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Abstract

In order to decide the satisfiability of a quantifier-free linear real arithmetic
(QF_LRA) formula either the Simplex or the variable elimination algorithm
by Fourier-Motzkin is used. This thesis presents a novel approach FMPlex
with similarities to Simplex and Fourier-Motzkin. Compared to Fourier-Motzkin
as variable elimination procedure, FMPlex has singly exponential complexity
instead of doubly exponential at the cost of introducing disjunctions in the
projection result. Compared to Simplex, multiple branches with each short
computations instead of a long pivoting chain are constructed. Additionally, an
advanced not-equal constraint handling for FMPlex and Simplex is presented.
This method can decide the satisfiability of a QF_LRA formula with linear
not-equal constraints without combinatorial blow-up.
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Chapter 1

Introduction

At the heart of computer science lies the drive to discover general and fast algorithms.
One does not aim for tailor-made algorithms, but advanced general ones. Linear
programs are used in optimization for a long time. They gained a lot of attention
as many combinatorial problems can be stated as linear programs. For many of the
combinatorial problems occurring in practice, the existence of a solution is already
sufficient. Meaning, the solution not always needs to be optimal. A feasible solution is
already sufficient. In the Satisfiability problem a satisfying assignment for a Boolean
formula is searched. It was the first problem proven to be NP-complete, [Coo71,
Lev73]. The field of Satisfiability Modulo Theories extends the boolean formulas in
SAT by further arithmetics. This thesis considers the linear real arithmetic. This
means, Boolean combinations over linear constraints are considered.

The first algorithm to decide whether a solution to a conjunction of linear con-
straints exists was proposed by Fourier in 1827 [Fou24, Dan72]. As it was rediscovered
in 1936 by Motzkin in [Mot36], the algorithm is called Fourier-Motzkin. At the time
it was the only way to solve such kind of problems. However, it has a huge drawback
which rendered it computably infeasible for real-world problems. It eagerly combines
all lower and upper bounds until all variables are eliminated or a conflict is found.
Through this, the size of the constraint set increases doubly exponential within the
execution. Even for small problems, this blow-up is computably not feasible.

A huge milestone in this development marks the discovery of Simplex algorithm
by Dantzig in 1947, [Dan90]. Simplex itself was based on the idea to traverse the
extreme points of the underlying polyhedron until an optimal solution is found. How
to traverse those extreme points is decided by a pivoting rule. The selection of the
pivoting rule has a huge impact on the running time of Simplex. However, so far
no pivot rule with polynomial time is found, [AZ96]. Nevertheless, Simplex performs
quite well in practical applications. This was for a long time subject of research. It
showed that Simplex is highly probable to have efficient running time. The chances
of hitting an exponential input instance are quite low, [ST04].

In this thesis, a new approach to solve a set of linear constraints is proposed. It
uses the combinatorial aspect from Fourier-Motzkin and the extreme-point traversal
from Simplex. By doing so it achieves a singly exponential running time.

This work is structured as follows. In Chapter 2 the preliminaries are presented.
Firstly, the theoretical setting is defined. Additionally, linear programs and SAT
modulo theories are introduced. Secondly, the Fourier-Motzkin algorithm is pre-
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sented. Thirdly, it is extended by the Imbert Acceleration Theorems discovered in the
last century. Those improvements reduce the number of constraints the algorithm
considers. Afterwards is the Simplex algorithm presented. Every presented algorithm
is illustrated by a running example.

The adapted approach, called FMPlex, is presented in Chapter 3. It is defined
and its properties are proven. Additionally, its functionality is extended to strict
constraints and not-equal constraints.

The way FMPlex works can be transferred to Simplex by a new pivoting heuristic.
The heuristic and a novel not-equality handling for Simplex is presented in Chapter
4. All presented algorithms are evaluated and their practical behaviour is analyzed
in Chapter 5. The chapter also gives some expectations for future work.

Followed by Chapter 6 which concludes this thesis.



Chapter 2

Preliminaries

2.1 Satisfiability Modulo Theories

In the SAT problem it is to decide whether for a given Boolean formula ϕ there
exists an assignment for its variables such that the whole formula evaluates to true.
It was the first problem shown to be NP complete independently by Cook in [Coo71]
and Levin in [Lev73]. Due to that, it is from great theoretical interest. Satisfiability
Modulo Theories (SMT ) are a logical extension to the SAT problem. Hereby, the
existential fragment of first order logic with respect to given theories is considered.
This means that single constraints from one or more theories are connected by logical
operators. It is then checked whether constraints can be satisfied such that the formula
evaluates to true. A detailed definition can be found in [BHvM09].

It showed that many practical problems do not require an optimized solution with
respect to some target function but the sole existence of a solution is of interest. The
decision problem and no optimization problem needs to be solved. In those cases, one
wants to prove the existence of a solution that exceeds Boolean algebra. One example
are scheduling problems in which are modelled by linear constraints. The interest
lies in the existence of the solution, not in an optimization problem. This thesis
considers linear real arithmetic which is presented in Section 2.2. In SMT solving
many different arithmetics are of interest: e.g. linear real, linear integer, non-linear,
uninterpreted functions and many more. An overview is given in the summary over
the last years of the SMT competition in [WCD+19]. This thesis focuses only on
linear real arithmetic.

2.2 Linear Real Arithmetic

Definition 2.2.1 (Linear Real Arithmetic). Linear real arithmetic is the first-order
theory with signature {0,1,+,<} and the domain being the reals R.

Definition 2.2.2 (Linear Constraint). Let x1, . . . , xn be real valued variables,
a1, . . . , an ∈ Q coefficients, b ∈ Q a constant and ./∈ {<,>,=,≤,≥} a relation
symbol. Then a1x1 + . . .+ anxn ./ b is a linear constraint.

Negation and conjunction are given, other logical operators as ∨,⊕ and → can be
constructed.
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As later parts of this thesis use results from linear optimization, linear programs
and their notation are introduced. In addition, the connection between QF_LRA
formulas and linear programs is given.

A linear program is an optimization problem where one wants to maximize the
gain given by a vector c ∈ Qn such that m constraints a1, . . . , am ∈ Qn are satisfied
by the solution x ∈ Rn:

max

n∑
i

ci · xi

subject to 〈aj , x〉 ≤ bj for all j ∈ {1, . . . ,m}

The normal form of a linear program gathers the single constraints as rows in a matrix
A ∈ Qm×n and the constants bj in a vector b ∈ Qm. The linear program is then given
as:

max

n∑
i

ci · xi

subject to Ax ≤ b.

Let ϕ be a QF_LRA formula with only conjunctions of linear constraints a1, . . . an.
Then ϕ can be written as:

n∧
i

ai.

Thus, ϕ can also be stated the constraints of a linear program, Ax ≤ b, given as
system (A,b). This lies in the fact that one is not interested in a maximization but
rather the pure existence of a solution. In this utilization the maximization vector c
is not needed.

Let a be a linear constraint over variables x1, . . . xn and X = {x1, . . . , xn}. A
function α : X → R is called assignment for variables in X . If the assignment α
satisfies a, we write α |= a. In case the assignment does not satisfy a, we write α 6|= a.
Within this thesis refers partial assignment to a function α : X ′ → R with X ′ ⊂ X.
Thus, not all variables are assigned.

2.2.1 Geometric Interpretation
This section lays out the foundation of the geometric interpretation of this work. As
we will later see, many of the used algorithms have very nice geometric interpretations.
To be able to conduct the necessary analysis, a few definitions are needed. The
definitions are according to [WN99] and [Axl97].

Definition 2.2.3 (Linear Combination). Given a set S ⊆ Rn, the point x ∈ Rn

is a linear combination over S if there exists points v1, . . . , vn in S with coefficient
λ1, . . . , λn such that x =

∑
λivi.

If no such linear combination over points in S exists to produce a point x, x is
called linearly independent to the points in S.

Definition 2.2.4 (Convex Combination). Given a set of points S ⊆ Rn, a point
x ∈ Rn is a convex combination of points in S if there exists a linear combination
x =

∑
λivi with

∑
i λi = 1.
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This definition means, that a set is convex iff for all two points within the set, the
line between those points is fully contained in the set. With this, the empty set ∅ is
a convex set and the whole space Rn is also a convex set. A nontrivial convex set is
depicted in Figure 2.1b.

Definition 2.2.5 (Convex Hull). Given a set of points S, the convex hull of S,
denoted as conv(S) is the set of all convex combinations of points in S.

The next definition builds the geometric interpretation for linear programs/con-
straints.

Definition 2.2.6 (Polyhedron). A polyhedron P ⊆ Rn is the set of points satisfying
a finite number of linear inequations, thus P := {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n

and b ∈ Rm.

Theorem 2.2.1. The cut of n convex sets S1, . . . , Sn is convex.

Theorem 2.2.2. A polyhedron is a convex set.

By now, it is shown that a set of linear constraints can be visualized as convex
polyhedron. It is important to note that the extreme points play a special role in later
algorithms.

Definition 2.2.7 (Extreme Points). Let P be a polyhedron. Then x ∈ P is an
extreme point of P if there are no x1, x2 ∈ P with x1 6= x2 such that x = x1+x2

2 .
Thus, x is not part of a convex combination besides the one that only contains itself.

In Figure 2.1b the extreme points are marked as blue points numbered from A to
E. The running example of this thesis is given by the following QF_LRA formula. The
formula is then also displayed in its matrix form. This problem is revisited multiple
times throughout this thesis for every presented algorithm.

Example 2.2.1 (QF_LRA Formula). Let ϕ be a QF_LRA formula defined by

ϕ := ∃x.∃y.(x+ y ≤ 4 ∧ x− 4y ≤ 2 ∧ −x− 4y ≤ −3 ∧ −x+ 2y ≤ 3 ∧ −3x+ 2y ≤ 4).

The corresponding matrix representation is given by
1 1
1 −4
−1 −4
−1 2
−3 2


(
x
y

)
≤


4
2
−3
3
4


A visualization of the constraints and the corresponding polyhedron is given in Figure
2.1. On the left side in Figure 2.1a the visualization of the constraints is given. Hereby
are constraints with a positive coefficient on x1 colored red and with a negative one
colored blue. For both colours the valid region is shaded in a darker tone. On the right
side, in 2.1b, the visualization of the convex polyhedron spanned by the constraints is
given. The points A to E spanning the convex hull are marked. As the polyhedron is
not empty, we know that there exists a solution satisfying all constraints. The first
algorithm to find this solution is given in Section 2.3.
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(a) Constraints (b) Polyhedron

Figure 2.1: Constraints and Polyhedron

2.3 Fourier-Motzkin Variable Elimination

The Fourier-Motzkin (FM) elimination method was firstly published by Joseph Fourier
in 1827 in [Fou24]. It was independently rediscovered by Motzkin in 1936 in [Mot36]
and published in modern English by Dantzig in 1972 [Dan72]. Given is a system (A,b)
of linear inequalities over variables x = (x1, . . . , xn). Hereby is A a rational m × n
matrix, A ∈ Qm×n, and b an m dimensional vector, b ∈ Qm. Let x = (x1, . . . , xn)
be a sequence of real variables. This sequence is used as variable ordering on the
variables x1, . . . , xn, thus x1 < x2 < · · · < xn. Now to deduce the satisfiability of
the system (A,b), one can eliminate all variables and check if a conflict occurs. For
the first variable in the ordering, x1, A is divided in three sets of inequalities: U ,
L and N . U is the set of upper-bound constraints, i.e. x1 has a positive coefficient
in constraints in U . L is the set of lower-bound constraints, i.e. x1 has a negative
coefficient. The remaining constraints in which x1 does not appear, i.e. its coefficient
is zero, are in N , the ”no bound” constraints. Assume u ∈ U corresponds to the j-th
row in (A,b), u := (ajx ≤ bj). As this inequality is an upper bound on x1, the row
can be rewritten to:

aj1x1 ≤
n∑

k=2

−ajkxk + bj .

In this notation, the coefficient aji is the entry in the j-th row and i-th column of A.
Equivalently, in case l ∈ L corresponds to the j-th row of (A,b), it can be written as

n∑
k=2

ajkxk − bj ≤ aj1x1.

This thesis makes often use of the comparison between inequalities. To make
those comparisons easier to read, the connection between constraints in U , L, N
and rows of A is dropped. Constraint l ∈ L is written as l1x1 + · · · + lnxn ≤ bl,
corresponding to any row in (A,b). In the same way upper bounds u ∈ U are written
as u1x1 + · · ·+ unxn ≤ bu. For the coefficients holds l1, . . . , ln, u1, . . . , un, bl, ul ∈ Q.

Let l = (l1x1 + · · ·+ lnxn ≤ bl) be a lower bound and u = (u1x1 + · · ·+unxn ≤ bu)
an upper bound for variable xi over variables x1, . . . ,xn. This means, the coefficient
of xi in l, i.e. i-th element li, is negative and in u positive. Thus, l can be written
as
∑n

0≤j,j 6=i ljxj − bl ≤ lixi and u as uixi ≤
∑n

0≤j,j 6=i−ujxj + bu. Combining both
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inequalities by multiplying l with ui and u with li gives us:

|ui| · (
n∑

0≤j,j 6=i

ljxj − bl) ≤ |li| · (
n∑

0≤j,j 6=i

−ujxj + bu).

Or equivalently, dividing l by li and u by ui gives:

1

|li|
· (

n∑
0≤j,j 6=i

ljxj − bl) ≤
1

|ui|
· (

n∑
0≤j,j 6=i

−ujxj + bu).

In terms of vector operations resembles this comparison the elimination of xi by
combining the vector representing u with the vector representing l. This operation
is not restricted to the previously suggested factors. Other multiplicities like the
greatest common divisor are also possible as long as xi has the same coefficient in
both vectors. The comparison between two bounds l = (

∑n
i lixi ./l bl) and u =

(
∑n

i uixi ./u bu),l ./ u with ./∈ {<,≤}, is defined as

|ui| · (
n∑

0≤j,j 6=i

ljxj − bl) ./ |li| · (
n∑

0≤j,j 6=i

−ujxj + bu).

Hereby depends ./ on ./l and ./u. This comparison is used in the later to illustrate
coherences between constraints.

Throughout this thesis refers the operation combine(l,u,x) to the elimination of
the common variable x. Hereby are l,u constraints over n variables. The variable
x is part of the input in order to determine what kind of bounds l and u on x are.
In later parts becomes this determination more important. The operation returns a
constraint where x is eliminated, as previously demonstrated. The pseudocode for
the Fourier-Motzkin elimination is given in Algorithm 1.

Algorithm 1 Fourier-Motzkin Algorithm

1: procedure Fourier-Motzkin Algorithm(inequation system S = (A,b) and
variable ordering x̄ = (x1, . . . , xn))

2: for Var xi := x̄i do
3: Partition S in L,U,N
4: S := combineSets(L,U,x) ∪N
5: if conflict in S then
6: return UNSAT
7: return SAT
8: procedure combineSets(L,U,x)
9: Constraint set S = ∅

10: for l ∈ L do
11: for u ∈ U do
12: S := S ∪ {combine(l,u,x)}
13: return S

For later proofs, one insight about the nature of created inequations is important.
The following theorem states the structure of all intermediate inequality.

Theorem 2.3.1 (Intermediate Inequalities). Every intermediate inequality is a linear
combination with positive coefficients of original constraints.
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Proof. The proof is done by induction on n, the steps in the FM algorithm.
For n = 0: Constraints form their own positive linear combination with coefficient

1.
Induction step: n→ n+ 1. In the n+ 1-th step two equations with positive linear

combinations are combined to a new inequation. To do so, both linear combinations
are multiplied each with a positive coefficient and then added up. This leads to
another positive linear combination over elements in the original constraints.

