned all constraints must be processed and we save the

3.2. Incrementality 25

Algorithm 7: Incremental user_call(S)
Data: Set of Processed Constraints P , Set of Unprocessed Constraints U ,

Previous Sample Point S = (s1, ...,sn), If none exists we set S = ()
Output: Either (SAT, S), where S ∈ Rn is a full dimensional satisfying

witness, or (UNSAT, C), when no such S exists, where C ⊂ C is
also unsatisfiable.)

1 F := {c | c(S) 6= True, with c ∈ U} // Check unprocessed constraints

2 if |F | = 0 then // All unprocessed constraints are true

3 return (SAT, S) // S is still a satisfying witness

4 foreach c ∈ F do
5 Let xi := main(c)
6 S := (s1, ..., si−1) // Remove assignment for unsat dimensions

7 foreach xj ∈ {xi+1, ..., xn} do
8 remove_dimension(xj) // Algorithm 6

9 (flag, data) := get_unsat_cover(S, x0) // Algorithm 8

10 if flag = SAT then
11 Save S := data
12 return (flag, data)

13 else
14 Save S := ()
15 return (flag, infeasible_subset(data))

found satisfying witness for future use. If UNSAT is returned all constraints
must be unprocessed and we save an empty assignment.

In Algorithm 8 we show how the get_unsat_cover algorithm can be imple-
mented to work in an incremental fashion. The dimension which is of interest for the
current call is added as an input. We do this to load the correct corresponding saved
intervals from memory.

• Line 1 - Line 2: First, we initialize the stored information about the current
partial covering. If xj is not assigned in S we call get_unsat_intervals for
S. If xj is assigned in S all unprocessed constraints must evaluate to True. Oth-
erwise the assignment for xj in S would have been deleted in the user_call,
see Algorithm 7. Therefore, we call get_unsat_intervals for (s1, ..., sj−1),
i.e. we remove the assignment for xj is the passed sample. The algorithm
get_unsat_intervals is identical to Algorithm 3 from [ÁDEK20] with the
exception that only unprocessed constraints with the main variable xj have to
be considered. The processed constraints are not considered, because the cor-
responding intervals are already stored and then loaded into Ixj

in Line 2. This
will produce a set of intervals I := {I1, ..., Ij} with Ii ⊆ R such that S × Ii is
conflicting with some constraints for 1 ≤ i ≤ j.

• Line 4 - 6: If the current variable of interest, xj is not assigned in S a new
sample point sj is generated outside of Ixj , i.e. from R\ (∪I∈Ixj

I). This sample
point is then inserted into S such that xj is now assigned in S. It is necessary
to check that xj is assigned S because a partial sample may be given by the
user_call. If xj is already sampled by S it satisfies all processed constraints

26 Chapter 3. Algorithm

Algorithm 8: Incremental get_unsat_cover(S, xj)
Data: Set of Processed Constraints P , Set of Unprocessed Constraints U
Input: (Partial) Sample point S = (s1, ..., si) ∈ Ri such that no constraint

evaluated at S is False, Variable xj which is of interest
Output: Either (SAT, S), where S ∈ Rn is a full dimensional satisfying

witness, or (UNSAT, Ixj) when S can not be extented to a
satisfying sample in Rn when no such S exists, where C ⊂ C is also
unsatisfiable.

1 Ixj := get_unsat_intervals((s1, ..., sj−1),xj) // Only consider unprocessed

constraints

2 Load stored information about dimension xj into Ixj

3 while ∪I∈Ixj
6= R do

4 if xj is not assigned in S then
5 sj := sample_outside(Ixj

)
6 S := (s1, ..., si, sj)

7 if j = n then // S has full dimension, found satisfying witness

8 store_dimension(xj , Ixj
) // Algorithm 5

9 return (SAT,S)

10 (f,O) := get_unsat_cover(S, xj+1) // Recursive call

11 if f = SAT then // O is a satisying sample

12 store_dimension(xj , Ixj
) // Algorithm 5

13 return (SAT,S) // Pass on SAT

14 else
15 R := construct_characterization(S,O)
16 S := (s1, ..., sj−1) // Remove assignment for xj

17 I := interval_from_characterization(S, sj , R)
18 Ixj

:= Ixj
∪ I

19 remove_dimension(xj) // Algorithm 6

20 S := (s1, ..., sj−1) // Remove assignment for xj

21 return (UNSAT, I)

3.3. Example 27

and it must also satisfy the unprocessed constraints, otherwise the assignment
for xj would have been deleted in the user_call .

• Line 7 - 9: S satisfies all constraints with main variables xj which are assigned
in S. Thus, if we have j = n, S has full dimension, i.e. all variables are
assigned in S and a satisfying witness is found. We store the calculated algebraic
information about the partial cover Ixj

for the variable xj a call to Algorithm 5
with the variable if interest xj and the set of intervals Ixj

. This call also sets
call constraints with the main variable xj to processed. Further, SAT together
with the satisfying witness S is returned.

• Line 10 : If S does not have full dimension, then there are variables of a higher
dimension which are not sampled. The next higher dimension is explored in the
recursive call.

• Line 11 - 13: The recursive call returned the SAT flag and a satisfying witness
was found. The calculated information about the dimension are stored with a
call to Algorithm 5 for xj and the set of intervals Ixj

and all constraints with
the main variable xj are processed. SAT together with the satisfying witness is
passed on.

• Line 13 - 18: The recursive call returned the UNSAT flag the covering for the
xj+1 dimension. This covering can be used to exclude an interval around sj .
This interval is added to the set of UNSAT intervals Ixj

. sj is removed from
the sample point S to resample xj in the next iteration of the while-loop if Ixj

does not cover R.

• Line 19 - 21: When Ixj
covers R we exit the while-loop because there is no

point left to sample. All calculated information about the current dimension
are removed with a call to Algorithm 6 for xj and all constraints with the main
variable xj are unprocessed. The assignment for xj has the be removed from S
if there is any and UNSAT is returned together with the information about the
covering Ixj .

3.3 Example

We provide an example that uses both the projection memory, as described in Sec-
tion 3.1 and incrementality as described in Section 3.2. All images were created using
the software GeoGebra [HBA+20]. We first consider a set of constraints for which
SAT is concluded and the some projections are calculated multiple times. Then
the set of constraints is extended to demonstrate how SAT can be concluded in the
user_call. Afterwards the set of constraints is extended further to demonstrate
the use of the stored intervals. While the first explanations are detailed and line
information is given, these are left out in the course of the example due to repetition.
First consider the following set of constraints :

• c1 := (x0 − 1)2 + (x1 − 1)2 + (x2 − 1)2 − 1 < 0

• c2 := (x0 − 1) · (x1 − 1) · (x2 − 1)− 1 < 0

28 Chapter 3. Algorithm

Figure 3.1: Visualisation of the initial constraints. c1 is presented in red. c2 is
presented in black.

under the variable ordering x0 ≺ x1 ≺ x2. The surfaces defined by the polynomials in
the left hand side of the constraints constraints are visualized in Figure 3.1. The red
surface represents c1 and the black surface represents c2. The constraints are three
dimensional and we set n := 2. When initially added, the constraints are inserted as
unprocessed constraints. So we have U := {c1, c2} and P := ∅.

