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Abstract

Buildings account for 30-45% of global energy consumption [25]. Together
with the building construction sector, they are responsible for almost 40% of all
direct and indirect CO2 emissions [1]. Heating, ventilation and air conditioning
systems play an important role in this context [25]. Hence, the efficient use and
control of HVAC systems has a major impact on minimizing energy consumption.
Studies show that better control of HVAC systems can lead to energy savings
of 13% to 28% [12]. To improve the efficiency of the HVAC system control, this
thesis will consider Model Predictive Control and Neural Networks.
In order to minimize the computational cost and working effort, this work ad-
dresses the questions to what extent it is possible to adopt multi-output models
for HVAC control instead of single-output models and whether one model struc-
ture is applicable for different zones of different buildings. To this end, we also
try to automate the process of data preparation and parameter selection as much
as possible.
In the course of this thesis, we consider one model and different preprocessing
methods. This includes testing the response of the individual zones to different
amounts of data, as well as to varying inputs, depending on the correlations.
In order to evaluate the achievement of the objectives, a graphical user interface
is developed and five tests are evaluated.
The first test is to determine whether one preprocessing method in combination
with the chosen model can successfully simulate the data of all zones, or at least
outperform the others.
We select a preprocessing method in the second test and compare the MO and
SO model losses.
During the third test, we examine the connections between one zone with par-
ticularly good results and one zone with particularly poor results.
In the fourth test, we evaluate the extent to which it is possible to convert from
SO to MO models. For this purpose, we determine the minimum losses of each
zone that can be achieved with our preprocessing methods and then compare
the minimum achievable MO and SO losses independent of the respective pre-
processing selection.
Finally, in test five, we want to discover patterns in the data that reveal the
extent to which certain factors influence model losses.
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1. Introduction

1.1. Motivation

Buildings are responsible for 30-45% of the world’s energy consumption [25]. Com-
bined with the buildings construction sector, they account for almost 40% of all direct
and indirect CO2 emissions [1]. In recent years, energy consumption has increased sig-
nificantly, in part due to increased heating and cooling needs resulting from extreme
weather conditions [1]. Heating, Ventilation and Air Conditioning (HVAC) systems
account for a large share of global energy consumption [25]. Therefore, efficient use
and control of HVAC systems plays a major role in minimizing energy consumption.
Studies show that better control of HVAC systems can result in 13% to 28% energy
reductions [12]. Smart buildings are a way to meet human needs such as comfort and
wellbeing while reducing CO2 emissions and energy consumption.

1.2. Related work

1.2.1. Model Predictive Control

The 2018 revision of the EU Directive states that all non-residential buildings with an
HVAC output over 290kW and where ”technically and economically feasible” should be
equipped with building automation and control systems by 2025 [2]. While rule-based
control (RBC) is still frequently used, model predictive control (MPC) has become
much more popular in recent years due to the increase in thermal comfort and the
simultaneous reduction in energy consumption by 15% to 50% [12]. MPC is used to
predict the optimal future behaviour depending on a building model, selected objec-
tives and weather forecasts.
Tarragona et al. [37] used MPC to control a heating system consisting of an air-to-
water pump, thermal energy storage and solar panels to reduce energy costs. By taking
into account all system-relevant inputs, such as heating demand, electricity prices and
outdoor temperatures, testing different working horizons and MPC settings, and de-
signing the optimization problem based on branch-and-bound optimization, the energy
costs were reduced by about 50%.
Gholamzadehmir et al. [16] compare MPC with adaptive predictive control and con-
clude that MPC is not suitable for systems that rely on unpredictable data.
Since, according to Pippia et al. [32], deterministic MPC strongly depend on the qual-
ity of the predictions of disturbances and linear models might not be able to grasp the
behaviour of a building under control, they created a stochastic scenario-based MPC
(SBMPC) controller with a non-linear Modelica model.
Pippia et al. conclude that this controller outperforms an SBMPC with a linear model,
as well as a deterministic controller with a Modelica model.
Nagpal et al. [29] introduce a new controller based on MPC with parametric uncer-
tainties and time-varying constraints. They attempt to achieve robust control using
a min-max optimization problem by minimizing a reasonable worst-case cost function
and thus manage to keep the room temperature in the preferred range, even under
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large model uncertainties.
Carli et al. [9] present an Internet of Things (IoT) based architecture for the implemen-
tation of MPC for HVAC systems. MPC is designed to optimize both indoor thermal
comfort and energy consumption. The subsystems for sensing, control and actuat-
ing are connected to the internet and users can remotely set the control mode and
set-points of the system. The architecture from Carli et al. was tested for a campus
building at the Polytech of Bari.
As the use of MPC involves a lot of development effort, communication infrastructure
and computer capacity, according to Drgoňa et al. [13], the building model and the
MPC optimization problem are often simplified, which can lead to non-optimal per-
formance. A suitable white box model can bring the performance of an MPC system
closer to the theoretical limits. Therefore, Drgoňa et al. present a computationally
efficient white box MPC model that uses first-principle physical forms and has been
tested in a building in Belgium.
Ma et al. [23] deal with MPC with invariant sets, moving block strategy, dual stage
optimization and predictions of building loads and weather forecasts for cooling sys-
tems that have a water tank for the storage of cold water produced by chillers. Their
results show a 24.5% reduction in electricity expenditure.
Mantovani and Ferrarini [24] focus on the use of MPC in shopping centres to optimize
the room temperature. They use a non-linear model as a basis for different MPC con-
figurations and time-varying constraints. Their simulations achieve energy savings of
about 4.5%.
Halvgaard et al. [17] want to control HVAC systems, blind positioning and electric
lighting concurrently so that temperature, CO2 and lighting satisfy the occupants’
comfort zone and maximize energy efficiency. For this, they have developed a stochas-
tic MPC (SMPC) that uses weather forecasts to calculate how much energy would be
consumed to maintain a certain comfort level and what costs this would entail. Com-
pared to deterministic MPC (DMPC), SMPC is better in terms of comfort violations
and non-renewable primary energy usage, as it incorporates uncertainty in weather
forecasts. For heat pumps of residential buildings with water-based floor heating,
Halvgaard et al. [17] use a linear state-based model and an economic MPC controller
as a linear program, based on weather and electricity price forecasts, to exploit the
thermal capacity of the building in such a way that energy consumption is shifted to
times of low electricity prices. Their approach brings 25-35% electricity savings.
Moroşan et al. [27] use the intermittently operating mode of almost all types of build-
ings to achieve good control results and low computational effort with a distributed
MPC control strategy with one information exchange per time unit. Their approach
increases the thermal comfort level by about 36.7% while reducing the energy expenses
by about 13.4%.

