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Abstract

The current development and the increased usage of autonomously driving
vehicles in real traffic applications and the corresponding obligation of the pas-
senger’s safety has resulted in an increased interest in the verification of the un-
derlying controller systems.

In this work we present an overview of the current research status of for-
mal verification of autonomous vehicle controllers to guarantee the safety of au-
tonomous vehicles. We limit our focus on verification methods from hybrid sys-
tems safety verification, namely flowpipe-construction-based reachability analy-
sis and its application in the field of autonomous vehicles. Initially, we present
a comparison between suitable theoretical vehicle models, which differ in com-
plexity and expressiveness. Based on this, we discuss various controller models
ranging from different verified controller structures to an model predictive control
(MPC) based trajectory planner for autonomously driving vehicles. We discuss
how to model the presented controller structures as hybrid system to allow for
their verification using flowpipe-construction-based reachability analysis.

In an experimental evaluation, various benchmarks and numerical experiments
are used to analyze a prototypical implementation of elaborated and verified con-
troller structures.
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Chapter 1

Introduction

The current development and technological progress in autonomous vehicle control
and its increased application have resulted in an increased demand on safety verifi-
cation of such systems [HAS14]. Numerous vehicles are tested in simulations and
real traffic scenarios with sensors recognizing the current environment of the oper-
ator’s vehicle. These situations range from competitions in robotics to autonomous
vehicles participating in actual traffic interactions [BIS09]. Naturally, as human life is
at stake, autonomously driving vehicles have to fulfill the highest safety specifications
in all traffic scenarios. Controllers of autonomous vehicles have to generate optimal
inputs regarding driver’s comfort while ensuring safety. Apart from offline path plan-
ning, autonomous vehicles have to react on changing traffic situations based on their
sensor readings.

In this thesis we focus on using formal methods to analyze different controller
types and the improvement of controller verification. Accordingly, we aim at present-
ing a structured overview into safety verification of autonomous vehicle controllers.

The continuous nature of a moving vehicle in combination with a digital controller
which creates movement inputs for said vehicle result in a mixed discrete-continuous
system. In the past decades, formal models for such hybrid systems combining
discrete and continuous behavior have been in the focus of research. Therefore
we are going to use hybrid systems as a formal specification to display controller
models and the corresponding vehicle model. Hybrid systems allow us to model
dynamic and discrete systems in one formal specification.

Intuitively, one can test the resulting computations to be safe in the current context
by analyzing if the current trajectory enters a possible unsafe region. This procedure
is however static and cannot cover all possible outcomes of the underlying system
and trajectory generation. Therefore in the past decades the research shifted to
formal methods which focus on verifying sets of trajectories.

In order to apply certain formal methods the system of interest has to be trans-
formed into a formal model to allow it’s verification. In the context of this thesis we
decided to use hybrid automata as a formal specification to model the corresponding
control system.

Further to decide which verification method fits our requirements, we compared
certain approaches in Section 2.1.2. The analysis resulted in the decision to use a
flowpipe-construction-based reachability analysis throughout this thesis, especially
in the mentioned verification module (see Chapter 6).
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In this paper we present and compare six different approaches towards safety
verification of autonomous vehicle controllers.

The first presented approach is based on so called maneuver automata, in which
finite sets of maneuvers are concatenated in verified trajectory planning. Secondly,
an approach to formally verify the structure of a path planner with the help of linear
temporal logic (LTL) is displayed. Moreover, a maneuver template approach is pre-
sented, which is used as a tool in a motion planner to improve the speed of the path
planner. In a short section the idea of a verification method relying on a proof as-
sistant is shown. Additionally in another approach, an electric field concept is used
to model the vehicle as an electron and all other traffic interactions as potentials
repelling the vehicle [RS94]. The electric field model is a theoretical concept used
to plan an optimal trajectory through changing environment. This is realized by a
global planner which constructs an initial trajectory which is later optimized by a local
planner using the electric field approach. Finally, the procedure of a model predic-
tive control (MPC) in trajectory planning for autonomous vehicles is presented. The
MPC-based controller solves the task to generate optimal inputs regarding efficiency
and comfort while ensuring safety. In this paper we implement a light weight MPC-
based controller for trajectory planning. We transform said controller into a hybrid
automaton to identify challenges and open problems which need to be tackled by
the research community in order to be able to verify MPC-based trajectory planning.
Additionally, a verification module is presented to cope with the challenge of verify-
ing inputs of a MPC-based controller. The verification module evaluates the inputs
generated by a certain controller with the help of flowpipe-construction-based reach-
ability analysis. Moreover, a hybrid automaton is implemented to generate verified
input values for a trajectory described by a set of concatenated maneuvers. We eval-
uate our methods on various numerical experiments.

This thesis is structured as follows:
To work on the safety aspect and verification of controllers, we begin with a fun-

damental overview of the current research in autonomous vehicle control. First of
all, in Chapter 2 preliminaries including definitions about geometric sets and the in
this thesis used algorithmic methods are depicted. Chapter 3 introduces certain re-
search papers we used in our thesis. Afterwards, in Chapter 4 we compare common
theoretical vehicle models in complexity and expressiveness [Alt17]. Then in Chap-
ter 5 we present different verification methods, together with common path planners
and the earlier mentioned MPC-based trajectory planner. Afterwards in Section 5.7,
we depict a hybrid automaton, which constructs inputs for verified trajectories. Finally,
the verification issues regarding the MPC-based controller are summarized in Chap-
ter 6, together with a prototypical implementation of a verification module. Finally
in Chapter 7 we evaluate our prototypical implementation of some of the presented
controllers.



Chapter 2

Preliminaries

In this chapter we present the theoretical background and concepts required for the
further understanding of this thesis.

2.1 Hybrid Systems
The variables of dynamic systems change continuously, according to differential
equations. Exemplary systems are temperature, physical quantities of moving ob-
jects or other systems with continuous variable derivations.

On the contrary, discrete systems are specifications of systems with discrete
changes. These changes are initiated by specified rules of the system or sensors or
sensors examining certain environment conditions [ALU95].

Hybrid systems are a combination of both systems, merging the continuous vari-
able evolution with discrete changes. Examples for hybrid systems are systems
digitally controlling the in- and outflow of water tanks, thermostats and general sys-
tems with dynamic derivations and determined discrete changes triggered by certain
events. Further descriptions about the mentioned systems are found in [ALU95,
Hen00].

In the context of autonomous vehicle control, the combination of discrete changes
initiated by the controller and the continuous evolution of the vehicle’s state can be
represented by a hybrid system. Therefore we decided to use hybrid systems as a
formal specification for the closed loop between controller and vehicle.

2.1.1 Hybrid Automata
In this thesis we investigate the application of hybrid systems safety verification in the
field of autonomous vehicle control. In order to be able to apply formal methods for
safety verification, the system under interest needs to be modeled. A commonly used
model for hybrid systems are hybrid automata [Hen00]. A hybrid automaton com-
bines discrete state changes with the dynamic behavior of a system in one closed
automaton model. A hybrid automaton is an extension of the well-known model of
labeled transition systems (LTS). Similar to a LTS it is built from a finite set of loca-
tions (Loc) connected by guarded discrete transitions. A finite set of variables (Var)
is used to describe the system state.
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In contrast to LTS, hybrid automata allow to model the passage of time. The
system variables are updated according to location-specific flow (Flow) as long as
control stays in a location. The control can stay as long in the location as the invariant
(Inv) is satisfied by the system’s variable valuation. The discrete transitions connect
the locations of the automaton and are called edges (Edge), they are further specified
by a guard set and a reset function. The set of initial states is given as a tuple of
location and variable valuation (Init) [Hen00].

The following formal definition states a simplified version, omitting factors which
are only important for a parallel composition of two hybrid systems [SAC+15].

Definition 2.1: Hybrid Automaton [SAC+15]

H = (Loc, V ar, F low, Inv,Edge, Init)

Loc : A finite set of locations Loc = {l1, . . . , lm}.

V ar : A finite ordered set X of variables Var = {x1, . . . , xn},
in which a valuation of a variable xi is denoted by vi. Additionally, doted
variables {ẋ1, . . . , ẋn} specify the derivatives of the corresponding vari-
able, while primed variables {x′1, . . . , x′n} specify variables after discrete
changes through reset functions.

Flow : Each location has a defined flow, Flow : Loc→ PredV ar∪V ar′ .

Inv : Each location has a defined invariant, Inv : Loc→ PredV ar.

Edge : The Edge set is a subset of Loc×PredV ar×PredV ar∪V ar′×Loc defining
a finite set of transitions or jumps.
A jump is a tuple (l1, g, r, l2) ∈ Edge, where l1 is the source location,
l2 the target location, g specifies the guard set and r defines the reset
function.

Init : A set of tuples defining the initial locations and their variable valuation
(l0, v0) ∈ Init.

The set PredX describes all predicates with free variables in X.

In addition to the formal definition, a basic automaton describing a thermostat is
shown in Figure 2.1 to display an exemplary graphical representation of a hybrid au-
tomaton. The thermostat has two locations, one to describe the active state and one
to describe the case the thermostat is off. The automaton consists only of one vari-
able x, depicting the current temperature. The guard sets constrain the temperature
to dynamically switch the system on or off. In case the temperate exceeds 21, the
thermostat is switched off and in case the temperate is below 19, the thermostat is
switched on. Additionally, Figure 2.1 illustrates the flow of the temperature variable
in each location is. The initial state is the off mode with an initial temperature of 20°.

After defining the syntax of a hybrid system, we have to declare the discrete and
continuous semantics in detail. The discrete semantics are defined in Rule (2.1),
where a discrete transition step is denoted by e−→ [SAC+15].

e = (l, g, r, l′) ∈ Edge v, v′ ∈ Rd, v |= g, v, v′ |= r, v′ |= Inv(l′)
(l, v) e−→ (l′, v′)

(2.1)
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Off

ẋ = −0.1x
x ≥ 18

On

ẋ = 5− 0.1x
x ≤ 22

x < 19

x > 21

x = 20

Figure 2.1: Thermostat automaton [Hen00].

The discrete Rule (2.1) states the discrete change of the variable valuation by tak-
ing a jump, while ensuring that the according to the reset function modified variables
satisfy the invariant of the target location.

Furthermore, the continuous time semantics are specified by Rule (2.2), in which
δ−→ defines a time step relation [SAC+15].

l ∈ Loc v, v′ ∈ Rd

f : [0, τ ]→ Rd df/dt = ḟ : (0, τ)→ Rd f(0) = v f(τ) = v′

∀ε ∈ (0, τ). f(ε), ḟ(ε) |= Flow(l) ∀ε ∈ [0, τ ]. f(ε) |= Inv(l)
(l, v) δ−→ (l, v′)

(2.2)

Rule (2.2) specifies the semantics of the variable evolution induced by the flow
in the current location of the hybrid automaton. The time Rule (2.2) ensures that
the evolution of variable valuations in a defined time duration does not violate the
invariant (Inv) of the current location.

The main purpose of transforming a system description into a hybrid automaton
is to have a formal model of the system. Further this model can be verified to prove
the safety of the underlying system. The verification is required to ensure safety,
before a system can be instated in real applications. Therefore it has to be checked,
if a system can reach a state containing a risk. This can be analyzed by a flowpipe-
construction-based reachability analysis which is presented in the following section.

2.1.2 Reachability Analysis
Reachability analysis (RA) for hybrid systems is used to analyze how a system
evolves in a defined time duration and which states it can possibly reach. We verify
the safety of a system by means of RA. RA is used to determine, which states are
reachable in a system starting from a set of initial states. Afterwards a verification
step examines if at a certain time the set of reachable states intersects with set of de-
termined bad states. Bad states represent malicious behavior which is usually given
as a safety specification. Owing to the fact that the reachability problem for hybrid
systems is in general undecidable, we compute an over-approximation of the set of
reachable states.

If the intersection between the set of reachable states of the system and the bad
state’s set is empty the system can be declared as safe. If, however, the intersection
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between the set of reachable states of the system and the set of bad states is not
empty, the system is potentially unsafe. Due to the over-approximation of the set of
reachable states we can only declare the system to be potentially unsafe [Gir05].

We decided to use the method of a flowpipe-construction based reachability anal-
ysis in this thesis. In addition to the flowpipe-construction-based reachability analysis,
there are various other methods to verify hybrid systems.

Additionally, hybrid systems can be verified by theorem proving. Certain proof
assistants as Isabelle/HOL, PVS or Coq make use of first-order-logic or arithmetic
formulas to state properties of an underlying system. Further to realize a verification
of hybrid systems, the specified formulas can be used to derive proofs for safety or
other properties of the system. The described proofs are realized automatically or
semi-automatically by user interaction directing the proofs.

Furthermore, a hybrid system can be verified by bounded model checking, which
often relies on the usage of satisfiability checking. The reachability problem has to be
transformed into mixed integer-real-arithmetic formulas defining the set of reachable
states for the next discrete time step [SAC+15], which are solved by a satisfiability-
modulo-theories (SMT) solver. A tool concerning this algorithmic verification method
is found in [KGCC15].

The Algorithm 1 depicting the general flowpipe-construction-based reachability
algorithm has to be further explained. The algorithm gets as input a hybrid system
model H and has the purpose to compute the set of reachable states R for the given
model H (we assume the model to be a hybrid automaton).

The set Rnew, contains all the states which have to be processed by the algo-
rithm and is initially set to the initial state of H (Init). An additional set R depicts
all the states currently reachable by H. In a loop executed until all states of Rnew
have been processed, the flowpipe for a selected state set taken from Rnew is com-
puted with the function computeFlowPipe, considering the location-specific flow. In a
second step the function computeJumpSuccessor computes all possible jumps that
can be taken, realized by examining which guard sets are satisfied at the current
location and with the current variable valuation. The obtained states are added to
the set R and Rnew. As mentioned before Algorithm 1 terminates if the set Rnew is
empty and all state sets Rnew have been processed. An additional terminationcond
is introduced to realize the jump and time-bounds of the RA. In detail, the algorithm
computes an over-approximated set of reachable states for a bounded time duration
and a bounded quantity of discrete jumps, which is realized by the terminationcond.

The following paragraph explains the flowpipe-construction-based reachability
analysis in detail (Algorithm 1 displays the general procedure).

We illustrate the method to compute a flowpipe-construction-based reachability
analysis for linear hybrid systems, in case of non-linear hybrid systems we require
taylor models and certain approach based on them, further described in [CAS12].

To begin with the further explanation of the flowpipe-construction-based reacha-
bility analysis, we define the flow (Flow) in the current location of the automaton by a
system of linear ODEs (Equation (2.3)):

ẋ = A · x(t) (2.3)

In case that the underlying system is not autonomous, the flow of the system is
defined by:

ẋ = A · x(t) +B · u(t) (2.4)
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Data: Hybrid system H
Result: Set of reachable states R
(1) R := Init;
(2) Rnew := R;
(3) while Rnew 6= ∅ ∧ ¬terminationcond do
(4) let stateset ∈ Rnew;
(5) Rnew := Rnew\{stateset};
(6) R′ := computeF lowPipe(stateset);
(7) computeJumpSuccessors(R′);
(8) end
(9) return R;

Algorithm 1: General algorithm for flowpipe-construction-based reachability
analysis [Gir05].

The function u(t), defines certain inputs given to the system.
The set of reachable states at a certain time t is defined by the matrix exponential

multiplied with the initial state set: x(t) = etAx0. The used matrix A is specified by
the activity (Flow) in the current location.