We call the CAC algorithm and jump to the user_call as described in Algo-
rithm 7. This is the very first call of the algorithm and we do not have a previously
stored sample point S and set S := (). Likewise we do not have any stored information
about the variables.

user_call(S = ()):
The unprocessed constraints U = {c1, c2} do not evaluate to True at the sample
point S since there are still unassigned variables in each case. Thus, we set
F := {c1, c2} in Line 1. With |F | = 2 > 0 SAT is not returned in Line 3.
We now iterate over the constraints on F . S is empty and there are no saved
intervals so there is nothing to remove. Therefore the calls from Line 4-8 have no
effect. Afterwards, in Line 9 we call the main algorithm as given in Algorithm 8
for the lowest given variable in the ordering.

get_unsat_cover(S = (), x0):
The current variable of interest x0 is not assigned and get_unsat_intervals
is called in Line 1. No intervals of unsatisfiability, as defined in Definition 2.4.5,
can be concluded as none of the unprocessed constraints have the main variable
x0 and therefore we set Ix0

:= ∅. There is no stored information for x0 so there

3.3. Example 29

is nothing to load and add in Line 2. Ix0
does obviously not cover R and we

enter to while-loop. x0 is not assigned in S so we choose a sample for x0 outside
of Ix0 in Line 5. We set s0 := x0 7→ −1 and add the assignment to S. We have
j = 0 6= 2 = n so S does not have full dimension and we skip the if statement
from Line 7 - 9 and jump to the recursive call in Line 10 to explore the next
higher dimension.

get_unsat_cover(S = (x0 7→ −1), x1):
x1 is not assigned and get_unsat_intervals is called where no intervals
can be concluded as none of the unprocessed constraints have the main variable
x1 and we set Ix1

. There is no stored information for x1 so there is nothing to
load and add to Ix1

. As Ix1
does not cover R we enter the while-loop. x1 is not

assigned in S so we sample s1 := x0 7→ −1 and set S := (x0 7→ −1, x1 7→ −1).
S does not have full dimension and we jump to the recursive call to explore the
next higher dimension.

get_unsat_cover(S = (x0 7→ −1, x1 7→ −1), x2):
Again, the current variable of interest is not assigned and get_unsat_intervals
is called in Line 1. All unprocessed constraints have the main variable x2 and
have to be considered. Ix2

:= {I1} is returned with :

I1 : l := −∞, u :=∞, L := ∅, U := ∅, P2 := {c1}, P⊥ := ∅ (3.1)

There is no stored information for x2 so there is nothing to load and add to
Ix2

. Ix2
covers R and we therefore skip the while-loop and jump to Line 19 and

call Algorithm 6. In remove_dimension for the variable x2 the processed
constraints with the main variable x2 are added to the set of unprocessed con-
straints U and removed from the set of processed constraints P . Because none
of the constraints is processed there are no changes. Likewise, there is no stored
information for x2. The variable xj is not assigned in S so there is nothing to
delete in Line 20. (UNSAT, {I1}) is returned in Line 21.

Continue in get_unsat_cover for x1:
Because UNSAT was received construct_characterization((S = x0 7→
−1, x1 7→ −1), {I1}) as described in Algorithm 4 is called in Line 15. There,
because P2 = {c1} in I1 get_disc(c1), as described in Algorithm 2 is called in
Line 6. disc(c1) has not been calculated and is therefore not stored. In the call to
get_disc, it is first checked whether the discriminant is stored. It is not stored
so we calculate it as d1 := disc(c1) = 1−2x1−2x2+x21+x22 in Line 4, store d1 in
Line 5 for future use and return it in Line 6. We have L = ∅ and U = ∅ in I1 so
there are no resultants to calculate in Line 8 and 9. The characterization R := d1
is returned. Back in the main loop, the assignment for x1 is removed from S
and interval_from_characterization(S = (x0 7→ −1), x1 7→ −1, R) in
Line 17 is called and returns {I2} with :

I2 : l := −∞, u :=∞, L := ∅, U := ∅, P2 := {d1}, P⊥ := ∅ (3.2)

The algorithm for interval_from_characterization is given in [ÁDEK20]
as algorithm 5. In Line 18 I2 is added to Ix1

, which now covers R and we exit
the while-loop. There are no stored intervals for x1 and x1 is not assigned in S,
therefore nothing is changed and (UNSAT, {I2}) is returned.

30 Chapter 3. Algorithm

Continue in get_unsat_cover for x0:
Again, because UNSAT was received construct_characterization((S =
x0 7→ −1), {I2}) is called. There, for the same reasons as above, only get_disc(d1)
is called. disc(d1) is not stored and is therefore calculated as d2 := disc(d1) =
x20−2x1, stored and returned. Thus, the characterization R := {d2} is returned.
The assignment for x0 is removed from S and interval_from_characterization(S =
(), x0 7→ −1, R) is called and returns {I3} with :

I3 : l := −∞, u := 0, L := ∅, U := {x0}, P2 := {x1, x1 − 2}, P⊥ := ∅ (3.3)

In Line 18I3 is added to the (partial) cover. Ix0 = {I3} does not cover R and
we iterate through the main loop again. x0 is not assigned in S and we sample
s0 := x0 7→ 1 outside of Ix0

and have S = (x0 7→ 1). S does not have full
dimension and we jump to the recursive call.

get_unsat_cover(S = (x0 7→ 1), x1):
The call to get_unsat_intervals can not draw any conclusions as none
of the unprocessed constraints have the main variable x1 and therefore we set
Ix1

:= ∅. There are no stored intervals for x1 so there is nothing to load and we
enter the while-loop. x1 is not assigned in S so we sample s1 := x0 7→ −1 and
set S := (x0 7→ −1, x1 7→ −1). S does not have full dimension and we jump to
the recursive call.

get_unsat_cover(S = (x0 7→ 1, x1 7→ −1), x2):
All unprocessed constraints have the main variable x2 and have to be considered
by the call to get_unsat_intervals. We receive the return value Ix2

:= {I4}
with :

I4 : l := −∞, u :=∞, L := ∅, U := ∅, P2 := {c1}, P⊥ := ∅ (3.4)

Ix2
covers R and we therefore skip the while-loop and jump to Line 19. Because

all constraints are unprocessed, there are no stored intervals for x2 and x2 is
not assigned in S there are no changes by the call to remove_dimension and
(UNSAT, {I4}) is returned.