The Fourier-Motzkin algorithm also gives another point of view to solve the system
(A,b). Let A again be divided into U , L and N . Instead of solving the whole system,
one can also solve the reduced system (A′,b′). In the reduced system are the variables
in x2, . . . , xn and (A′, b′) computed by comparing (l ≤ u) ∪N for l ∈ L, u ∈ U . This
results in solving the system (L ≤ U) ∪N :

l ≤ u for l ∈ L, u ∈ U
n ≤ 0 for n ∈ N

(2.1)

Afterwards an assignment for x1 is found which satisfies

max
l∈L

l ≤ x1 ≤ min
u∈U

u.

Such an assignment for x1 can always be found iff there exist an assignment for
x2, . . . , xn satisfying (A′,b′). The proof for the Fourier-Motzkin Algorithm and the
reduced system can be found in [Dan72]. As all variables can be iteratively eliminated,
a further statement about the satisfiability of the original system can be made. This
theorem will prove helpful in later parts of this work.

Theorem 2.3.2 (Feasibility Theorem). The system (A,b) is solvable iff there are no
non-negative weights γ1, . . . , γm such that

m∑
i=1

γi · bi > 0 and
m∑
i=1

γi · aij = 0, for j = 1, . . . , n.

This means, that the system is solvable if and only if there is no linear combination
with non-negative coefficients leading to a contradiction, 0 ≤ d with d > 0. The proof
was firstly proposed by Kuhn in 1965 in [Kuh56].

Proof. This proof is done by contradiction. Assume that α is an assignment for
x = (x1, . . . , xn) satisfying the system (A,b). Additionally, assume that coefficients
γ1, . . . , γn ≥ 0 exist which satisfy:

m∑
i=1

γi · bi > 0 and
m∑
i=1

γi · aij = 0, for j = (1, . . . , n).

From the system (A,b) can now a contradiction be constructed.

n∑
j=1

(

m∑
i=1

γi · aij) · xj ≥
m∑
i=1

γi · bi.
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When inserting the conditions
∑m

i=1 γi ·aij = 0 and
∑m

i=1 γi ·bi > 0, the term evaluates
to
∑n

j=1 0 · xj ≥
∑m

i=1 γi · bi > 0. Thus, a contradiction to the satisfiability of the
system could be constructed by combining elements from the original system.

Hence, the condition is necessary. Now, assume that no solution for the system
exists, thus it is unsatisfiable. As previously described: every new constraint is a
linear combination with positive coefficients of the previous system. Leading to the
fact, that every inequation in an intermediate system is a linear combination with
positive coefficients over elements of the initial system. Meaning that the reason for
unsatisfiability can be deduced in form of γi < 0 by non-negative linear combinations
of the initial system. This proves the theorem.

From Theorem 2.3.2 one can fastly conclude the famous Lemma from Farkas for
linear optimization. It will also be used in the later presented novel algorithm in
Chapter 3. Farkas presented his lemma firstly in [Far02], written in German, an
overview over its variants and the in the following used variant can be found in
[Sch98].

Lemma 2.3.3 (Farkas Lemma). Let (A,b) be a system of linear inequalities. Then
there exists a solution x ∈ Rn if and only if 〈γ, b〉 ≥ 0 for every γ ∈ Rn with γA = 0.

Due to the similarity with Theorem 2.3.2 the proof is omitted. One of the reasons
why the FM algorithm is rarely used in practice is rooted in the following theorem.

Theorem 2.3.4 (Fourier-Motzkin Running Time). The Fourier-Motzin algorithm
has a doubly exponential running time.

Proof. Let (A,b) with A ∈ Qm×n and b ∈ Qm be the system solved by the FM
algorithm. It is possible that U and L completely cover A, i.e. N is empty, and U ,L
have size m

2 . In this case, the FM algorithm produces in every iteration (m
4 )2 new

constraints. As this behavior might occur for all n variables, the algorithm creates in
the worst case O((m

4 )2
n

) many constraints. Thus, it has a doubly exponential running
time.

Due to its blow up caused by its doubly exponential complexity, FM is infeasible
on many practical instances. Thus, the Simplex algorithm presented in Section 2.4 is
mainly used in practice.

Example 2.3.1 (Fourier-Motzkin Algorithm). This example demonstrates the Fourier-
Motzkin algorithm by solving the previous example from Section 2.2. The constraints
are given by 

1 1
1 −4
−1 −4
−1 2
−3 2


(
x
y

)
≤


4
2
−3
3
4


The previous example already visualized that the example is SAT, i.e. there exists
an assignment for x and y such that all constraints are satisfied. Let the variable
ordering be x < y, this means that firstly x is eliminated and secondly y. To do so,
the constraints are divided in sets U , L and N . Due to their positive coefficients, the
first and second constraint are in U . The lower bounds, the constraints with negative
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x coefficient, are in L. Thus, the remaining constraints are in L and N is empty.
The following division results:

U :=

(
x+ y ≤ 4
x− 4y ≤ 2

)
(U1)
(U2)

L :=

 −x− 4y ≤ −3
−x+ 2y ≤ 3
−3x+ 2y ≤ 4

 (L1)
(L2)
(L3)

In order to eliminate x, all upper bounds need to be combined with all lower bounds :

∀u ∈ U,∀l ∈ L : l ≤ u.

The first new equation is formed by combining U1:

x+ y ≤ 4
⇐⇒ x ≤ 4− y

with L1:
−x− 4y ≤ −3

⇐⇒ −4y + 3 ≤ x

to
−x− 4y ≤ 4− y

⇐⇒ −3y ≤ 1

This procedure is then repeated for all remaining combinations between U1, U2 and
L1, L2 and L3. The following 6 new equations are created and form the new system:

−3y ≤ 1
3y ≤ 7
5y ≤ 16
−8y ≤ −1
−2y ≤ 5
−10y ≤ 10


(combine(L1, U1, x))
(combine(L2, U1, x))
(combine(L3, U1, x))
(combine(L1, U2, x))
(combine(L2, U2, x))
(combine(L3, U2, x))

The combine operation on the right side states how the corresponding constraint was
created. No equation from the previous system is copied as N is empty. This example
also gives a nice visualization for the Fourier-Motzkin algorithm. The elimination of
a variable can be seen as a projection of the polyhedron on the remaining variables.
This connection is depicted in Figure 2.2. Meaning, the polyhedron spanned by the
constraints, Figure 2.2a, is projected on its Y -axis. The projection is shown in Figure
2.2b. For a better overview only the dominating upper and lower bound is depicted.
One can see that the new constraints always go through the cut of their generating
constraints. The combination of U1 with L2 forms the smallest upper bound, 3y ≤ 7
and U2 with L1 generate the largest lower bound, −8y ≤ −1. In the next step the
remaining variable y is eliminated. To do so, the equations are again divided into U
and L.

U ′ :=

(
3y ≤ 7
5y ≤ 16

)
(U ′1)
(U ′2)

L′ :=


−3y ≤ 1
−8y ≤ −1
−2y ≤ 5
−10y ≤ 10


(L′1)
(L′2)
(L′3)
(L′4)
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(a) Polyhedron (b) Projection

Figure 2.2: Polyhedron and Projection

Again, all possible combinations between upper and lower bounds are formed:



0 ≤ 8
3

0 ≤ 53
24

0 ≤ 4.83
0 ≤ 10

3
0 ≤ 53

15
0 ≤ 123

40
0 ≤ 5.7
0 ≤ 4.2



(combine(L′1, U
′
1, y))

(combine(L′2, U
′
1, y))

(combine(L′3, U
′
1, y))

(combine(L′4, U
′
1, y))

(combine(L′1, U
′
2, y))

(combine(L′2, U
′
2, y))

(combine(L′3, U
′
2, y))

(combine(L′4, U
′
2, y))

All variables were eliminated and no conflict was found, all constraints in the final
system are satisfied. Thus, the system is indeed satisfiable. In a backward pass, one
can now construct a solution. Firstly, a solution for y is constructed. As depicted
in Figure 2.2 is y upper bounded by 7

3 and lower bounded by 1
8 . A value can now be

chosen arbitrarily from [ 18 ,
7
3 ]. For simplicity y = 1 is chosen. Inserting this partial

solution into the original system results in the following constraints on x:


x ≤ 3
x ≤ 6
−x ≤ 1
−x ≤ 1
−x ≤ 2


The variable x is required to be in the interval [− 2

3 , 3]. Let x be set to 0. When
inserting this assignment, x = 0 and y = 1 into the initial system, all constraints are
satisfied and thus a valid solution is found. Herewith, we did not solely graphically
show that the problem is satisfiable but also algorithmically with the Fourier-Motzkin
Algorithm.

As the previous example shows, the number of constraints in the intermediate
systems grows rapidly. To delay this growth as long as possible, improvements were
made.
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2.3.1 Strict Inequations
The Fourier-Motzkin algorithm can be extended to strict constraints, i.e.

∑n
i aixi < b.

Let constraint u be an upper bound on xi:

xi ./u
1

|ui|
· (

n∑
0≤j,j 6=i

−ujxj + bu)

and l be a lower bound on xi:

1

|li|
· (

n∑
0≤j,j 6=i

ljxj − bl) ./l xi.

Hereby is ./l, ./u∈ {<,≤}. The definition of the comparison between the two bounds
needs to be updated:

combine(l,u,x) :=

{
l ≤ u, if ./l is ≤, ./u is ≤
l < u, otherwise

By doing so, the equal part of the strict constraint is also excluded in the combined
constraint.

2.3.2 Imbert Acceleration
As the Fourier-Motzkin algorithm has a doubly exponential running time, it is of great
interest to discover unneeded/redundant inequalities as early as possible. Through
this, one tries to shift the blow-up of the constraints as far as possible. In the late
1990’s several algorithms to detect such redundant inequalities were proposed. To do
so, different approaches were chosen. While Kohler proposed in [Koh67] an algorithm
based on the rank of the constraint system, Chernikov showed in [Che63] a criterion
based on comparisons of histories.

In the end, Imbert proposed a local criterion in [Imb90] and showed in [Imb93]
that the proposals by Kohler and Chernikov are indeed equivalent. The big advan-
tage of Imbert’s so-called Acceleration Theorems is that they are local criteria. To
decide the redundancy by Kohler or Chernikov, the new inequation is compared to
the already existing inequations. Considering the doubly exponential blow-up, both
operations become rather costly. However, Imbert’s redundancy criterion can locally
be decided. This means, that the redundancy of a given inequation is decided by only
considering the information of this one inequation and not taking the whole system
into consideration. For Imbert’s acceleration theorems, some more notation is needed.
A more detailed explanation can be found in [Imb90] and [Imb93].

In addition to the inequation system, the improvements make use of more infor-
mation than only the inequation. Not only the inequation itself but also its origin,
the way it was produced, is used. This origin is called historical subset or history, it
contains the indices of the elements in linear combination forming the new constraint.
For every inequation c in the system, Hc denotes its history. Let ic be the index of
constraint c. For all of the original constraints is Hc defined as {ic}, the set of its
own index. As original constraints, they do not have a history besides themselves.
When combining inequations l1 and u1 to inequation c′, their histories are merged,
Hc′ := Hl1 ∪Hu1

.
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Furthermore, the eliminated variables within the algorithm are also further di-
vided. Let x1, . . . , xk be the variables eliminated from the original system. It is
important to note that the algorithm might need less than k steps to eliminate those
variables. They are called officially eliminated and form the set of officially eliminated
variables, Ok. This set is now further divided. Let c be a intermediate constraint. We
can now divide Ok in three disjoint sets: effectively eliminated, implicitly eliminated
and other variables. The set of effectively eliminated variables for constraint c, Ec,
contains variables who’s official elimination produces initial or intermediate inequa-
tions used in the combination for c. A variable is in the set of implicitly eliminated
variables for c, Ic, if it satisfies three conditions: it occurs in at least one inequation of
Hc, it does not occur in c and it is not effectively eliminated for c. Those conditions
ensure that (1) the variable was once an element of an ancestor of c, (2), was then
removed, (3), but not by the elimination process. This last distinction is important,
as the three sets need to be disjoint. It is important to note, that in practice there
might be variables in Ic who are not in Ok. This is the case when one combination
eliminates a variable but this variable occurs in other constraints in which it is not
eliminated. All remaining variables who are not in Ec ∪ Ic are called other variables.
As they are not needed in the following, their set remains unnamed.

Example 2.3.2. To demonstrate the different classes of eliminated variables consider
the following modified example. x+ y ≤ 4

−1x− 4y ≤ −3
−1x− y ≤ 0

 (1; ; )
(2; ; )
(3; ; )

After eliminating variable x, the resulting system is:(
−3y ≤ 4

0 ≤ 4

)
(1,2; x; )
(1,3; x; y)

The vector on the right side of the equations denotes in the first element the history
of the equations. The second element are the effectively eliminated variables, E. In
the last position the implicit eliminated variables I are given. After the first operation
contains the set of officially eliminated variables O only x. However, in the second
equation, we see an example where a variable, y, is implicitly eliminated but not
officially eliminated.

Let c be a constraint in the inequation system and Hc its historical subset. We
call the historical subset minimal, if there is no other constraint c′ with c′ 6= c such
that Hc′ ⊂ Hc. Based on those divisions, Imbert builds two acceleration theorems.

Theorem 2.3.5 (First Acceleration Theorem). If Hc is a minimal subset, then the
following relation is satisfied:

1 + |Ec| ≤ |Hc| ≤ 1 + |Ec ∪ (Ic ∩Ok)|

Theorem 2.3.6 (Second Acceleration Theorem). Let c be an inequation such that
1 + |Ec| = |Hc|, then Hc is minimal.

Both proofs can be found in [Imb90].
The first acceleration theorem detects non-minimal subsets. This means inequa-

tions that do not fulfil it, do not need to be checked for minimality. In addition, the
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second theorem detects minimal inequations. If an inequation fulfils the criterion for
the second acceleration theorem, it is guaranteed to be minimal.

There are equations that fulfil the first but not the second theorem. Meaning,
there are inequations that are not detected to be redundant but are also not de-
tected to be minimal. For those constraints, Imbert proposes to use the redundancy
check given by Kohler or Chernikov. The main focus of this work is researching a
new method, which is described later in Chapter 3. For that reason, not both algo-
rithms are described but only the redundancy check by Chernikov. Imbert states in
[Imb93] an English translation of Chernikovs method. Chernikovs method is based
on his Minimal Subset theorem. In this he states that the Fourier-Motzkin algorithm
requires only constraints with minimal historical subsets.

Theorem 2.3.7 (Minimal Subsets). The Fourier-Motzkin algorithm needs only con-
straints with minimal historical subsets in order to work correctly.

This means, if the history of an inequation c is contained in the history of in-
equation c′, c′ is not needed in the final system. The proof can be found in [Koh67].
The drawback of this decision is the quadratic running time. Every newly created
inequation has to be compared to all other histories on that level. To do so, all new
histories need to be computed first and then eventually discarded. This makes Im-
bert’s accelerations way more powerful from a practical viewpoint. For them, not all
inequalities need to be created. Their minimality can be decided by a local criterion.
Important to note, to apply Chernikovs improvement the histories are needed. The
new constraints can be computed in a second step after not discarding the inequality.
However, Imbert’s acceleration theorems are not capable of discovering all minimal
subsets. They are very fast in deciding minimality or non-minimality but still rely
on other decision procedures. It is important to note that the minimality decision by
Kohler is equivalent to the one by Chernikov, [Imb93]. It uses the rank of matrix of
the inequation-systems to decide minimality. As it would not provide further insights,
it is not described in this work. The improved Fourier-Motzkin algorithm is described
in Algorithm 2.