Further to divide the flowpipe-computation in discrete time steps we introduce a
time step size δ. The equation x(t) = etAx0 allows it to compute the set of reachable
states after a specified time δ. To further consider the activities during the time
interval [0, δ], we calculate the error coefficient between the actual trajectory and the
convex hull of the initial set and the at time δ calculated set. The computed factor
called bloating coefficient is used to over-approximate the set at time δ. Afterwards,
the convex hull between initial and described set is computed to define the initial
flowpipe segment Ω0 [Gir04, Gir05].

After computing the over-approximated initial flowpipe segment, consecutive time
steps can be computed by a linear transformation on the set Ω0. Reasoned by the
fact that etA is the same matrix for a constant t, we can formulate this as a recurrence
equation as described in Equation (2.5) [Gir05].

Ωi+1 = eδAΩi (2.5)

The equation allows us to compute the set of reachable states for the next discrete
time steps i · δ, i ≥ 0 with a certain linear transformation on Equation (2.5). Conse-
quently, we can compute the flowpipe for a given time interval [i · δ, (i+ 1) · δ] which
will be relevant in later verification procedures. In case of a non autonomous system
each flowpipe segment has to be over-approximated by a certain bloating coefficient.

Finally, in order to verify the underlying system with the described method, the
computed set of reachable states and certain as unsafe defined sets are checked for
an intersection. In case that the intersection between both sets is empty, the system
is verified to be safe. However, if the intersection is non-empty we are unable to state
anything about the system’s status reasoned by the over-approximation used while
computing the set of reachable states.

Figure 2.2 depicts a plot of the over-approximated flowpipe of the set of reachable
states of the automaton in Figure A.1 in the Appendix. The figure displays the initial
set in the left bottom corner and the two flowpipes connected by a jump transition
computed over a time duration of 5s.
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Figure 2.2: Flowpipe with jump.

The initial state set is centered around an initial variable state [x0, . . . , xn−1] and
expanded at both sides by ε, formally depicted below:

x0, . . . , xn−1 ∈ [x0 − ε, x0 + ε], . . . , [xn−1 − ε, . . . , xn−1 + ε].

Figure 2.2 is computed with ε = 0.07. It should be noted that the flowpipe is displayed
by a set of zonotopes (see Definition 2.5).

Owing to the fact that the flowpipe construction-based reachability analysis highly
depends on the used state set representation, we define the geometric representa-
tions (see Section 2.2) which we use in later implementation methods to represent
the flowpipe’s state sets (see Sections 5.7 and 6.1). In later implementations we
use zonotopes as the state set representation of computed flowpipes. In addition to
zonotopes, there are several other state set representations, which can be used in
a flowpipe construction. We work with zonotopes because they are implemented in
the toolbox Cora used in implementations of this thesis [AK18].

The choice of a state set representation is crucial for the analysis outcome and
usually a trade-off between precision and running time [SK03].

2.2 Geometric Set Representations

This section explains the geometric state set representations we used in implemen-
tations of this work. Reasoned by the fact that we decided to use hybrid systems
as a formal specification of the closed loop between controller and vehicle model, a
special focus lies on depicting the geometric representations used to define hybrid
automata and the flowpipes constructed by the corresponding reachability analysis.

2.2.1 Half-space

Intuitively, a half-space describes the partition of the d-dimensional real vector space
along a hyperplane. A half-space is defined by an inequality constraint grouping all
valuations that fulfill the inequality condition into one set.

Throughout this thesis half-spaces are used in Sections 5.7 and 6.1 to constrain
the guard sets of the implemented hybrid automata.
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(a) H-representation of a polytope.
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(b) V-representation of a polytope.

Figure 2.3: Convex polytope representations [Zie12].

Definition 2.2: Half-space [Zie12]

h =
{
x ∈ Rd | cx ≤ d

}
where c ∈ Rd and d ∈ R.

2.2.2 Convex Polytope

A convex polytope is a geometric representation of a set of points, depicting a
bounded area of values. An example polytope is depicted by two separate repre-
sentations in Figures 2.3a and 2.3b. We present two possibilities to represent a
convex polytope. Either it can be displayed by a set of half-spaces or by a set of
vertices describing the convex hull of the region defined by the polytope. We begin
with the H-representation.

Definition 2.3: H-representation [Zie12]

A polytope is represented by a set of half-spaces:

PH =
n⋂
i=1

hi, where hi =
{
x ∈ Rd | cix ≤ di

}
with ci ∈ Rd, di ∈ R.

Another way to define a convex polytope is with the V-representation. The V-
representation describes a compact convex set by the convex hull of a finite set of
vertices.

Definition 2.4: V-representation [Zie12]

A polytope is displayed by the convex hull of a finite set of points V :

PV = conv(V ), V = {v0, . . . , vn−1}, vi ∈ Rd.

The different options to represent a convex polytope have an impact on the time
complexity of the operations used on the sets. In the hybrid automaton in Section 5.7
and Section 6.1, we use all displayed set representations. In the implementation of
the hybrid automaton (see Section 5.7), we use the H-representation of a polytope to
define the invariants of the location’s and the guard sets of the automaton. However,
in various methods of the toolbox Cora, executed in the reachability analysis, the
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g1
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c g1
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Figure 2.4: Example of a zonotope with two generators [Gir05].

polytope representations are varied [AK18]. This transformation process is done be-
cause depending on the current operation used on the sets a specific representation
is advantageous.

2.2.3 Zonotope
In this thesis we use zonotopes (see Figure 2.4) as state set representations of
computed flowpipes (see Figure 2.2). A zonotope consists of a center vector c and
a set of generator vectors g0, . . . , gk−1. A zonotope is depicted by the Minkowski
sum of line segments, defined by the set of generator vectors and the coefficients
δ ∈ [−1, 1].

Definition 2.5: Zonotope [Gir05]

For c, g0, . . . , gk−1 ∈ Rn with k ∈ N

Z =
{
x ∈ Rn

∣∣∣∣∣ x = c+
k−1∑
i=0

δi · gi,−1 ≤ δi ≤ 1
}
.

Finally, we conclude about the presented geometric set representations. The first
presented sets are convex polytopes and half-spaces. They are used in the definition
and implementation of hybrid automata, including the guard sets and invariants of the
automatons’ locations.

Secondly, to cover the state set representations of the flowpipe computation, we
have to decide on one option to model the throughout this thesis computed flowpipes.
In addition to the convex polytopes, which are as well suited to represent state sets
of flowpipes, zonotopes are defined. As mentioned before, throughout this thesis we
use zonotopes to represent the state sets of a flowpipe. Further information about
the state sets and the computation time of the four basic operations (union, intersec-
tion, Minkowski sum and linear transformation) on the state sets can be looked up
in [LG09].

2.3 Optimization Problem
In a later chapter about the MPC-based vehicle controller, inputs for a vehicle model
are computed with the help of an optimization problem. In the following, we give a
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short introduction on optimization problems.
In general, optimization problems are used to minimize or maximize a given func-

tion while considering various constraints. In linear optimization the cost function
which is to be optimized with respect to a finite set of constraints on the variables
are given as linear term respectively as linear constraints. Linear optimization aims
at finding a maximizing variable assignment for the provided cost function, which
satisfies constraints specifying the linear problem.

For A ∈ Rm×n, b ∈ Rm and c ∈ Rn, the definition below defines a general linear
programming problem:

maximize cᵀx

s.t. Ax ≤ b,
x ≥ 0,

where x is an n-dimensional vector to be modified to maximize the objective function
cᵀx [BT97].

To minimize the objective function, instead of maximizing it, it has to be negated.
Moreover, instead of computing a linear problem a non-linear optimization problem
is defined by the condition that the objective function as well as the constraints can
be potentially non-linear. A variation of a non-linear optimization problem named
quadratic programming (QP), allowing only a quadratic objective function with a linear
constraint set is specified in Equation (2.6) [AFV95].

min
x

Q(x) = cᵀx+ 1
2x

ᵀDx

s.t. Ax ≤ b,
x ≥ 0,

where xn, cn, bm, Am×n and Dn×n.

(2.6)

Besides the presented structure, there are many variations of optimization prob-
lems. In the later explained MPC controller, we use a quadratic programming prob-
lem, which is solved in Matlab with the QP-Solver from the toolbox Yalmip [Löf04].
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Chapter 3

Related Work

An early publication of Y.K Hwang and N. Ahjua laid the foundation of a theoretical
approach to controlling vehicles in a dynamic environment. The so called electric
field model uses an electron in a potential field to represent a vehicle in a traffic
situation [HA92]. Later, the concept of potential fields has been developed and im-
plemented to optimize the results of path planners [VTM00]. A similar procedure is
used in current MPC-based controller models. In the same manner as in the ap-
proach presented in [VTM00], a model predictive control based algorithm splits the
generation of control inputs in a global part building a reference trajectory and a lo-
cal part to optimize the constructed path. As MPC reference the approach [LT18] is
regarded and modified to fit the intended research aspects of this thesis.

Moreover, to cope with various situations and vehicle types, certain vehicle mod-
els have been researched and published. The vehicle models described in [Alt17]
are used throughout this thesis in closed controller vehicle environments. The vehicle
models are in detail presented in Chapter 4. In combination with a developed con-
troller approach and a decisive vehicle model a realistic trajectory can be computed
and evaluated in traffic situations.

Finally, the focus of this thesis shifts to the verification of controller models to en-
sure safety in autonomous vehicle control. Coupled with the idea to build a dynamic
controller structure, different approaches have been published regarding the verifica-
tion of a controller model. Related to this thesis are especially the research papers
from Matthias Althoff [HAS14, MLA17, RISA18], since they cover distinct approaches
verifying controller models in autonomous vehicle control.
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Chapter 4

Vehicle Models

Before presenting the current research overview of controller models used in au-
tonomous vehicle control, we present current vehicle modeling approaches increas-
ing in complexity to depict the different options available to represent a trajectory with
a theoretical model. Further, to verify controllers in autonomous vehicle control, we
have to define certain vehicle models to represent a realistic vehicle behavior.

According to the considered scenario, the vehicle representation can be adjusted
to fit the contexts’ needs. Simplified scenarios with basic controlling approaches can
be simulated and tested in combination with reduced vehicle models which solely
include basic parameters, whereas benchmarks together with advanced controller
models and complex traffic scenarios require a detailed model to depict a realistic
traffic behavior. Further, in critical scenarios and in real traffic applications of au-
tonomous vehicles, specific high-order models as the bicycle or multi-body model
are advised to be implemented to allow the representation of a realistic trajectory
and thus a safe verification [Alt17]. In the context of this thesis and considering
the purpose of verifying an autonomous vehicle controller, the kinematic-single-track
(KST) model has shown to suit our requirements. Therefore the KST is used as
vehicle model in implementations in this thesis.

4.1 Point-Mass Model
The point-mass model (PM), as the name implies, consists of a single point in the
coordinate space and a velocity in x- and y-direction. Further, the direction of the ve-
hicle is implicitly given by the combination of the velocity values. Moreover, an accel-
eration of the vehicle and direction changes are realized by an increased derivative
value av and respectively a variation of the relation between the two velocity values.
The point-mass model is the most simplified representation of a moving object pre-
sented in this thesis [Alt17].

~pm =


x
y
vx
vy

 ~̇pm =


ẋ
ẏ
v̇x
v̇y

 =


vx
vy
avx
avy





22 Chapter 4. Vehicle Models

x

y

vvy

vx

~pm

Figure 4.1: Point-mass model.

A graphical representation of the PM is displayed in Figure 4.1.
The variables x and y change according to the linear equations ẋ = vx and ẏ = vy,

while the velocity dynamics are defined by the constant acceleration values avx and
avy in x and y direction [Alt17].
The point-mass model is of limited usability because it only permits to track the posi-
tion of a vehicle, but ignores its heading angle. Furthermore, it is difficult to integrate
more complex driving dynamics into this vehicle model.

In this thesis, the PM is presented to complete the overview of theoretical ve-
hicle models. Moreover, the differences in the resulting state sets of a flowpipe-
construction-based reachability analysis are shown in a comparison (Figure 4.5) with
the kinematic single-track model [Alt17]. The made comparison illustrated problems
regarding the expressiveness of the PM.

4.2 Kinematic Single-Track Model
In this section, a more detailed vehicle representation called kinematic single-track
model is presented. In order to increase the precision of the vehicle representation,
the KST models the driving direction by an additional variable depicting a heading
angle φ (see Figure 4.2). Hence, the dynamics of the vehicle are non-linear enabling
a representation of a curved trajectory. Moreover, the consideration of the heading
angle smoothes the vehicles trajectory and enables a more realistic computation of
the set of reachable states and its safety verification. Owing to the fact that the KST
models a heading angle the requirements of the representation are increased, while
the resulting trajectory becomes more decisive. We use the kinematic single-track
model in Chapter 5 and in the verification module in Chapter 6.

Important to note here is that the in this thesis presented KST is simplified in
comparison to the original derivation (see [Raj11]). This is done due to the reason
that the KST is used in certain implementation parts, in which we rather focus on
verifying our controller model than depicting the most realistic vehicle model [Raj11].

~kst =
(
x y v φ

)ᵀ
The dynamics of this model are depicted in Equation (4.1). In contrast to the PM, the
dynamics of the KST require trigonometric functions to display curved trajectories
realized by the heading angle φ. Furthermore, the velocity and the heading angle
change according to the acceleration a and angular velocity φv.
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Figure 4.2: Kinematic single-track-model.

The two variables ca and cφv defining the velocity and heading angle dynamics
are generated in the controller environment and proceeded as control inputs to the
vehicle model specifying the derivations of v and φ [Raj11].

ẋ
ẏ
v̇

φ̇

 =


v · cos(φ)
v · sin(φ)

ca
cφv

 (4.1)

4.3 Bicycle Model

The bicycle model (BM) is the most complex vehicle representation discussed in
detail, in this thesis. Dependent on the specific implementation, different relevant as-
pects regarding a physical vehicle are taken into account. In detail, the BM considers
the vehicle length, width and mass together with the moment of inertia, the cornering
stiffness and a tire specific friction coefficient. Consequently, the physical vehicle
body is modeled and can be varied according to the current vehicle type. Hence, the
verification of the trajectory can be done in a precise and realistic manner. Figure 4.3
displays a graphical representation of the bicycle model [Alt17].

In previous vehicle models the physical body is a single point which is over-
approximated in collision checks to ensure safety. Since the width and length of
the vehicle type are considered, the bicycle model enables a more decisive compar-
ison of occupancy sets. As the name presumes, the vehicle has only two tires. The
model combines the tires at each axis into one tire, resulting in the bicycle-like shape.
Additionally, the BM adds certain state variables to represent a realistic behavior of
the vehicle. Instead of a single heading angle as in the KST, the BM divides the
driving direction and lane follow property in three different variables. First of all, a
steering angle at the front axis is modeled by δ, secondly the yaw angle ψ and slip
angle β at the vehicles center are considered to improve a realistic behavior of the
vehicle in curved trajectories. The previously listed vehicle parameters, including the
properties of the physical vehicle body, the moment of inertia for the entire mass and
the friction coefficient, influence the derivation of the yaw rate ψ̇ and slip angle β to
get a realistic and smooth trajectory output [Raj11].

~bm =
(
x y v δ ψ ψ̇ β

)ᵀ
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Figure 4.3: Bicycle model [Alt17].

4.3.1 Dynamics of the Bicycle Model
The dynamics for position, velocity and steering angle of the vehicle behave accord-
ing to defined control inputs and the deterministic behavior of the vehicle dynamics.
Conversely, the derivatives of yaw rate and slip angle are computed with a complex
formulas considering individual vehicle characteristics. All parameters and vehicle
coefficients used in later simulations, are stated in Table 4.1.