1.2.2. Artificial Neural Networks

In recent years, the use of Artificial Neural Networks (ANN) for the prediction of room
temperature has also gained popularity. In this approach, relevant factors such as
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building structure, weather forecasts and outdoor temperature are given to an ANN
as input parameters and the future internal room temperature is calculated [15].
Egilegor et al. [14] use fuzzy control adjusted by a neural network with temperature
and humidity as inputs and the thermal comfort index predicted mean vote as out-
put to adjust the fan-coil air flow rate under different weather conditions to maximize
comfort.
Since most studies deal with single-zone models, Huang et al. [19] present an ANN
model-based system for multi-zone buildings that incorporates energy generation from
mechanical cooling, ventilation, weather changes and effects of thermal interaction be-
tween adjacent zones, thus giving more accurate predictions than single-zone models
and providing thermal comfort and reduced energy consumption.
Zhou et al. [39] use a Multi Output Long Short-Term Memory (LSTM) ANN to com-
pensate for spatio-internal instability and time-lag effects in air quality forecasting.
Sendra-Arranz and Gutiérrez [34] propose several LSTM-based multi-step prediction
models to estimate the energy consumption of an HVAC system one day ahead and
test these models in the self-sufficient solar house MagicBox.
Mtibaa et al. [28] compare multi-output and single-output LSTM models based on
multi-step prediction with direct sequence-to-sequence architecture to predict room
temperature as accurately as possible for multi-zone buildings with different HVAC
types.
To find the ANN that best reduces HVAC-related electricity expenditure, Deb et al.
[11] test all subsets of 14 inputs of data from 56 office buildings in Singapore. They
conclude that gross floor area, energy consumption by air conditioning, operational
hours and chiller plant efficiency is the best combination of input variables.
In order to optimize a building’s HVAC two-chiller system in terms of thermal comfort
and energy consumption, Nasruddin et al. [30] combine an ANN with a multi-objective
genetic algorithm.
Kusiak and Xu [22] also use multi-objective optimization to optimize an HVAC system
in terms of energy consumption and thermal comfort with a dynamic ANN. With this
approach, they were able to save about 30% energy compared to the standard control.
To address the problem that HVAC systems are nonlinear, complex and delayed, Shu-
jiang Li et al. [35] develop a backpropagation neural network model controlled by a
generalised predictive control method.
Afram and Janabi-Sharifi [6] develop several black-box models, including a multiple-
input multiple-output (MIMO) ANN, for HVAC systems in a residential building and
compare them with the corresponding grey-box models. They conclude that the ANN
model outperforms all other models.

1.3. Research Questions

On the one hand, this thesis will address the question of how well different buildings of
one HVAC type can be controlled with a single model. On the other hand, the question
of how well a multiple-output system performs compared to single-output systems for
these buildings will be considered. The goal is to minimize the computational power
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by not having to find a separate model for each building and train a seperate model
for each output.

1.4. Outline

The background of the thesis such as the motivation, related work and the questions
to be investigated were addressed in chapter 1. Chapter 2 deals with the theoretical
foundations such as building modelling, MPC, optimization and ANNs. With regard
to ANNs, special attention is paid to the possibilities of multi-output ANNs in order
to be able to calculate several results with one ANN. In chapter 3, the data base is
introduced and on this basis, a case study is carried out in chapter 4, that implements
the methods proposed in chapter 2. In the end chapter 5 gives a short summary and
an outlook on which aspects could be further explored in the future.
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2. Theoretical foundations

2.1. Building modeling

From a cost-effective and sustainable perspective, the most efficient way to use HVAC
systems is to improve the control mechanisms rather than upgrading the equipment [7].
Therefore, an accurate modelling of the building system is essential. HVAC modelling
techniques are divided into three categories according to Afroz et al. [7] and Afram and
Janabi-Sharifi[5]. In the following, these categories will be examined in more detail.

2.1.1. White Box Models

White Box models are also known as physics-based models, mathematical models or
forward models [7]. These are primarily used to predict HVAC performance at the
design stage. For this purpose, mathematical formulas are developed and solved de-
pending on the fundamentals of Thermodynamics.