Example 2.3.3. In this extended example, the modified Fourier-Motzkin algorithm
is presented. Both of the Imbert accelerations and the comparison method are demon-
strated. As the previous examples demonstrated the conversion from a QF_LRA for-
mula to a constraint set S, the following systems are directly given in their symbolic
form. Let the problem be given by:

x+ y ≤ 4
x− 4y ≤ 2
−x− 4y ≤ −3
−x+ 2y ≤ 3
−3x+ 2y ≤ 4
−x− y ≤ 4


(1; ; )
(2; ; )
(3; ; )
(4; ; )
(5; ; )
(6; ; )

The variable ordering is again x < y, thus firstly x is eliminated and secondly y.
Initially, the set of officially eliminated variables is empty, O1 = ∅. After elimi-

nating x, the following system results. The vector on the right side of the equations
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Algorithm 2 FM+Imbert Algorithm

procedure Fourier-Motzkin Algorithm(inequation-system S = (A,b) and
variable ordering x̄ = (x1, . . . , xn))

Let O := ∅ . Set of officially eliminated variables
for Var xi := x̄i do

Partition S in L,U,N
if L 6= ∅ ∨ U 6= ∅ then

O := O ∪ {xi}
else

S := N
H := histories(L,U) . All possible new histories
for all pair (l, u) ∈ L× U do

Let the sets Hl, El and Il be connected with l
and the sets Hu, Eu, Iu with u
Hc := Hl ∪Hu, Ec := El ∪ Eu and Ic := Il ∪ Iu
if |Hc| ≤ 1 + |Ec ∪ (Ic ∩O)| then . First acceleration theorem

if |Ec| = |Hc| then . Second acceleration theorem
S := S ∪ {combine(l,u,x)}

else
if Exists no history Hc′ ∈ H with Hc′ ( Hc then

S := S ∪ {combine(l,u,x)} . Minimal by Chernikov criterion
else

continue
S := S ∪N
if conflict in S then

return UNSAT
return SAT

procedure histories(L,U)
Histories H ′ := ∅
for l ∈ L do

for u ∈ U do
H ′ := H ′ ∪ {Hl ∪Hu}

return H ′

shows the history, effectively eliminated variables and implicitly eliminated variables.

−3y ≤ 1
3y ≤ 7
5y ≤ 16
0 ≤ 8
−8y ≤ −1
−2y ≤ 5
−10y ≤ 10
−5y ≤ 6



(1,3; x; )
(1,4; x; )
(1,5; x; )
(1,6; x; y )
(2,3; x; )
(2,4; x; )
(2,5; x; )
(2,6; x; )

In this step, no equation could be omitted. The first acceleration theorem states that
all constraints minimal, 1 + |Ec| = |Hc|.

Now, in the second step the set of officially eliminated variables contains x, O1 =
{x}. However, in this step, not all equations need to be formed. For demonstration
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purposes shows the following system all equations.

0 ≤ 8
0 ≤ 8

3
0 ≤ 53

24
0 ≤ 4.83
0 ≤ 10

3
0 ≤ 53

15
0 ≤ 53

15
0 ≤ 123

40
0 ≤ 5.7
0 ≤ 4.2
0 ≤ 22

6



(1,6; x; y )
(1,3,4; x,y; )

(1,2,3,4; x,y; )
(1,2,4; x,y; )

(1,2,4,5; x,y; )
(1,2,4,6; x,y; )

(1,3,5; x,y; )
(1,2,3,5; x,y; )
(1,2,4,5; x,y; )

(1,2,5; x,y; )
(1,2,5,6; x,y; )

In practice, this is not necessary. The Imbert acceleration and the comparison method
can be applied without computing the resulting constraint. Only the sets of eliminated
variables are needed. The next system shows only the minimal constraints, omitting
all non-minimal constraints.

0 ≤ 8
0 ≤ 8

3
0 ≤ 4.83
0 ≤ 53

15
0 ≤ 4.2


(1,6; x; y )

(1,3,4; x,y; )
(1,2,4; x,y; )
(1,3,5; x,y; )
(1,2,5; x,y; )

All constraints with a history of length 4 are omitted due to the first acceleration
theorem. With only two eliminated variables, constraints with a history of length 4
can never be minimal. The constraints with a history of length 3 are always minimal
due to the second acceleration theorem. In addition, all constraints whose histories
contain {1,6} can be omitted due to the Chernikov minimality criterion. Finally, one
can also deduce SAT for the system.

This small example already demonstrates rather powerfully the impact of the accel-
eration operations. The final system is only half the size of the unreduced one. In case
we would apply further rounds of the Fourier-Motzking algorithm the impact would
be considerably large. None of the eliminated constraints could produce succeeding
constraints.

Recently, a new approach for the Chernikov method was proposed. In 2015 a
method was proposed which transfers the Chernikov decision to a graph problem,
[BZ15].

2.4 Simplex

The Simplex algorithm was initially published by Dantzig in 1947 in [Dan90]. In
the last 80 years, it was steadily improved and further heuristics were proposed. A
summary of the main improvements can be found in [Bix02]. A rather comprehensive
description can be found in [CLRS90]. Simplex for SMT solving is described in
[DDM06].
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2.4.1 Overview
The Simplex algorithm was originally developed for linear optimization. This means,
given linear constraints a linear target function needs to be optimized. In this setting,
linear programs are used. The Simplex method operates in two phases. In the first
phase, a feasible solution to the relaxed problem is searched. Meaning, the problem is
reformulated and checked whether there exists a start position within the constraint
polyhedron. If there is no feasible solution, i.e. the polyhedron is empty and the
problem unsatisfiable, the algorithm is able to detect this case and return UNSAT.
With a found feasible solution the first phase ends. This feasible solution is then
optimized according to the target function in the second phase. Afterwards, the
optimal solution is found. In this search, the Simplex algorithm traverses the edges
of the polyhedron and searches for the optimal solution. As this thesis deals with
SMT-solving, the second phase is not from interest and thus not further described.
Its description can be found in the previously mentioned sources.

2.4.2 Slack Form
Let Ax ≤ b be a system with m linear constraints and n variables, thus A ∈ Qm×n

and b ∈ Qm. To apply the Simplex algorithm it firstly needs to be transformed
into its slack form. In this form, every inequality is transformed into an equality
and slack variables are introduced. Slack variables are added variables that account
for the lost solution space when transforming an inequality constraint to an equality
constraint. To transform the system into slack form a slack variable si is added for
every constraint 〈ai, x〉 ≤ bi in (A,b). Additionally, a new constraint restricting the
slack variable is added. The new system has then the form:

〈ai, x〉 = si ∧ si ≤ bi for i = 1, . . . ,m

The set of variables is then X := {x1, . . . , xn, s1, . . . , sm}.

Example 2.4.1. To illustrate the slack form, the previous example is revisited. The
problem is given by: 

1 1
1 −4
−1 −4
−1 2
−3 2


(
x
y

)
≤


4
2
−3
3
4

 .

Now, every constraint is set equal to a slack variable si:
1 1
1 −4
−1 −4
−1 2
−3 2


(
x
y

)
=


s1
s2
s3
s4
s4


and the slack variables si are constrained by the previous bounds:

s1 ≤ 4
s2 ≤ 2
s3 ≤ −3
s4 ≤ 3
s4 ≤ 4


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With this, the initial system is transformed into the slack form.

2.4.3 Simplex Tableau
All operations performed by the Simplex algorithm are performed on the Simplex
tableau. Previously, x := (x1, . . . xn) was defined to be the vector of real valued
variables x1, . . . xn. In the following denotes X := {x1, . . . , xn} the set of variables
in vector x. The Simplex algorithm distinguishes between nonbasic variables N ⊆ X
and basic variables B = X \ N . The basic variables are dependent on the nonbasic
variables. For every xj ∈ B the Simplex tableau T contains a row encoding an equation
xj =

∑
xi∈N ajixi. In addition, two mappings u and l are taken into account, which

maps each variable x ∈ X to its upper/lower bound. The mapping α : X → R
assigns each variable x ∈ X to its current, real assignment. Now, given a set of linear
constraints, an initial tableau and assignment are constructed. Initially, all original
variables are non-basic variables and the slack variables form the set of basic variables.
The equations

∑
xi∈N ajixi = sj form the initial tableau and bj is added as bound

for sj for j = 1, . . . ,m. Let Tji denote the coefficient in row j and column i in the
Simplex tableau. The initial assignment α is ∀x ∈ X : α(x) = 0. All equations hold,
but the bounds of basic variables might be violated. It is important to note that it is
even an invariant of the Simplex algorithm that nonbasic variables always satisfy their
bounds. This invariant is satisfied from the beginning as the nonbasic variables do
not have any bounds. The Simplex tableau T is now constructed as depicted below:

T =

x1 x2 · · · xn s1 s2 · · · sm


a11 a12 · · · a1n −1 0 . . . 0

a21 a22 · · · a2n 0 −1
. . .

...
...

...
. . .

...
...

. . . . . . 0
am1 am2 · · · amn 0 · · · 0 −1

In the following, the tableau is displayed as a m× (m+ n) matrix with m being the
number of basic variables, |B|, and n the amount of non-basic variables, |N |. Each
row in the matrix describes the basic variable as a linear combination of nonbasic
variables. The basic variables are always the columns with a negative unity vector
entry. As previously defined, in the beginning, the slack variables s1, . . . , sm are the
initial nonbasic variables. The equation in the i-th row of the Simplex tableau can be
read as

ai1x1 + ai2x2 + · · ·+ ainxn − si = 0.

The tableau expresses every nonbasic variable in dependency to the basic variables.
Thus, the slack variable is defined as the weighted sum over the variables. As said
before, the nonbasic variables always satisfy their bounds as they do not have any
bounds, the bounds were transferred on the slack variables which are basic variables.
However, the basic variables might violate their bounds arbitrarily.

The tableau is now modified by applying the rules depicted in Figure 2.3. This
description can be found in [KBD+17]. To apply a rule, all of the premises in the
numerator need to be fulfilled. The denominator states the effects on the components
of the problem when applying the rule. To fix the bound of a basic variable, the
variable is first moved into the set of nonbasic variables, by applying the Pivot rule,
and then secondly updated to satisfy its bounds, Update rule. A basic variable



2.4. Simplex 27

Pivot1
xi ∈ B α(xi) < l(xi) xj ∈ slack+(xi)

T := pivot(T,i,j) ∧ B := B ∪ xj \ {xi}

Pivot2
xi ∈ B α(xi) > u(xi) xj ∈ slack−(xi)

T := pivot(T,i,j) ∧ B := B ∪ xj \ {xi}

Update
xj ∈ N α(xj) < l(xj) ∨ α(xj) > u(xj) l(xj) = α(xj) + δ ∨ u(xj) = α(xj) + δ

α := update(α, xj , δ)

Failure
xi ∈ B (α(xi) < l(xi) ∧ slack+(xi) = ∅) ∨ (α(xi) > u(xi) ∧ slack−(xi) = ∅)

unsat

Success
∀xi ∈ X l(xi) ≤ α(xi) ≤ u(xi)

SAT

Figure 2.3: Standard Simplex Rules

xi is switched with a non-basic variable xj by using the Pivot1 or Pivot2 rule,
depending on which bound is broken. Not every variable is suitable to be pivoted
with xi. The update of xi also affects the now basic, former non-basic, variable xj .
Before performing the pivoting step it is ensured, that xj is at least a suitable pivoting
candidate. This means that xj is not guaranteed to violate its bounds after the update
of xi. For this, xj has to be in the slack of xi:

slack+(xi) = {xj ∈ N | (Ti,j > 0 ∧ α(xj) < u(xj)) ∨ (Ti,j < 0 ∧ α(xj) > l(xj))}

slack−(xi) = {xj ∈ N | (Ti,j < 0 ∧ α(xj) < u(xj)) ∨ (Ti,j > 0 ∧ α(xj) > l(xj))}

Though, even with the pivoted variable being in the slack, it is not ensured that
the now new basic variable does not violate its bounds. It is possible that the new
basic variable has to be fixed again. After a pivot operation Pivot(T,i,j) is the
basic variable xi replaced by the entering variable xj and the equation in row i is
changed according to the linear conversion. Also, to keep the tableau consistent,
every occurrence of xi is also adapted to the new linear representation of xj . The
assignment α is changed by the Update operation. For a non-basic variable xj ∈ N ,
update(α,xj , δ) returns an assignment α′ with modification α′(xj) = α′(xj)+δ and the
values of all basic variables xi ∈ B are updated according to their linear representation
Ti,j of xj . This means the update rule pays attention to the influence of xj on the
basic variables. The assignment of the variable switched into the nonbasis is always
set to one of its bounds, e.g. either the new assignment equals the upper bound or
the lower bound. This property is used again in the next section where the geometric
properties of the simplex algorithm are discussed. The Failure rule applies, when
there is a basic variable violating its bound but it can not be pivoted with any nonbasic
variable. Then the problem is unsatisfiable. On the contrary, when all variables in
X , i.e. the variables in B satisfy their bounds, the algorithm terminates as it found
a valid assignment. In this case the Success rule can be applied and SAT can be
deduced.

Example 2.4.2. Firstly, the slack form from Example 2.4.1 is transformed into the
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corresponding Simplex tableau:

T =

x y s1 s2 s3 s4 s5


1 1 −1 0 0 0 0
1 −4 0 −1 0 0 0
−1 −4 0 0 −1 0 0
−1 1 0 0 0 −1 0
−3 2 0 0 0 0 −1


s1 ≤ 4
s2 ≤ 2
s3 ≤ −3
s4 ≤ 3
s4 ≤ 4


The set of variables is X = {x,y,s1,s2, . . . ,s5}. The assignment α is given by α(x) = 0
for x ∈ X . As the problem is given in standard form the slack variables have only
upper bounds. Those upper bounds are set to the right side of the constraints, e.g.
u(s1) = 4. Thus, the only violating slack variable is s3, α(s3) = 0 � −3. Without
loss of generality, let the variable order be given by the position of the variables in the
tableau, e.g. x < y < s1 < · · · < s5. Initially, the basis consists of slack variables
B = {s1, . . . , s5} and the nonbasis of the original variables N = {x,y}. In the first
pivoting and update step is x updated to 3, in order that s1 is at its lower bound. The
resulting tableau is:

T ′ =

x y s1 s2 s3 s4 s5


0 −3 −1 0 −1 0 0
0 −8 0 −1 −1 0 0
−1 −4 0 0 −1 0 0
0 6 0 0 1 −1 0
0 14 0 0 3 0 −1

The updated assignment is then: α(x) = 3, α(y) = 0, α(s1) = α(s2) = α(s3) =
3, α(s4) = −3 and α(s5) = −9. Thus, only s2 breaks its bound. To do so, y is updated
so that s2 fulfils its assignment and is then pivoted with it.

T ′′ =

x y s1 s2 s3 s4 s5


0 0 −1 3
8 − 5

8 0 0
0 −1 0 − 1

8 − 1
8 0 0

−1 0 0 1
2 − 1

2 0 0
0 0 0 − 6

8
2
8 −1 0

0 0 0 − 14
8

10
8 0 −1

Finally, the assignment is α(x) = 2.5, α(y) = 1
8 , α(s1) = 21

8 , α(s2) = 2, α(s3) =
−3, α(s4) = − 18

8 , α(s5) = − 58
8 . As all bounds are satisfied, the success rule is

applied and SAT is deduced. The corresponding basis is B = {x,y,s1,s4,s5}.

2.4.4 Properties of the Simplex Algorithm
Whether or not the Simplex algorithm terminates highly depends on the selection of
pivoting rule. Meaning which variables are chosen to leave the basis and which is
chosen to enter the basis. The most famous and easiest rule to ensure termination
was proposed by Bland in [Bla77]. Bland’s termination rule needs an ordering on the
variables. When selecting the entering and leaving variables, those with the smallest
index are chosen.
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Theorem 2.4.1. Bland’s Rule ensures termination for the Simplex algorithm.