Continue in get_unsat_cover for x1:
UNSAT was received and construct_characterization((S = x0 7→ 1, x1 7→
−1), {I1}) is called. Because of P2 = {c1} in I4 get_disc(c1) is called in Line 4.
There, in Line 1 it is checked if the result is stored. This check is successful as
disc(c1) has been calculated before as d1. Thus, the resulting polynomial d1 is
loaded from memory and returned in Line 2. The characterization R := {d1}
is returned and and the assignment for x1 is removed from S. Afterwards
interval_from_characterization(S = (x0 7→ 1, x1 7→ −1), R) is called
and returns {I5} with :

I5 : l := −∞, u := 0, L := ∅, U := {d1}, P2 := {d1}, P⊥ := ∅ (3.5)

Ix1
= {I5} does not cover R and we iterate through the while-loop again. As

x1 is not assigned in S and we sample s1 := x1 7→ 1 outside of Ix1
and have

S = (x0 7→ 1, x1 7→ 1). S does not have full dimension and we jump to the
recursive call.

3.3. Example 31

get_unsat_cover(S = (x0 7→ 1, x1 7→ 1), x2):
All unprocessed constraints have the main variable x2 and have to be consid-
ered by the call to get_unsat_intervals. We receive the intervals Ix2 :=
{(−∞, 0), [0,0], [2,2], (2,∞)}. Ix2

does not cover R and we enter the while-loop.
x2 is not assigned in S and we sample s2 := x2 7→ 1 and set S = (x0 7→ 1, x1 7→
1, x2 7→ 1). S has full dimension, i.e. have j = 2 = n and the condition in Line 7
is fulfilled. We call Algorithm 5 in Line 8. In store_dimension the intervals
Ix2 for x2 are stored and the unprocessed constraints {c1, c2} with main variable
x2 are added to the set of processed constraints P and removed from the set of
unprocessed constraints U . We then have P = {c1, c2} and U = ∅ and (SAT,S)
is returned in Line 9.

Continue in get_unsat_cover for x1:
SAT was returned by the recursive call and the if-condition in Line 11 is fulfilled.
The information about x1 is stored using a call to Algorithm 5 in Line 12. In
store_dimension the intervals Ix1 = {I5} get stored for x1 There are no
unprocessed constraints and (SAT,S) is passed on.

Continue in get_unsat_cover for x0:
Likewise to above, SAT has been returned by the recursive call and the intervals
Ix0

= {I3} get stored for x0. There are no unprocessed constraints and (SAT,S)
is passed on.

Continue in user_call:
The initial call to get_unsat_cover returned SAT and we therefore enter
the if-condition in Line 10. S is stored as a satisfying witness for future use
in Line 11 and (SAT,S) is returned further. With that the CAC algorithm
terminates.

SAT has been concluded with the satisfying witness S = (x0 7→ 1, x1 7→ 1, x2 7→ 1).
The solver stored the intervals Ix0

for x0, Ix1
for x1, Ix2

for x2 the satisfying witness
S, the set of unprocessed constraints U := ∅ and the set of processed constraints
P := {c1, c2}.

We now add a constraint and call the CAC algorithm again to present how SAT
can be deducted in Algorithm 7. Consider that the following constraint is added and
the CAC algorithm is called again.

• c3 := x20 + x21 − 2 ≤ 0

The surface of the polynomial on the left side of the constraint c3 is presented in
Figure 3.2. The constraint c3 is given in blue. Newly added constraints are inserted in
the set of unprocessed constraints and we set U := {c3} and jump to the user_call.
The satisfying witness S, which was found in the previous call is saved and passed as
an argument.

user_call(S = (x0 7→ 1, x1 7→ 1, x2 7→ 1)):
In Line 1 the unprocessed constraints are evaluated at the current satisfying
witness. We have c3(S) = True and is thus c3 not added to F . Therefore we
have |F | = 0 and (SAT, S) is returned in Line 3.

Again, SAT has been concluded with the satisfying witness S = (x0 7→ 1, x1 7→
1, x2 7→ 1). The unprocessed constraints are not in conflict with S and therefore all

32 Chapter 3. Algorithm

Figure 3.2: c1 is red, c2 is black and c3 is presented in blue.

Figure 3.3: Visualization of the surfaces of the polynomials of the right side of the
constraints in Section 3.3.

constraints are consistent. The stored intervals for x0, x1, x2 and the satisfying wit-
ness S are kept unchanged. The set of unprocessed constraints U := {c3} and the set
of processed constraints P := {c1, c2} are stored. The constraint c3 remains unpro-
cessed. Note that the CAC algorithm terminated without calling get_unsat_cover
and reevaluating the processed constraints.

We now add a constraint and call the CAC algorithm again to demonstrate how
the saved intervals can be used. The following constraint is now added and the CAC
algorithm is called again.

• c4 := x2 − 1 < 0

This constraint c4 restricts the solution set to the extend that the old sample point
is no longer a satisfying witness. Again, the surface of the polynomial of the left side
of the constraint is visually presented in Figure 3.3. The green plane represents c4.
In Figure 3.4 the surfaces of the polynomials are presented with fixed x0 = 1.

Again, new constraints are added to the set of unprocessed constraints and we set
U := {c3, c4} and jump to the user_call and pass the saved satisfying witness S.

user_call(S = (x0 7→ 1, x1 7→ 1, x2 7→ 1)):
First, the unprocessed constraints U = {c3, c4} are evaluated at S. We have

3.3. Example 33

Figure 3.4: Visualization of the surfaces of the polynomials of the right side of the
constraints in Section 3.3 with fixed x0 = 1.

c3(S) = True and c4(S) = False. Therefore we set F := {c4} at Line 1. In
the loop from Line 4 - 8 there is only the constraint c4 to consider. The main
variable is main(c4) = x2. In Line 6 the assignment for x2 is removed from S
so we now have S = (x0 7→ 1, x1 7→ 1). We then iterate over the variables with
a higher level. In this case only there are none and we skip the for-each loop.

get_unsat_cover(S = (x0 7→ 1, x1 7→ 1), x0):
As x0 is assigned in S we call get_unsat_intervals for an empty sample
point in Line 1 and consider all unprocessed constraints with the main variable
x0. There are none and accordingly the algorithm returns no intervals and we
load the stored intervals for x0 in Line 2. Thus, we have Ix0

:= {I3}. Note that
I3 was defined in 3.3. Ix0

does not cover R and we go into the while-loop. x0 is
already assigned in S and S does not have full dimension so we jump into the
recursive call.