Cooling Tower Air Handling Unit

Electric ChillerValve
Compressor

Chilled Water
Supply

Supply Air

Return AirRelief AirFan
Air Out

Air In

Cool Water
Hot Water

Outdoor Air

Chilled Water
Return

Fan

Fan

Condenser

Evaporator

Fill

Figure 1: Example of a chilled water ventilation and air conditioning system, adopted
from REF [7]

Figure 1 shows an example of an air conditioning and ventilation system as presented
by Afroz et al. [7]. The main components are an air handling unit (AHU), chiller and
cooling tower. In a zone model, an HVAC zone is defined as a cluster of adjacent spaces
that often share a common AHU. The white-box modelling of temperature is often done
with the heat conduction equation, heat balance, weighting factor and thermal network
method. To calculate energy and mass balance, x specifies the following prerequisites:
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• The air is completely mixed and the temperature is equal.

• The influence of opposite walls on the temperature in the zone is the same.

• The floor has no influence on the temperature.

• The air density is constant regardless of the room temperature or humidity.

• There are no pressure losses.

Under these conditions, the energy and loss balance equation, that models the energy
changes of a zone, is defined by Afroz et al. [7] as:

Cz
dTz
dt

=fsaρaCpa(Tsa − Tz) + 2Uw1Aw1(Tw1 − Tz) + URAR(TR − Tz)

+ 2Uw2Aw2(Tw2 − Tz) + q(t)

q(t) =qp + q1

(1)

Another formula that can be established deals with the humidity level of the zone and
is defined as:

Vz
dWz

dt
= fsa(Wsa −Wz) +

P (t)

ρa
(2)

The variables are defined as follows:

Variable Meaning
Cz Overall thermal capacitance in kJ/◦C
Tz Zone temperature in ◦C
fsa Volumetric flow rate of the supply air
ρa Air density of 1.25 kg/m3

Cpa Specific air heat of 1.005 kJ/kg ◦C
Uw1 Heat transfer coefficient of east and west walls
Aw1 East and west wall area in m2

Tw1 East and west wall temperature in ◦C
UR heat transfer of the roof
AR Roof area in m2

TR Roof temperature in ◦C
Uw2 Heat transfer coefficient of south and north walls
Aw2 South and north wall area in m2

Tw2 North and South wall temperature in ◦C
q(t) internal heat gain
Vz Zone volume
Wz Humidity ration of the zone in kg/kg
Wsa Humidity ratio of supply air in kg/kg
P (t) Evaporation rate of occupants

Table 1: 2.1.1 variable overview

For a complete white-box model, a large number of such equations is constructed.
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2.1.2. Black Box Models

Data Driven Models Stastical Models

Fuzzy Logic Models

Linear and Polynomial Time Series
Regression

Auto Regression eXogeneous (ARX)

Auto Regression Moving Average
eXogeneous (ARMAX)

Auto Regressive Integrated Moving
Average (ARIMA)

Adaptive Network based Fuzzy
Inference System (ANFIS)

Takagi-Sugeno (T-S) Fuzzy Models

Fuzzy Adaptive Network (FAN)

Support Vector Machine (SVM)

Artificial Neural Network (ANN)

First/Second Order Over-damped
Process with Dead Time

Sub-Space State Space
IDentification (4SID)

Thin Plate Spline (TPS)
Approximation

Topological Case Base Modeling
(TCBM)

Probability Density Function (PDF)
Approximation

Just In Time (JIT) Model

Data Mining
Algorithms

Frequency Domain
Models

State-Space Models

Geometric Models

Case-Based
Reasoning

Stochastic Models

Instantaneous Models

Figure 2: Data-driven modelling types, adopted from REF [5]

Black Box models, also known as data-driven models or inverse models, develop de-
pendencies between input and output parameters based on system performance data
[7]. The modelling capabilities of data-driven approaches have been investigated in
various researches. They are well suited to improve existing HVAC systems. Figure 2
shows the different categories of data-driven models. Section 2.1.2.2 takes a closer look
at the data-driven modelling technique ANN. Of the many categories, we will take a
closer look at the stochastic and statistical models.
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• Statistical models
Statistical models have a high ease of tuning and can model noisy data [5].
Nevertheless, they have neither robustness for parameters nor for disturbances
and a low prediction accuracy. Equation 3 shows a generalized structure of a
statistical black box model with simple input and output.

α(q−1)y(t) =
β(q−1)

θ(q−1)
u(t) +

γ(q−1)

δ(q−1)
w(t) (3)

Depending on the chosen polynomials, input, output and noise the different sta-
tistical models are created (see figure 2).

• Stochastic models
Stochastic models are used to predict random HVAC processes, often using Prob-
ability Density Functions (PDF). A large amount of data is necessary for these
to deliver reasonable results. Stochastic models have a low ease of tuning, no
robustness for disturbances or parameters and a low generalization ability. How-
ever, they can model noisy data and, unlike statistical models, they have a high
prediction accuracy.

2.1.2.1. Characterization

ANNs are conventionally divided into two categories: supervised and unsupervised
learning. [33]

• Supervised learning
The environment provides the desired output for the inputs and thus supervises
the learning process as a kind of teacher.

– Reinforcement learning
The external environment does not give the desired output, but only the as-
sessment for correctness. The learning process strengthens the connections
between neurons that are used particularly often.

• Unsupervised learning
The environment does not provide any information about the output. The learn-
ing process is based solely on the inputs and the internal updating of the weights,
that are divided into clusters and thus get similar results when the input vectors
are similar. A new cluster is created whenever a new pattern is discovered.
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2.1.2.2. Artificial Neural Networks

The first artificial neuron, designed after neurons of the brain, was presented in 1943
[33]. Artificial neural networks are not based on direct rules and are not strictly
programmed. Instead they learn with the help of trial and error processes. Neural net-
works are used in a wide range of disciplines nowadays, including weather forecasting,
aviation and marketing [21].
They are designed to resemble certain properties of neurons in the brain [33]. There
are four primary functions that an artificial neuron has adapted from a real neuron.