Further the position of the vehicle, modeled by x and y, evolves as in the kine-
matic single-track model with the difference that the angle modeling the driving di-
rection is the sum of yaw angle and slip angle. Additionally, the angular velocity is
defined by the control input u1 (cφv ) taking upper and lower limit of the steering angle
into account. In a similar way u2 (ca) determines the acceleration, while verifying that
no vehicle specification is violated. The yaw rate and slip angle change according to
a combination of system dependent coefficients mentioned in a later vehicle specific
data sheet [Raj11].

The domain of the variables u1 and u2 which represent the acceleration and an-
gular velocity of the car is bounded by the terms h1 and h2, where δ, v defines the
minimum steering angle and velocity and respectively δ, v specifies the maximum
steering angle and velocity of the specified vehicle type.

h1 = (δ ≤ δ ∧ u1 ≤ 0) ∨
(
δ ≥ δ ∧ u1 ≥ 0

)
h2 = (v ≤ v ∧ u2 ≤ 0) ∨ (v ≥ v ∧ u2 ≥ 0)

The equations h1 and h2 describe the vehicle steering and velocity constraints used
in the case definition of their respective derivatives (Equation (4.2), Equation (4.3)).
The dynamics of the bicycle model are formally defined below:

ẋ = v · cos (ψ + β) ,

ẏ = v · sin (ψ + β) ,

δ̇ =


0 for h1,

vδ for ¬h1 ∧ u1 ≤ vδ,
vδ for ¬h1 ∧ u1 ≥ vδ,
u1 otherwise,

(4.2)
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v̇ =


0 for h2,

a for ¬h2 ∧ u2 ≤ a,
a for ¬h2 ∧ u2 ≥ a,
u2 otherwise,

(4.3)

ψ̇ = ψ̈.

The derivations of ψ̇ and β are combined formulas composed of the forces acting on
the front and rear axis of the car, the friction coefficient µ and the cornering stiffness
CS,i, i ∈ {f,r} of the tires (f=front, r=rear). The mentioned parameters are relevant
for the angle dynamics because they are the important and only parts acting on the
axes, while considering the tire properties. We omit the exact definition of β and ψ̈,
for a further explanation, we refer to the paper [Alt17]. The presented dynamics of
the bicycle-model are non-linear similar to the dynamics of the kinematic single-track
model. However, they cover more aspects of a realistic vehicle representation and
can be configured to display different car models. Due to the additional variables for
yaw angle and slip angle, the trajectory following is more detailed and realistic, espe-
cially in curved trajectories. Consequently, the set of reachable states resulting from
the flowpipe-construction-based reachability analysis represents a more defined and
narrow trajectory and can verify trajectories in real traffic scenarios. On the con-
trary, the increased complexity of the bicycle model increases the computation time
needed, when the model is used in an application. Moreover, as a result from the
definition of δ and v in cases, side constraints regarding design limitations of the
car are outsourced to the vehicle model. The effect this design specification has
on the computation time requires a further comparison between the consideration of
car specific bounds in the constraint set of an optimization problem, as in the MPC-
based trajectory planner (see Section 5.6), and the modeling of design limitations in
the vehicle model as shown here [Alt17].

Table 4.1: Datasheet of two different vehicle specifications in the bicycle-
model [ASK+92].

vehicle parameter vehicle id

name symbol unit 1 2
vehicle length l [m] 4.30 4.51
vehicle width w [m] 1.67 1.61
total vehicle mass m 103[kg] 1.23 1.09
moment of inertia for entire mass
about z-axis Iz 103[kg m2] 1.54 1.79
distance from center to front axle lf [m] 0.88 1.16
distance from center to rear axle lr [m] 1.51 1.42
center of gravity height of total mass hc,g [m] 0.56 0.57
cornering stiffness coefficient Cs,f [ 1

rad ] 20.89 20.89
friction coefficient µ [−] 1.05 1.05

The friction coefficient µ is originally derived in the Adams tire documentation
in [Sof11] and all other relevant vehicle parameters are taken from [ASK+92].
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Besides the bicycle model there are certain vehicle models representing a car in
a more realistic form. The so called multi-body model first presented in [ASK+92]
increases the consideration of relevant parameters in vehicle models. It consists out
of 29 variables defining the vehicle’s characteristics, while considering forces acting
on the tires and the physical vehicle body. A complete tire model and nearly all
vehicle parameters compared to a real vehicle are considered, including the body,
axes, wheels and auxiliaries. Owing to the fact that this thesis rather focuses on the
verification of a vehicle controller than on the representation of a high order vehicle
model, the multi-body model could be dealt with in future research, but does not fit
the intention of this work.

Moreover, M. Althoff and J. M. Dolan proved that the bicycle model can be used
as decisive approximation model for the multi-body model in various numerical exam-
ples [AD12]. In fact, it has been shown that introducing an over-approximation in the
bicycle model suffices to approximate the behavior of more complex vehicle models.
This approximation procedure shows that the approximated set of reachable states
in the bicycle model safely over-approximates the set of reachable states from the
multi-body model. Therefore the bicycle model is proved to work as a reliable substi-
tute model. The verification procedure is realized by a rapidly-exploring random tree
(RRT), validating that the multi-body model cannot reach a state outside of the com-
puted set of reachable states. According to the previously mentioned paper [AD12],
the bicycle model can be used as a substitution model for the multi-body model with
a certain over-approximation. As a result, the processing time to verify a trajectory
with a high-order vehicle model can be substantially reduced by substituting it with
the bicycle model [AD12]. This is reasoned by the fact that the use of the multi-body
model in computations has a higher time complexity than the usage of the bicycle
model.

4.4 Vehicle Model Comparison

To illustrate the differences of the presented vehicle models we have implemented
and analyzed a small selection of driving maneuvers using the different models. The
point-mass model and kinematic-single track model are compared in a simulation
and reachability analysis, depicting a left curve. Moreover, two vehicle specifications
of the bicycle model are analyzed with a reachability analysis.

Figure 4.4, displays a simulation of the PM and the KST in a scenario with con-
stant velocity and a left curve. It is clearly shown that the difference between the two
shown trajectories constructed by a simulation lies solely in numerical differences.
On the contrary the flowpipe-construction-based reachability analysis (see Figure 4.5)
shows the flowpipe of the point-mass-model to evolve and widen, while the flow-
pipe of the kinematic-single-track models expands constantly without diverging. The
in Figure 4.5 shown diverging flowpipe is reasoned by the fact that the dynamics
of the PM do not model a heading angle, therefore the coordinates x and y evolve
in both directions defined by the velocity variables vx and vy. On the other hand,
the KST models an additional heading angle allowing the set of reachable states to
evolve in a narrow and realistic manner.

Due to this, the kinematic single-track model is suited to verify trajectories in a
realistic manner, while the diverging flowpipe of the point-mass model does not rep-
resent a realistic set of reachable states. Moreover, the point-mass model can only
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Figure 4.4: Point-mass model vs. kinematic-single track model.

work with inputs defining the acceleration values in the x and y direction, whereas
realistic vehicle controllers generate inputs consisting of an angular velocity and an
acceleration value.

To compare the efficiency of the two vehicle models, we further have to compare
the time complexity of the PM and the KST. The computation of the flowpipe using
the kinematic single-track model had a running time of 0.17s over 26 time steps with
a time step size of one second, while the point-mass model needed 0.09s in the same
context. The numerical results correspond to our assumption that the simulation time
of the models do not differ by a considerable factor.

Further the two vehicle types of the BM specified in Table 4.1 are compared in
a selected maneuver. The representation of different vehicle types by adjusting the
vehicle body parameters of the BM is one of the advantages of the bicycle model.
Hence, the bicycle models allows us to represent numerous different vehicle designs
by adjusting corresponding parameters variables. This enables the option for us
to compare different models of physical vehicles in numerical experiments. In Fig-
ure 4.6, the vehicles one and two are depicted and compared in a simulation and
reachability analysis of a maneuver with constant acceleration and a small angu-
lar velocity. The parameters for vehicle one are taken from a Ford Escort, which
is a small car compared to other vehicles [ASK+92]. Additionally, to analyze and
compare the constructed trajectory to the trajectory of a different vehicle type, the
parameters of vehicle two are taken from a BMW 320i [ASK+92]. The BMW 320i is
a car with a medium sized vehicle body.

The first numerical experiment compares the two vehicle specifications over a
time duration of two seconds, vehicle one had a computation time of on average
3.94s for the simulation, while vehicle two needed 3.93s. The results for the flowpipe-
construction-based reachability analysis performed with both vehicle types was 3.87s
for id one, respectively 3.80s for id two. The second experiment shown in Figure 4.6
divided in a simulation and flowpipe-construction-based reachability analysis was
computed with a time duration of ten seconds and a time step size of 0.10s. The
processing time for vehicle id one in the simulation shown left was on average 6.28s,
while vehicle two needed 6.13s. Moreover, the processing time of the flowpipe con-
struction for the two vehicle specifications was 17.19s for id one and 17.76s for vehicle
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(a) Point-mass model. (b) Kinematic single-track model.

Figure 4.5: Comparison of point-mass and kinematic single-track model.

(a) Simulation. (b) Set of reachable states.

Figure 4.6: Comparison of the bicycle model with different vehicle specifications.

two.
As a result, the processing time to compute the set of reachable states is as

assumed much higher than the time required to perform a simulation. Moreover, the
time complexity of the two vehicle types does not vary in a notable measure.

The only difference between the two vehicle specifications is shown in the de-
picted plots. The computed trajectories shown in Figure 4.6 show that vehicle one
had a smaller turning circle than vehicle two, which is reasoned by the fact that the
Ford Escort has a much smaller physical body than the BMW 320i [ASK+92].

All computations have been performed on a system with a six core i5 proces-
sor with 2.80GHz. Further details about the collected time complexity results are
declared in Appendix A.1. Additionally, zonotopes were used as state set represen-
tations of the computed flowpipes and the function Reach implemented in the toolbox
Cora has been used to compute the set of reachable states [AK18].
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Controller Models

This chapter displays various approaches in controller verification and algorithms
regarding path planning and input generation for autonomous vehicle control. Before
going into detail, we have to explain a certain term required in order to realize the
verification of a trajectory planner for autonomously driving vehicles.

Certain verification approaches in autonomous vehicle control rely on the repre-
sentation of vehicle maneuvers as so called motion primitives. Maneuvers are used
to define the movement of a particular vehicle in a traffic scenarios. For instance,
a right or left turn, an acceleration, an overtake or a lane change are typical ma-
neuvers executed in everyday traffic. These maneuvers can be realized by infinitely
many different trajectory variations. Therefore to discretize this set into a finite set of
trajectories, we have to specify a formal definition grouping certain trajectories which
inherit the basic structure of the same underlying maneuver. This formal specifica-
tion is called Motion Primitives and groups finite sets of trajectories into equivalence
classes, which describe a specified maneuver [FDF05]. Intuitively, a Motion Primitive
describes an equivalence class of a trajectory set inheriting the basic property of a
specified maneuver, while differing only in a time translation and certain restricted
trajectory changes.

5.1 Maneuver Automata

In theory, there are many approaches and ideas how to define a maneuver au-
tomaton. One approach is to define a maneuver automaton as a hybrid system
by modeling it as an hybrid automaton, in which each location represents one ma-
neuver. To execute the desired maneuver, the automaton has to take a transition to
the specific location. This is only possible, if the corresponding guard is satisfied,
ensuring maneuvers to be only executable if they are physically feasible to be exe-
cuted successively. Furthermore, the named design specification is ensured by the
enclosure condition (see Equation (5.1)). The enclosure condition states that the fi-
nal set of reachable states of the first maneuver is fully enclosed by the initial set of
reachable states of the second maneuver. Additionally, the enclosure condition has
to be satisfied by all successive elements in the transition set ∆ in Definition 5.1.

Moreover, verifying the automaton and guaranteeing a safe trajectory is possible
by analyzing the set of reachable states of the system as described in Section 2.1.2.
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The computation of all possible reachable states of the system requires high com-
putational effort. In the optimal case, we want to have an online controller, which
directly adapts the trajectory while ensuring safety. Therefore all motion primitives
together with their set of reachable states are pre-computed offline. Hence, a run
of the maneuver automaton connects the pre-computed sets of reachable states of
the selected motion primitives, while checking if corresponding sets are not intersect-
ing with unsafe states to generate a safe and verified trajectory from initial to goal
position [HAS14].

We use motion primitives to reduce the infinite set of varying trajectories describ-
ing a certain maneuver to a finite set of maneuver trajectories which can be verified
in finite time.

Definition 5.1: Maneuver Automaton [HAS14]

MA = {M,∆,M0, G}

The maneuver automaton consists of:

M describes the finite set of maneuvers mi (motion primitives) as loca-
tions.

∆ is the set of discrete transitions between two maneuvers ∆ ⊆ M×M,
where a transition between two maneuver is specified by (ma,mb)
(connects two maneuvers if they fulfill the enclosure condition defined
in Equation (5.1)).

M0 ⊆ M describes the initial maneuver set, consisting of all maneuvers
which begin in the initial region.

G ⊆ M describes the goal maneuver set, consisting of all maneuvers
which are fully enclosed in the final region.

The transition set ∆ describes possible connections of two locations. A transition
between two locations is added to ∆, only if the enclosure condition is satisfied by the
corresponding set of reachable states. The enclosure condition is formally described
by Equation (5.1) and visually depicted in Figure 5.1 [HAS14].

∀j Rj(tfj ) ⊂ Rj+1(t0j+1),
where R is the set of reachable states of a certain motion primitive
at a certain time step, while j depicts the j-th motion primitive.

(5.1)

An execution of the hybrid automaton results in a list of motion primitives intended
to be executed successively, beginning with an initial maneuver and ending with a
maneuver, which is part of the goal set. The list of maneuvers depicting a success-
ful run from the initial to the goal position is encoded in the locations visited during
running time. The described procedure is structured in the following steps. First
of all, the set of reachable states of the motion primitives is is pre-computed offline
Secondly, the maneuver automaton is constructed, following Definition 5.1. The ma-
neuver automaton is constructed by the following in this thesis simplified steps. First,
to construct the automaton a set of maneuvers is given, defining the locations of the
hybrid system. To maximize the number of transitions in the automaton, the initial
set of reachable states for each maneuver is guessed. Afterwards, in each step two
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Figure 5.1: Two set of reachable states, fulfilling the enclosure condition (∆).

maneuvers are checked to fulfill the enclosure condition that has to be satisfied to
be part of the transition set. If the condition is not satisfied the initial set of reach-
able states of the second maneuver can be expanded to enclose the final set of the
first maneuver and thus fulfill the requirement of ∆. This procedure is repeated un-
til the quantity of elements in the transition set ∆ is maximized while it is ensured
that all elements satisfy the enclosure condition. Further explanations on the formal
construction are described in [HAS14].

Afterwards, the maneuver automaton is executed connecting different sets of
reachable states of motion primitives. In parallel, the occupancy set of other traf-
fic participants is computed, describing the possible set of possible reachable states
of the obstacles at a discrete time step. Eventually, the set of reachable states of the
automaton and the occupancy set of the obstacle vehicles are checked for an inter-
section. A set is classified as safe, if there is no intersection with the set of reachable
states of obstacle vehicles. If, more than one safe set of connected motion primitives
exist, the driver can control the vehicle, whereas if only one safe trajectory is avail-
able, the maneuver is executed by the controller [HAS14]. The described procedure
could be transformed into a complete autonomous vehicle controller by allowing the
controller to execute a safe maneuver in each time step.