get_unsat_cover(S = (x0 7→ 1, x1 7→ 1), x1):
Again, the current variable of interest is assigned in S and we call get_unsat_intervals
for the sample point (x0 7→ 1). The unprocessed constraints c3 has the main
variable x1 and has to be considered. The intervals Ix1

:= {(−∞,−1), (1,∞)}
are returned. Afterwards we load the stored intervals for x1. The interval I5,
defined in 3.5 is loaded and we obtain Ix1

:= {(−∞,−1), (−∞, 0), (1,∞)}. This
does not cover R and go into the while-loop. x1 is already assigned in S and S
does not have full dimension so we jump into the recursive call.

get_unsat_cover(S = (x0 7→ 1, x1 7→ 1), x2):
x2 is not assigned in S and get_unsat_intervals is called. There only c4
has to be considered because it is the only unprocessed constraints with main
variable x2. Ix2 := {[1,∞)} is returned. Afterwards in Line 2 the stored inter-
vals for x2 are loaded and we have the intervals Ix2 := {(−∞,0), [0,0], [1,∞), [2,2], (2,∞)}.
Ix2

does not cover R and we enter the while-loop. x2 is not assigned in S and
we sample s2 := x2 7→ 1

2 and set S := (x0 7→ 1, x1 7→ 1, x2 7→ 1
2). S is now

full dimensional and we enter the if-condition in Line 7. We update the stored

34 Chapter 3. Algorithm

intervals for x2 by storing Ix2
in Line 8 with a call to Algorithm 5. Further

the unprocessed constraints with main variable x2 are added to the set of pro-
cessed constraints and removed from the set of unprocessed constraints so we
set U := {c3} and P := {c1, c2, c4}. (SAT, S) is returned.

Continue in get_unsat_cover for x1:
SAT was returned by the recursive call and the if-condition in Line 11 is ful-
filled. We update the stored intervals for x1 by storing Ix1 in Line 12 with a
call to Algorithm 5. Further the unprocessed constraints with main variable
x2 are added to the set of processed constraints and removed from the set of
unprocessed constraints so we set U := ∅ and P := {c1, c2, c3, c4}. (SAT, S) is
returned.

Continue in get_unsat_cover for x0:
As above, SAT was returned by the recursive call and we update the stored
intervals and the set of processed and unprocessed constraints. Since there are
no added intervals and we have U = ∅ there are no changes and (SAT, S) is
returned.

Continue in user_call:
The initial call to get_unsat_cover returned SAT. S is stored as a satisfying
witness for future use in and (SAT,S) is returned further. With that the CAC
algorithm terminates.

Again, SAT has been concluded with the satisfying witness S = (x0 7→ 1, x1 7→
1, x2 7→ 1

2) and U = ∅ and P = {c1, c2, c3, c4}. In addition, the intervals for x1, x2, x3
and some projections have been saved for possible further use.

Chapter 4

Implementation

Satisfiability-Modulo-Theories Real Arithmetic Toolbox (SMT-RAT) [CKJ+15] is an
open-source toolbox for strategic and parallel SMT solving written in C++. The
solver is maintained by the Theory of Hybrid Systems research group at the RWTH
Aachen University. The program has a modular structure and consists of algorithms
to solve quantifier-free (non-)linear real arithmetic. Essential for this thesis is that
SMT-RAT is suitable for QF_NRA as described in 2.2 and includes an implemen-
tation of the cylindrical algebraic covering, as described in 2.4. The CAC algorithm
was implemented according to the original paper [ÁDEK20] throughout a master
thesis as the module CADIntervalModule [Fra20]. SMT-RAT uses Computer ARith-
metic Library (CArL), an open-source C++ library for computer arithmetic and logic
[CKJ+20]. CArL is maintained by the Theory of Hybrid Systems research group at
the RWTH Aachen University. CArL implements algorithms to calculate the resul-
tants and discriminants of polynomials, as described in Definition 2.4.6, SMT-RAT
also provides other tools for debugging, preprocessing and benchmarking. Benchmax
is a tool for automated benchmarking and gathering statistics, which are defined by
the used module. It allows specifying a time and a memory limit for each execution
of the solver. A module consists of several main interfaces :

• addCore: Takes constraints as parameter. The module has to take the received
constraint into account.

• removeCore: Takes constraints as parameter. Removes the received constraints
from the module. This includes all calculations made on the basis of these
constraints.

• checkCore: Checks the received set of constraints for consistency.

The changes described in Chapter 3 were implemented based on the non-incremental
implementation of the CAC algorithm in the module CADIntervalModule by [Fra20].
Accordingly, we present not the complete implementation of the CAC algorithm, but
only the changes made to the already existing implementation. The module contains
a class for the CAC algorithm, in which the actual implementation is located.

36 Chapter 4. Implementation

4.1 Projection Memory

In the following section, the implementation of the projection memory, as presented in
Section 3.1, is described. For that, the implementation of construct_characterization
has to be modified. We exchange the call to calculate the resultant with a call to a
function representing Algorithm 3 and the call to calculate the discriminant with
a call to a function representing Algorithm 2. To implement these functions, we
need a suitable data structure to store the result and parameters. This data struc-
ture should provide fast insertion, lookup and access times of elements that consist of
both the polynomial (pair of polynomials) from which the discriminant (the resultant)
will be calculated and the corresponding resulting polynomial. The C++ standard
[ISO12] provides two data structures that are well suited to the requirements needed.
The ordered map, which is (often) implemented using a red-black tree and the
unordered map, which is (often) implemented using a hash table [CLRS09]. In
general, maps are associative containers that store elements formed by a combination
of a key-value and a mapped-value that supports insertion and removal of elements
but does not provide a way to insert an element at a specific position. The key-value
uniquely identifies the mapped-value stored as content. The mapped-value can only
be accessed using the corresponding key-value. In a map the data-type used for the
key-values must be the same for all elements. Likewise, the data-type used for the
mapped-values must be the same for all elements. However, the data-type of the
key-values and the mapped-values can be different. When storing a discriminant, the
key-value is a single polynomial p and the mapped-value is disc(p). When storing a re-
sultant, the key-value is a pair of polynomials (p,q) and the mapped-value is res(p,q).
We use two different maps to store the discriminant and the resultant because the
key-value is different.

In an ordered map, elements are stored following a given order of the key-values.
CArL provides a strict partial ordering < on polynomials. The strict partial ordering
< for polynomials is implemented in CArL. When storing a discriminant, we have a
single polynomial as the key-value. Thus, we use the < operator for polynomials to
provide the necessary ordering. However, when storing a resultant, we have a pair
of polynomials as the key-value and < can not be used directly. We now extend
the < operator to work for pairs of polynomials. We first consider the respective
first polynomials and compare them with the < operator. If these are equivalent, we
compare the second polynomials in the pair with the < operator. To ensure that the
order of polynomials in the pairs does not influence on the mapped-value as presented
in Algorithm 3, we put the smaller polynomial in the < order for polynomials in the
first place of the pair. Using this, when comparing two pairs of polynomials the
outcome stays the same, even when the polynomials in the pairs change position.
This corresponds to the pseudo-code presented in Algorithm 9. We use this extended
< operator for pairs of polynomials to order the key-values of resultants.