The proof can be found in [Bla77]. To estimate the running time of the Simplex
algorithm, a few theorems are necessary. As shown before, there exists a connection
between the basis variables and the vertices of the Simplex polyhedron. It shows, that
in the worst-case scenario the Simplex algorithm traverses over all possible vertices.
The following theorems can be found in [CLRS90]. Firstly, we need to prove that the
basis always determines a slack form uniquely.

Lemma 2.4.2. The solution set of the slack form of a linear program is uniquely
determined by the set of basis variables, B.

Proof. In order to draw a contradiction, we assume that there are two different slack
forms with the same set of basis variables. The first slack form is given by:

xi = bi −
∑
j∈N

aijxj for i ∈ B

and the second by:
xi = b′i −

∑
j∈N

a′ijxj for i ∈ B.

When subtracting both equations for a xi, the resulting system is:

0 = bi − b′i −
∑
j∈N

(aij − a′ij)xi for i ∈ B

⇐⇒
∑
j∈N

aijxj = (bi − b′i) +
∑
j∈N

a′ijxj for i ∈ B

What remains to prove is, that for a set of indices of variables, I ⊂ {1, . . . , |X |},∑
i∈I

αixi = γ +
∑
i∈I

βixi.

implies that αi = βi ∀i ∈ I and γ = 0. Hereby are the xi any assignment for the
variables. Since the statement holds for all possible assignments, we can use specific
ones to prove the claim. If we let xi = 0 ∀i ∈ I we can conclude γ = 0. Now, we let
one xi 6= 0 and all other xk = 0 for k ∈ I ∧ k 6= i to conclude αi = βi for all i ∈ I.
This proves the lemma.

Theorem 2.4.3. If the Simplex algorithm does not terminate in
(
n+m
m

)
iterations, it

cycles. Hereby is n the number of variables and m the number of constraints.

Proof. By Lemma 2.4.2 we know that every basis of the Simplex algorithm has a
unique slack form. By construction, we know that the basis has the same size as the
number of constraints, |B| = m. To the initially n variables are m slack-variables
added. Thus, there is a total of n+m variables to select the m basis variables from.
Leaving us with a total of

(
n+m
m

)
possible basis combinations. If the Simplex algorithm

visits a basis twice, it is forced to cycle. Otherwise, it terminates in less or equal to(
n+m
m

)
steps.
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By now, it is proven that the Simplex algorithm terminates in at most expo-
nentially many steps or starts cycling. In worst-case examples visits the Simplex
algorithm all of the vertices of the polyhedron. Such a worst-case example is for
many pivoting rules the Klee-Minty cube [KM72]. To prove that Bland’s rule can
actually take exponentially many steps, a modified version of the Klee-Minty cube is
constructed. This is done in the next theorem after defining Klee-Minty cubes. The
definition and proofs can be found in [AZ96].

Definition 2.4.1 (Klee-Minty Cubes). A Klee-Minty cube of dimension d, for some
ε ∈ [0, 12 ] is given by the inequations:

0 ≤ x1 ≤ 1
εxj−1 ≤ xj ≤ 1− εxj−1 for 2 ≤ j ≤ d

Theorem 2.4.4 (Simplex Running time). The Simplex algorithm with Bland’s piv-
oting rule visits all 2d vertices of the d-dimension Klee-Minty cube.

The proof can be found in [AZ96]. Thus, also Bland’s rule has exponentially
running time.

2.4.5 Further Remarks Geometric Interpretation
As previously mentioned traverses the Simplex algorithm in the optimization phase
the edges of the spanned polyhedron. This does not exactly hold for the first phase
though. In this, the algorithm traverses not along the edges but jumps from extreme
point, a corner of the polyhedron, to extreme point.

But, the ”current position” of the algorithm can be read from the nonbasis of the
Simplex tableau. This means the nonbasis assembles an extreme point for systems of
full rank, i.e. a point on the convex hull of the Simplex polyhedron. Systems with
not full rank are extreme facets.

Example 2.4.3. This visualization is shortly shown by the last example. Here, the
final basis was B = {x,y,s1,s4,s5} and thus the nonbasis N = {s2, s3} with the fol-
lowing assignment: α(x) = 2.5, α(y) = 1

8 , α(s1) = 21
8 , α(s2) = 2, α(s3) = −3, α(s4) =

− 18
8 , α(s5) = − 58

8 . When visualizing the current point, one considers the point created
by the original variables, (2.5, 18 ), it lays exactly on the intersection of the correspond-
ing inequations to s2 and s3. Figure 2.4 displays on the left side the constraints and
on the right side the Simplex polyhedron. One can observe that the intersection of s2
and s3 is point E of the polyhedron.

One more nice property of the Simplex algorithm appears on UNSAT examples.
As previously defined can the UNSAT rule only be applied when a basis variable
violates its bound but has no possible pivoting partner. Thus, its slack-set is empty.
To deduce the reason for this conflict, only the non-zero coefficient nonbasic variables
and the violating basis variable are collected. The infeasible subset is now generated
by the constraints producing those variables. In this way, more than one conflict, if
existent, can be read from the Simplex tableau.

2.4.6 Simplex in Modern Applications
Even in current times, nearly 70 years after its first publication, is the Simplex algo-
rithm still widely used and further improved. Though there exist polynomial algo-
rithms, e.g. the Ellipsoid method in [AS80], Simplex is still used besides its possibly
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(a) Constraints (b) Polyhedron

Figure 2.4: Constraints and Polyhedron

exponential running time. Detailed analysis shows that the Simplex algorithm per-
forms well in practice as it is very unlikely to ”hit” an exponential running time input,
[ST04]. The Simplex algorithm is used in linear optimization to solve linear programs,
in SMT solving for linear real arithmetic and in operations research. Additionally,
many variants of the Simplex algorithm are in use today. They utilize a wide variety
of heuristics to select the entering and leaving variables, e.g. [KBD13] or [PSS03].
There are even approaches to verify neuronal networks by a modified Simplex algo-
rithm [KBD+17].
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Chapter 3

FMPlex

3.1 Splitting the Polyhedron
As previously seen, every step in the FM algorithm can be seen as a projection of
the solution polyhedron on the remaining variables. Now, instead of considering the
whole polyhedron in every step, we could split it into multiple parts. The idea is to
split the polyhedron on intersections of bounds in the same set. This means, instead of
projecting the whole polyhedron on the remaining variables xd, . . . xn, we could only
project parts of the polyhedron. The single parts are determined by the intersections
of lower or upper bounds. In FM, those intersections are not considered any further.
This is not necessary, as all possible combinations between upper and lower bounds
are considered.

However, we would like to reduce the number of constraints within the system. In
the new approach, the bounds are still split into sets of upper bounds U , lower bounds
L and non-bounds, N . Now, not all combinations from lower and upper bounds are
considered, but every bound from L is compared to all bounds in U . Additionally,
one has to ensure that the selected lower bound is indeed the largest lower bound.
To do so, the lower bound is also compared to all other lower bounds. This resembles
the computation of

max
l∈L

l ≤ x1 ≤ u,∀u ∈ U.

The maximum over the lower bounds is determined in a case distinction. Every
lower bound is checked once to be the largest lower bound by comparing it to the
other lower bounds. Special attention needs to be paid to the case that the bound
assumed to be the largest lower bounds conflicts with other lower bounds. In this
case, the wrong lower bound was selected. However, this is no conflict on which we
can conclude the unsatisfiability of the system. We have to backtrack to the faulty
decision and check another lower bound. This is repeated until either a SAT branch
was found and we can conclude that the system is satisfiable or UNSAT can be
deduced. Previously was argued that the distinction is made to find the largest lower
bound. The same distinction can be done in order to find the smallest upper bound.
Then the computation resembles

l ≤ x1 ≤ min
u∈U

u,∀l ∈ L.

The minimum over the upper bounds is determined in a case distinction. The decision



34 Chapter 3. FMPlex

on which bounds to split is arbitrary. From now on, the combine operation is not
only called with a lower and an upper bound as input. It might be called with two
lower or two upper bounds as input. The operation combine has still its old domain,
it maps two constraints c1 and c2 over n variables to a constraint c over n−1 variables.
Firstly, only non-strict constraints are considered. For constraints c1, c2, variable x
and partitions L,U holds:

combine(c1,c2,x) :=


c1 ≤ c2, if c1 ∈ L, c2 ∈ U
c1 ≤ (−1) · c2, if c1 ∈ L, c2 ∈ L
(−1) · c1 ≤ c2, if c1 ∈ U, c2 ∈ U

However, we chose to minimize the number of branches in order to keep the num-
ber of backtracking operations small. The amount of constraints within the single
branches stays roughly the same. The only difference is whether the constraint is
created by a comparison of lower and upper bounds or by bounds from the same set.
In Figure 3.1 the split of the polyhedron is depicted. Hereby denote the red lines
upper bounds and the blue lines lower bounds. In this example, the upper bounds
are selected for splitting as there are fewer upper bounds (|U | = 2) than lower bounds
(|L| = 3). The black line separating the polyhedron corresponds to the cut via the
intersection of the upper bounds (point D). Every single part of the polyhedron is

Figure 3.1: Polyhedron from the Running Example Splitted on Upper Bounds

processed by a separate branch. Hereby refer branches not to parallelized processes
but to different execution branches within the algorithm. Occasionally, a branch is
also called child. This name refers to the fact that splitting the parent polyhedron
spans a tree. Every split of the polyhedron is handled by another child in the com-
putation tree. Let C ∈ {L,U} be the constraints the polyhedron is split on. For
every constraint c ∈ C a separate system of constraints Sc is constructed. A branch
is identified by its constraint system. Without loss of generality, let the constraints
selected for the split be the lower constraint, C = L. Then Sc is formed by combining
c with all upper constraints in U and all other constraints in L. By this, it is ensured
that c is not covered by another lower bound and it is not conflicting with any upper
bound. Leading to:

Sc :=
⋃
u∈U

c ≤ u ∪
⋃

l∈U,l 6=c

l ≤ c.
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It is important to note that the comparison of an upper and lower bound is equiv-
alent to multiplying the term of c with −1. This multiplication transforms c to an
upper bound and it can be compared to li ∈ L. However, the linear combination
of intermediate constraint, thus constraints in Sc, are not exclusively positive linear
combinations of original constraints. Now, also linear combinations with negative
coefficients are present. Special attention is needed when handling constraints with
such linear combinations. To do so, a conflict-level, cl, counter is introduced
for every constraint. The conflict-level of constraint c is denoted by cl(c). For a
given constraint, the conflict-level counter names the number of levels since one of
its parents was part in a same-bound combination, i.e. the comparison between two
lower bounds. This means a constraint with a conflict-counter of level 1 has a parent
whose parent was compared to a same-bound equation. Constraints constructed by
constraints in the same set, i.e. both constraints are in U or both are in L, are called
same-bound combination. The regular combination with lower and upper bounds is
called FM combination or lower-upper combination. It would have also been created
in the FM algorithm. A constraint with a conflict-counter of 0 is the product of a
same-bound comparison. It would not have been created in the FM algorithm. This
leads to the following computation of the conflict-level:

• FM combination: If those constraints were present on the FM algorithm, the
same combination would have been formed. Thus, if a conflict can be formed
with this combination, it can be formed in every sibling node on the same level.
The child counter is the minimum over the parent counters increased by one.
c := l ≤ u→ cl(c) = min(cl(l), cl(u)) + 1 for l ∈ L and u ∈ U .

• Same-bound combination: If the resulting constraint is part of a conflict, it
is possible that just the wrong bound was select as the largest lower bound
or smallest upper bound. In this case, one of its siblings is the right choice
and another branch should have proceeded. Thus, those constraints receive a
conflict-level counter of 0. c := c′ ≤ c′′ → cl(c) = 0 for c′,c′′ ∈ C.

The linear combinations with not only positive elements play a special role in conflict
detection, as explained now. After creating Sc, one of the following cases occurs:

• One or more conflict is found: Finding a conflict in the original FM al-
gorithm enabled one to deduce UNSAT. A positive linear combination over
original constraints, which leads to a conflict, was found. Thus, the whole sys-
tem is unsatisfiable, see Farkas Lemma, Lemma 2.3.3.
However, in our new approach, the linear combination behind a conflict might
contain a negative element. In this case, it is not a witness to the unsatisfiability
of the whole system. A conflict e in system Sc is defined as e := (e1, . . . , em) ∈
Rm. Every element ei of e represents the coefficient of a constraint ci from
the set of original constraints S′. Recall that every constraint ci is defined as
ci := (ci1x1+ . . .+cinxn ./ bci) with ./ci∈ {<,≤}. The sum

∑m
i=1 ei ·(ci1 + . . .+

cin) ./
∑m

i=1 ei · bci evaluates to a contradiction. Strict constraints in FMPlex
are formally introduced in Section 3.2. We write, e ≥ 0 if all coefficients γi
are greater or equal to 0. For conflict e is the conflict level cl(e) defined as the
conflict level of its representing constraint. This conflict is only a witness that
one of the previous ”minimal” lower bounds was chosen wrongly. The conflict is
not guaranteed to occur in every branch. In case of a conflict, one can backtrack
conflict-level many of the decisions within the computation tree.
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However, it may occur that negative linear combinations cancel each other out.
When a constraint with a negative linear combination is again chosen to be the
largest lower or smallest upper bound, the resulting constraint might have a
positive linear combination. In this case, e ≥ 0, one can conclude UNSAT for
the whole system and does not need to backtrack. This decision is again based
on Farkas Lemma, Lemma 2.3.3.

• The system Sc is SAT: In this case, SAT can be deduced for the original
problem. As there occurs no conflict on the branch, the largest lower bound
was selected in every previous decision. Additionally, no upper bound conflicts
with any lower bound. Thus, SAT can be deduced.

• Sc is neither SAT nor UNSAT: This case is identical to the FM algorithm.
In order to create Sc a variable was eliminated. The same algorithm can now be
recursively applied to Sc. Meaning, the subsystem is now split along its lower or
upper bounds and the remaining variables are eliminated. Its call either returns
SAT or UNSAT, which is then propagated as described before.

The whole algorithm is given in pseudocode in Algorithm 3. It is called FMPlex due
to a similarity to Simplex which will be handled in Section 3.3.

Example 3.1.1 (FMPlex Algorithm). This example demonstrates the FMPlex algo-
rithm by resolving our running example. The initial problem is again given by:

1 1
1 −4
−1 −4
−1 2
−3 2


(
x
y

)
≤


4
2
−3
3
4


Similar to Example 2.3.1, constraints are divided into upper and lower bounds.