However, the instance that the automaton was not able to construct a safe set
of motion primitives because all set of reachable states of available locations are
intersection with bad states is not defined in the original approach. A possible option
to be performed in the defined case would be to minimize the occurring damage of
an inevitable crash by slowing down the vehicle to a minimal velocity. Otherwise
one could enable the hazard warning lights of the controlled car to affect the driving
behavior of other traffic participants possibly causing free space, enabling an evasive
emergency maneuver to be executable.

As a result of the described transition-set condition visualized in Figure 5.1 and
the repeated intersection check to verify that no bad state can be reached, the result-
ing maneuvers are verified to build a connected and safe trajectory. Attributable to
the fact that the automaton only connects pre-computed motion primitives, fulfilling
the enclosure condition, the approach guarantees safety while executing the maneu-
vers. However, they do not have to be optimal in terms of efficiency and comfort.
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5.2 Formally Verified Motion Planner
Besides the flowpipe-construction-based reachability analysis, a reachability analy-
sis can be realized by a proof assistant and satisfiability checking. In the following
the proof assistant Isabelle is used to construct a reachability analysis which is ver-
ified by satisfiability checking [RISA18]. In addition to the general verification of the
generated trajectory, the approach has the capability to consider uncertainty in the
computation process.

Implementation details concerning the reachability analysis with the help of a
theorem prover, along with the solution of technical problems to build an interface
between both platforms (Matlab, Isabelle) can be found in [RISA18].

Instead of analyzing and explaining the implementation details, we rather focus
on depicting the method to verify a hybrid system in autonomous vehicle control with
satisfiability checking [RISA18].

The verification procedure of the motion planner starts with the definition of a
maneuver automaton as in Section 5.1. The maneuver automaton varies slightly in
comparison to the Definition 5.1, consisting of a maneuver set M , a set of jumps
connecting two maneuvers satisfying the enclosure condition and a set of ODEs de-
scribing the underlying trajectory of a maneuver mi ∈M (Definition 5.2).

Definition 5.2: Maneuver Automaton [RISA18]

MA = (M,jump,ode)

M The set of all maneuvers is denoted by M .

jump The transition set connecting two maneuvers satisfying the enclosure
condition is specified by jump :: (M×M), where two maneuversma,mb

connected in a jump are denoted by (ma,mb).

ode The set of ODEs describes the trajectory of each maneuver mi by an
ODE: ode(mi) :: R× Rn ⇒ Rn, ∀mi ∈M .

The explanation on how to construct the corresponding ODE, describing the tra-
jectory from initial to final position of a certain maneuver, is omitted due to the fact
that we solely focus on verifying the trajectory. To further verify the system and cor-
responding motion planner, we have to provide a formal specification which has to
hold during the execution of the MA. In the following we denote with reach(mi), the
set of reachable states of a maneuver mi.

A safe path is denoted by the following formal definition.

Definition 5.3: Safe Path [RISA18]

A safe path of the MA is a series of maneuvers m0, . . . ,mn−1 ∈ M , fulfilling
the following three conditions (M is the set of all maneuvers):

(i) Sequential listed maneuvers are connected by a jump transition.
(mi,mi+1)⇒ (lmi , g, r, lmi+1) ∈ Edge ∀i, i+ 1 ∈ [0, . . . , n− 1]

(ii) No set of reachable states intersects with an unsafe region D.
reach(mi) ∩ D = ∅ ∀m0, . . . ,mn−1 ∈M .
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(iii) The final part of the set of reachable states of mi is fully enclosed in the
initial set of reachable states of mi+1.

reach(mi) ∈ init(mi+1) ∀i, i+ 1 ∈ [0, . . . , n− 1]

The next step of the algorithm is to transform the maneuver automaton into a
motion planner. This is realized by interpreting LTL over the automaton. Atomic
propositions are used to represent relevant factors regarding the vehicle’s environ-
ment. In particular, lane borders, other traffic participants or other influencing traffic
operators can be displayed by an atomic proposition AP .

Moreover, the atomic propositions can be connected by the operations below:

φ ::= true | π | φ1 ∧ φ2 | ¬φ | χφ | φ1 ∪ φ2,

where π :: atom.
In addition to the standard LTL operations, a new data type is introduced adding

the possibility to add a sign to each AP , which is required to state more complex
formulas to enable a more decisive verification.

datatype aprop = AP− | AP+

The semantics of the LTL are defined as in the standard LTL except for the semantics
of the introduced data type.

We only depict the part of the semantics deviating from standard LTL:
The deviating LTL rules for the used definition of a maneuver automaton are defined
over a finite sequence of sets δ = A0,A1, . . . ,An−1, where Ai :: Rn for 0 ≤ i < n, as
described below, where the set Ai describes the set of reachable states of the i-th
maneuver mi:

δ |= π+ ⇔ A0 ⊆ [[π]]
δ |= π− ⇔ A0 ∩ [[π]] = ∅,

where [[_]] :: AP → Rn
(5.2)

The interpretation function [[_]] maps an atomic proposition AP to a set of real
numbers to enable a comparison between a region defined by an AP and a set of
reachable states of a certain maneuver mi as defined by the π+, π− notation. The
semantics described in Equation (5.2) are used to check for an intersection or an
intersection freedom between the positions defined by the maneuver sequence and
the sets defined by the atomic propositions [RISA18].

Intuitively, the purpose of describing the motion planner by LTL is to define a
formula specifying regions that have to be intersected and regions that have to be
avoided by the computed trajectory. Further, to formally verify a sequence of motion
primitives (m0,...mi−1), we define a formula depicting the goal state and safety re-
strictions which have to be satisfied. The intended goal position of the trajectory and
certain safety restrictions which have to be fulfilled are specified by an LTL formula,
called reach-avoid set. In detail, a reach-avoid set describes an LTL formula divided
in parts which want to be reached (goal state, current lane) and parts which have to
be avoided (lane bounds, obstacles, . . .) [RISA18].

The newly introduced semantics expand the verification to a sets of trajectories
instead of single trajectories as it would have been possible with standard LTL. This
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expansion of the verification aspect together with a detailed reasoning to introduce
the new data type can be looked up in [RISA18]. Owing to the fact that a sign can
be added to each atomic proposition, the reach-avoid set becomes more complex by
formally defining the underlying geometric regions depicted by the LTL formulas.

Further with the defined syntax and semantics of LTL, we can state a procedure
to check, if a given LTL formula can be satisfied by a sequence of motion primitives.

Definition 5.4: Satisfiability of a Motion Sequence [RISA18]

An LTL formula ρ is satisfiable, if there is a series of maneuvers, such that:

reach(m1), reach(m2), . . . , reach(mn) |= ρ,

where mi is an element of the maneuver set M (see Definition 5.2).

Precisely, an exemplary reach-avoid set contains conditions that no traffic regula-
tion is violated and the trajectory of the driver’s vehicle intersects at the final position
with the goal area. These statements can be realized with the additional semantics
introduced in Equation (5.2) to prove intersection freedom with unwanted bad states
and an intersection with the defined goal position. The SAT solver tries to compute
a set of motion primitives to fulfill the formula defining the reach-avoidset. As a re-
sult of this, if the reach-avoid set is solvable, a list of motion primitives is obtained
which can be connected and executed by the vehicle model to describe a safe tra-
jectory from the initial to the goal position. An exemplary reach-avoid set is depicted
in Equation (5.3) [RISA18].

ρ = (driving_lane+ ∧ obstacle_set− ∧ lane_borders−) ∪ goal_location+ (5.3)

The reach-avoid set can be divided in four parts to further explain the procedure.
The first part driving_lane+, describes the condition that the trajectory described by
the maneuvers satisfying the formula has to be part of the driving lane. Intuitively,
the obstacle set and the lane borders have to be avoided by all motion primitives,
depicted by the minus. Finally, the set of motion primitives has to intersect with the
goal_location+. Besides the stated verification method, it has to be noted that the
resulting list of motion primitives does not have to represent the optimal trajectory in
terms of efficiency and comfort. The approach focuses on the verification of the path
planner, rather on the optimization of generated inputs as in Section 5.6.

5.3 Safety Verification with Theorem Proving

Another method to perform a reachability analysis of a hybrid system is based on
theorem proving. A special logic is used to specify the runs of hybrid systems and
with an additional definition of safety terms, safety requirements can be defined and
verified to hold in all executions of the hybrid system [PQ08, MGP13]. The selected
logic is used to state certain terms defining safety rules for the runs of a hybrid
system.

In the context of autonomous vehicle control, the safety formulas depict the dis-
tance to obstacles regarding the velocity of all traffic participants to ensure that safe
stops are possible at every time step. Additionally, to prevent blocking other vehicles
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that are driving in the close environment, a term restricts the operators’ vehicle to
stop at an adverse spot, causing a collision with an obstacle vehicle.

Finally, the logical specifications are used to advance the used algorithm for path
planning to ensure additionally that the generated inputs defining the movement of
the operators vehicle do not violate the specified safety terms. This is realized by
a theorem prover which verifies that the specified safety terms are satisfied for all
possible runs of the hybrid system [MGP13].

However, the stated approach to verify the runs of a hybrid system with a theorem
prover is not suited to be used in autonomous vehicle control. This is science-based
by the fact that the theorem prover does not work completely autonomous. The
approach depicting the stated procedure is only to 85% automatic, the remaining
15% are covered by user interaction. This aspect contradicts the purpose of this
thesis to verify an autonomous vehicle controller. Therefore we did not choose to
use reachability analysis based on a a theorem prover to verify the later implemented
controller models.

5.4 Maneuver Templates

Instead of generating and verifying a trajectory out of a set of motion primitives as
in Sections 5.1 and 5.2, another approach focuses on using a similar structure called
maneuver templates to group certain trajectories to improve the running time of a
motion planner.

The maneuver templates coordinate a group of traffic participants, instead of con-
trolling solely one vehicle as in the maneuver automaton. The main purpose of the
approach is to improve the running time of cooperative motion planners. For further
details about the time complexity reduction of the approach, we refer to [MLA17]. A
minor insight into the reduction of the running time follows later.

It should be noted that the maneuver templates are not a fully functional controller
model, they are an additional specification to structure trajectories in certain traffic
scenarios. Nevertheless, the approach is presented in the following section to show
a similar usage of a formal structure grouping trajectories in maneuver-based path
planning algorithms.

First of all, all traffic participants are divided in controllable cooperative vehicles
and obstacle vehicles which cannot be controlled, but have to be considered to avoid
collisions. In each step the motion planner can check, if there is any template avail-
able and safe executable. In case, there is a feasible template available for the
current valuation, it can be executed. This can improve the time efficiency of the
algorithm. In particular, the use of a template can reduces the search space of a
motion planner based on an A* algorithm.

Owing to the fact that we cannot provide a template for every possible scenario,
the approach cannot be applied in every situation [MLA17]. However, it is proven
that a small amount of traffic patterns is sufficient to display nearly all traffic situ-
ations [ZGU13]. Traffic patterns are formal descriptions, describing for instance the
procedure to manage traffic at an intersection. The difference to maneuver templates
is the different formal structure describing the allowed vehicle trajectories. Therefore
it is assumed that the same is accountable for maneuver templates and traffic sce-
narios.
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On the contrary, if no template is executable, the motion planner constructs the re-
quired inputs for the next time step without further assistance. The stated procedure
is repeated in each discrete time step until the motion planner finishes computing.
First of all, we have to define the general structure of a maneuver template.

Definition 5.5: Maneuver Template [MLA17]

A maneuver template is a two tuple, consisting ofM, defining the dynamics
of the traffic participants and a constraint set C, specifying the maneuver by a
set of restrictions.

T = (M, C)

M = (f,Z0,U)
f specifies the continuous dynamics of certain traffic participants, where
ż = f(z(t), u(t)) defines the dynamics of the traffic participants with
z ∈ Z being the current status vector, describing the vehicle state and
u ∈ U is a vector containing the control inputs for each time step. The
initial vectors defining inputs and the current state of the cooperative
vehicles are restricted by z0 ∈ Z0 ⊂ Rn,∀t : u(t) ∈ U ⊂ Rm.

C = {C1(z, u), . . . , Cp(z, u)} describes the constraint set of the maneuver
template.
Certain single constraints Ci(z, u) : Rn × Rm → {true, false} assign to
a certain input set, consisting of the initial state z and the time discrete
input u, the Boolean values true or false.

The maneuver templates consist of dynamics for all traffic operators and a con-
straint set ensuring the compliance of traffic rules and safety constraints. Intuitively,
the templates define a set of trajectories satisfying and operating in a specified man-
ner.
The constraint set can be defined as follows:

Definition 5.6: Constraint Set C [MLA17]

C = {C1(z, u), . . . , Cp(z, u)} is split into the subsets C = B ∪H ∪A.
B = {b1(z0, t0), . . . , bi(z0, t0)}, i ∈ N (initial conditions)

B defines the initial terms that have to be satisfied at the initial time
t0 to apply the template. Exemplary constrains are restrictions on
initial velocities of the cooperative vehicles and safety distances
between the cars.

H = {h1(z(t), t), . . . , hk(z(t), t)}, k ∈ N (general constraints)

H defines conditions to be fulfilled while the template is executed
(t1, . . . , tf−1). In particular, the set H includes constraints deter-
mining the driving direction and maximal allowed velocity, while
ensuring lane keeping and collision avoidance.

A = {a1(z(tf ), tf ), . . . , aj(z(tf ), tf )}, j ∈ N (goal conditions)

A defines the status each vehicle has to be in, after a successful
execution of the template at the final time tf . For instance, this
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can include the final position of the vehicle, the safety distances
between them and the covered track of the cooperative vehicles.

The properties stated in the constraint set definition do not cover all possible
implementable constraints. They are used as examples to get an understanding of a
possible template structure. For a further example applied in a numerical experiment
with a motion planner, we refer to [MLA17].

In order to ensure that the algorithm is working correctly, it is examined, if for a
discrete time step a feasible template is available.

Therefore the solution set of a template at a given time t is defined by:

Z(t) = {χ (t; zo, u(·)) | z0 ∈ Z0,∀t : u(t) ∈ U ,
∀t∀i : Ci (χ(t; z0, u(·)), u(t) = true)}

(5.4)

Equation (5.4) specifies the set of possible solutions for a template at a certain time
t, an initial state z0 and an input vector describing the dynamics of the corresponding
vehicles u(·). Intuitively, the set Z contains all vehicle dynamics, defined by u(·) and
the next discrete time steps t which satisfy the condition that for an initial state z0
and for all following time steps the set of constraints is satisfied by the dynamics of
the cooperative vehicles. For a simplified explanation of the computation process
of the solution set we refer to Section 5.4.1 and for a detailed explanation we refer
to [MLA17].

The complete template method is structured in smaller steps. First it is tested, if
the initial conditions of a template are satisfied (B), removing unfeasible templates.
For instance a template designed for five cooperative vehicles cannot be applied in
a situation with only four controllable cars. In the next step, templates with empty
solution sets are discarded, because they cannot be executed. This is computed
with the help of Equation (5.4). Templates can have empty solution sets, if the initial
conditions are satisfied, while there are no corresponding trajectories satisfying the
conditions of the subsets H and A. An exemplary description would be the initial
restriction set that specifies the velocity of vehicles and distances between them
which is satisfied by the states of the current vehicles. However, the goal constraints
define that an overtake maneuver has to be realized which is not possible, because
the obstacle vehicles are blocking the required lanes.

All resulting templates can be performed safely and with the help of an optimiza-
tion framework the optimal template is selected.