In an unordered map, the elements are not ordered in any particular way but
are organized into buckets. The bucket into which an item is placed depends en-
tirely on the hash-value of the key-value. A hash function for single polynomials is
provided in CArL. Thus, when placing elements representing discriminant into the
corresponding bucket, we use this hash function to calculate the hash-value of the
key-value. However, this does not work when storing resultants as the key-value is
a pair of polynomials. The C++ standard does not provide a way to calculate the
hash-value of pairs. To overcome this, we first calculate the hash-value of the individ-

4.2. Incrementality 37

Algorithm 9: < operator for pairs of polynomials.
Data: Set of Processed Constraints P , Set of Unprocessed Constraints U
Input: Two pairs of polynomials (a,b),(p,q) with a < b and p < q.
Output: True of (a,b) < (p,q), False otherwise.

1 if a = q then
2 return b < q
3 else
4 return a < p

Ordered Map Unordered Map

Insert: O(log(N))
Average: O(1)
Worst Case: O(N)

Access: O(log(N))
Average: O(1)
Worst Case: O(N)

Check existence: O(log(N))
Average: O(1)
Worst Case: O(N)

Table 4.1: Complexity of insertion, access and checking for existence of an element
in an ordered map and in an unordered map. Let N be the amount of elements
stored.

ual polynomials in the pair and use the hash_combine function provided by the boost
library [Sch11], to combine the two hash-values into a single one. The output of the
hash_combine function changes when the order of the parameters changes. To ensure
that the order of polynomials in the pair does not influence the pair’s hash-value, we
put the smaller polynomial in the < ordering for polynomials in the first place of the
pair. This way, pairs of polynomials have the same hash-value even if the polynomials
change position in the pair.

The complexity of the operations in the ordered map and the unordered map
is presented in Table 4.1. However, these do not allow any statement about which of
the two types of maps is more suitable. The unordered map is heavily dependent
on the runtime and quality of the used hash function. If a different hash function
is implemented in CArL, the effective runtime of the operations in the unordered
map also changes. It remains to be said that a problem of using the unordered
map is that different polynomials could have the same hash-value. This could lead
to an incorrect result being returned for these polynomials which could lead to the
algorithm no longer being correct. However, this is a statistically rare occasion and
did not occur in the benchmarks presetned in Chapter 5.

4.2 Incrementality
In the following, the implementation of the incremental approach, as presented in
Section 3.2, is described. We first expand the module so that it stores an object
for the sample point. When the sample point is passed to a function, we always

38 Chapter 4. Implementation

pass a reference to that object. Thus, the sample point is stored globally. If SAT
was concluded for a set of constraints, this object stores a satisfying witness and if
UNSAT was concluded, this object is empty. As given in Definition 3.2.1, we extend
the module to store an array for the set of processed constraints and an array for the
set of unprocessed constraints. We further expand the module to store the regions
of unsatisfiability of the processed constraints. This is done using an ordered map,
which stores elements formed by a combination of a key-value and a mapped-value
[ISO12]. The key-values uniquely identify the mapped-values stored as content. The
key-value of an element is a variable and the corresponding mapped-value is the set
of intervals that have been concluded for that variable. The data type of the mapped-
value is an set of intervals, as defined in Definition 2.4.5 and the data type key-value
is variable. The mapped-value for the corresponding variable is the set of intervals
that have been concluded in that dimension in a previous call of the CAC algorithm.
I.e., to store the set of intervals Ix1 that have been concluded for x1, we use x1 as
the key-value and Ix1

as the mapped-value. The key-values are ordered according to
the < operation on integers and the corresponding variable level. To store intervals
for a dimension, we add an element to the map, using the corresponding variable as
the key-value and the intervals as the mapped-value. To remove the intervals for a
dimension, we remove the corresponding element from the map.

When addCore is called to add constraints to the module, we append the passed
constraints to the array of unprocessed constraints. When constraints are removed
from the CAC module, the stored information about each of the variables is removed
and all constraints are removed from the array of processed constraints and added
to the array of unprocessed constraints. When the removeCore function is called
to remove constraints, we first remove the passed constraints either from the array
of processed constraints or the array of unprocessed constraints, remove all stored
intervals and clear the currently saved sample point. Further, we append the array
of processed constraints to the array of unprocessed constraints and subsequently
clear the array of unprocessed constraints. Thus for the next call to checkCore, all
constraints are unprocessed, the stored sample point is empty and the map of intervals
does not contain any information about the variables.

The checkCore function represents the user_call. We will now present how the
user_call is implemented as presented in Algorithm 7. We first check whether the
passed sample point has full dimension. If not, the previous call to the module (if
there was any) did not return SAT or constraints have been removed. Thus there
are no stored intervals for the variables and that all constraints are unprocessed and
we can skip to the call of get_unsat_cover first variable in the variable ordering.
If the sample point has full dimension, the previous call to the module concluded
SAT stored the satisfying witness. In this case, we first evaluate all unprocessed
constraints at the passed sample point and add constraints that do not evaluate to
true to a new array. CArL provides a method to evaluate constraints at a given
sample point. If all unprocessed constraints evaluate to True, the old sample point is
still a satisfying assignment and we can conclude SAT and return the stored sample
point. Otherwise, the variable that places the lowest in the variable ordering and is
the main variable of one of the unprocessed constraints that did not evaluate to true
under the sample point is determined. We remove the variable assignment for this
variable in the sample point. We then iterate over all variables that are higher in
the ordering and remove the assignment and the stored intervals. Additionally, we
remove all constraints with a higher level from the array of processed constraints and

4.2. Incrementality 39

add them to the set of unprocessed constraints. This is done by looping over the
variables of each processed constraint and checking whether one of those variables
is higher in the variable ordering. In this case we remove that constraint from the
array of processed constraints and add it to the array of unprocessed constraints.
Afterwards get_unsat_cover we call for the first variable in the ordering. Based
on the output of get_unsat_cover, either SAT or UNSAT is returned. If UNSAT
has been concluded, we clear the sample point stored by the module.