U :=

(
x+ y ≤ 4
x− 4y ≤ 2

)
(U1)
(U2)

L :=

 −x− 4y ≤ −3
−x+ 2y ≤ 3
−3x+ 2y ≤ 4

 (L1)
(L2)
(L3)

As the set of upper bounds is smaller than the set of lower bounds, the upper bounds
are selected for splitting the polyhedron. Thus, two branches are created, SU1

and
SU2

. In SU1
is U1 and in SU2

is U2 the chosen smallest upper bound. The system
SU1

consists of lower-upper combinations L1 ≤ U1 ∧ L2 ≤ U1 ∧ L3 ≤ U1 and the
same-bound combination U1 ≤ U2. The system SU2 is created analogous. Thus, the
two branches are given by:

SU1
:=


−3y ≤ 1
3y ≤ 7
5y ≤ 16
−5y ≤ −2


(combine(L1, U1, x))
(combine(L2, U1, x))
(combine(L3, U1, x))
(combine(U1, U2, x))

SU2
:=


−8y ≤ −1
−2y ≤ 5
−10y ≤ 10

5y ≤ 2


(combine(L1, U2, x))
(combine(L2, U2, x))
(combine(L3, U2, x))
(combine(U2, U1, x))

The conflict-counter of every constraint resulting from a lower-upper combination is
set to 1. The conflict resulting from comparing U1 and U2 with each other is set to
0. This split on the upper bounds is visualized in Figure 3.1. As none of the two
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Algorithm 3 FMPlex Algorithm

1: procedure FMPlex(constraints S and variable ordering x := (x1, . . . , xn))
2: e := (0, . . . , 0)
3: Partition S in L,U,N
4: Let C ∈ {L,U} be the set to split on
5: for ci ∈ C do
6: Sci := combineConstraints(ci,L,U,x) ∪N
7: cl(n) := cl(n) + 1 for n ∈ N
8: if Sci is SAT then
9: return SAT

10: if Sci is UNSAT then
11: Conflicts e1, . . . ,en ∈ Rm . Linear combinations over Sci

12: if ∃ ei ≥ 0 then
13: return UNSAT
14: return arg maxei(cl(ei))

15: x̄ := (x2, . . . ,xn)
16: for System Sci do
17: if FMplex(Sci ,x̄) is SAT then
18: return SAT
19: if FMplex(Sci ,x̄) returns conflict e′ then
20: if e′ ≥ 0 then
21: return UNSAT
22: else if cl(e′) > 0 then
23: cl(e′) := cl(e′)− 1
24: return e
25: else
26: e := e+ e′ . Save conflict
27: return e . Return merged conflict
28: procedure combineConstraints(ci,L,U,x)
29: System S := ∅
30: if Split on lower bounds then
31: for uj ∈ U do
32: Constraint c′ := combine(ci,uj ,x)
33: S := S ∪ {c′}
34: cl(c′) := min(cl(ci), cl(uj)) + 1

35: for lj ∈ L \ {ci} do
36: Constraint c′ := combine(lj , ci,x)
37: S := S ∪ {c′}
38: cl(c′) := 0

39: else
40: for uj ∈ U \ {ci} do
41: Constraint c′ := combine(ci,uj ,x)
42: S := S ∪ {c′}
43: cl(c′) := 0

44: for lj ∈ L \ {ci} do
45: Constraint c′ := combine(lj ,ci,x)
46: S := S ∪ {c′}
47: cl(c′) := min(cl(ci), cl(lj)) + 1

48: return S
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branches contains a conflict or is satisfied, the algorithm continues its execution with
SU1. The four constraints are again divided into U and L:

U ′ :=

(
3y ≤ 7
5y ≤ 16

)
(U ′1)
(U ′2)

L′ :=

(
−3y ≤ 1
−5y ≤ −2

)
(L′1)
(L′2)

This time, the constraints are split on L′ in two new branches with systems SL′
1
, SL′

2
:

SL′
1

:=

0 ≤ 8
0 ≤ 53
0 ≤ −11

 (combine(L′1, U
′
1, y))

(combine(L′1, U
′
2, y))

(combine(L′2, L
′
1, y))

In this system occurs a conflict, 0 � −11. But checking the linear combination reveals
that the constraint contains a negative element:

{0 ≤ −11} → (−5) ·
[
L1 + U1

]
+ (3) ·

[
− U1 + U2

]
= −8 · U1 + 3 · U2 − 5 · L1.

The returned error is e = (−8, 3,−5, 0, 0). Thus, one has to backtrack cl(e) many
steps and continue the execution. The counter of {0 ≤ −11} was set to 0 as is formed
by combining two lower bounds. With this, the branches’ sibling SL′

2
is processed. It

is created in the same way as SL′
1
was created and contains the following constraints:

SL′
2

:=

0 ≤ 29
0 ≤ 14
0 ≤ 11


As all its constraints evaluate to true and no conflict is found, is SL′

2
a SAT branch.

Through this, one can conclude that the whole system is satisfiable.

3.1.1 Properties
This subsection aims to prove the properties of the FMPlex algorithm. Firstly, it is
to prove that FMPlex is indeed a correct algorithm. Thus, it needs to be sound and
complete. Secondly, the advantage of FMPlex over FM is shown by comparing the
amount of created constraints. Thirdly, the relation between FMPlex and the Imbert
accelerations is shown.

An algorithm is called sound iff every formula ϕ on which the algorithm outputs
SAT is actually satisfiable. As previously defined is an QF_LRA formula called
satisfiable iff there exists an assignment α such that every single constraint is satisfied
under α.

Theorem 3.1.1. The FMPlex algorithm is sound.

Sketch of Proof. To start with the satisfiable case. Let ϕ be an QF_LRA formula
on which FMPlex outputs SAT. It is now to prove, that an assignment satisfying
all constraints can be constructed. As FMPlex returns SAT, the algorithm is in a
branch where repetitively the correct, i.e. largest lower or smallest upper, bound
was selected. Additionally, the lower and upper bounds are not conflicting. Now, an
assignment α for all original variables x1 to xn can be constructed by backtracking
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through the computation tree. As no conflict was found, this is possible on every
level. The assignment can be chosen just like in FM. Thus, the formula ϕ is indeed
satisfiable.

To prove the unsatisfiable case it suffices to show that FMPlex does not return
UNSAT if ϕ is satisfiable. Though some inner calls of the FMPlex algorithm might
return UNSAT, it will never discover a conflict leading to return UNSAT. As ϕ
is satisfiable, no constraints with a backtrack level of the depth of the tree can be
conflicting. This follows from the soundness of FM. Moreover, no conflict with a
positive linear combination can be found. If it would exist, ϕ would not be satisfiable.
In the worst case, FMPlex traverses through the whole tree and discovers SAT branch
at last.

An algorithm is called complete iff for every formula ϕ the algorithm either outputs
SAT or UNSAT in finite time.

Theorem 3.1.2. The FMPlex algorithm is complete.

As it is already proven to be sound, the found answer is correct. Now it is to prove
that such an answer can always be found within finite time.

Sketch of Proof. To prove completeness it is sufficient to prove that FMPlex termi-
nates in finite time. As FM eliminates in every call a variable xi, so does FMPlex.
FMPlex however might backtrack to the same level and eliminates the variable again
differently via projecting a different part of the polyhedron. Thus, every branch sys-
tem Sc with variables x1, . . . xn spans at most a subtree of depth n. Let m be the
number of constraints in Sc. In the worst case produces the system m − 1 children.
However, every of the m− 1 many children uses only n− 1 many variables. Thus the
depth and the width of the computation tree is finite. The algorithm can traverse the
whole tree and terminates within a finite amount of time.

The next theorems give bounds on the size of the inner systems and the total
amount of constraints considered.

Lemma 3.1.3. The number of constraints in the child system is at least one smaller
than the number of constraints in the parent system.

Proof. The parent system S is split into U , L and N for a given variable x. All the
child systems Sc are formed by copying the constraint from N to Sc and combining
one constraint c with all constraints in L and U , excluding the combination with
itself. Let C ∈ {L,U} be the set to split on. Sc replaces all constraints in U and L
with a combined constraint, except for the constraint c. Thus, |Sc| ≤ |S| − 1 for all
c ∈ C. This bound is not tight as more constraints might evaluate to true or become
redundant as multiples from other constraints.

Theorem 3.1.4 (Singly Exponential Growth). The total amount of constraints within
FMPlex grows only single exponentially in the number of original constraints.

Proof. Let the initial formula contain m constraints and n variables. In the first
elimination step, we create at most m branches with each at most m − 1 many
constraints. Thus, in total (m) · (m − 1) many constraints and n − 1 remaining
variables. Repeating this for n steps, the final system has a total of

(m) · (m− 1) · (m− 2) · . . . · (m− (n+ 1)) < mn+1

constraints. Thus, only singly exponential many constraints are produced.
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Theorem 3.1.4 suggests that FMPlex should be way faster on larger problems than
the original FM algorithm. The reduction from doubly exponential growth to only
singly exponential growth is considerable. However, the open question is whether
FMPlex could be improved with the Imbert acceleration. The next theorem answers
this question.

Theorem 3.1.5 (FMPlex Minimality). Every constraint in a FMPlex branch fulfils
the criterion from the second acceleration theorem, thus is minimal.

To prove this theorem, an important difference between the classical FM algorithm
and FMPlex needs to be highlighted. While FMPlex eliminates variables in different
ways, i.e. the different combinations of lower and upper bounds eliminate FMPlex a
constraint only on one way. It uses only one constraint to eliminate a variable in a
branch. This connection is formalized in the following lemma.

Lemma 3.1.6. Let S′ ⊂ S be the set of minimal constraints in the FMPlex branch.
For a constraint c ∈ S′ let Hc be its history and Ec the set of explicitly eliminated
variables. Then there exists a bijection f : X → N mapping explicitly eliminated
variables to indices of original constraints. Thus, the index of the constraint used to
eliminate x is the same for all constraints in S.

Proof for Lemma 3.1.6. FMPlex creates multiple branches on every split. In branch
Sc is constraint c used to eliminate a variable x. The variable x can only be eliminated
by a combination with c. In the history Hc of c, exists an index i ∈ Hc which was not
added through an elimination operation. In case |Hc| = 1, i is the only element in Hc.
In this case is c an original constraint. If |Hc| > 1, then is the historical subset Hc the
result of merging two histories in an elimination operation. There exists one index i in
Hc which was never element of the histories of constraints used to eliminate variables
in other constraints. Due to this, the index i is not contained in other histories within
the branch.

Every constraint containing x is now combined with this one selected constraint
c. Thus, in order to explicitly eliminate x, a combination with c is formed. In terms
of the bijection, f maps the variable x to the index i, f(x) = i. This mapping can be
repeated for all eliminated variables, thus the lemma is proven. As there is always only
one constraint used in the branch to eliminate a variable, f is indeed a bijection.

Proof for Theorem 3.1.5. It is to prove that for every constraint c holds

|Hc| = 1 + |Ec|.

Remember that Hc is a set of indices and Ec a set of constraints. This proof can be
done by induction on the depth of the computation tree.

For the 0-th level of the tree, i.e. for the initial constraints holds

|Hc| = 1 = 1 + 0 = 1 + |Ec|.

Let the level now be i+ 1. In the induction step it is to show that the statement
also holds for constraints on the i+1-th level. Let c be now a constraint on the i+1-th
level. It is formed by combining the two constraints l and u. Let l be formed on level
il ≤ i and u on level iu ≤ i. By the induction hypothesis, those two were a minimal
constraint. Now, Lemma 3.1.6 states that there is a bijection f mapping eliminated
variables to indices of original constraints. Thus, if x′ is contained in El and Eu,
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it is mapped to the same index in Hl and Hu. The history of the newly combined
constraint c, Hc is then uniquely determined. It is determined by the indices f(x) for
x ∈ El ∪ Eu. By doing so, the set of histories is also determined to be the distinct
indices of variables in Ec. As the history Hc additionally contains the initial index,
it is proven that |Hc| = 1 + |Ec|

The previous theorem is pretty powerful. It states that neither the Imbert Ac-
celerations nor the Chernikov method needs to be applied on FMPlex. FMPlex does
not generate constraints that could be eliminated by either of those methods at all.

3.2 Extension to Strict Inequalities
The algorithm presented previously is not able to handle strict constraints. However,
the extension to strict constraints is similar to the FM extension. In FMPlex one
has to consider the comparisons between lower-upper combinations and same-bound
combinations. In the case of lower-upper combinations the same handling as in FM
can be applied. If one of the parent constraints is strict, the resulting constraint is
also strict. In the case of same-bound combinations, a further distinction is needed.
Let a same-bound combination be formed from l1 and l2 and the comparison operator
of li be denoted by Op(li) for i ∈ {1,2}. Let l1 be the bound chosen for the split, e.g.
the largest lower bound. Now the following cases exist:

• Op(l1) is < and Op(l2) is <: In this case, is a strict bound is supposed to be
larger or equal to a strict bound. Both of the constraints exclude the equality
case. Thus, the resulting constraint can be chosen non-strict.

• Op(l1) is < and Op(l2) is ≤: A strict bound is set to be larger than a non-
strict bound. Meaning the smaller bound can be equal to the larger lower bound.
Thus, the resulting constraint is non-strict.

• Op(l1) is ≤ and Op(l2) is ≤: When both parents are non-strict, the combined
constraint is also non-strict. The cut does not need to be excluded.

• Op(l1) is ≤ and Op(l2) is <: This case is the only one producing a strict
constraint. The smaller of the two constraints, l2, is strict and thus not allowed
to actually reach the upper-lower bound l1 as it is not strict. To ensure this,
the resulting constraint is strict.

According to the previous discussion is the definition of the combine operation ex-
tended on strict and non-strict constraints:

combine(c1,c2,x) :=



c1 ≤ c2, if c1 ∈ L, c2 ∈ U, ./c1 and ./c2 are ≤
c1 < c2, else if c1 ∈ L, c2 ∈ U
c1 < (−1) · c2, if c1 ∈ L ∧ c2 ∈ L, ./c1 is < and ./c2 is ≤
c1 ≤ (−1) · c2, else if c1 ∈ L ∧ c2 ∈ L
(−1) · c1 ≤ c2, if c1 ∈ U ∧ c2 ∈ U, ./c1 is ≤ and ./c2 is <
(−1) · c1 ≤ c2, else if c1 ∈ U ∧ c2 ∈ U

To embed this distinction in FMPlex, the CombineConstraints function needs
only to use the updated combine operation.
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3.3 Similarity to Simplex
In this section, the similarity between Simplex and FMPlex is explained. As previously
anticipated there is a connection between FMPlex and Simplex. The main property of
the Simplex algorithm lies within the basis and nonbasis selection. It was shown that
every basis is unique and distinct for a vertex of the polyhedron. In the following, a
relationship between the Pivot operation in Simplex and the constraint selected for
a split is established. To do so, the running example is reconsidered. For every line
in the initial Simplex tableau exists a constraint in the initial FMPlex system. So far
either L or U was considered for splits. Though there is no practical use in splitting
on lower and upper bounds, it is theoretically valid. Meaning, one could build all
splits over the lower and upper bounds. To demonstrate the similarity between the
two algorithms, this is an important factor.

Example 3.3.1. In Example 2.4.2 one firstly pivots s3 with x. The constraint pro-
ducing the slack variable s3 is −x − 4y ≤ −3, which is a lower bound (L1) in the
initial FMPlex system. If we split now on L1 the resulting system SL1 is:

SL1
:=


−3y ≤ 1
−8y ≤ −1
6y ≤ 1
14y ≤ 13


(combine(L1, U1, x))
(combine(L1, U2, x))
(combine(L2, L1, x))
(combine(L3, L1, x))

By now, the coefficients of the original variables ({y}) between the combined con-
straints and their counterparts in the Simplex tableau match. When one now inserts
the bounds of the slack variables into the tableau constraints and updates the equality
according to the relation in the bounds, the resulting constants match the constants in
the FMPlex system. Take for example the first line of the tableau: −3y = s1 +s3 with
s1 ≤ 4 and s3 ≤ −3. After inserting the bounds, the resulting constraint is −3y ≤ 1,
equivalent to the first constraint within the FMPlex system.

The constraints in the system might differ by a multiple from the constraint in
the tableau. However, this depends only on the representation in the FMPlex system
and the tableau. The only constraint which is in the Simplex tableau but not in
FMPlex is the pivoted constraint. The reason is that FMPlex eliminates at least one
constraint in each combination step. Simplex, however, might revert a pivoted variable
multiple times. When repeating this for multiple levels, the same correspondence can
be observed.