Afterwards, the motion planner considers the selected template in the construc-
tion of the inputs describing the next trajectory part. This has shown to improve the
time complexity of the used motion planner. In detail, the evaluated path planner
worked with a tree data structure and an A* search algorithm selecting the optimal
trajectories based on a heuristic function. The elements of the corresponding tree
are maneuvers, while a node in the tree represents a set of connected motion primi-
tives. In case a template is selected, the search space of the A* algorithm is reduced
and the heuristic function is adjusted according to the template restrictions. This re-
stricts the solution set and search space of the algorithm, while it has been shown to
improve the time efficiency.

In the other case, if no template is selected, the motion planner, in particular the
A* algorithm searches for the optimal maneuver without adjusting the tree structure.
The maneuver templates are solely an optional tool to reduce the computation time
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of the corresponding motion planner, they cannot take over tasks of a real controller
for autonomously driving vehicles [MLA17].

5.4.1 Maneuver-Template Generation

One main disadvantage of the maneuver template approach is the fact that all tem-
plates have to be generated manually. This comprises the draft of the whole scenario,
including the dynamics of the cooperating vehicles and the constraint set. Conditions
for the initial, general, and goal states have to be designed and implemented by math-
ematical restriction terms. Until now, no algorithm is available to take over this task to
design constraint sets for maneuvers dynamically. Though a future plan to implement
an algorithmic construction of templates was mentioned in [MLA17].

Finally, to compute the solution set for a specific template an optimization steer-
ing problem is solved, while satisfying the restrictions stated by the template. First,
the constraint set C is divided into the defined subsets B,H,A. Then, a minimiza-
tion problem is introduced, computing an optimal trajectory considering the bounds
defined by the template. Further details on the procedure are described in [MLA17].

5.5 Electric Field Model

The electric field model is a theoretical concept for vehicle path planning, in which
the vehicle is modeled as an electron moving through an electric field containing a
set of potentials repelling the electron [RS94].

The environment of the car is modeled as a risk map with different potentials rep-
resenting various traffic interactions (see Figure 5.2). The potentials represent risk
factors including other traffic participants, lane regulations and in general obstacles.
Those potentials are weighted individually to fit the intended use, the highest priority
is to avoid collisions in all cases, neglecting the driver’s comfort, if needed. Therefore,
to ensure safety, all objects on the map potentially causing a collision are assigned
the highest weight. Additionally, to realize a certain maneuver, new potentials are
placed in the close environment of the vehicle to force a trajectory modification by
pushing the vehicle in the desired direction. In particular, a potential is placed before
or behind the vehicle to slow down or accelerate it and left or right to push it to the de-
sired neighboring lane [RS94]. Lane borders and obstacles are modeled by defining
potentials at the specific regions of the risk map to create repulsing forces.

A dynamic motion planner is constructed, if, additionally to the potentials a goal
region is specified and added to the risk map. The goal region differs in comparison
to the other potentials on the map by attracting the electron instead of repelling it.
Hence, by combining the forces induced by the potentials and the attracting force
caused by the goal region a force field emerges, which represents the forces acting
on the electron at each position of the map.

The resulting force field can be used to construct the desired path. The purpose
of the theoretical concept is to construct an approach used inside a trajectory planner
to build optimal paths with respect to the close environment of the vehicle [RS94].
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Figure 5.2: Risk map, consisting of various potentials and a goal region.

5.5.1 Trajectory planner using the E.F Model
To explain the electric field model in a more practical application, an approach is
presented using the electric field model to optimize the trajectory constructed in a
path planner.

The algorithm is structured in two basic steps. First, a general trajectory planner
computes an initial reference trajectory with guaranteed safety under the assump-
tion that the environment will not change. Afterwards, a local planner modifies the
reference path. In the first step, the local planner detects and avoids obstacles by
adjusting the reference trajectory to ensure collision avoidance. In the second step,
the property of the electric field model to depict the force acting on a specific point
is used to influence the control inputs by modifying the trajectory to follow the points
with the minimal repelling force.

To formalize this condition, the risk map depicted by the corresponding force field
is modeled by a topological structure called potential valley. Accordingly, a minimal
potential valley (MPV) represents points of the surface at which the force acting on
the electron is minimal. Owing to the fact that the MPV describe the whole environ-
ment map, there are infinitely many points in the MPV. To discretize the representa-
tion, the MPV is transformed into a graph. This procedure is realized by transforming
local minima in the MPV to nodes. In addition to complete the graph structure, the
edge set is assigned direct lines connecting these nodes. The described transforma-
tion is further described in [HA92].

Consequently, the global planner uses an improved search algorithm with a corre-
sponding heuristic function to compute the reference trajectory. The heuristics used
in the search algorithm are defined by considering the path length and distance to
near obstacles. Afterwards, the local planner moves along the generated reference
path and modifies the path by minimizing the repelling factors affecting the vehicle
on its current position. The minimization of the sum of forces acting on the vehicle
intuitively ensures the avoidance of obstacles. For a further explanation about how to
modify the reference path in a complex vehicle constellation to still avoid a collision
while optimizing the generated trajectory, we refer to the original paper [HA92].

We included this concept in this thesis to cover a theoretical approach in path
planning, which is a precursor to the comparable MPC in the following Section 5.6.
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5.6 Model Predictive Control

Model predictive control (MPC) is a modeling approach which focuses on predicting
the future evolution of the underlying system to optimize the generated results based
on various assumptions. To realize the aspect of predicting the future behavior, a
prediction horizon is used, defining the next time steps that are considered in the
related computation.

In the context of automotive vehicle control, MPC is used to generate optimal
inputs for a vehicle, regarding driving efficiency and comfort. The corresponding
system works with a closed loop between the MPC-based controller and the vehicle
model. At each time step the controller generates new control inputs which are given
to the vehicle model. Afterwards, the vehicle model executes a determined time
step and the new state of the car is given back to the controller. Then, the controller
updates the current environment data and computes the next optimal input regarding
design limitations and driving efficiency. The inputs are given to the vehicle model
and the described procedure is repeated until the vehicle reaches the goal region.

In order to compute optimal results, a certain behavior of all traffic participants
has to be assumed. With this in mind, a MPC-based algorithm computes the inputs
for a vehicle over the next time steps assuming a certain movement of the other
traffic participants. Moreover, in the context of this thesis the prediction of prospective
occupations of the obstacle vehicles are determined by given benchmark information.
However, in real traffic situations sensors have to track the current movement of the
obstacles to enable the model to predict future positions.

Diverse approaches can be followed to predict the future position of a vehicle,
from intuitive ideas assuming a constant evolution of the vehicle dynamics to complex
computations as in [KA17].

To focus on the general verification process the aspect to model the future posi-
tion of traffic participants is simplified throughout this thesis. In real situations the
future positions of cars in close range can be approximated by the current velocity
and driving direction the vehicle is expected to follow. In order to consider the future
behavior in mathematical computations, a prediction horizon is used, specifying the
amount N of discrete time steps the MPC-based trajectory planner considers while
computing the inputs [LT18].

The structure of the approach is divided in four parts, beginning with the data
extraction, in which an offline available map is formatted to be used in later steps. In
real traffic situations the map extraction has to be updated immediately, together with
sensor readings updating the position of obstacles to represent the current environ-
ment. In the second step a reference trajectory is computed. A reference trajectory is
an initially computed path which connects the current position of the vehicle with the
desired goal location without considering smoothness of the trajectory or the driver’s
comfort. The reference trajectory is a basic trajectory, connecting the initial and goal
position based on the given environment map. Afterwards, the computed reference
trajectory is fed into the MPC-based controller. The MPC modeling approach is re-
alized by an optimization problem refining the given trajectory over the next N time
steps to have smooth curves and be optimal regarding driver’s comfort and efficiency.
In the last step, the inputs generated by the controller are given to the vehicle model.
The vehicle model executes one time step δ and returns the new position and vehi-
cle variable valuation to the controller. The complete procedure is repeated until the
vehicle has reached the goal position. The whole structure together with the closed
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loop between controller and vehicle model is depicted in Figure 5.3.

data extraction/perception

reference path generation

mpc controller

vehicle model

current statecontrol
inputs

Figure 5.3: MPC-based controller model.

Further, the next section explains the four steps of the described approach in
detail.

In the original approach in [LT18], a trajectory planner constructs a reference
trajectory as a spline. By considering the purpose of this thesis to verify a controller
rather than depicting an optimal path planner, the trajectory generation is simplified.

First, a data extraction script in Matlab transforms lanelet data [BZS14], describ-
ing the environment of the car, into objects consisting of lane center points and prop-
erties, including lane successors and lane neighbors. Afterwards, the previously
created lane objects are used to construct a graph structure, containing vertices for
each lane center point and edges for any possible connection between two points.
To avoid unnecessary and redundant edges, we assume that the vehicle drives only
in the by the road intended direction.

Before initiating the reference path computation, at first initial and desired posi-
tions of the trajectory have to be declared.

The approach stated in this thesis works differently in comparison to various cur-
rent research sources [TCT+13, PKY+09]. It does not ensure collision avoidance by
modeling various safety constraints in the optimization problem of the MPC-based
controller. Instead, the safety requirements are implemented in the reference trajec-
tory generation. Therefore the constructed reference trajectories are checked for an
collision with an obstacle and afterwards if necessary updated to be collision free
in the current environment. Formally depicting that the constructed reference tra-
jectories are proven to be safe in the environment at the time they are constructed.
Beginning with the current state, all feasible maneuver trajectories are computed.
The maneuvers consist of lane following in each case and, if possible, a lane change
to the left adjacent lane or right adjacent lane. This case distinction results in at most
three generated maneuvers [LT18].

Finally, to compute the required initial position for the lane switch trajectories,
we select the current lane point in the graph as initial coordinate. Moreover, the
goal positions are defined by searching for the furthest reachable position in the
neighboring lane by considering the current velocity, acceleration and the prediction
horizon N . Coordinates describing the initial and goal position of the lane follow
maneuver are intuitively computed by declaring the current position as initial point
and the goal position by selecting an upcoming point on the current lane as stated
before.
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Thereafter, we obtain the reference path for each maneuver by searching for the
shortest path between the initial point and the goal position in the graph structure.
The resulting trajectories are verified to be safe under the made assumptions about
the behavior of other traffic participants. This is a realized by a collision check which
examines, if the constructed path intersects at any point with the current obstacle set.
In case that there was a collision, the reference trajectory is updated to end with a
safety offset before the obstacle. If there was no collision the trajectory is classified
as safe and the algorithm proceeds. After constructing the reference trajectories,
they are fed into the MPC-based optimization problem (see Equation (5.5)).

It has to be noted that the following procedure varies in comparison to the proce-
dure in the original approach. The implementation is simplified, as the focus of the
thesis does not lie on an optimal path planning algorithm based on MPC, but rather
on the verification of an autonomous vehicle controller.

The implementation is required to check feasibility of an online verification method
attached to a controller. Additionally, we can derive the requirements for a verification
of a MPC-based vehicle controller.

In order to work as intended, the MPC based optimization problem (Equation (5.5))
specifies the vehicle’s state in each time step. Therefore we define the dynamics of
the KST by the two matrices A and B. We refer to the vehicle’s state with the vector
zi, describing the relevant parameters of the vehicle model that are adjusted to build
an optimal trajectory. Additionally, the vector ui is used to model the derivatives of
the heading angle and the velocity by realizing the dynamics of the KST as displayed
in Equation (4.1). Finally, after computing the optimization problem, the vector ui
contains the resulting control inputs intended to be given to the vehicle model.

A =


1 0 0 cos(zk,3)
0 1 0 sin(zk,3)
0 0 1 0
0 0 0 1

B =
[

0 0 0 1
0 0 1 0

]

In the following optimization problem (Equation (5.5)) the sequence of N states
z0,j , z1,j , . . . , zn,j , j = 1, . . . ,4 describes the current position, velocity and heading
angle of the vehicle at each time step i. We have to model the position of the driver’s
vehicle in each time step of the optimization problem to define the evolution of the
vehicles coordinates and physical variables by implementing the predicting aspect
regarding the future state of the environment [LT18]. Moreover, the inputs given to
the KST are defined by ui,l, l = 1, 2, containing the acceleration ai (ui,1) and angular
velocity φvi (ui,2). The index variable i, i = 1, . . . ,N describes the current time step.

zi = A · zi +B · ui

zi =


xi
yi
φi
vi

 ui =
(

ai
φvi

)

The MPC-based controller structure is divided in two different optimization problems,
first of all, the reference trajectories are optimized according to the allowed error
to the given trajectories, minimizing input terms and various design constraints by
Equation (5.5) and afterwards the inputs are evaluated regarding certain penalty and
reward functions in Equation (5.6). The first optimization problem realizes the MPC
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approach by optimizing inputs for the given reference trajectory over the defined
prediction horizon N considering an assumed future evolution of the environment to
generate optimal results.

The prediction horizon N is used to optimize over the next N time steps, although
only the first time step is given to the vehicle model as a control input. In each step
a new optimization problem is solved to ensure a smooth and safe trajectory. The
purpose of the optimization problem is to reduce lateral and longitudinal errors to the
previously generated reference trajectory, while satisfying constraints for car specific
design limitations and minimizing input changes.

In detail, the objective function of the optimization problem minimizes the lateral
and longitudinal error between the given reference trajectory and the actual position
of the vehicle by the first two terms multiplied by w1 and w2. Additionally, the next two
terms are used to minimize the acceleration and angular velocity inputs to improve
the driving efficiency. Moreover, the two fractions multiplied by the weighting coeffi-
cients w5 and w6 minimize the input changes between two consecutive time steps.
This improves the driver’s comfort by reducing high acceleration changes or steering
changes. Finally, the two slack variables ε and ξ are added to the objective function
and the constraint set to define the allowed error between the reference trajectory
and the actual position. Owing to the fact that the variables are as well part of the
objective function, they are used as slack variables to relax the error constraints, if
needed, to increase numerical stability of the problem (see Equation (5.5)).

min
u∈U

N∑
i=1

w1 ·
(
zi,1 − rx,i
xmax

)2

︸ ︷︷ ︸
longitudinal error

+w2 ·
(
zi,2 − ry,i
ymax

)2

︸ ︷︷ ︸
lateral error

+w3 ·
(
ui,1
amax

)2

︸ ︷︷ ︸
min. acc.

+ w4 ·
(
ui,2
φmax

)2

︸ ︷︷ ︸
min. ang

+w5 ·
(
ui,1 − ui−1,1

amax

)2

︸ ︷︷ ︸
min. input changes

+w6 ·
(
ui,2 − ui−1,2

φmax

)2

︸ ︷︷ ︸
min. input changes

+ w7 · (εi)2︸︷︷︸
slack var.

+w8 · (ξi)2︸︷︷︸
slack var.

s.t. zi+1 = A · zi +B · ui
amin ≤ ui,1 ≤ amax
φvmin ≤ ui,2 ≤ φvmax
|(rx,i − zi,1)| ≤ εi
|(ry,i − zi,2)| ≤ ξi
0 ≤ zi,4 ≤ vmax,where N is the prediction horizon,
w1, . . . ,w8 define the weighting coefficients and
rx,i, ry,i define the reference trajectory at a certain time step.

(5.5)

After computing the control inputs for the generated trajectories, the inputs are fed
into a second optimization problem (see Equation (5.6)). This evaluates the given
inputs and selects the optimal trajectory by penalizing lane changes (P l), proximity
to obstacles (P o) and, overall, the sum of control inputs (Pu), whereas it rewards the
covered track defined by the control inputs (P c).

The result of the second optimization problem (Equation (5.6)), is an index, spec-
ifying the optimal trajectory at the current time step defined by a set of control inputs.
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Afterwards, the first input of the corresponding optimal trajectory is proceeded to the
vehicle model.

arg min
j∈J

wa · P o︸︷︷︸
prox. obst.