1. Take in information from an external environment

2. Decide whether this information is relevant or should be ignored

3. Process the data

4. Produce a result

Figure 3: Structure of an artificial neuron. The transfer function represents the acti-
vation function. Adopted from REF [33]

Thus, as seen in figure 3, an artificial neuron has a multitude of inputs and a weight
for each of these inputs. These are then multiplied and added up (equation 4).

ξ =
∑

wi · xi (4)

ANNs are capable of arriving at appropriate results even with non-linear correlations,
as well as small, large, incomplete or fluctuating data sets [33].

Activation functions
Activation functions receive the result of the summation function as input and are
responsible for deciding whether the input is relevant or not. According to Profillidis
and Botzoris [33], there are six standard activation functions, as can be seen in figure
5.
These are, on the one hand, linear activation functions [33]:

f(ξ) = a · ξ + b (5)
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Figure 4: Standard activation functions, adopted from REF [33]

Binary step functions are also called threshold functions and are defined as follows [33]:

f(ξ) =

{
1 , ξ ≥ 0,
0 , ξ < 0

(6)

Another activation function is the piecewise linear function defined by the following
formula [33]:

f(ξ) =


1 , ξ ≥ ξmax,
a · ξ + b , ξmin > ξ > ξmax,
0 , ξ ≤ ξmin

(7)

The sigmoid function is defined over the interval (0,1) as

f(ξ) =
1

1 + e−b·ξ
(8)

while the Gaussian function over the intervall (0,1] is defined as

f(ξ) = e−ξ
2

(9)

Last but not least, the hyperbolic tangent function over the interval [-1, 1] is defined
as

f(ξ) =
2

1 + e−2·ξ
− 1 (10)

Additionally there is the Rectified Linear Units activation function (ReLU), defined
as [8]:

f(ξ) = max(0, ξ) (11)
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ReLu
Figure 5: ReLU activation function, adapted from REF [8]

Layers

Figure 6: Layer structure of a Feedforward Artificial Neural Network, adopted from
REF [33]

• A topology describes which nodes are connected to each other and can be rep-
resented by a matrix of the form n × n, where n denotes the number of units
[33].

– The cells list the weights that pass from the unit with the index of the
column to the unit with the index of the row.

• Units are sorted into groups called layers depending on certain characteristics.

• Each layer consists of several neurons, with each neuron of one layer connected
to each neuron of the next layer [36].

• The structure of the layers of an ANN is shown in figure 6.
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• Layers are classified as input, hidden and output layers [33].

– Nodes of input layers receive data from the external world

– Nodes of output layers send their results to the outside world

– If a layer cannot be categorized as either an input or an output layer, they
are referred to as hidden layers

• Too many neurons in hidden layers can lead to so-called over-fitting, which means
too much adaptation to the training set and thus a lack of generalization. [20]

– In contrast to the training set, the results of the test set do not give good
results.

• Too few neurons lead to under-fitting, which means that the network is too
generalized.

– Neither the training nor the test set provide good results [20].

Architecture Types
There are many different types of ANNs. Generally they can be divided into feedfor-
ward and recurrent ANNs [33].

• Feedforward
The coupling is unidirectional, which means that a node to which another node
sends its output cannot send back any information [33]. This also applies to
indirect transmission via one or more other units. Multi-layer feedforward neural
networks (MLFNN) are the most widely used ANNs [36].

• Recurrent Neural Networks

– Recurrent NNs (RNN) contain at least one cycle, which means that the
transmission of outputs is bidirectional and a unit to which another unit
sends data can send its output to this unit as well as to previous layers [33].

– The resulting time delay can be specified and can be zero.

– The structure can be defined via deterministic transitions by the following
formula 12, where h defines a hidden state and the exponent represents the
layer and the subscript the time unit.

hl−1t , hlt−1 → hlt (12)

According to noa [3], there are two ways to build recurrency into MLFNNs:

– Lead feedback from a hidden layers to the input layer

– Lead feedback from the output layer to the input layer

The difference is whether you want to achieve special focus on the input or output
values.
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– Long-Short-Term Memory Neural Networks (LSTM) are RNNs that are
particularly well suited for maintaining dependencies of time sequences over
a long distance [26].

– LSTMs have a memory block that stores the current state of the network
and controls the flow of information with so-called gates [26].
These are devided into input gates it, forget gates ft and output gates ot.
Forget gates are responsible for segmentation into subsequences to prevent
overloading of the sequences. At each time step, it is necessary to decide
whether the stored information should be retrieved, retained or overwritten.

– The information is stored in memory cells ml
t ∈ Rn, where l and t are defined

as in the transition definition of RNNs (equation 12) [26].

– In contrast to conventional RNNs, the transitions of LSTMs are defined as
[26]:

hl−1t , hlt−1,m
l
t−1 → hlt,m

l
t (13)

2.1.2.3. Multi-Output Routine

Multi-output (MO) ANNs are ANNs that have more than one neuron in the output
layer. The network can therefore calculate more than one output of different types at
the same time. [38]

Challenges
The challenges of multi-outputs are primarily divided into the four Vs: volume, veloc-
ity, variety and veracity, although these originally refer to inputs. [38]

• Volume
This term denotes a large increase in output labels, that can lead to problems
such as scalability problems, insufficient annotations or label imbalance.