On a more technical level lies the correspondence between the two algorithms in
the type of operation they perform. The pivot operation performs technically also
a variable elimination. For a given nonbasic variable are all occurrences replaced by
a basic variable. To do so, the equations are rewritten in dependence of the basic
variable and then inserted into the remaining constraints. Thus, after the operation,
the previously violated basic variable is now satisfied and nonbasic. While Simplex
only considers broken constraints for pivoting, the eager FMPlex algorithm considers
every constraint for pivoting. This connection gives an additional interpretation of
the FMPlex algorithm.

Through its eager splitting on constraints, it tries to construct a satisfying basis,
i.e. searches for an extreme point of the polyhedron that satisfies all constraints.
Its backtracking operation resembles the correction of basis variables. Once it can
conclude that a selection for the basis is wrong, it backtracks and tries to fix this
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selection. Moreover, in the case of a SAT input, the final branch can be seen as a linear
pivoting order. When the Simplex algorithm would follow this pivoting ordering, it
could find within n pivot operation a satisfying assignment. As discussed earlier, the
Simplex algorithm might take exponentially long to find an answer. In case of a wrong
basis element, it re-pivots in and brings another variable into the basis.

Concluding, the name FMPlex comes from the typical FM-style of constraint
combinations and the Simplex-style of computing a valid basis.

The following theorem concludes the similarity.

Theorem 3.3.1 (Equivalent Nonbasis). For every nonbasis of the Simplex algorithm
exists a FMPlex node with the same nonbasis.

Proof. Let an arbitrary Simplex nonbasis be given by N and let s1, . . . , sk ∈ N be
the slack-variables pivoted into the nonbasis. Note that k ≤ n whereby n denotes
the number of variables. The nonbasis consists of k slack variables and n− k original
variables. Let Si be the set of slack-variables si in N which are still in the basis of
FMPlex in the i-th level. In the beginning holds S0 = {si, . . . , sk}. It is now proven
that |Si| = |Si+1|−1, thus the size of Si can be reduced on every level by 1. In the full
version of FMPlex, one can pivot/select all of the remaining constraints. In every step
a constraint c can be selected whose slack-variable s is in Si. As previously shown,
selecting c for splitting is equivalent to pivoting s into the nonbasis. The variable
leaving the nonbasis is an original variable. Thus, after this application increases
the size of the cut between the Simplex nonbasis and the FMPlex nonbasis by one.
This procedure can now be repeated for the next k− 1 many levels. Finally, FMPlex
contains a constraint system with the same nonbasis as Simplex.

The benefit of Bland’s rule is the prevention of cycles. In Simplex occurs a cycle
as soon as a nonbasis is visited twice. Due to the similarity between Simplex and
FMPlex, it is now of interest, whether FMPlex might visit the same nonbasis twice.
For this proof, another version of the FMPlex algorithm is presented.

This version reduces the size of the constraint systems between siblings. Assume,
that a conflict is detected in the first child which lets the FMPlex algorithm backtrack
and visit its sibling. In this neighbour, however, the inverted modified constraint from
its sibling is dropped. For example, the first child has the constraint l2 ≤ l1, meaning
l1 is the largest lower bound and detects a conflict with it. Its neighbour would have
the constraint l1 ≤ l2, meaning l2 is the largest lower bound. As we know by visiting
the neighbour that its sibling detected a problem, we can drop the constraint. The
idea behind this is to prevent FMPlex from visiting the same nonbasis twice. The
algorithm remains correct, because all the omitted branches were already visited in
the conflicting neighbour. By considering this adaptation, the next theorem can be
proven.

Theorem 3.3.2 (Repetition of Nonbasis). The adaptation of FMPlex never visits
the same nonbasis twice.

Sketch of Proof. Assume that the same nonbasis N was visited twice. Then there
existed two pivoting operations that moved a slack-variable from the basis into the
nonbasis. In FMPlex, this operation corresponds to the split on the same, eventually
modified, constraint. However, the adapted FMPlex can never pivot the same basis
variable twice, as the corresponding constraint does simply not exists in other branch
systems. Thus, the sibling branch would have to split on a constraint that is not part
of its system. This is a contradiction and the statement is proven.
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It is important to note, that it is still an open question whether the previous
proofs generalize on the FMPlex algorithm presented in Algorithm 3. Currently it is
assumed that this is not the case. Due to the high variety of splits, it seems highly
unlikely that no nonbasis is repeated. In order to repeat a nonbasis, FMPlex has to
split on a constraint again it already selected in a neighbouring branch before. While
it is preferable FMPlex would not visit a nonbasis twice, it is assumed that it can.

3.4 Considering Further Constraints

As the FMPlex algorithm is supposed to be used in SMT-solving, it is required to
support equalities, i.e. x = 5, and not-equalities, i.e. x 6= 5. While for both types of
constraints naive options exist, they need to be optimized. In the following for both
types of constraints, the naive approach and the improved approach is presented.

3.4.1 Equalities

Equality constraints, i.e. x = 5, could be naively handled by splitting the equality
into a lower and an upper bound:

x = 5 ≡ x ≤ 5 ∧ x ≥ 5.

However, given the number of equality constraints in a typical SMT formula, it is
not recommended to simulate every equality by additional constraints which are then
processed by the FMPlex algorithm. The increase of constraints is too large.

The better approach is to use Gauss’s variable elimination, [Grc11], to eliminate
one variable for every equal-constraint. For every constraint, a variable is chosen.
This variable is then replaced in all other constraints and equalities by the given
equality. The same procedure is repeated for every equality. By doing so, not only
the total amount of variables is reduced but also some conflicts can be detected before
FMPlex even started. The number of active constraints is not increased. As the Gauss
elimination is widely known, the pseudocode is omitted.

3.4.2 Disequalities

The underlying SAT-solver may negate constraints. In case the negated constraint
is an equal constraint, a not-equal constraint is passed to the FMPlex algorithm, i.e.
¬(x = 5) ≡ x 6= 5. Not-equal constraints are in the following also called disequations.
From a theoretical point of view have not-equations wide implications. The considered
polyhedron is no longer convex. To the running example from the previous Sections
the not-equal constraint

x 6= 2

is added. It is visualized by the dark-line crossing the polyhedron in Figure 3.2. The
points lying on the dark-red line are no valid solutions anymore. Thus, the polyhedron
is no longer convex, it is not even connected anymore. In a naive approach, one can
divide not-equal constraints into the single valid regions, ensuring that the points
lying on the hyperplane are never taken:

S ∪ {x 6= 2} → S ∪ {x < 2} ∨ S ∪ {x > 2}.
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Figure 3.2: Polyhedron from the Running Example with Not-Equality x 6= 2

This means one can split the not-equal constraint in two systems containing ’<’ and
’>’. Both resulting systems are then checked for their satisfiability. If one of them is
satisfiable, the original one is too. In case both are unsatisfiable, then there exists no
solution for the original system. This idea is formalized in the following theorem.

Theorem 3.4.1. Let S be a system of linear constraints and d =
∑

i aixi 6= 0 a
not-equal constraint. Then holds

S ∪ d satisfiable ⇐⇒ S ∪
{∑

i

aixi < 0
}

satisfiable or S ∪
{∑

i

aixi > 0
}

satisfiable.

Proof. The not-equal constraint splits the solution space into multiple parts. Each of
the single parts is again a convex polyhedron. Assume that S ∪ d is satisfiable. The
single polyhedrons exactly describe the different cases in the union. This means every
part of the solution space is exactly described by single parts of the union. No part
of the initial solution space is discarded. Assume now that S ∪ d is not satisfiable.
In this case are also all of the subsets unsatisfiable. If one was satisfiable, the whole
system would be satisfiable. Thus, the merged system is satisfiable-equivalent.

Through the previous theorem, one can already observe the problem for not-
equal constraints. Splitting one not-equality into two new sub-systems leads to an
exponentially growth in the size of not-equalities. Every not-equal constraint doubles
the number of possible systems. In order to deduce UNSAT needs every system to
be solved independently.

However, a not-equal constraint is not hard to satisfy. Though it technically splits
the polyhedron into a non-convex solution set, the excluded parts are rather trivial.
As soon as there is an ε environment around any feasible solution to the constraints
in S, every not-equality can be fixed. In case a found solution does not satisfy a not-
equal constraint, one just has to find that ε environment. The idea for this approach
is given by the following theorem from [Gre96]. It shows that an exponential blow-up
might not be necessary.

Theorem 3.4.2 (Not-Equal Constraints). Let S be a system of linear inequations
and D a set of not-equal constraints. Then S ∪D is satisfiable iff S ∪ di is satisfiable
for all di ∈ D.
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In other words, if a satisfying solution for the constraints in S and one not-equal
constraint can be found, then there exists a solution for S and all not-equations in G.
Thus, every not-equation can be considered independently. The proof for Theorem
3.4.2 can be found in [Gre96].

The procedure to solve not-equal constraints in FMPlex is now described in the
following. The FMPlex algorithm is now called to solve a set of linear constraints
and not-equal constraints S. In the following denotes D ⊂ S the set of not-equal
constraints. Thus, S is partitioned in L,U,N and D. To the usual combinations of L
and U , the variables in D also need to be eliminated. To do so, in every branch is the
chosen constraint c additionally combined with the not-equal constraints containing
the eliminated variable. Hereby, the constraint c is treated as equality to eliminate
the variable in d ∈ D. Now, the disequality may be trivially satisfied by being covered
by another constraint. For example, in {x 6= 5∧ x ≤ 4}, x 6= 5 is trivially satisfied by
x ≤ 4.

In the execution of FMPlex has every branch now a set of not-equal constraints
which might differ from the not-equal constraints in its parent. Furthermore, the
not-equal constraints are only of interest when a SAT branch was found. If a conflict
with a positive linear combination was already discovered, the not-equal constraints
are irrelevant. They might only change a SAT instance to an UNSAT instance.

Assume now, that a SAT branch was found. In the original FM algorithm and the
previously defined FMPlex algorithm, backtracking from the SAT leaf was only used
to build an assignment α. When handling not-equal constraints, this backtracking
is needed to unveil conflicting not-equal constraints or to verify that every not-equal
constraint is satisfied. Initially, all variables are unassigned. With every backtracked
level in the tree, an assignment for the eliminated variable is set. In case the system
S is satisfiable, the resulting assignment α satisfied all constraints in S. The suitable
values for the variables are computed while backtracking. Within the backtracking,
one differentiates between two cases: is the variable tight or not. Meaning is there only
a point-interval [x,x], x ∈ R to choose the variable from or the variable can be chosen
from in interval with more than one element. Note that due to implicit eliminated
variables, a point interval might also be symbolic. This means variables are implicitly
eliminated in a way such that variable y is restricted to be equal to variable x. In
case of a point interval, there might be not-equal constraints that can not be satisfied.
In the second case, however, all of the not-equal constraints containing the assigned
variable can be satisfied.

One can then find an assignment that satisfies all those constraints and propagate
it with the knowledge that those not-equal constraints are satisfied. However, if
the eliminated variable is tight and breaks any disequation, another form of conflict
handling is needed. The conflict might be caused by three reasons:

• The conflict is caused by an unfortunate split. The created constraint forces
with another bound the variable on a fixed assignment. This conflict is solved
by choosing another branch. In this branch, the variable is then not tight and
the not-equation can be solved.

• The conflict can be solved by checking the variables prior to the current level
in the computation tree. Take for example a not-equation with initially two
variables. After eliminating the first variable, the not-equation has only one
remaining variable. If this variable is now tight by accident, the constraint can
be solved on a higher level via adjusting the other variable.
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• The formula is unsatisfiable. There is no conflict with only inequations but
inequations and not-equations form the conflict, e.g. x ≤ 5 ∧ x ≥ 5 ∧ x 6= 5.

In a first step, one has to detect whether the conflict might be resolved, i.e. one
of the first two cases occurred. To do so, one considers the constraints which restrict
the variable to a point interval. If none of the constraints for either lower or upper
bound have a conflict level smaller than the depth of the tree, the conflict might be
resolved by backtracking into another branch. However, if that is not the case, the
conflict might be resolved by adjusting eliminated variables which are not considered
so far. Thus, the variables in the current and the original constraint are compared. In
case there is a variable that was not considered so far, one tries to fix the conflict on
a higher level. If all these approaches fail, the UNSAT witness needs to be detected.
The infeasible subset can be build by taking the constraints forcing the variables
on their fixed values and the disequation. It is important to note, that once a not-
equation was solved, it does not need to be rechecked on higher levels. It suffices to
find one level on which the not-equation is solved. The pseudocode of this algorithm
is presented in Algorithm 4.
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Algorithm 4 Solving Not-Equal Constraints

1: procedure CheckNEQConstraints(variable x with partitions L, U , partial
assignment α for variables on already resolved levels and disequalities D)

2: Insert α in L and U to construct L′ and U ′
3: Interval B := [max(L′),min(U ′)] . Interval for x
4: Assign α(x) := z for z ∈ B
5: if D = ∅ then
6: return (SAT, α)
7: else
8: D′ := TouchedDisequalities(D,x)
9: solved := LocalSolvedDisequalities(D′,x,B,α)

10: T := D′ \ solved
11: if T 6= ∅ then
12: if maxl∈L(cl(l)) = maxu∈U (cl(u)) = cl(di) then
13: if ∃ disequation di ∈ D′ with α 6|= di then
14: return Infeasible Subset c ⊂ (L′ ∪ U ′) ∪ {di}
15: else
16: L′′ := argmaxl∈L′(cl(l))
17: U ′′ := argminu∈U ′(cl(u))
18: Backtrack min(minl∈L′′(cl(l)),minu∈U ′′(cl(u)) levels
19: else
20: return SAT
21: procedure TouchedDisequalities(D,x)
22: System D′ := ∅
23: for di ∈ D do
24: if x is var in di then
25: D′ = D′ ∪ {di}
26: return D′

27: procedure LocalSolvedDisequalities(touched disequalities D′, var x, inter-
val B, assignment α)

28: solved := ∅ . Initialize list for solved disequalities
29: for di ∈ D′ such that x in di do
30: if di solved on previous level then
31: solved = solved ∪ {di}
32: if Interval B is point-interval then
33: if α |= di then
34: solved = solved ∪ {di}
35: else
36: solved = solved ∪ {di}
37: return solved
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Improving Simplex

4.1 New Heuristic

As previously discussed exists a close connection between Simplex and FMPlex. Sec-
tion 2.4 explained that the performance of Simplex depends highly on the heuristic. A
natural question is, whether there exists a heuristic that mimics FMPlex. Practically
it shows to be beneficial to prefer columns with small amount of entries for pivot
operations, [KBD13]. This means, when deciding between two columns for pivoting,
it is beneficial to choose the one with fewer entries. Though this heuristic is quite
similar to FMPlex, an important difference is that FMPlex does not simply count
the number of entries in the column. Furthermore, it divides between positive and
negative entries and chooses the smallest column over those.

The part not mimicked by the heuristic is the backtracking property. Simplex
does not need to revert pivoting steps, it can directly pivot another basis variable into
the nonbasis. Let the number of positive entries in the column of a nonbasis variable
x ∈ N be px and the number of negative entries be nx. Let B′ ⊆ B be the set of
basis variables with broken bounds. The FMPlex -heuristic orders now the nonbasis
variables N increasing by min{px, nx} for x ∈ N . Then, a basis variable in B′ is
searched that is pivotable with the first nonbasis variable in the ordering. In case
there is none, a basis variable in B′ for the second nonbasis variable is searched. This
continues until a pivoting pair is found. By doing so, the pivoted nonbasic variable
has a minimal number of sign invariant dependent variables.

This heuristic is applied for the first n steps. Afterwards, another heuristic can
be chosen or one continues with Bland’s rule. The performance of this heuristic is
compared in Chapter 5.