Now the incremental implementation of the get_unsat_cover, as described in
Algorithm 8 is presented. One difference to the existing implementation is that the
variable currently considered may already be assigned in the sample point. If that is
the case, all unprocessed constraints with that main variable must evaluate to true
when evaluated at the passed sample point. Thus, if the variable is already assigned,
we can skip the call to get_unsat_intervals as no more unsatisfiable intervals can
be concluded. Thus, if the variable is already assigned, we create a copy of the sample
point and remove the assignment for the current variable and all variables of an higher
level. Using this copy of the sample point get_unsat_intervals to get all inter-
vals in which any unprocessed constraints with the current variable as the main vari-
able is unsatisfied. If the variable is not assigned, we call get_unsat_intervals
with the original sample point. Further, we load the stored unsatisfying intervals for
the current dimension’s processed constraints if there are any. This is done by access-
ing the stored intervals using the currently considered variable as the key-value. In
addition, the resampling of the current variable in the while-loop has the be changed
as the currently considered variable might already be assigned. We do nothing if the
current variable is already sampled and jump to the recursive call to explore the next
dimension. Otherwise, we choose a point with a call to sample_outside and use
it as an assignment for the current dimension’s variable. This assignment is added
to the sample point. When the sample point has full dimension or SAT is received
by the recursive call, the sample point is a satisfying witness. Thus we store the
concluded intervals for the corresponding variable. We overwrite the stored intervals
if there are any. This way, no intervals are lost or saved multiple times because the
stored intervals are contained in the new set of intervals. When storing intervals for
a variable, we always set the unprocessed constraints with that main variable to be
processed. These constraints are removed from the array of unprocessed constraints
and added to the array of processed constraints. This is done by iterating over the
variables of each unprocessed constraint and checking whether the current variable
of interest is used and no other variable that is higher in the variable ordering. If
UNSAT was received by the recursive call, the assignment in the sample point for the
currently considered variable is removed. This allows the variable to be sampled again
in the next iteration of the while-loop. When the unsatisfying intervals form a cover
for R the while-loop is exited. Conclusively, the processed constraints with the main
variable that is currently being considered are set to be unprocessed. This is done
by iterating over the variables of the individual processed constraints and checking
whether the currently considered variable is existent and no other that is higher in
the variable ordering. Further, we remove the assignment for the currently considered
variable from the sample point and remove the stored intervals.

40 Chapter 4. Implementation

Chapter 5

Test Results

In the following chapter we present how the modified CAC algorithm performs in
terms of runtime and memory usage. First the changes are considered individually.
We consider the projection memory in Section 5.1 and the incrementality in Sec-
tion 5.2. Then we look at both changes together in Section 5.3. To evaluate the the
changes in a practical context, we use the benchmark files QF_NRA from SMT-LIB,
which consists of 10 Folders with various amounts of files and complexity [BFT16].
The benchmark consists of 11489 files which vary in complexity. The data stems from
runs on AMD Opteron 6172 processors, with a total of 4GB RAM per file. The time
limit for each file is 2 minutes. Files that exceed the maximum runtime are listed as
timeout and files that exceed the maximum memory usage are listed as memout. Files
that returned either "SAT" or "UNSAT" are listed as solved. In order to evaluate the
improvements, we use the implementation of the unmodified CAC algorithm, which
is described in [Fra20]. This unmodified version of the CAC algorithm does not use a
data structure to store projections and works non-incremental. The unmodified ver-
sion of the algorithm, as well as all modified version were implemented as a module
in the SMT-RAT solver, which is presented in detail in [CKJ+15].

5.1 Projection Memory

In the following we present the effective runtimes of the insertion, access and existence
check of elements for both types of maps used in the implementation of the projection
memory. The presented times stem from an Intel i5-8250U with 8GB RAM running
Debian 10. Each measurement was carried out ten times and the mean running time
is displayed. We randomly generate polynomials for the key-value and mapped-value
for measuring the insertion time of discriminant calculations. We create pairs of
randomly generated polynomials for the key-value to measure the insertion time of
resultant calculations. For the mapped-value, we again use a randomly generated
polynomial. For 1 ≤ i ≤ 100 we generate a given amount of polynomials with i
variables. The algorithm that generates these random polynomials is implemented
in CArL [CKJ+20]. The set of polynomials inserted into the ordered map and the
unordered map is identical. The results are presented in Table 5.1. To measure
the time to check for an elements’ existence, we first insert 104 randomly generated
polynomials with less than 100 variables. We then measure the time it takes to
check for the existence of a given amount of elements. Half of the elements checked

42 Chapter 5. Test Results

Discriminant

Amount
per level

Ordered
Map

Unordered
Map

1 1ms 1ms

50 82.3ms 78.6ms

100 170.7ms 164.7ms

500 876.6ms 984.5ms

1000 1776.4ms 2301.9ms

Resultant

Amount
per level

Ordered
Map

Unordered
Map

1 2ms 1ms

50 117.9ms 130.0ms

100 247.1ms 274.9ms

500 1341.0ms 1548.8ms

1000 2763.4ms 3480.4ms

Table 5.1: Insertion: Randomly generated polynomials with fewer than 100 variables
are used as key value and mapped value.

are present have been inserted into the map and the other half consists of newly
generated polynomials. We insert the same set of polynomials in both the ordered
and the unordered map. The set of elements we check the existence of is identical for
the ordered map and the unordered map. The results are presented in Table 5.2. To

Discriminant

Amount Ordered
Map

Unordered
Map

102 3ms 4ms

103 41.2ms 54.3ms

104 418.1ms 545.7ms

105 4171.9ms 5452.9ms

Resultant

Amount Ordered
Map

Unordered
Map

102 7.0ms 14.0ms

103 77.2ms 139.7ms

104 777.4ms 545.7ms

105 7742.2ms 5452.9ms

Table 5.2: Check Existence of polynomials in maps with 104 inserted elements.

measure an element’s access time, we first insert 104 randomly generated polynomials
with less than 100 variables. We then measure the time it takes to access a given
amount of polynomials present in the map. We insert the same set of polynomials in
both the ordered and the unordered map. The set of elements we access is identical for
the ordered map and the unordered map. The results are presented in Table 5.3. The
runtimes of the operations do not provide any conclusion about whether the ordered
map or the unordered map are more efficient. Going forward, we will use the ordered
map as the underlying data structure for the projection memory. However, it can be
said that the operations each have a short runtime, and therefore the threshold for

5.1. Projection Memory 43

Discriminant

Amount Ordered
Map

Unordered
Map

102 1ms 14.0ms

103 16.2ms 139.7ms

104 154.5ms 545.7ms

105 1532.ms 5452.9ms

Resultant

Amount Ordered
Map

Unordered
Map

102 3ms 4ms

103 41.2ms 54.3ms

104 418.1ms 545.7ms

105 4171.9ms 5452.9ms

Table 5.3: Access of polynomials in maps with 104 inserted elements.

the minimum runtime of the calculations that are to be saved should also be low.
Heuristics can be used to filter what elements are inserted or to delete elements to

prevent the data structures from becoming large, resulting in long lookup and access
times. As a heuristic for insertion, we measure the time it takes to calculate the
resultant or discriminant. If the calculation exceeds a given threshold, we insert the
corresponding element into the data structure. If this threshold is not exceeded, we
do not insert the element.