+wb · Pu︸︷︷︸
input sum

+wc · P l︸︷︷︸
lane sw.

−wd · P c︸︷︷︸
cov. track

,

where J is the set of all computed trajectories and
wa, wb, wc and wd describe the weighting coefficients.

(5.6)

The weighting coefficients can be configured to suit the specific context and purpose
of the application. The described procedure is repeated in each time step, until the
vehicle reaches the goal position. In each time step at most three trajectories are con-
structed and corresponding optimal inputs are generated in the optimization problem
to be evaluated and given to the vehicle model. The vehicle model, then executes
one time step and proceeds an updated system state to the controller [LT18]. The
MPC approach in automotive vehicle control has shown to generate optimal results
regarding efficiency and driving comfort, therefore a later chapter concludes about
verification possibilities and current issues in verifying a MPC-based autonomous
vehicle controller (see Chapter 6).

5.7 Hybrid Maneuver Automaton
In this section we present our own prototypical implementation of a maneuver au-
tomaton for autonomous vehicles. In Section 5.1 a maneuver automaton is already
presented which verifies the concatenation of motion primitives by connecting offline
computed sets of reachable states. However, in many situations a more dynamic
controller is required to cope with potentially dangerous situations.

In order to work on this issue, a modified maneuver automaton is presented. The
automaton works as a closed loop between a controller and a vehicle model.

We modeled the automaton with two locations to represent the controller and the
vehicle each in a specific location in the hybrid automaton, additionally the vehicle’s
variable set is integrated in the hybrid system’s variable set. As a consequence the
controller can directly change the input variables of the vehicle to adjust the variable
derivatives. By computing the set of reachable states of the system, this modeling
aspect allows us to analyze and verify the safety of the evolution of the vehicle’s
position induced by the controller. The variables of the system depend on the utilized
vehicle model (Chapter 4). Additionally, a clock and a maneuver mode variable are
included in the variable set of the system. The clock variable is required to specify the
time the control stays in each location and the maneuver variable is used to specify
the current active maneuver.

Currently, the controller works according to the following procedure. A motion
planner pre-computes a vector which defines a certain maneuver id for a specific
time step. The complete maneuver vector describes a complex trajectory consisting
of single maneuvers executed successively. This specific implementation design
allows the definition of a pre-computed input set to define the maneuvers the vehicle
model is supposed to execute at a discrete time.

Precisely, a motion planner creates an ordered sequence of different motion prim-
itives and transforms them to the described maneuver vector which is given to the
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maneuver automaton. The generation of maneuver specific valuation changes are
realized in the automaton by reset functions of maneuver specific transitions, hence
the motion planner works with a simplified concept only defining the list of maneuver
id’s instead of the complete control input set, defining the trajectory. An exemplary
input vector consists of a lane follow for the first ten time steps, followed by a lane
switch to the left initiated at the 11th time step. After completing the lane switch, the
automaton returns to a follow mode and finally at time step 25 a deceleration is ini-
tiated. The trajectory ends after 30 time steps. The corresponding vector is defined
in Equation (5.7).

~inp =
[

0, . . . , 0,︸ ︷︷ ︸
i=1, . . . , 10

2 ,0, . . . , 0,︸ ︷︷ ︸
i=12, . . . , 24

4 , 0, . . . , 0︸ ︷︷ ︸
i=25, . . . , 30

]
(5.7)

Initially, the automaton receives the current vehicle state as an input, defining the
position and physical variable valuation of the vehicle. Thereafter, the maneuvers
defined by the input array are executed by taking maneuver mode restricted transi-
tions to the vehicle location. Afterwards, the automaton stays for one time step (1s) in
the vehicle location, while evolving the position and variable set of the vehicle. Con-
sequently, the system has two locations: one for the vehicle model and one for the
controller.

The edges between the two locations are restricted by specific guard sets com-
bined with reset functions.

Specifically, the guard sets are implemented by constrained hyperplanes deter-
mining variable regions in which a certain edge can be taken. We decided to use
constrained hyperplanes because they showed to increase the numerical stability
of our system. The guard sets are restricted by the maneuver mode variable, the
clock and context specific variable valuations. In addition to the guard set, each
edge consists of a reset function which modifies the systems’ variables according to
the current maneuver mode. After executing a maneuver successfully the maneuver
mode is reset to a lane following mode (m = 0) until the input vector adjusts the
valuation.
The formal description of the hybrid automaton is graphically depicted below:

Controller

˙veh dyn.

ṫ = 1
ṁ = cm

t ≤ ε

Vehicle Model

˙veh dyn.

ṫ = 1
ṁ = 0

t ≤ 1

t = 1
t := 0

t = ε ∧m = 2
t := 0 ∧ φ := cφ

t = ε ∧m = 1
t := 0 ∧ a := ca

t = ε ∧m = 0
t := 0

Provided with the described modeling design, the automaton can perform an accel-
eration or deceleration up to a desired velocity, a lane change to a neighboring lane
or a change of the current heading angle to a certain value cvφ .

The advantage of the approach is to have a closed loop of the controller and
vehicle model in one formal specification as a hybrid automaton. This allows us to
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verify the complete controller structure with a flowpipe-construction-based reachabil-
ity analysis. In each step, the set of reachable states of the corresponding system is
computed and verified, assuming the real vehicle behaves as simulated. Afterwards,
the computed inputs can be given to the physical vehicle. Resulting from the design
of the hybrid system the maneuver mode variable m controls which maneuver is ex-
ecuted. In detail, the change of the maneuver mode m initiates the execution of a
specified procedure of control inputs. Complex trajectories are realized by executing
single maneuvers successively. This is implemented by a discrete time step specific
array, assigning each time a certain maneuver mode value. The complete automaton
is modeled in Figure A.2 in the Appendix A.6.

In the following, the basic procedure of the implemented maneuvers is explained:

• The first case m equals null depicts a lane follow, in which the current accel-
eration and angular velocity do not change and the vehicle follows the current
dynamics.

• Secondly, setting m to one is the acceleration/deceleration mode, smoothly
changing the acceleration value a to a certain value ca. In particular, ca can be
set to a defined value by an external input.

• Moreover, performing a lane change to the left lane is initiated by m equals
two. However, a lane change maneuver does not consist of only one variable
modification, a smooth transition between two lanes is realized by a dynamic
variation of the heading angle. Beginning with an increase of the heading angle
up to the state in which half of the desired y-value is reached, followed by a
negative angular velocity until the vehicle arrives in the goal lane. In theory,
a help mode m equals 20 is introduced, executed if the heading angle attains
a certain value, and eventually setting the angular velocity φv to the negative
counterpart. In a last transition taken, if the heading angle is close to pointing
in the x-direction, the angular velocity is reset and the maneuver is changed to
the default follow mode.

• In the same manner, the lane change to the right lane is defined (m = 3), first
by decreasing the angle up to a certain value and increasing it afterwards back
to the initial valuation.

• In addition m equals four, initiates a velocity change up to a defined value. This
is realized by an adjusted jerk value increasing or decreasing the acceleration
a until the vehicle reaches the desired velocity.

• A needed option to cope with curves and required direction changes is to dy-
namically adjust the angle of the vehicle to a certain value. Finally, mode five
introduces this option to initiate a smooth change of the heading angle. The
maneuver intuitively increases or decreases the angular velocity until the de-
sired heading angle is reached. The difference to the maneuver for a left and
right lane change is the option to dynamically specify an intended heading an-
gle, whereas the lane switch maneuver focuses on using the heading angle
change to move the vehicle to a neighboring lane.

Further, Chapter 7 displays various numerical experiments which analyze the
performance of the presented maneuver automaton. The experiments consist of
single executions of all maneuvers and an additional complex trajectory realized by
a sequence of maneuvers to handle a specified traffic scenario.
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Verification

The increased application of autonomous vehicle control in real traffic situations has
resulted in an increased demand for the verification of autonomous vehicle con-
trollers. As a matter of fact, the collision rate in traffic situations has to be mini-
mized. This can be achieved by the development of prospective controller models
with regard to the generation of safe inputs. Therefore the verification of controller
models and path computations has to be further enhanced and improved to be even
safe in unexpected situations and in the case of sensor faults. Different approaches
regarding faulty sensor inputs have already been stated and successfully tested in
numerical experiments [ZZMM13].

However, unexpected behavior of other traffic participants is in general unpre-
dictable, therefore the only option to increase safety in case of unexpected move-
ments of vehicles is to increase the safety distance between vehicles. Exceptions
are motion planners for groups of cooperative vehicles which can control more parts
of the environment which decreases the probability that we are confronted with un-
expected behavior (as in [MLA17]).

Until now, one common option to handle unexpected traffic behavior is to con-
sider uncertainty in the current vehicles position which leads to high safety offsets
between moving traffic participants. As a result of this, the operator’s vehicle and the
corresponding controller have a higher probability to react and plan an evasive ma-
neuver in time. On the other hand, the high off-sets result in unnecessarily imprecise
trajectories. Consequently, the generated maneuvers have an increased probabil-
ity to be misclassified as unsafe because the over-approximated flowpipe intersects
with unsafe states in situations where a precise representation would be declared as
safe. Hence, we have to select an appropriate initial set size to cover uncertainties
in a realistic and safe manner [AD12].

Despite of this, the mentioned negative effect that maneuvers are misclassified
as unsafe can be reduced by taking the probability to reach a certain state into ac-
count, further by including not only uncertain inputs and noisy sensor inputs, but as
well probabilities of a certain behavior of traffic participants. Consequently, the prob-
ability of a collision between two objects in the current scenario is considered while
classifying the safety status of the inputs [ASB09]. As far as we know, there are
no other effective concepts to cope with unexpected behavior of other traffic partici-
pants. With this in mind, we focus on the controllable parts of the safety verification
of autonomous vehicle controllers which are the inputs generated by the controller
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Figure 6.1: Integration of the verification module into the MPC structure.

and their effect on the future vehicle position.
After presenting various research approaches regarding controller models and

especially verification options, this chapter concludes about the previous parts of the
thesis and presents the implementation of a prototypical verification module.

The verification module is placed after the controller to enable the verification of
inputs generated by the corresponding controller model (see Figure 6.1). Further,
the verification module adapts the current vehicle dynamics and computes the set of
reachable states regarding the given inputs. The resulting state sets are compared to
the present obstacle sets by checking if the two sets intersect at some point. If there
is no intersection, the inputs are classified as safe and passed to the vehicle model.
However, if there is a non-empty intersection, the inputs are marked as malicious.
In this case the module returns the inputs back to the controller with a feedback
information about the intersecting region.

In effect of the feedback information, the controller could increase restrictions
regarding the safety of the constructed trajectory and recompute the control inputs.
In case of a repeated failure to generate save inputs, the verification module could
initiate an evasive emergency maneuver.

Under the context of this thesis the module is used in later benchmarks to verify
inputs generated by the previous described MPC-based controller [LT18].

The previously mentioned additional features about the functionality of the mod-
ule to execute an evasive maneuver are not part of the thesis because we focus on
the computation and verification of the computed flowpipe. For further information
about the construction of an evasive maneuver and the last possible time to execute
it, we refer to [SOB06].

The verification module is implemented in Matlab using the toolbox Cora [AK18].
The invariant in the automaton’s location is defined by a convex polytope, whereas
single guards are defined by half-spaces and guards with more than on restriction
are defined by constrained hyperplanes. Similarly to earlier computations of sets
of reachable states, we used zonotopes as state set representation in the flowpipe
computation.
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6.1 Verification Module
The verification module is modeled by a hybrid automaton, which consists of one
location and variables covering the vehicle model specific dynamics. A graphical rep-
resentation of the verification module is displayed below, the formal specification is
listed in the Appendix A.5.

Verification Module

ẋ = v · cos(φ)
ẏ = v · sin(φ)
v̇ = ca

φ̇ = cφv

ṫ = 1

t ≤ ctime

The variable ctime is the time duration over which the inputs are intended to be verified.
The variables v, φ change according to the control inputs ca and cφv .

Besides the stated system structure, the verification module has different param-
eters to adjust certain options of the reachability analysis. The time step size can be
adjusted to fit the intended precision, the same goes for the state set representations.
Moreover, the time duration in which the given inputs are evaluated can be adjusted
to fit the intended purpose and the initial set size can be expanded by a factor ε.

The initial set is centered around the initial state of the vehicle given to the ver-
ification module [x0, . . . , xn−1] and expanded at both sides by ε, formally depicted
below:

x0, . . . , xn−1 ∈ [x0 − ε, x0 + ε], . . . , [xn−1 − ε, . . . , xn−1 + ε].
In real applications the initial set size has to be set to the physical size of the

underlying vehicle to allow a realistic flowpipe construction and its verification. In
further experiments depicted in this thesis, we varied the initial set size to illustrate
the capabilities of the verification module.

Together with the current vehicle state the controller proceeds the computed
control inputs to the verification module. Afterwards, the verification module com-
putes the corresponding set of reachable states for a determined time duration with
flowpipe-construction-based reachability analysis. In order to verify the safety of the
inputs, an intersection between the resulting set of reachable states and the occu-
pancy sets of obstacles in the close environment at the current discrete time are
computed. As previously mentioned in previous verification methods, if there is no
resulting intersection the controller’s evolution is concluded to be safe. Consequently,
the inputs are verified to be safe and passed to the vehicle model. In contrast, if parts
of the computed sets of reachable states intersect with unsafe states, the system is
possibly unsafe. Due to the over-approximative character of the flowpipe construc-
tion, we can not distinguish between an upcoming collision or a safe path falsely
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classified as risky because of an imprecise over-approximation. Accordingly, the in-
puts can be nevertheless safe. To minimize this case, the state set representation
and time step size could be varied to increase precision of the resulting flowpipe, as
demonstrated in [SA18]. In case that the intersection is still not empty, the inputs are
stated to be unsafe and the verification module returns them to the controller with
feedback information about the risks’ origin (see Figure 6.1). Consequently, the con-
troller knows where to restrict constraints even further or when to initiate an evasive
emergency maneuver.

In the following we describe a certain procedure which does not necessarily in-
crease the safety level of the controller, instead it solely provides a possible reduce
of damage in case of a communication error between controller and verification mod-
ule.

The computed time duration in which the given inputs are evaluated is depended
on the desired verification of possible redundant inputs. In the following we refer with
time period to the time duration the inputs constructed in the trajectory planner are
supposed to be executed. If the time duration verified by the verification module is
chosen higher than the time period, the module analyses inputs which are in most
cases redundant.

Before describing this further, we have to make a controller specific case distinc-
tion. In case that the controller works similar to the MPC-based controller presented
in this thesis, the inputs consist of many input values describing a trajectory for the
next time periods, whereas only the first time period and corresponding input values
are intended to be executed. If the number of considered time periods is increased,
the verification module can verify inputs which are not primarily intended to be per-
formed. In particular, the next δ ∈ N time periods verify the next δ inputs, which
are only executed if the controller cannot generate new inputs due to a system fault.
In case, that the controller cannot communicate with the system anymore and pre-
viously computed control inputs are already verified and stored in the verification
module, they can be executed safely.

On the other hand, if the controller does generate only inputs for the next con-
secutive time period, the increase of considered and verified time periods results
in stronger safety guarantees. Under those circumstances, an increase of the con-
sidered time periods leads to an expanded analyze of the trajectory, a decrease of
considered time periods leads respectively to a reduced trajectory analysis. If the
time duration defined by the verification module is chosen larger than the time period
considered by the path planner, we verify the motion the vehicle probably will not
reach before getting new input values. The effectiveness of this has to be evaluated
for each context. However, the increase of computed time periods in the reachability
analysis improves the safety of the controller in the case that the communication in
the closed loop environment breaks down. The increased time duration verified by
the system allows the verification module to recognize at which discrete time the con-
troller should initiate an evasive maneuver leading to the safe stop of the, car instead
of entering potentially malicious regions.