4.2 Improved Disequation Handling

As previously seen can the not-equation handling for FMPlex drastically be improved.
The naive approach doubled the systems potentially to be solved with every not-
equation. In contrast, the improved algorithm could decide all not-equations in one
backwards pass.

The naive approach can be used in the Simplex algorithm in the same way as in
FMPlex. Thus, for every not-equation two possible systems are considered.
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However, one would now like to transfer the improved algorithm from FMPlex
to Simplex. The idea to search for a possibility to handle not-equations without
exponential blow-up is rooted in Theorem 3.4.2. It states, that if the system became
unsatisfiable by adding not-equal constraints, then the reason for the unsatisfiability
lies within one not-equal constraint and not the whole set. Equivalently, it suffices to
solve every not-equation independently. If this is possible, there exists an assignment
satisfying all constraints simultaneously. In the following the idea to find such an
assignment is described. To do so, let D be the set of disequations d1, . . . , dk and
α be the current assignment. For every disequation d ∈ D one checks firstly if it
is satisfied. In case it is, there is nothing to do. If it is broken, one has to check
whether the assignment can be fixed. It suffices to find one variable in the not-equal
constraint which can be altered slightly. Let d′ be computed from d by replacing all
basis variables with their nonbasis representation, d′ :=

∑
xi∈N γixi. To find such

an update candidate, one iterates through all nonbasic variables x in d′. As soon as
a suitable variable with α(x) < u(x) or l(x) < α(x) is found, it is checked whether
it can be de- or increased without a dependent basic variable violating its bound.
Hereby denotes u(x) the upper bound of varible x and l(x) the lower bound. If such
a variable can be found, its assignment α(x) can directly be updated such that d is
satisfied. While updating x special attention needs to be given to the other not-equal
constraints in D. One has to make sure that the update of x does not violate another
not-equal constraint that was satisfied previously. This can be ensured by reducing
the update value until no additional not-equation is violated. If this is the case, the
update of x can plainly be reduced until no further constraint is conflicting. As the
dependent basic variables were checked before, this operation is always possible.

In case no such possible update value is found, an unsatisfiable subset can be
generated. A UNSAT instance was detected. Assume now that all variables in d′

can not be updated in any direction. Thus, every variable x in d′ is either restricted
by its own bounds or the bounds of the basic variables depending on it. Meaning, for
all variables x in d′ holds that its decrement is prevented by either its own bound,
α(x) = l(x), or the bound of a basic variable. This happens for dependent basic
variable x′ when its coefficient γ in d′ is positive and α(x′) = l(x) holds or the
coefficient is negative and α(x′) = u(x). The same argumentation holds for the
incremental case, i.e. α(x) < u(x). As shown in the explanation of the Simplex
tableau, only slack variables have bounds. Original variables however are always
unbounded. Thus, the restricting variables are always slack variables. Every slack
variable was created for exactly one constraint, which is then collected. It suffices to
collect one constraint for the increment and one for the decrement. The pseudo-code
for the previous Algorithm is described in 5.

Theorem 4.2.1. Let S be a system of linear constraint and D be the set of not-equal
constraints. Algorithm 5 returns SAT iff S∪D is satisfiable. Otherwise, it constructs
an infeasible subset.

Sketch of Proof. Starting with the first part of the theorem. It is to show that the
algorithm returns only SAT iff S ∪D is satisfiable. Note that the algorithm does not
violate the invariants of the Simplex algorithm. Thus, in every step of the algorithm is
α a valid assignment and the tableau itself is consistent. The algorithm is only called
when a satisfying assignment for the constraints in S was found. The condition in lines
12-14 and 24-26 ensure that the updated assignment also satisfied all constraints in
S. Implying that the algorithm only returns SAT when it indeed found a satisfying



4.2. Improved Disequation Handling 51

Algorithm 5 Solving Not-Equal Constraints in Simplex

1: procedure CheckNEQConstraints(disequations D, assignment α)
2: for Disequation di ∈ D do
3: if α 6|= di then
4: Conflict C = FixDiseqution(di, D, α)
5: if C 6= ∅ then return C ∪ {di}

return SAT
6: procedure FixDisequation(di, D, α)
7: Let d′ be di expressed in nonbasis variables x1, . . . , xk
8: Let C := ∅ . Set of constraints forming the conflict
9: for Variable xi in d′ do

10: B+ := slack+(xi)
11: B− := slack−(xi)
12: if α(xi) < u(xi) then
13: if ∀x′ ∈ B+ : α(x′) < u(x′) and ∀x′ ∈ B− : α(x′) > l(x′) then
14: Let δ be a feasible increase for xi considering D
15: update(α, xi, δ) . Update assignment
16: return ∅
17: else
18: Let constraint b′ restrict x′ ∈ B+ to l(x′) or u(x′)
19: C := C ∪ {b′}
20: else
21: Let constraint b′ restrict xi to u(xi)
22: C := C ∪ {b′}
23: if α(xi) > l(xi) then
24: if ∀x′ ∈ B+ : α(x′) > l(x′) and ∀x′ ∈ B− : α(x′) < u(x′) then
25: Let δ be a feasible decrease for xi considering D
26: update(α, xi,−δ) . Update assignment
27: return ∅
28: else
29: Let constraint b′ restrict x′ ∈ B− to l(x′) or u(x′)
30: C := C ∪ {b′}
31: else
32: Let constraint b′ restrict xi to l(xi)
33: C := C ∪ {b′}
34: return C
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assignment. Now it is still to prove that for every satisfiable S ∪ D a satisfying
assignment is found. This property also follows from the Simplex algorithm. If S ∪D
is satisfiable, there exists a satisfying assignment α′. With the help of Theorem 3.4.2,
all not-equal constraints can be considered independently. Let d ∈ D be not satisfied
by the current assignment α. This assignment differentiates from α′ for at least one of
the nonbasis variables in d. Thus, the bounds of this variable form no point-interval
and it can either be incremented or decremented. From the consistency of the Simplex
tableau follows that this change can be found by Algorithm 5. It is important to note
that the other not-equal constraints are considered in the update. In case another
one would be violated by the update operation, the update value is reduced until no
other constraint is violated. Thus, the equivalence is proven.

Assume now that S ∪D is not satisfiable. There exists a d ∈ D for which holds
S ∪ {d} is unsatisfiable. Let x1, . . . , xk be the nonbasis variables d depends on. The
algorithm collects in set C, line 8, for every variable xi ∈ {x1, . . . , xk} constraints. In
case xi is bounded to its upper or lower bound, that constraint is collected. In case
l(xi) < α(xi) < u(xi) holds, constraints of basis variables restricting the nonbasis
variable are collected. As every bounded variable is by construction a slack variable,
the corresponding constraints are unique. Again one constraint for the upper bound
and one for the lower bound is collected. At most 2 · k constraints are collected. It
might be less due to equality constraints. These collected constraints in C witness
the impossibility to update any of the nonbasic variables in d. Thus, c∪ {d} form an
infeasible subset.



Chapter 5

Evaluation

This chapter gives the technical background of this thesis. Firstly, the implementation
of the presented algorithms is described. The algorithms are tested on the quantifier-
free linear real arithmetic, QF_LRA, benchmarks in the SMT-LIB dataset http:
//smtlib.cs.uiowa.edu, [WCD+19].

5.1 Implementation
Multiple algorithms were implemented while writing this thesis. All implementa-
tions are integrated into the SMT-RAT project, https://smtrat.github.io
[CKJ+15]. The structure of the SMT-RAT project is not described in detail as it
was not the focus of this work. Roughly, SMT-RAT consists of multiple modules
which can be exchanged and connected to build strategies to solve SMT formulas. To
do so, modules need to provide special functions. One function to add formulas to the
module, AddCore, one function to remove formulas from the module RemoveCore
and a function to check the status of the current active formula, CheckCore. To
check the benchmarks, the benchmarking program benchmax from the SMT-RAT
project is used. When calling a single instance, multiple return values are possible.

• SAT: The instance was correctly identified as SAT.

• UNSAT: The instance was correctly identified as UNSAT.

• UNKNOWN: The instance could not be successfully identified.

• WRONG: The instance was wrongly identified as SAT or UNSAT.

• TIMEOUT: The instance could not be identified in the given run-time.

• MEMOUT: The instance could not be identified with the given memory.

• SEGFAULT: In the execution occurred an error, e.g. an assertion failed.

For a detailed definition of modules and SMT-RAT, it is referred to the documenta-
tion. All benchmarks are executed on 2.1 GHz AMD Opteron Processor 6172 with a
timeout of 5 minutes and 10 GB memory.

The existing LRA-Module implements several versions of the Simplex algorithm.
Though there existed an implementation of Fourier-Motzkin, it had to be rewritten

http://smtlib.cs.uiowa.edu
http://smtlib.cs.uiowa.edu
https://smtrat.github.io
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from scratch due to too many bugs. The Fourier-Motzkin algorithm and the FMPlex
adaptation are both implemented in the FouMou-Module. The exact implemen-
tations are described in the following. Afterwards, a comparison between the single
run-times and some statistics are given.

5.1.1 Fourier-Motzkin

The Fourier-Motzkin algorithm was implemented rather straightforward. When se-
lecting the next variable to eliminate, we aim for a small following constraint set.
To do so, the variable with the smallest upper or lower set is chosen by evaluating
minx(|L|, |U |) for all variables x. This is done to delay the doubly exponential blow-
up as far as possible. To produce the next system, all combinations between lower
and upper bounds are formed. In contrast to the original algorithm, they are not
directly inserted into the system. For every new constraint, it is checked whether it is
worth to be inserted. This means, if either the constraint itself or a stronger parallel
version is already contained, it is not inserted. However, if it is stronger than an
already present constraint, the weaker constraint is removed from the system. There
could be a more eager approach, e.g. detect linear dependency on constraints. As the
systems to be checked become very large, a fast criterion was chosen. Additionally,
with improvements like Imbert’s acceleration, a more eager approach is not expected
to pay off the increased run-time.

Afterwards, the FM module was extended by the two Imbert accelerations and
Chernikovs criterion, see Algorithm 2. To apply Imbert’s accelerations the three
additional sets, history, effectively eliminated variables and implicit eliminated vari-
ables, needed to be considered. Those sets are created simultaneously with the new
constraint. The previously discussed disequation handling for FMPlex was not im-
plemented in the FM algorithm. When FM discovers a SAT instance and has dise-
quations, it returns UNKNOWN. Most of the instances can still be solved with help
of the underlying SAT solver, but some terminate with an UNKNOWN response.
The improved disequation handling was not implemented, as it did not seem to be
promising.

5.1.2 FMPlex

Furthermore, several versions of the FMPlex algorithm were implemented. To detect
every conflict, multiple structures are needed. Every branch needs to maintain its
set of constraints and their origins. Furthermore, the linear combination of every
constraint is stored. One could also recompute the linear combination for every con-
straint, but this solution is more time-efficient. To be able to apply the improved
not-equation handling, every branch in FMPlex needs to maintain its not-equations.
Thus, those are also stored in a structure and updated on every level. For every
disequation, its current, resolved form and its original constraint are preserved. The
original constraint is needed to detect as early as possible when a constraint can not
be fixed anymore. As the linear combination and the new constraint can be formed
in similar operations, their computation is homogenized.

After implementing the classical version, Algorithm 3 which is stated above, sev-
eral practical improvements were made. The original algorithm backtracks every time
a conflict is found. The solver is denoted as FMPlex. In case a global conflict is
found it backtracks to the root and returns UNSAT. Otherwise, it continues its exe-
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cution. This way no conflicts are missed. The approach is called eager FMPlex and
its solver is referred to as eager FMPlex. In many of the branches, where already
a local conflict was found, one can still find a global conflict and deduce UNSAT. If
the branch can not deduced to be globally UNSAT, it is a dead-end. However, the
point between discovering a local conflict lies mostly behind the peak of constraints.
Thus, the most expensive operations are already executed. The cost of finishing the
branch is then rather small with the large benefit of being able to conclude UNSAT
rather early in the execution.

5.1.3 Simplex
To be able to compare the new Simplex heuristic correctly, a Simplex heuristic only
consisting of Bland’s rule was created. Based on this, the minimal sign heuristic was
also implemented. Additionally, a hybrid approach consisting of FMPlex and Simplex
was implemented. Due to limitations of time, it was not possible to implement the
improved not-equality handling for Simplex. An experimental version of this algo-
rithm was implemented and proved to be way more efficient than the naive approach
to split the not-equations. Sadly, it was not possible in the given time to additionally
implement it completely.

5.2 Comparisons
In this section the single algorithms are compared and evaluated. To do so, several
aspects and statistics of the algorihthms are considered. In order to keep the single
plots clear, every algorithm is abbreviated:

• FMPlex : Original FMPlex, Alg. 3

• Eager FMPlex : FMPlex without backtracking on local conflicts

• FM : The classical Fourier-Motzkin algorithm as presented before, Alg. 1

• FM+Imbert : Fourier-Motzkin extended with Imberts accelerations, Alg. 2

• Simplex : Simplex algorithm with only Blands rule

• Min. Sign: Simplex Algorithm with FMPlex heuristic

• Z3 : Open source theorem prover by Microsoft Research

It is important to note that most of the incrementality of Simplex was deactivated.
This was done to make Simplex comparable to FMPlex which was not implemented
incrementally.

The following table gives an overview of the single algorithms and their outputs.
The solver kills the execution of an instance as soon as it exceeds the memory thresh-
old of 10 GB or the time limit of 5 m. To set the algorithms into relation with a
commercial, state of the art solver, Z3 is included, [dMB08]. Z3 is a theorem prover
developed by Microsoft Research which is used in the following table as comparison.

A few insights can already be gained from Table 5.1 and Figure 5.1. Firstly, not
surprising outperforms the Imbert Acceleration the classical Fourier-Motzkin algo-
rithm in every part. Both, SAT and UNSAT instances are improved when choosing
the Imbert Acceleration. Furthermore, as expected due to the reduced constraints
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Fourier-Motzkin FM+Imbert FMPlex
SAT 369 370 410
UNSAT 365 377 366
UNKNOWN 21 21 0
TIMEOUT 864 851 843
MEMOUT 29 29 29
SEGFAULT 0 0 0
WRONG 0 0 0

Eager FMPlex Bland Min. Sign Z3
SAT 413 521 489 852
UNSAT 368 381 361 592
UNKNOWN 0 0 0 0
TIMEOUT 838 717 769 204
MEMOUT 29 29 29 0
SEGFAULT 0 0 0 0
WRONG 0 0 0 0

Table 5.1: Overview of Performances for all Implemented Algorithms

Figure 5.1: Progress of Solved Instances by Running Time and Algorithm
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seems FMPlex is in advantage of FM+Imbert. The difference between FMPlex
and Simplex is quite large on the first sight. The difference in solved SAT instances
is way larger than in UNSAT instances.

In the further plots is Z3 not included to make a detailed analysis easier. The
plots are more detailed on the solver implemented in SMT-RAT.

5.2.1 Evaluating FM

Figure 5.2 compares the number of created constraints between FM+Imbert and
FM. It shows a difference between easy instances, which are solved rather fast and
harder instances. The easy instances are depicted in the bottom left corner. Surpris-
ingly, FM+Imbert creates on some of the instances more constraints than FM. A
reason for this might be that FM can detect conflicts faster than FM+Imbert. Ad-
ditionally, FM creates more redundant constraints which are detected by the trivial
redundancy check. FM+Imbert does not create as many redundant constraints. The
figure also demonstrates the expected long-time behaviour of FM+Imbert. In the
long run, FM+Imbert creates fewer constraints than the classical version. As soon
as the one million constraints are exceeded, FM+Imbert creates fewer constraints.