In Table 5.4, we present how many projections calculations can be saved given a
certain threshold of minimum calculation time for insertion of elements. For every
combination of folder and threshold, the cell contains two numbers. The top one is
the number of resultant and discriminant and resultant calculations without the pre-
sented data structures. The bottom one is the number of resultant and discriminant
calculations with the presented data structures given the various thresholds. The
difference between the top and bottom numbers is the amount of calculations avoided
by loading the result from the corresponding data structures. Table 5.4 shows that
the majority of all calculated projections have a calculation time of less than 100ms.
Of all calculated projections, only 0.087% have a calculation time of more than 100ms
and only 0.0039% of a calculated projections have a runtime of more than 2000ms.
Additionally it is presented, that 25.54% of all projection calculations can be avoided
with a projection memory and a threshold of 0ms.

We now show how many files of the QF_NRA benchmark can be solved with the
projection memory compared to the amount of files solved without the projection
memory.

In Table 5.5, we show how the implementation using the projection memory, com-
pares to the unmodified version. The minimum calculation time required for insertion
of the projection is given as the threshold. The number of files that are solved and
the number of memouts and timeouts are listed. Additionally, the average runtime
in seconds, and the average memory usage in bytes of the solved files is listed. In all
cases, using the projection memory more files could be solved and hence a performance
boost is achieved compared to the unmodified implementation. Using a threshold of
0ms all projections are inserted. Using this approach 8431 files were solved, 5 more
compared to the implementation not using the projection memory. But this also has

44 Chapter 5. Test Results

Folder

Threshold
0ms 100ms 500ms 1000ms 2000ms 5000ms

Sturm
414 Files

10465
8933

176
34

98
17

80
15

32
8

31
7

InvariantSynthesis
69 Files

1504404
1311028

1608
1582

95
94

23
22

0
0

0
0

Economics-Mulligan
135 Files

572529
378644

623
93

220
45

102
30

21
11

21
11

hong
20 Files

635370
426871

419
10

71
5

55
4

6
1

6
1

hycomp
2752 Files

5768226
4599615

5480
3269

1514
672

870
400

252
147

243
140

kissing
45 Files

29329
15936

297
256

122
105

109
94

92
79

89
75

LassoRanker
821 Files

2121111
1511130

2042
1992

441
407

164
154

37
35

35
33

meti-tarski
7006 Files

180418
138645

1096
294

660
196

334
92

128
55

128
55

UltimateAutomizer
61 Files

2425635
1543055

125
122

57
55

35
33

10
8

5
4

zankl
166 Files

2304292
1645885

1762
1701

322
289

171
153

43
39

43
39

Total
11489 Files

15551779
11579742

13628
9355

3600
1885

1943
997

617
376

601
365

Table 5.4: Total amount and distinct amount of resultant and discriminant calcula-
tions with various minimum computation time. Each file has a timeout of 2 minutes

5.2. Incrementality 45

Threshold Solved Memout Timeout Avg.
Runtime

Avg.
Memory

0ms 8431 299 2759 1.38 62295

50ms 8427 297 2764 1.36 62287

200ms 8427 297 2764 1.35 62284

500ms 8426 296 2767 1.35 62251

No Memory 8424 297 2768 1.36 61980

Table 5.5: Comparison of the projection memory using different minimum calculation
times as the threshold.

Approach Solved Memout Timeout

Incremental 8455 306 2728

Non-Incremental 8424 297 2768

Table 5.6: Comparison of the incremental implementation and the non-incremental
implementation.

an effect on memory usage, 299 files reached the memory limit, 3 more compared to
the implementation not using the projection memory. With a higher threshold, less
memory is used, but fewer files could be solved. Using a threshold of 50ms, 8427 files
could be solved, 4 less than with a threshold of 0ms. However, 297 files reached the
maximum memory usage, 2 less than with a memory threshold. Although the dif-
ferent thresholds only result in a marginal change of average runtime,files solved and
memory, we can conclude that the implementation using a threshold of 0ms results
in the largest increase of performance.

5.2 Incrementality

In Table 5.6, we present how the incremental approach without projection memory
performs in comparison with the non-incremental approach. The incremental ap-
proach is able to solve 8455 files, which is an increase of 0.36% compared to the
non-incremental approach. Comparing to the implementation using just the projec-
tion memory, the implementation using the incremental approach is able to solve
more files, thus providing a larger performance increase. Using the incremental ap-
proach, 306 files reach the memory limit, which is an increase of 2.94% compared with

46 Chapter 5. Test Results

Approach Solved Memout Timeout

Incremental
0ms 8491 306 2692

Incremental
50ms 8486 306 2697

Table 5.7: Runtime of the solved files using the non-incremental approach without
projection memory and the incremental approach with projection memory and a
threshold of 0ms and 50ms.

the non-incremental approach. This increase in memouts could be due to the data
structures used in the incremental approach, or because the files, that reached the
time limit using the non-incremental approach, have progressed progressed further
and more information have been concluded and stored. In fact, all but one addi-
tional memout for the incremental implementations are timeouts for non-incremental
implementation. Thus, the addition of incrementality to the implementation results
in a performance increase and more memory usage compared to the non-incremental
approach.

5.3 Incrementality and Projection Memory

In the following, we evaluate the incremental implementation which uses the projec-
tion memory. We use a threshold of 0ms and 50ms for insertion in the projection
memory, as this results in the biggest performance increase. In Figure 5.1 we present
the runtimes of all solved files using the non-incremental approach without projection
memory and the incremental approach with projection memory and a threshold of
0ms and 50ms. In Table 5.7, it is shown how many files were solved, reached the mem-
ory limit or the maximum computing time. Using the incremental approach and a
projection memory using a threshold of 0ms for insertion 8491 file were solved, which
is 0.8% more compared to the original implementation. Using a threshold of 50ms,
slightly less files could be solved with 8486. In Figure 5.1, we present the runtimes of
the solved files. It can be seen that many files are solved with very little computing
time. These files do not offer the possibility to be solved notably faster, as they are
solved either directly using the Boolean structure or are trivial problems which are
either solved without any projections or multiple calls to the theory solver. In Ta-
ble 5.8, we present how many files can be solved without any theory call, without any
incremental theory call, without any projections, or in less than 100ms in general.
An incremental theory call is a theory call that can reuse the intervals concluded in
the previous one. To get a better overview of the runtimes of files which are more
complex, and therefore have potential for time savings, files with a minimum solv-
ing time of 1000ms have to be considered. To do this, we use the same data as in
Figure 5.1, but filter out all files that have been solved in less than 1000ms by each
of the implementations. This is is presented in Figure 5.2. It can be seen that the
incremental approach solves more involved problems in a shorter time, thus resulting
in more problems solved overall.