Furthermore, to improve safety in system critical states, C.Schmidt, F.Oechsle
and W.Branz provided detailed information of emergency maneuvers to be executed
in situations where no safe maneuver is feasible [SOB06]. Technically, the process of
planning an evasive maneuver is part of the motion planner. An approach presenting
an advanced path planner generating inputs for the next time step while computing in-
puts for an emergency maneuver in each time step is analyzed and tested in [MA16].
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The described fail safe property of the system should be implemented in all controller
models used in real traffic situations to increase the level of safety. Therefore, the
described property could be implemented in a simplified version into the verification
module.

In comparison to the maneuver automaton in Section 5.7, the presented mod-
ule differs in verifying only the inputs generated by an external controller, instead
of taking over parts of the motion planner by generating verified inputs for certain
maneuvers.

Additionally, another difference between the implemented approaches is that the
trajectory constructed by the automaton does not have to be optimal, whereas the
inputs generated by the MPC-based controller are in theory always optimal regarding
driving efficiency and comfort.

Overall, the implemented maneuver automaton has the advantage that the com-
plete closed controller vehicle environment is included in the verification, however the
verification module solely verifies the given inputs in a certain period. At the same
time the maneuver automaton cannot adapt all situations in the intended manner be-
cause it works with motion primitives, which restrict the set of possible trajectories
to a discrete set of available actions. Conversely, the MPC-based controller can re-
act to a wide range of situations with a dynamic path update considering the future
evolution of the environment to make prospective decisions regarding the intended
trajectory.

In conclusion, both implementations have certain advantages and disadvantages
while the verification module adapted to the MPC-based trajectory planner provides
more conclusive and decisive results. Additionally the following section evaluates the
verification module in certain numerical experiments.

6.1.1 Numerical Experiments
Finally, to test the performance of the presented approach, several numerical experi-
ments of the verification module adapted to the MPC-based controller are shown [LT18].
In particular, the performed experiments present the flowpipes generated by the ver-
ification module for 30 consecutive input verification’s, depicting a simple lane follow
maneuver constructed by the underlying MPC-based controller.

The first three images show the intern calculated sets of reachable states, result-
ing out of the first 30 inputs generated by the MPC-based trajectory planner (Fig-
ure 6.2). The chosen time duration the inputs are evaluated over is 0.10s, similar
to the time duration the MPC-based controller intended the inputs to be executed.
Moreover, the factor ε which expands the initial set size is set to 0.1. The processing
time for the first 30 time steps was 26.91s.

Next, different ε valuations are displayed in Figure 6.3, varying the initial state set
size of the set of reachable states. Therefore the flowpipe constructed in the left fig-
ure is much wider (ε = 0.5) than the one in the right figure (ε = 0.05). The verification
module allows a simple adjusting of the intended initial set size by varying the ε value
in the option parameters. Consequently, this modification allows to analyze different
inaccuracies in the initial position of a trajectory. In addition to this, an incremented
ε value expands the size of the generated flowpipe to increase the desired safety
distance between obstacles.

The results of the main part of the verification module to detect potential dan-
gerous inputs is shown in Figure 6.4a, which displays the flowpipe of the driver’s
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Figure 6.2: Zoom-in of a trajectory verification (ε = 0.1).

(a) ε = 0.5. (b) ε = 0.05.

Figure 6.3: Different initial set sizes.

vehicle together with an obstacle blocking the road. At the 13th time step the algo-
rithm detects an intersection between the occupancy set of the obstacle and the set
of reachable states computed from the initial set with respect to the provided inputs
from the controller. As a consequence, the verification module informs the controller
about the potential danger provoked by the inputs and stops the computation. Be-
sides, the algorithm had a processing time of 11.76s to compute the first 13 time steps
while verifying the possible trajectories constructed by the given inputs at each time
step. Moreover, it took the algorithm 2.45s to classify the inputs as unsafe in the 13th
time step.

Vehicle-specific hardware is expected to improve this running time. However, it
should be noted that the current processing time is not suited for an online applicable
usage. Moreover, Figure 6.4b displays a map with a static obstacle next to a collision-
free flowpipe. The verification module classified the situation correctly by verifying
the inputs generated by the controller to be safe in each step, as illustrated in the
complete trajectory shown in Figure 6.4b.

Additionally, Figure 6.5a shows a potential collision of two moving traffic partici-
pants. The situation is described by two vehicles driving next to each other on a three
lane road. At a certain time, the vehicle on the left lane starts to move closer to the
middle lane resulting in a possible collision in the 27th time step. The algorithm de-
tects the possible unsafe inputs after a running time of 40.58s. In the specific period,
the algorithm had a computation time of 2.29s to classify the inputs as unsafe.

Secondly, Figure 6.5b shows the traffic situation of two vehicle driving next to
each other on the same three lane road. The plot depicts the flowpipe of the drivers
vehicle next to the occupancy set of a moving obstacle. Owing to the fact that the
set of reachable states does not intersect at any time step with the occupancy set
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(a) Collision with a static obstacle. (b) Collision free trajectory.

Figure 6.4: Intersection vs. no intersection (ε = 0.3, static obstacle).

(a) Collision with a dynamic obstacle (ε = 0.3). (b) Collision free trajectory (ε = 0.1).

Figure 6.5: Intersection vs. no intersection.

of the dynamic obstacle, the verification module classifies the inputs in each of the
30 steps as save and forwards them to the vehicle model. The computation time it
took the algorithm to check for an intersection after each new input generation was
47.61s.

In addition to the previous illustrated parameter configurations, a modification of
the time duration is shown in Figure 6.6. The time duration defines the span over
which the given inputs are evolved in the systems’ dynamics. Hence, if the inputs
are processed longer than intended, the resulting flowpipes show future positions
reached, if no new input is received. This is solely relevant, if the communication
between controller and vehicle is disrupted. As a result, the verification module has
already verified further time steps of the current inputs and can anticipate when a
risky situation approaches. Consequently, an emergency maneuver can be initiated,
if the specific situation is classified as dangerous. In an error-free environment, it
has shown to be the best choice to adapt the time duration to the by the controller
supposed execution time with a small offset value. The small offset value is chosen to
expand the flowpipe to cover certain states reached if the given inputs are executed
longer than intended induced by numerical issues.

Further information on the computed running time can be found in Appendix A.2.
All computations in this section were performed on a mid class computer with a
2.80GHz six-core i5 processor.
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Figure 6.6: Increased time step size (0.5s).

6.2 Safety verification of an MPC controller
During our work with MPC-based trajectory planning and the verification thereof, we
came across several open problems and challenges which need to be addressed
by the research community in order to pave the way towards safety verification of
MPC-based controllers for autonomous vehicles.

We choose an approach to verify a controller model by transforming it into a hy-
brid automaton to further allows its verification over a defined time duration. There-
fore the complete decisive behavior of the controller together with the exact dynamics
of the vehicle model has to be transformed into a hybrid system. After transforming
the controller and the corresponding vehicle model into a hybrid system, flowpipe-
construction-based reachability analysis can derive every state reachable from the
initial system state within bounded time to verify if the set of reachable states is not
intersecting with as malicious classified states.

The transformation of the presented vehicle models into a hybrid automaton is
an intuitive process and solved by implementing the vehicle specific dynamics into
the location specific activities. This is possible for all presented vehicle models and
theoretical vehicle models which are not part of this thesis. In case of a non-linear
vehicle model, such as the kinematic single track model, the bicycle model or any
other high order model, the computation of the flowpipe requires certain methods to
cover the non-linearities of the underlying system.

The transformation of an MPC-based controller together with a corresponding
vehicle model into a hybrid system could verify the complete closed-loop between
controller and vehicle model while computing successive sets of verified trajectories.

However, the transformation of the controller into a hybrid automaton is hindered
by a few challenges. First of all, flowpipe-construction-based reachability analysis
operates on sets of trajectories while the MPC-based controller works solely with
single trajectories. This behavior is reflected in an optimization problem solved in
each iteration of the MPC-based controller.

In the current implementation, the dynamics of the system compute an equal flow
for each point in the initial set, taking the center point as reference point to be fed
into the optimization problem of the MPC. This can lead to unsafe states because
safe inputs generated from one input point do not have to be necessarily safe for all
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points in the set.
Therefore the MPC approach has to be enhanced to work on sets of inputs, in-

stead of single points. However, we do not know, if there is an algorithm to realize
this procedure to advance an MPC-based controller to work on sets.

The currently implemented procedure to compute an equal flow for all given points
is our own substitute approach, which is solely used as a workaround.

Moreover, the in Matlab used toolbox Cora [AK18], which is used throughout this
thesis, has shown technical issues in parts of the implementation based on missing
numerical stability of the algorithm which is required to be reduced to have a robust
method to verify the underlying system. This concern does not only affect the named
toolbox, in fact numerical stability has to be ensured in all situations and in all imple-
mentation environments. To work on this, one option to prevent numerical issues is
implementing adapting bounds and relaxing constraints as showed in Section 5.6.
However, to increase numerical soundness and minimize faulty data induced by nu-
merical issues, advanced and robust analysis methods have to be implemented.

Finally, we focus on a practical aspect. The verification of the MPC has to work
in an online applicable time, to enable the controller a decisive time amount in case
an evasive maneuver has to be initiated. As the verification of inputs generated by
an automotive vehicle controller is highly connected to the safety of the passengers,
the inputs have to be verified quickly to enable time for alternative computations in
case of potential danger. Currently, the time complexity of the verification module is
not suitable for an application in real scenarios which require direct results. Thus,
improvements of the time complexity of the module have to be focused on in future
developments. These advancements can be realized by varying the used state set
representations to fit the current purpose of a situation, which means using simple
representations in low-risk situations and precise state set representations in po-
tentially dangerous environment parts. Moreover, it has to be addressed that the
numerical experiments performed in this thesis ran on a mid-range computer, further
running time improvements are expected on a specific hardware component.

In conclusion, the mentioned points have to be further advanced and correspond-
ing problems have to be solved to enable the transformation of a MPC-based trajec-
tory planner into a hybrid system and allow its verification.
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Chapter 7

Numerical Experiments

After we implemented the presented controller models, they have to be analyzed in
various numerical experiments. In Section 4.4, vehicle models have already been
compared with varying parameters to compare the different representation possibili-
ties and the resulting flowpipes.

We evaluate our implementations with several numerical experiments. We begin
with the evaluation of the hybrid maneuver automaton (Section 5.7) by computing
several single maneuvers and a complex collision avoidance maneuver. Afterwards,
the verification module in combination with the simplified MPC-based controller (Sec-
tion 5.6) is evaluated in a benchmark scenario.

All computations in this section were performed on a mid-end computer with a
2.80GHz six-core i5 processor. Moreover, the reachability analysis in each scenario
has been computed with a factor ε = 0.00005 increasing the initial set size and a time
step size of 0.02s.

7.1 Hybrid Automaton - Experiments

Before evaluating the automaton in a traffic scenario requiring the concatenation of
several maneuvers, all maneuvers are presented in a single execution.

The chosen initial valuation of the vehicles state for each numerical experiments
is selected to solely focus on the evolution of the by the current maneuver adjusted
variable. Therefore maneuvers depicting a change of the driving direction are pre-
sented with a constant velocity and maneuvers focusing on modifying the velocity of
the vehicle are performed with a constant driving orientation. Due to the modeling
design of the automaton, the plots depict a period behavior based on the clock resets
after each time step, rather than showing an overall evolution of the specific values
while realizing a maneuver.

First of all, the lane follow maneuver is presented over 20 time steps with a con-
stant velocity of v = 1. The lane follow describes a maneuver, in which the vehicle
model does not receive any changes through inputs. Therefore the dynamics, in-
cluding the velocity and heading angle stay constant during the execution of the
maneuver. Figure 7.1a depicts the set of reachable states of the described lane
follow. Further the plotted set of reachable states describes a trajectory from x null
to the final position x equals 20. Omitting to the fact that the initial driving direction
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points in x-direction the y value stays at zero. Moreover, Figure 7.1b visualizes the
constant velocity of the vehicle over the executed time duration. The clock variable
t stays in the range between null and one because after staying one second in the
vehicle model location of the automaton, t is reset to null. This procedure which
resets the clock in each period to null is repeated in each cycle between controller
and vehicle location due to the modeling design of the underlying hybrid automaton.
The execution time to perform the reachability analysis for the defined 20 time steps
including the verification step was 11.45s.

Secondly, a smooth increase of the vehicle’s acceleration to a constant acceler-
ation value of one is shown. The acceleration maneuver is executed over a time
duration of 20s to have an insight into the velocity evolution of the vehicle. After
reaching the desired acceleration value one, the automaton switches to an execution
of the lane follow maneuver for the remaining seconds. Simultaneously to realizing
the accelerating of the vehicle, the heading angle stays constant. This explains that
the set of reachable states only evolves in x-direction as in the previously evaluated
follow maneuver (see Figure 7.2a). In comparison to Figure 7.1a the flowpipe ex-
pands slightly reasoned by the fact that the high velocity change enlarges the set of
reachable positions. Moreover, it should be noted that the deviation in y direction is
negligible as it is comparatively small.

The second plot, Figure 7.2b depicts the evolution of the velocity over time. The
increased velocity shown in the plot of Figure 7.2b is explained by the acceleration
inputs given to the vehicle model during the run of the hybrid system. In each step
of the previously described cycle, the derivative of the velocity is increased. This is
reasoned by the fact that the automaton increases the acceleration input value in
each period run by a constant value of 0.10. The increase of the velocity derivative
is graphically depicted in Figure 7.2b by the lines describing the velocity change in
each period which slightly tend to the x-axis. Due to the fact that after finishing the
acceleration task, the acceleration value is set to null, the following successive line
elements in the plot are parallel. The hybrid system had a running time of 17.03s to
construct the flowpipe of the trajectory describing the desired acceleration change.

Another approach to perform a velocity change is realized by another accelera-
tion maneuver. This maneuver focuses on reaching an intended velocity value cv,
instead of a certain acceleration value. Figure 7.3a displays the trajectory of the vehi-
cle following the lane according to the initial heading angle for 20s, while accelerating
until the velocity v equals three. Additionally, Figure 7.3b displays the velocity value
over time. Due to the defined goal velocity, the speed value is increased in each cycle
until it stays constant at the final valuation equaling three, neglecting a small numer-
ical error. The computation time to construct the set of reachable states displaying
the acceleration of the vehicle from v = 1 to v = 3 was 69.59s (see Figure 7.3a).
Moreover, the two lane switch maneuvers are evaluated and presented in a single

execution. They consist of an initial increase of the heading angle until a certain val-
uation is reached. Afterwards, the heading angle is decreased to realize a smooth
curved trajectory. The maneuver begins at the initial coordinates x and y equaling
null and ends at the final position of x equaling 15 and y equaling three. The increase
of the heading angle is realized by a small input value adjusting the angular velocity
of the vehicle. After a certain angle is reached the trajectory bends (see Figure 7.4a)
and respectively the angle is decreased by the negated angular velocity until the
vehicle is orientated in x-direction again (see Figure 7.4b).

Figure 7.4a shows the set of reachable states of the lane switch trajectory for the
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(a) Coordinates (x,y). (b) Velocity v.

Figure 7.1: Follow mode (m = 0).

(a) Coordinates (x,y). (b) Velocity v.

Figure 7.2: Acceleration mode (m = 1).