Figure 5.2: Comparison Between Added Constraints in FM+Imbert and FM

When comparing FM+Imbert with FMPlex, it already shows that FMPlex
solves less UNSAT instances than FM+Imbert but more than FM. However, FM-
Plex solves 40 more SAT instances than FM+Imbert against 11 less UNSAT
instances. One reason could be that the doubly exponential blowup in FM+Imbert
makes it impossible for it to find the SAT instances in time. The benefit of the
doubly exponential blow up is that it can discover conflicts earlier than FMPlex.
The difference in solved UNSAT instances is smaller for the eager version. The eager
version solves 2 UNSAT instances more than FMPlex. Even the eager FMPlex
algorithm can run into multiple deadens, which lead to a timeout before the conflict
is found. This behaviour is analyzed in the following.

In Figure 5.3a the running time on all instances is compared. Here it seems
that FMPlex runs slower than FM+Imbert on instances which both can solve.
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(a) On All Instances

(b) On UNSAT Instances (c) On sAT Instances

Figure 5.3: Run Time Comparison Between FM+Imbert and Eager FMPlex in Sec-
onds

Considering the number of instances which FMPlex solves, FM+Imbert times out
on many of them. When splitting the instances solved by eager FMPlex into
satisfiable and unsatisfiable instances, a more diverse image arises. On the left side,
in Figure 5.3b the UNSAT instances solved by eager FMPlex are shown. On the
right side, in Figure 5.3c the SAT instances are shown. As previously described,
FMPlex needs longer than FM+Imbert to find some conflicts. However, on SAT
instances it is generally in advantage. As Figure 5.4 shows, constructs the eager
FMPlex way less constraints than FM+Imbert. Thus, it is way faster in deciding
SAT instances.

5.2.2 Evaluating Eager FMPlex

Furthermore, FMPlex and eager FMPlex are compared. In Figure 5.5 the running
times of FMPlex and eager FMPlex are compared. It shows that the eager version
is in general faster than the original one. One explanation for the superiority of the
eager approach might lie within the size of the produced computation trees. In Figure
5.6 the histogram over the maximum number of branches within the whole instance
execution is shown. The proportion of solved instances is coloured blue and timeouts
are coloured red. It shows, that the eager approach can avoid some of the wide
trees of width 15 - 20 and shifts the number of splits mainly to a tree-width of 1-5.
FMPlex has the same peaks in the histogram as eager FMPlex. A big difference
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Figure 5.4: Comparison Between Added Constraints in FM+Imbert and FM

Figure 5.5: Run Time Comparison Between FMPlex and eager FMPlex in Seconds

is the size of the outliers. Through its depth traversal, the eager approach encounters
some trees with a width of 35 and above. FMPlex does not even encounter them.
Though the difference is rather small, it is significant enough to explain the few more
instances solved. The figure also shows that through the exponentially growth of the
tree, FMPlex generally times out on instances with a split number of 6 and above.
Figure 5.7 depicts the difference between the two plots in Figure 5.6. The number of
instances for a given width of FMPlex are subtracted from the number of instances
in eager FMPlex. It shows that FMPlex has more instances with a maximum
width of 6 and eager FMPlex more with a width of 5. While FMPlex can solve
only a few with width 6, eager FMPlex can solve many of width 5. These two
widths explain the difference in solved instances between the two approaches. For
higher widths exist differences in the number of instances, but algorithms time out on
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them. One can also observe that the difference is small. The peak is at width 6 with
a difference of 22 instances. There exist some exceptions, but keeping the number of
splits small is necessary for both versions to terminate. Lastly, the amount of created

Figure 5.6: Comparison of Maximum Number of Branches Between FMPlex (l.) and
Eager FMPlex (r.)

Figure 5.7: Difference Between Eager FMPlex and FMPlex in Instances per Maximal
Width

constraints between FMPlex and the eager approach is analyzed, see Figure 5.8. It
is important to note that this comparison does not only include the newly constructed
constraints but also the copied ones. This is done to accredit that FMPlex backtracks
more often than eager FMPlex but also to accredit that eager FMPlex considers
more constraints in the depth of branches. Still excluded are constraints which are
trivially detected to be redundant. It shows that both version consider roughly the
same amount of constraints. Though the variance is not small around the equalizing
line, none of both algorithms is in advantage.

The comparison of solved instances reveals that in our test scenario eager FM-
Plex performs slightly better than FMPlex. The detailed analysis however revealed
only very small differences in the size of computation trees in favour of eager FM-
Plex.

Now, eager FMPlex is compared with the min. Sign heuristik. As Figure 5.1
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Figure 5.8: Comparison Between Constraints in FMPlex and Eager FMPlex

shows, solves the standard Simplex algorithm with the min. Sign heuristic more in-
stances than FMPlex. This can be observed on SAT and UNSAT instances. Figure
5.9a shows that Simplex is in general faster. When considering only instances decided
by eager FMPlex to be SAT, Simplex clearly outperforms FMPlex, Figure 5.9c.
When considering the UNSAT instances, a different picture emerges, Figure 5.9b.
FMPlex is capable of solving many instances Simplex can not solve. Additionally,
on even more it is faster than Simplex. Nevertheless, Simplex is significantly faster
on many of the instances.

5.3 Hybrid Method
The previous analysis reveals that eager FMPlex has in some instances an advan-
tage over Simplex. Nevertheless, on most it can not compete with it. However, as
variable elimination method it showed to be superior to Fourier-Motzkin.

It seemed to be promising to combine Simplex with FMPlex. We tried to reduce
the constraint system as long as the increase of constraints were not too big. FMPlex
was executed until a certain level was reached. As soon as a split larger than an
arbitrary constant was reached, Simplex is called on the remaining equations. By
doing so, the number of variables was reduced and the number of branches was still
small.

In case Simplex would return UNSAT, the conflicting subset is checked. If it
is a global conflict, the instance is unsatisfiable. The Simplex model is capable of
returning multiple conflicts within the tableau. Every line of the tableau needs to be
checked for a conflict. Through this, the eager FMPlex approach would not be
needed, as Simplex can directly find all of the present conflicts. If all the returned
conflicts are local, FMPlex would backtrack and pursue another branch and then call
Simplex again.

In case Simplex returns SAT, the whole system is satisfiable. A technical problem
emerged rather fast. The current implementation is not capable of deciding trivial
not-equations as soon as the assignment does not fulfil them by default. We encoun-
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(a) On All Instances

(b) On UNSAT Instances (c) On SAT Instances

Figure 5.9: Comparison Between Eager FMPlex and Min. Sign Heuristic in Seconds

tered examples in which Simplex was not able to decide that e.g. x 6= 0 was satisfiable
even with x not occurring in any other constraint. Simplex assigns by default every
variable to 0 and did not have any slack variable to pivot it with. To solve the tech-
nical limitations of the current implementation is one of the future goals presented in
Section 5.5. Thus, Simplex returned on most of the instances UNSAT and FMPlex
was pursued further. This leads to an increased running time for both of the algo-
rithms. For FMPlex because it has to wait for Simplex to return UNKNOWN. For
Simplex because it could not split the not-equation into two parts and was called on
systems it could not solve.

In practical applications is FMPlex most times far away from its theoretical worst-
case behaviour. This can also be seen from the number of splits in the previous
comparisons. The reason is that the input instances are sparse. Their matrix rep-
resentation is not nearly filled and a vast majority has 0 entries. The hardness for
many instances lies within backdoor variables. Those variables connect multiple con-
straints such that the instance can not be solved easily, see [WGS03]. For this reason
is the hybrid method appealing. It is expected to work quite well as it can reduce the
number of variables quite fast and runs then a sophisticated algorithm to solve the
instance thoroughly. However, this approach requires the Simplex algorithm to find
answers on all instances without splitting the input.



5.4. Summary 63

5.4 Summary

As the previous analysis showed is there no single conclusion. The presented approach
gives a whole new view on variable eliminations. It can additionally be used after
applying the Gauss elimination to reduce the number of variables even further. The
analysis proved it to be superior to FM in practical applications as well as in theo-
retical properties. Additionally, FMPlex is even superior in terms of solved instances.
It was shown that even the advanced Imbert acceleration produces more constraints
than FMPlex.

When comparing FMPlex to Simplex, it performs rather poorly. Nevertheless,
there are instances on which FMPlex outperforms Simplex. On many instances, a
mixed review emerges. Simplex can undercut many of the FMPlex running times,
but not all of them. Especially on unsatisfiable instances is FMPlex able to defeat
Simplex. When comparing those instances one has to keep in mind that Simplex still
uses the naive not-equation handling.

Furthermore, due to FMPlex defeating Simplex on a couple of instances the ex-
pectations towards a hybrid method rise. The idea to apply FMPlex as variable
elimination method on instances with many variables is still expected to pay off. On
this part of the computation tree performs FMPlex very well. Simplex would profit
from a reduced input system. This approach should be revisited after Simplex is
indeed capable of handling not-equations.

Moreover, it is to conclude that an advanced not-equation handling for Simplex
was discovered through FMPlex. The backtracking behaviour from FMPlex was trans-
ferred to Simplex. Due to its theoretical properties, it is expected to perform way
better than the current splitting method. So far, we observed that Simplex is gener-
ally not capable of handling not-equations. Due to reasons of time and limitations of
the current implementation was the not-equation handling for Simplex not finalized.

5.5 Future Work

5.5.1 Implementing Not-Equation Handling in Simplex

FMPlex gained a huge boost in solved instances as soon as not-equal constraints could
be handled successfully. The same impact is well-founded expected on Simplex. The
hybrid model showed that Simplex was not able to find a solution on many instances.
It would rather start to split the solution polyhedron. Those splits are also for Simplex
quite expensive operations. Though Simplex is implemented incrementally, those
splits are then processed throughout the whole instance execution and cause and
exponential growth in systems to solve. Implementing the advanced not-equation
handling in Simplex would prevent the splitting of instances. Thereby, the exponential
growth in the SAT solver is eliminated. Simplex would solve way harder instances
than now. Currently, unnecessary constraints are learned. Concluding, implementing
the not-equation handling is expected to give a huge boost in solved instances.

5.5.2 Incrementallity of FMPlex

FMPlex can be implemented incrementally. Until now, every addition of constraints
triggers a whole new execution. Incrementality is a key concept in lazy SMT-solving.
To make FMPlex incremental, the computation branch with its whole history could
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be stored. When a new constraint is added, one has to backtrack to the highest
present variable in the new constraint and retrigger all computations from before.
This step can not be shortcutted, as the implied constraint from the new constraint is
needed on later levels. While incrementality gives in Simplex a large boost, its impact
on FMPlex is rather limited. It might accelerate the computation, but no significant
speedup is expected due to several reasons.

Firstly, it’s highly unlikely for an added constraint to be completely independent
from the eliminated variables. Probably it is connected to the main working con-
straints. In this case, major parts of the tree need to be backtracked. Especially in
the middle of the tree.

Secondly, those backtracked parts are the expensive operations in FMPlex. Com-
parable to FM, the middle part of the computation is the most expensive one. In this
part, the exponential growth happens. Due to the reduction in constraints, it is not
as expensive as in FM.

However, if this computation needs to be redone, the saved computations from
the beginning are negligible given the computations in the middle of the tree.

5.5.3 Nonbasis Singularity

Some theoretical aspects of FMPlex which are believed to hold should also be proven.
An important aspect of Simplex is, that if a nonbasis is visited twice, it starts to cycle.
To prevent this from happening, elaborate heuristics are used in nowadays solver. As
described in the Simplex section, there is a wide variety of heuristics. Many of them
work in combination with Bland’s rule to guarantee termination. Due to the similarity
between FMPlex and Simplex, it is of interest whether FMPlex visits any nonbasis
more than once. This was so far only proven for a modified version. Nevertheless, it
is an important proof to defend FMPlex from Simplex. In case FMPlex would visit
some basis twice, one could reduce the number of constraints again easily. As this
thesis also presented several modifications of FMPlex it is from interest whether there
is a common property that prevents this from happening. Currently, it is assumed
that this property only holds for the modified version, but not for the original one.

5.5.4 Global Conflicts

Correlated to the previous point, one would like to prove that FMPlex never fails to
reveal a global conflict on UNSAT instances. Thus, a conflict which enables FMPlex
to backtrack to the root. The pseudocode considers the case that all branches of
FMPlex find a conflict but none finds a global one. This means the case that no
branch contains a global conflict, but all contain a local one with only little to no
backtracking. We would like to prove that FMPlex always discovers a global conflict
and never runs into the case that the conflict needs to be created from a set of
conflicting branches. This behaviour can also be observed in practice. Probably, the
proof needs to distinguish between the eager approach and the classical one. The
current claim is, that the eager version always discovers the global conflict. For
the classical FMPlex algorithm, it is not clear whether the global conflict could be
missed due to backtracking. This means, that the branch with the global conflict also
contains a local conflict and this local conflict leads to backtracking and thus missing
the global conflict. In future work, we aim to prove both of the previous claims.
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5.5.5 Hybrid Method
Previously, the first approach on a hybrid method between FMPlex and Simplex was
presented. Due to the not-equation handling in Simplex, the method did not achieve
the expected results. It was forced to execute FMPlex to large parts to avoid the
UNKNOWN answers from Simplex. In the future, we aim to rework this approach.
FMPlex is still a pretty fast quantifier elimination procedure, superior to Fourier-
Motzkin. Additionally, it can be very fast applied in the first few instances without
a large increase in constraints. FMPlex can be used as advanced preprocessing for
Simplex. Afterwards, Simplex is then called on a system with fewer variables and,
depending on when it is called, fewer constraints.
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Chapter 6

Conclusion

In this thesis, a novel variable elimination procedure is presented, called FMPlex.
Additionally, several modifications with special properties were constructed. The
eager version, which follows every branch until its end, proved to perform best on the
QF_LRA benchmarks in SMT-LIB. It showed to outperform the Fourier-Motzkin
variable elimination procedure even with the Imbert accelerations by far. It was
proven to be sound and complete and to have strong connections with Simplex and
Fourier-Motzkin, see Theorems 3.3.1 and 3.3.2. Furthermore, Theorem 3.1.5 shows
that it produces no constraints which could be removed by the Imbert accelerations.
To perform well in SMT solving, the FMPlex algorithm was extended on strict, equal
and not-equal constraints. While the extension to strict and equal constraints was
quite similar to Fourier-Motzkin, a novel not-equal constraint handling was developed.

After discovering the similarity between FMPlex and Simplex, we transferred the
not-equal handling from FMPlex to Simplex. We achieved to remove an exponential
overhead for solving not-equal constraints. To the best of our knowledge, this was
not done before. Additionally to the not-equal handling, a FMPlex-Simplex heuristic
was designed. It showed to be a specialization from the widely used shortest-column
heuristic.

Afterwards, the single algorithms were compared on the QF_LRA benchmarks
in the SMT-LIB library. To compare all algorithms, the classical Fourier-Motzkin
algorithm, Imbert accelerations, FMPlex in several versions and the Simplex heuristic
were implemented.

The comparison revealed that FMPlex is powerful and superior to Fourier-Motzkin,
but it does not manage to defeat Simplex. In the detailed comparison, we saw FMPlex
defeating Simplex on some instances. This led to the idea to use a hybrid method
where FMPlex takes the part of an advanced prepossessing and Simplex afterwards
solves the instance.

However, the performance difference between FMPlex and the min. Sign Simplex
heuristic was larger than expected. As the future work section mentions, some parts
can still be improved in FMPlex. However, most of them are theoretical and the
practical ones are expected to have a rather small impact.

Nevertheless, the ideas in FMPlex led to novel not-equation handling within Sim-
plex. Furthermore, FMPlex proved to be an efficient variable elimination tool. Either
FMPlex or the ideas developed while constructing FMPlex can certainly be reused in
other tools.
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