5.3. Incrementality and Projection Memory 47

Figure 5.1: Runtime of the solved files for the non-incremental approach without
projection memory and the incremental approach with projection memory using a
threshold of 0ms and 50ms.

Solved without
theory call

Solved without
incremental theory call

Solved without
any projections

Solved in less
than 1000ms

1990 6917 3842 7408

Table 5.8: Number of files in the QF_NRA benchmark than can be solved with with
the given properties.

48 Chapter 5. Test Results

Figure 5.2: Runtime of the solved files with a minimum computation time of 1000ms
for the non-incremental approach without projection memory and the incremental
approach with projection memory using a threshold of 0ms and 50ms.

At the end of this chapter, we come to the conclusion that both the projection
memory and the incrementality result in an increase of performance and an increase
memory usage of the implementation of the CAC algorithm. The different thresholds
used for the minimum calculation time of projections which are inserted into the
projection memory result in only a marginal change. The addition of the projection
memory in total results in a relatively small increase in performance compared to the
addition of incrementality. The combination of the two additions brings the greatest
performance improvement for implementation of the CAC algorithm. But we also
come to the conclusion that the used QF_NRA benchmarks (SMT-LIB) [ISO12] may
not be well suited as a rather large portion can be solved in a comparatively short
time or without the need for a theory solver at all. This does not provide any room
for noticeable improvements in the computation times.

Chapter 6

Conclusion

In this thesis, two improvements to the Cylindrical Algebraic Covering algorithm, de-
scribed in the paper by Ábrahám, Davenport, England, and Kremer [ÁDEK20], are
presented and implemented. A data structure is presented to store the results of cal-
culations on polynomials, such that they can be reused at a later time. Two different
approaches for storing the polynomials are considered. An ordered map, which works
based on comparing polynomials or pairs of polynomials, and an unordered map,
which works by storing the hash-values of the corresponding polynomials or pairs of
polynomials. Heuristics can be used to determine which calculations are worth saving.
We measure the time needed to calculate the result and store it if the time exceeds a
certain threshold.

Additionally, it is presented how the algorithm can be adapted to work in an in-
cremental way. To enable this, the constraints are split into processed constraints and
unprocessed constraints. No information is known about the unprocessed constraints,
while the unsatisfiable intervals of the processed constraints are known and stored.
During the runtime of the algorithm, only the unsatisfiable intervals of the unpro-
cessed constraints must be concluded, as the intervals for the processed constraints
is loaded from memory. When all information about an unprocessed constraint is
known, it becomes a processed constraint. When the sample point changes or con-
straints are removed, the corresponding information is deleted and the respective
constraints are unprocessed again.

These changes were implemented with the idea of improving running time. Both
changes bring a performance improvement, but also result in more memory usage.
The implementation of the ordered map and the unordered map perform equally
well. Different thresholds for insertion in the ordered map and the unordered map
implementation perform alike, and we conclude that it benefits the performance most
if all calculation is saved. However, these improvements in performance are minor.
The addition of incrementality brings a comparatively larger increase in performance.
The changes can also be used simultaneously, which results in the greatest increase of
performance. Using both changes 0.8% more files if the QF_NRA benchmark could
be solved compared to the additional implementation.

In the future, the algorithm could be expanded to include backtracking. Currently,
if a constraint is removed from the solver, the stored information about all constraints
is removed. Deleting just the information about the removed constraints would result
another increase in performance.

50 Chapter 6. Conclusion

Bibliography

[ÁDEK20] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon
Kremer. Deciding the Consistency of Non-Linear Real Arithmetic Con-
straints with a Conflict Driven Search Using Cylindrical Algebraic Cover-
ings. CoRR, abs/2003.05633, 2020.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in
Real Algebraic Geometry (Algorithms and Computation in Mathematics).
Springer-Verlag, Berlin, Heidelberg, 2006.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: an open source C++ toolbox for strategic
and parallel SMT solving. In Marijn Heule and Sean A. Weaver, editors,
Theory and Applications of Satisfiability Testing - SAT 2015 - 18th Inter-
national Conference, Austin, TX, USA, September 24-27, 2015, Proceed-
ings, volume 9340 of Lecture Notes in Computer Science, pages 360–368.
Springer, 2015.

[CKJ+20] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. Computer ARithmetic Library CArL, October 2020.
https://github.com/smtrat/carl.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[Col75] George E. Collins. Quantifier elimination for real closed fields by cylin-
drical algebraic decompostion. In H. Brakhage, editor, Automata Theory
and Formal Languages, pages 134–183, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, STOC ’71, page 151–158, New York, NY, USA, 1971. Association for
Computing Machinery.

[Duc00] Lionel Ducos. Optimizations of the subresultant algorithm. Journal of
Pure and Applied Algebra, 145(2):149 – 163, 2000.

https://github.com/smtrat/carl

52 Bibliography

[Fra20] Hannah Franzen. Conflict Driven Cylindrical Algebraic Coverings for Non-
linear Arithmetic in SMT Solving. RWTH Aachen, Theory of Hybrid
Systems, 2020.

[HBA+20] M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier, A. De-
lobelle, C. Denizet, J. Éliás, Á Fekete, L. Gál, Z. Konečný, Z. Kovács,
S. Lizelfelner, B. Parisse, and G. Sturr. GeoGebra 6, October 2020.
http://www.geogebra.org.

[ISO12] ISO. ISO/IEC 14882:2011 Information technology — Programming lan-
guages — C++. International Organization for Standardization, February
2012.

[Jir95] Mats Jirstrand. Cylindrical algebraic decomposition - an introduction.
Technical Report 1807, Linköping University, Automatic Control, 1995.

[Sch11] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[Tar98] Alfred Tarski. A decision method for elementary algebra and geometry.
In Bob F. Caviness and Jeremy R. Johnson, editors, Quantifier Elimina-
tion and Cylindrical Algebraic Decomposition, pages 24–84, Vienna, 1998.
Springer Vienna.

http://www.geogebra.org

	Introduction
	Preliminaries
	Boolean Satisfiability Problem
	Real Arithmetic
	Satisfiability Modulo Theories
	Cylindrical Algebraic Covering

	Algorithm
	Projection Memory
	Incrementality
	Example

	Implementation
	Projection Memory
	Incrementality

	Test Results
	Projection Memory
	Incrementality
	Incrementality and Projection Memory

	Conclusion
	Bibliography