• Velocity
Fast acquiring of output labels and the associated problems such as concept drift
and changes in output distributions.

• Variety
Possibly different structure of the output labels, that leads to difficulties in mod-
elling dependencies between the different outputs and finding a suitable loss
function.

• Veracity
Problem of quality differences in output labels, that is characterized by noise or
incomplete data.
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Goal
Given an input space of the form X = Rd and an output space of the form Y = Rm,
the goal of multi-output learning is to find a function F : X ×Y → R with the training
set D = {(xi, yi) | 1 ≤ i ≤ n}, where F (x, y) denotes the compatibility of x and y. [38]

The output with the highest compatibility value is then calculated for the test set:

f(x) = ỹ = argmaxy∈YF (x, y) (14)

Subfields
According to Xu et al. [38] MO learning has the main subfields Multi-label Learning,
Multi-target Regression, Label Distribution Learning, Label Ranking, Sequence Align-
ment Learning, Network Analysis, Data Generation Semantic Retrieval and Time-series
Prediction.
For this report the most relevant subfields are Multi-target regression, that focuses
on predicting multiple output values per instance, and Time-series Prediction, since it
focuses on predicting future values based on previous observations.

• Multi-target regression
The labels of each instance are represented by a vector that indicates the asso-
ciation of the instance to each label [38]. An unknown instance x ∈ X is then
mapped to a vector f(x) ∈ Y using the regression function f(·).

• Time-series Prediction
This MO method has as input data of a time period and calculates as output a
data vector for a point in time in the future [38]. The output at time t is defined
as yti ∈ Y = Rm, with the output for the time span from t = 0 to t = T defined
as the vector yi = (y0i , ..., y

t
i , ..., y

T
i ).

Evaluation
There are different approaches to assessing an MO-model. According to Xu et al. [38]
these include Hamming loss, macro- and micro-averaging, one-error, ranking-loss, aver-
age precision, mean absolute error, mean squared error, average correlation coefficient
and Intersection over union threshold. In the following we will focus on metrics for
regression problems.

• Mean Absolute Error (MAE)
MAE calculates the absolute difference between the calculated and the actual
result [38]. Since MAE is usually defined for single outputs (SO), it must be
extended to iterate over all outputs.

MAE =
1

m

1

n

n∑
i=1

|yi − ŷi| (15)
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• Mean Squared Error (MSE)
MSE is originally defined for SO ANNs as well, but in contrast to MAE it focuses
on strong deviations and thus yields larger values [38]. As MAE it can also be
extended to MO settings.

MSE =
1

m

1

n

n∑
i=1

(yi − ŷi)2 (16)

• Average correlation coefficient (ACC)
This metric calculates the strength of the association of the calculated and actual
output [38]. Let ymi and ŷmi be the real and calculated m outputs of input xi and

yl and ŷ
l

the real and calculated outputs for label l over all samples. Then ACC
is defined as:

ACC =
1

m

m∑
l=1

∑n
i=1(y

l
i − yl)(ŷli − ŷ

l
)√∑n

i=1(y
l
i − yl)2

∑n
i=1(ŷ

l
i − ŷl)2

(17)

2.1.3. Grey Box Models

Grey Box models are a combination of White Box and Black Box models [7]. The
structure is adopted from the physically-based models, while the parameters are data-
based [5]. Due to the physical model, the grey-box model has more general results
than a data-driven model. At the same time, it is more accurate than a physics-based
model as the data-based parameters also capture the effects of non-modelled dynamics.

2.2. Model predictive control

Building

Time varying design parameters

Energy price

Comfort criteria

Occupancy prediction

Weather prediction

MPC controller

Cost function

Constraints

Dynamics / 
Building model

O
ptim

ization

Current state

Weather Occupancy

Figure 7: Basic principle of MPC according to REF Široký et al. [40]

• Model Predictive Control (MPC) is a class of control methods that emerged in
the late seventies to early eighties [40].
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• MPC predicts the future states of a system based on a mathematical model of
that system [4].

• It generates a control vector to minimize a cost function over a finite prediction
horizon, taking into account disturbances and constraints [4].

In the following we will take a closer look at the modeling and optimization in MPC.
In section 2.2.2 we will deal with the optimization of buildings and thus with cost
functions and optimization methods. Figure 7 depicts the basic principle of MPC.

2.2.1. Modeling

Modelling in MPC is divided into white box, grey box and black box modelling as in
section 2.1. For MPC, however, a distinction must be made between the modelling of
the building envelope, the disturbances and the system itself.

Weather and
occupancy

Building
envelope Sensors

Actuators HVAC Sensors

d y

a m

u

x

Predictive
models, time

series, schedules

Dynamical 
model

Controlled
variables

Continuous 
and discrete

decisions

Typically
algebraic
equations

HVAC 
measured
variables

Figure 8: Structure of MPC building modeling, adopted from REF [12]

Figure 8 shows the interaction of the individual components to be modelled, where
d represents the disturbances, y the outputs, x the state values, u the inputs of the
building envelope, a the actuators and m additional relevant variables. These variables
are considered in more detail in section 2.2.2 for the cost function.

Building envelope

• Envelope refers to all separations between different thermal zones or from the
building to the outside, e.g. walls, windows, floors or ceilings [12].

• Building envelope models should model all heat transfers through the separations,
and in particular take into account conduction, radiation and convection [12].
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According to Drgoňa et al. [12], the conduction heat transfer is typically calculated
with the 1D transient heat equation. This is defined in [18] as follows:

q̇ = kA
dT

dx
(18)

Here q̇ indicates the heat transfer rate in W, k the thermal conductivity in W
m−K , A

the area normal to the heat flow in m2 and dT
dx

the temperature gradient in
◦C
m

.