(a) Coordinates (x,y). (b) Velocity v.

Figure 7.3: Velocity change mode (m = 4).

described initial and final valuation. The final y value targeted by the maneuver can
be modified to fit the current environment and lane properties. Figure 7.4b displays
the evolution of the heading angle over time. Due to the fact that the plots are color
coded the increase of the heading angle as well as the following decrease is depicted
in both figures.

The computation time of the automaton to construct the flowpipe, displaying the
corresponding lane change maneuver was 11.72s for a time duration of 20s.

The lane change to the right neighboring lane works analogously, the angular
velocity is set to a negative value decreasing the angle up to a certain limit and
afterwards increasing it to realize a smooth curve (see Figure 7.5). The running
time to perform the reachability analysis resembles the one of the left lane change
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(a) Coordinates (x,y). (b) Heading angle φ.

Figure 7.4: Left lane change (m = 2).

(a) Coordinates (x,y). (b) Heading angle φ.

Figure 7.5: Right lane change (m = 3).

maneuver.
Further, to define maneuvers at road intersections, the change of the heading

angle when taking a turn has to be displayed correctly. Therefore we implemented a
set of edges in the maneuver automaton to realize a right or left turn trajectory. The
reset functions of the corresponding transitions increase the input values defining
the angular velocity of the vehicle until the intended driving direction is attained. At
the point the vehicle is oriented in the intended direction the angular velocity is reset
to null, and the controller executes the default follow mode. The automaton’s formal
specification allows it to define the final driving direction by an input parameter cφ.
Figure 7.6a, displays the set of reachable states of the left turn trajectory, respectively
Figure 7.6b presents the flowpipe describing the right turn of the vehicle. The hybrid
automaton had a computation time of 11.84s to construct the set of reachable states
representing the intended angle variations computed over a time duration of 20s.

The previously described evaluations of the automatons performance, showed
the important maneuvers required to build complex and decisive trajectories.

The analysis of the computation time shows that the automaton has a high time
complexity to generate verified inputs for autonomous vehicle control. Therefore the
current approach has to be further evaluated under different conditions to analyze
the performance with specified hardware and various time improving implementation
changes.

Further, to perform more complex maneuvers and generate trajectories in realistic
traffic situations, different motion primitives are executed in succession. A complex
trajectory avoiding certain static obstacles has been performed (compare Figure 7.7).
Initially, the driver’s car is on the middle lane in a three lane road. In front of the opera-
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(a) Left curve. (b) Right curve.

Figure 7.6: Curved trajectories.

Figure 7.7: Obstacle avoidance maneuver.

tor’s vehicle there is a static obstacle that has to be avoided. Additionally, in the right
lane another static object is placed that has to be bypassed by the driver’s vehicle.
In a practical application, a dynamic motion planner has to construct a trajectory by
defining a sequence of maneuvers which build a safe path passing both obstacles
without colliding. However, in the context of this thesis, we statically built an input
vector defining the maneuvers that have to be computed successively to drive safely
through the obstacle environment. Therefore, we choose an initial lane follow for
the first seconds followed by a lane change to the left lane. After that, we follow the
left lane for 10 seconds and perform a consecutive lane change to the middle lane.
Figure 7.7 shows the resulting flowpipe the reachability analysis has computed. The
computation of the complete maneuver had a running time of 15.80s to generate the
inputs in each time step and verify the resulting trajectories. Further experimental
data of the running time can be found in Appendix A.3.
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7.2 Verification Module - Benchmark

(a) Initial position. (b) Goal position.

Figure 7.8: Benchmark initial and final position (benchmark taken from [AKM17]).

Figure 7.9: Reachable and occupancy sets (MPC algorithm combined with the verifi-
cation module).

In addition to performing various numerical experiments on the implemented maneu-
ver automaton from Section 5.7, the verification module is evaluated in combination
with a simplified implementation of the MPC-based trajectory planner, originally de-
rived in [LT18].

The environment of the benchmark scenario is taken from the Commonroad
project [AKM17]. We chose a scenario with six obstacles and one operator vehi-
cle with defined initial and goal coordinates (see Figure 7.8a). The controlled vehicle
drives on a driveway to a highway road with four lanes. Additionally, one obstacle
vehicle is driving on the same lane with a certain distance behind the operator’s car.
Moreover, two vehicles block the lane left to the driver’s lane and one is driving ahead
of the controlled vehicle. The other two obstacles are on the second and fourth lane
and can be neglected because they do not influence the close environment of the
vehicle.

This scenario was fed into our implementation of the simplified version of a MPC-
based controller (Section 5.6), which constructed a trajectory and corresponding
control inputs for each time step. In each time step the verification module (see
Chapter 6) computed the set of reachable states for the computed control inputs and
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classified them as safe. Afterwards, the inputs have been given to the vehicle model
which executed one time step of 1s. In a closed loop control these steps have been
repeated until the goal location was reached. Figure 7.9 shows the set of reachable
states computed during the execution of the verification module, where the blue sets
display the set of reachable states of the driver’s vehicle and the red flowpipes depict
the obstacles’ time specific occupancy sets. Important to note here is that it is no
safety violation that the blue flowpipe overlaps with the red one because they overlap
at different time steps.

Figure 7.8a depicts the initial position of the benchmark with arrows indicating
the expected movement of the cars, whereas Figure 7.8b displays the final position
of the traffic participants after performing the trajectory constructed by the controller
in a closed loop with the verification module. The running time of the controller with
the adapted verification module was 240.69s, with a time step size of 0.00175s and an
initial size factor of ε = 0.3.
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Chapter 8

Conclusion

8.1 Summary
In this thesis we worked on applying and enhancing various formal methods to en-
sure the safety verification of autonomous vehicle controllers.

First we have depicted and analyzed different vehicle models in their ability to
represent a realistic trajectory while having an acceptable complexity which fits our
intentions. The results showed that the bicycle model is the optimal choice to repre-
sent a realistic trajectory due to the consideration of various physical and vehicle spe-
cific factors, while having a good trade off between complexity and expressiveness.
However, the KST has proven to fit our requirements as a simplified representation
applicable in the intended verification of closed controller vehicle environments.

Further, the analyze of various controller approaches in current verification and
trajectory planners regarding autonomous vehicle control has revealed several find-
ings. The work and methods based on the usage of motion primitives have shown
promising results in constructing verified trajectories, however the resulting trajec-
tories tend to be static and not optimal in regard of passenger comfort and driving
efficiency.

Owing to the fact that we used hybrid systems as a formal specification of the
controller structures, we depicted different verification methods to verify said systems.
In context of autonomous vehicle control we decided to use flowpipe-construction-
based reachability analysis.

As an improvement to the verified trajectories based on motion primitives, we
decided to enhance the work on verifying dynamic path planner that construct tra-
jectories which are optimal regarding certain factors. The implemented MPC-based
controller model has demonstrated to be the most encouraging approach in trajectory
planning for autonomously driving vehicles. Therefore we focused on the transforma-
tion of said controller into a hybrid system to enable its verification.

Due to certain issues regarding the transformation process, which have to be
tackled by future works (see Section 8.2), we analyzed and depicted an overview of
the missing requirements needed to perform the complete verification.

Finally, we elaborated a prototypical implementation of a maneuver automaton
to illustrate a different concept in constructing verified trajectories with the help of a
hybrid automaton. Additionally, a verification module is displayed and used to verify
the inputs generated by the described MPC-based controller.
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Both implementations have been evaluated in several numerical experiments, in
which they succeeded to fulfill their purpose, while we analyzed future developments
required to increase the safety and efficiency of the prototypical models, further illus-
trated in the following.

8.2 Future Work
During our research for this thesis, we have found several directions for future work.
Certain topics and methods have to be further developed to be integrated in current
automotive vehicle control and to improve the theoretical aspect of controller verifica-
tion.

8.2.1 Verification Module Controller Interaction
In implementations and the application of the module in numerical experiments we
analyzed certain parts which can be further enhanced. Mainly, the interaction and
communication between the controller and the verification module can be improved
by detailed feedback information given to the controller in case input values are clas-
sified as unsafe. This further development enables a more decisive generation of a
new trajectory which avoids the unsafe states.

Additionally, the verification module could focus and expand it’s capability, to con-
struct emergency inputs in each computed time step in order to ensure a fail-safe
property of the complete system.

8.2.2 Enhancements in the MPC Verification
The main missing requirement to completely transform the MPC-based trajectory
planner into a hybrid system is the development of the MPC approach to work on sets
of trajectories, instead of solely single trajectories. Therefore future research has to
focus on this aspect to enable the verification of an autonomous vehicle controller
based on model predictive control.

Moreover, to allow an online applicable usage of our implementations, the corre-
sponding running time of either the verified MPC-based controller or the prototypical
implemented verification module has to be improved in future work.

Finally, the in this thesis occurred technical issues in the implementation of certain
verification approaches have to be minimized. Especially, the numerical stability of
the flowpipe-construction-based reachability analysis has to be improved to have a
robust verification method.

In future work the depicted points are expected to be eliminated by advanced
methods.
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Appendix A

Appendix

A.1 Results - Bicycle-Model

Table A.1: Vehicle one, time duration 2s.

run simulation reach. analysis
1 3.98s 4.07s
2 3.95s 3.79s
3 3.95s 3.85s
4 3.83s 3.86s
5 3.98s 3.81s

Table A.2: Vehicle two, time duration 2s.

run simulation reach. analysis
1 4.04s 3.90s
2 3.84s 3.75s
3 3.93s 3.74s
4 3.87s 3.77s
5 3.95s 3.84s

Table A.3: Vehicle one, time duration 10s.

run simulation reach. analysis
1 6.40s 17.10s
2 6.28s 17.18s
3 6.40s 17.18s
4 6.12s 17.25s
5 6.25s 17.23s

Table A.4: Vehicle two, time duration 10s.

run simulation reach. analysis
1 6.34s 17.18s
2 6.18s 17.37s
3 6.06s 17.30s
4 6.05s 18.19s
5 6.02s 18.78s
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A.2 Results - Verification Module

Table A.5: Figure 6.5 a).

run flowpipe constr.
1 40.42s
2 40.59s
3 40.71s
4 40.55s
5 40.62s

Table A.6: Figure 6.5 b).

run flowpipe constr.
1 47.28s
2 47.96s
3 47.19s
4 47.35s
5 48.26s

A.3 Results - Hybrid Maneuver Automaton

Table A.7: Figure 7.1 - m = 0.

run flowpipe constr.
1 11.31s
2 11.33s
3 11.32s
4 11.34s
5 11.96s

Table A.8: Figure 7.2 - m = 1.

run flowpipe constr.
1 16.60s
2 16.43s
3 17.33s
4 17.41s
5 17.38s

Table A.9: Figure 7.4 - m = 2.

run flowpipe constr.
1 11.33s
2 11.33s
3 11.98s
4 11.94s
5 11.97s

Table A.10: Figure 7.5 - m = 3.

run flowpipe constr.
1 11.98s
2 11.35s
3 11.92s
4 11.99s
5 12.00s

Table A.11: Figure 7.6 - m = 5.

run flowpipe constr.
1 11.43s
2 11.41s
3 11.91s
4 12.11s
5 11.38s

Table A.12: Figure 7.7 - benchmark.

run flowpipe constr.
1 16.35s
2 16.31s
3 15.46s
4 15.42s
5 15.45s
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A.4 Example Automaton

location 1

ẋ1 = 1
ẋ2 = 1
ẋ3 = 1
x3 ≤ 1

location 2

ẋ1 = 1
ẋ2 = 1
ẋ3 = 1
x3 ≤ ε

x3 = 1

x1 := x1 + 0.5,
x2 := x2 + 0.5

t = ε

x3 := 0

Figure A.1: Example automaton.

A.5 Verification Module

VA = {loc,var,act,inv,init}

loc {vm}

var {x,y,v,a,φ,φv,t}

act Act(vm) =
{
f : R≥0 → V |∃cx,cy,cv,ca,cφ,cφv ,ct ∈ R.∀t ∈ R≥0.

f(t)(x) = cx + cv · cos(cφ) ∧
f(t)(y) = cy + cv · sin(cφ) ∧
f(t)(v) = cv + ca ∧
f(t)(a) = ca ∧
f(t)(φ) = cφ + cφv ∧
f(t)(φv) = cφv ∧
f(t)(t) = t+ ct

}1

inv Inv(vm) = {t ∈ V | t(x) ≤1}

init Init = {(vm,v) ∈ V | v(v) = 0 ∀v ∈ V }

1The activities represent the kinematic single-track model.
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A.6 Hybrid Maneuver Automaton

Vehicle Model

ẋ = v · cos(φ)
ẏ = v · sin(φ)
v̇ = a

ȧ = 0
φ̇ = φv

φ̇v = 0
ṫ = 1
ṁ = 0

t ≤ 1

Controller

ẋ = 0
ẏ = 0
v̇ = 0
ȧ = 0
φ̇ = 0
φ̇v = 0
ṫ = 1
ṁ = cm

ε

t ≤ ε

t = 1
t := 0

t = ε

t := 0

t = ε ∧ 0.5 ≤ m ≤ 1.4 ∧ 0 ≤ a ≤ ca
a := a+ 0.1, t := 0

t = ε ∧ 0.5 ≤ m ≤ 1.4 ∧ a ≥ ca
m := 0, t := 0

t = ε ∧ 1.5 ≤ m ≤ 2.4 ∧ φ ≤ π
4 − 0.05

t :=, φv := π
16

t = ε ∧ 1.5 ≤ m ≤ 2.4 ∧ φ ≥ π
4

t := 0, φv := − π
16 ,m := 20

t = ε ∧ 19.5 ≤ m ≤ 20.4 ∧ π
16 − 0.05 ≤ φ ≤ π

4
t := 0

t = ε ∧ 19.5 ≤ m ≤ 20.4 ∧ φ ≥ π
16 + 0.01

t := 0, φ := 0, φv := 0,m := 0
t = ε ∧ 2.5 ≤ m ≤ 3.4 ∧ φ ≥ π

4 − 0.05
t := 0, φv := − π

16
t = ε ∧ 2.5 ≤ m ≤ 3.4 ∧ φ ≤ −π4

t := 0, φv := π
16

t = ε ∧ 29.5 ≤ m ≤ 30.4 ∧ −π4 ≤ φ ≤ −
π
16 − 0.01

t := 0
t = ε ∧ 29.5 ≤ m ≤ 30.4 ∧ φ ≥ − π

16 − 0.01
t := 0, φ := 0, φv = 0,m := 0

t = ε ∧ 3.5 ≤ m ≤ 4.4 ∧ 0 ≤ v ≤ cv
t := 0, a := a+ 0.1

t = ε ∧ 3.5 ≤ m ≤ 4.4 ∧ cv ≤ v
t := 0, a := 0,m := 0

t = ε ∧ 4.5 ≤ m ≤ 5.4 ∧ φ ≤ cφ − 0.1
t := 0, φv := − π

16 ,m := 50
t = ε ∧ 49.5 ≤ m ≤ 50.4 ∧ φ ≤ −cφ + 0.1

t := 0
t = ε ∧ 49.5 ≤ m ≤ 50.4 ∧ φ ≤ −cφ

t := 0, φv := 0,m := 0

Figure A.2: Maneuver automaton.

Figure A.2 displays the maneuver automaton presented in Section 5.7, combining
parts of a path planner and a vehicle model in one system to have a closed loop
environment which constructs trajectories verified with a reachability analysis. In
addition to this external inputs depicted in the formal specification modeled above
are defined by ca, cφ and cm. The three variables define the control inputs and the
time specific maneuver mode input.
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