• For radiation and convection models many different approaches are widely ap-
plied [12].

• In black-box models envelope is only included indirectly by calculating a function
over indoor and outdoor disturbances.

Disturbance model
Another factor to be modelled are disturbances, i.e. all factors that cannot be actively
controlled but have an influence on the result, e.g. weather forecasts or occupancy.
[12]

• In order to include weather disturbances, either an existing service provider can
be used or a machine learning (ML) model can be trained in this respect.

– As weather stations are often located further away from the buildings under
consideration, the evaluations in the first case may not reflect the actual
weather conditions around the building.

For example, to model the uncertainty due to outdoor temperature, Mantovani and
Ferrarini [24] present a model that includes three days of historical data:

T (t) = α(t) · sin(
2 · π

24 · 60 · 60
· t− π

2
) + Toa,avg(t) (19)

Here α(t) is the time-variant amplitude profile and Toa,avg(t) is the time-variant average
value profile at time t.

Regulation System
The modelling of the HVAC system can be accomplished in different forms and has a
high level of complexity. [12]

• In some cases, each component is controlled by the MPC controller, while in
other cases MPC controls higher-level interfaces.

• Since HVAC systems can have a number of different components that vary in their
properties to be modelled, the complexity is increased. For example, pumps and
fans have non-linear characteristics.

• Dampers, amongst many others, are active components, while pipes are static
components.

To resolve this complexity, an optimization problem must be solved.
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2.2.2. Optimization

Cost functions
Cost functions or objective functions are used to specify the minimization constraints
of the optimization problem. According to Drgoňa et al. [12], the cost function in the
general MPC optimization problem is defined as equation 20a:

min
u0,...,uN−1

`N(xN) +
N−1∑
k=0

`k(xk, yk, rk, uk, sk) (20a)

s.t. xk+1 = f(xk, uk, dk) (20b)

x0 = x̂(t) (20c)

yk = g(xk, uk, dk) (20d)

rk = r(t+ kTs) (20e)

uk = fHV AC(xk, ak,mk) (20f)

sk = h(xk, yk, uk, rk) (20g)

dk = d(t+ kTs) (20h)

xk ∈ X , uk ∈ U , ak ∈ A, sk ∈ S, k ∈ NN−1
0 (20i)

Here `N(xN) stands for the omittable penalty of the cost function, `(xk, yk, rk, uk, sk)
for the stage cost that assigns costs to the values, xk stands for the values of states,
yk for the outputs, rk for reference signals, uk for the inputs of the building envelope,
sk for slack variables, dk for the disturbances, ak for the HVAC actuators and mk for
additional measured variable values in the kth step in the prediction horizon N with
sampling time Ts. x0 indicates the initial states of the state variables (20c). f predicts
the state values (20b), g the outputs (20d), r the reference signals (20e) and d the
disturbances (20h). h calculates violations of further criteria, such as thermal comfort
(20g).

• Examples of minimization targets are minimization of costs or green house gases
[12].

• Minimization problems can also be transformed into maximization problems

– e.g. maximizing the use of renewable energy.

• All these factors can be objectives of the cost function.

• If one wants to fulfil several objectives at once, one speaks of so-called multi-
objective optimization, for which there are several optimization approaches.
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Optimization method
Optimization methods include goal attainment, minimax and Pareto front. [12]

• Goal attainment

– For multi-objective problems, goal attainment is the most commonly used
approach.

– The objectives are each assigned a weight and the result is determined
depending on these weights.

– e.g. the cost function (equation 20a) can be reformulated as follows:

min
u0,...,uN−1

N−1∑
k=0

(||Qssk||22 +Qukkuk) (21)

– Qs and Qu respectively give weighted matrices for the slack and envelope
variables, while kk is responsible for the time reference.

– Taking time variation into account is relevant, for example, in the case of
price changes.

• Minmax

– In contrast to goal attainment, the focus of the minmax approach is on
keeping the worst case as good as possible.

– Cost functions that are established with the minmax method are particularly
suitable for safe solutions under unpredictable effects.

• Pareto front

– With the pareto front method, the relationship between several objectives
is constructed in such a way that every minimization or maximization of
one objective leads to the opposite in the other objective.

Constraints
MPC is also called constrained control because it can find a reasonable solution for
many different types of constraints, both for input, output and states [4].
These constraints can be roughly divided into two categories [4, 12]:

• inequality constraints, such as control input range

• equality constraints, such as capacity limits and building model dynamics

Constraints are also divided into hard and soft constraints [12]:

• Hard constraints are constraints that have to be complied with at all times in
the entire prediction horizon.
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– e.g. control action bounds, given by the following equation:

u ≤ uk ≤ u (22)

– uk are the building envelope inputs, while u and u depict the lower and
upper limits.

• Soft constraints are constraints for which infringements are tolerated.

– For this purpose slack variables sk are penalised in the cost function.

– e.g. thermal comfort inequality constraints, given in equation 23.

yk − sk ≤ yk ≤ yk + sk (23)

– yk depicts the output, while yk and yk define the lower and upper limits.

• Thermal comfort inequality constraints (equation 23) are also an example for
time-varying constraints.

– Change over time, unlike constant constraints, because yk and yk are defined
as time-varying

• Slew rate constraints penalise the degree of a change in certain variables to avoid
overshooting and peak behaviour.

– Equation 24 restricts the scope for change of the building envelope inputs
within one step.

∆uk = uk − uk−1 (24a)

∆u ≤ ∆uk ≤ ∆u (24b)

Table 2 shows an overview of the different forms of constraints and their relevant
distinctions.

Oldewurtel et al. [31] subdivide constraints into the categories linear, convex quadratic,
chance, second order cone, switched and nonlinear.

• For linear constraints, which are the most commonly used, an upper and lower
bound is defined, while convex quadratic constraints are bounded by an ellipsoid.

• Chance constraints set a satisfiability probability for constraints under uncer-
tainty and can possibly result in second order cone constraints, of which the
mapping space is cone-shaped.

• Switch constraints switch between constraints depending on fulfilled or unfulfilled
conditions.

• Non-linear constraints are all constraints that do not fit into one of the other
categories and are represented by any non-linear function.
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Table 2: Overview of types of constraints, adopted from REF [12]

2.2.3. Conclusion

In summary, MPC provides a good opportunity for building control. It takes into
account a variety of factors, such as the building structure, possible disturbances,
weather and other constraints. To accommodate these as well as possible, there are
many different modelling options, including both linear and non-linear functions. There
are a variety of different modelling options to best fit the given conditions and specific
objectives are established.
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3. Data

3.1. Data description

To test the models, building data is provided as CSV files by a real commercial company
that optimizes the building climate and reduces costs and CO2 emissions. Given is
data from one zone, each of 23 different buildings, numbered from 0 to 18 and from
20 to 23. The data was measured 24 hours a day, seven days a week every 15 minutes
for a different number of years, but in some cases only entered when changes occurred.
The goal is to automatically train models for all control data of the data sets and
compare the results in terms of differences between buildings and between single- and
multi-output models. The following functions were implemented using Python (Version
3.8.5).

3.2. Parameter selection

Since the buildings provide different data, the parameter selection must be handled
flexibly. For this, the column headers are scanned for keywords and used as output if
one is included. These keywords are:

• Climate sensor RBG basic setpoint room temperature

• Climate sensor Presence

• CTL

• Flow temperature

• Massflow

• ventilation system office volume flow release

• Individual room control Heating circuit Room temperature Basic set point

• Ventilation system supply air temperature

• Individual room control heating circuit Operating mode

• Cooling circuit Component activation Return temperature Switch-on temperature

• ventilation system RLT supply air temperature

• ventilation system volume flow release

• Ventilation system volume flow release

• Ventilation system supply air temperature
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For some of the data, both the actual and the predicted values are provided. Since in
practice only the predicted values are available, the actual values are not taken into
account.
For other use cases, however, it could be useful to select whether the actual or the
predicted value is used, depending on the correlation. The Pearson Correlation Coef-
ficient (PCC) (rxy) indicates the correlation between two variables and is defined as
follows [10]:

rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(25)

For this purpose, the average correlation of both values can be compared for each
building. For example, by calculating the difference of the absolute averages, when F
is the set of features with the word forecast, N is the set of features of the associated
real values and O is the set of outputs:

d = |rfo| − |rno| (26a)

f ∈ F, n ∈ N, o ∈ O (26b)

An exemplary illustration for zone 0 with the consideration of 1 year of data can be
seen in figure 9.
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Figure 9: Comparison of correlation from weather -/forecasts to outputs in zone 0 with
1 year of data
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Zone 0 has three outputs and real values as well as predictions on relative humid-
ity, cloud coverage, global radiation, effective cloud coverage, temperature, dew point,
wind speed and wind direction. If d (equation 26a) is positive, the absolute correlation
between the output and the forecast is higher than between the output and the real
value.
Thus, for Zone 0, it makes more sense to use the forecast data for relative humidity,
whereas for temperature, the real weather data is more useful. This allows an assess-
ment of whether forecasts or actual values should be used for all weather data, unless
a standard is generally predefined.

3.3. Data preprocessing

The company provides a CSV file per building in which the data is separated by ’,’.

• Since in some cases the data sets were only updated when a change occurred,
empty cells are replaced by the last previous filled cell.

• Columns that contain no value or only a constant value are deleted, as they have
no influence on the result.

• Since changes may occur over time, data that is too old may worsen results.
Therefore only relatively recent data should be considered and data that is at
least 3 years older than the most recent data is deleted.

• The date, given in date time format, is divided into separate columns for year,
month, day, hour and minute.

• All rows that still have an empty cell are deleted.

3.4. Data correlation

To visualize the correlation between the individual parameters, heatmaps are created.
To create a heatmap, a correlation matrix is first generated from the data. A correla-
tion matrix indicates in each cell how high the PCC is. A heatmap maps each PCC
value to a colour. Figure 10 gives an example of a heatmap for zone 0. The darker the
colour in a cell, the closer the correlation is to 1. Since the correlation of a column to
itself is always 1, the diagonal is generally the darkest shade. Due to the fact that the
correlation to the year is generally rather low, especially when looking at a few years,
the column for the year was removed before the creation of the heatmap.
The colour scale for the evaluation can be found in appendix F in figure 100. Figures
101 - 122 illustrate heatmaps for all zones.
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Figure 10: Visualization of Correlations between data for zone 0

• To improve the performance of the model, inputs with a low correlation to the
outputs can be deleted.

• The inputs I that have a correlation greater than the minimum correlation rmin
to at least one output O were retained.

i ∈ I ⇒ ∃o ∈ O : |rio| ≥ rmin (27)

• To keep an sufficient amount of inputs, the minimum correlations 0.05 and 0.1
are tested in chapter 4 in the Case Study.
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4. Case study

4.1. Configurations

Tensorflow (version 2.4.1) and especially Keras (version 2.4.0) were used to implement
the models. The graphics were created using Matplotlib (version 3.4.1) and Seaborn
(version 0.11.0). In addition, Sklearn (version 0.23.2), Numpy (version 1.19.2) and
Pandas (version 1.1.3) were used.
The model used was a feedforward model with four hidden layers, where all layers are
fully interconnected, as it was given by the company. The first layer has 12, the second
layer 24, the third layer 12 and the fourth layer two nodes. As activation function
ReLU (equation 11) is used and the loss is calculated with the MSE loss function
(equation 16). This model structure is trained once as MO for all outputs (figure 25)
and once per output as SO (figure 26). Examples of these structures are portrayed in
appendix A in figures 25 and 26. These models are trained for each combination of
the amount of years (one vs three) and the preprocessing method (Drop not-forecast
data or additionally correlation less than 0.05 or less than 0.1) used.

4.2. Graphical User Interface

To make the selection of preprocessing and outputs as flexible and easy to use as pos-
sible, a Graphical User Interface (GUI) was developed (Figure 11).

Model settings

• Option to import an arbitrary CSV file.

• Specification options for the percentage of test data, number of years and minimal
correlation to consider for the training.

• A dropdown menu to select how weather data is handled. The choice is between
using the real or predicted weather data or keeping both.

• Checklist and manual input options to select the strings to be searched for as
outputs.

Model training

• Choice between MO and SO model.

• Dropdown menu that lists all found outputs to select an output.

– MO: text over dropdown menu: ’to plot results:’
Used to select output to plot afterwards

– SO: text over dropdown menu: ’Choose output to train:’
Used to select output to train SO model
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Figure 11: Graphical User Interface

• Options to train new or import existing model.

• When model is trained, button to save model and history is activated.

Model visualization

• If something is to be plotted, a new window opens with the figure and a save
button.

• Buttons are provided to assist with the model settings. They are deactivated if
no keys are selected.
Heatmap to get an impression of the correlations.
Graphics for comparing correlations of weather forecasts and -data (3.2).

• The button to plot results is activated after training or choosing a model.

• An output for the result plot is chosen from the dropdown menu.

• The button to plot the history is only activated when the model was trained.

• If the model settings are changed after a model has been selected or trained, the
buttons are deactivated again because the GUI assumes that the model no longer
matches the settings. After training or selecting another model, the buttons are
reactivated.
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4.3. Results

In the following sections we will compare different tests on the model results. All out-
puts of zone 6 are constant, thus this zone will not be considered for these evaluations.

4.3.1. Test 1: Preprocessing comparison

In order to test whether one model is suitable for different zones, it would be ideal if
a preprocessing method can also produce optimal results with this model.
For this reason we first compare the losses of the different preprocessing options in
graph 12.
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Figure 12: Comparison of average MSE over all outputs of all zones of all preprocessing
options

Description

• Figure 12 shows the average MO MSE values over all outputs with linear y-scale
for one and three years of data.

• For each zone there are three bars, one per preprocessing method.

• Since a higher MSE value indicates a higher loss, the higher the bar is the worse
are the model results.

• The bars vary considerably, with one bar being higher than the others in some
cases. In figure 12a, the blue bar in zone 5 has a significant deflection, while in
figure 12b, the orange bar of zone 5 deviates strongly from the others.
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Analysis

• Especially zone 5 has rather high MSE values for every data selection type we
use.

• There are zones, that produce really good results for each data selection type.

• Considering three years produces more high MSE values.

• Considering one year produces higher MSE values for especially zone 5.

Conclusion

• The model is presumably not applicable for zone 5.

• There is no preprocessing method, that produces good results for every zone.

Since none of the preprocessing methods in graph 12 perform particularly better than
the others, we will take a look at how often which preprocessing method produces the
best or worst results (figure 13).
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Figure 13: Number of times per preprocessing method the MSE value is minimal/max-
imal

Description

• The number of times each preprocessing method in combination with the amount
of data produces the minimum MSE values is shown in figure 13a.

• In Figure 13b, the number of times each preprocessing method combined with
the quantity of data produces the maximum MSE values is shown.
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• Each preprocessing combination produces the best results at least two times and
a maximum of eight times.

• The number of maximum MSE values lies between two and five.

Analysis

• Choosing the data of one year in combination of dropping data with a correlation
less than 0.1 most often achieves the best results.

• One year with Corr < 0.1 and three years with dropping not-forecast data pro-
duce the worst results most of the time.

• Dropping a correlation less than 0.1 is the only preprocessing technique, that
produces the best results more often than the worst.

• One year with dropping non-forecast data and three years with corr < 0.05 show
the best results as often as the worst.

• Three years with dropping non-forecast data and one year with corr < 0.05 result
in the worst MSE values for more zones than in the best values.

Conclusion

• The combination of one year and dropping data with a correlation less than 0.1
shows the best ratio of best and worst MSE values.

• In the following tests, the focus will be on models that use one year of data and
dropped columns with less than 0.1 correlation to all outputs.

4.3.2. Test 2: MO vs SO model comparison

The assessment of the MO models depends on the results of the SO models. Test 2
aims to determine how the MO models perform compared to the SO models, given one
year of data and a correlation ≥ 0.1 to at least one output as the result of test 1.

Description

• The average MSE values for the MO and SO models of all zones is shown in
figure 14. For all other preprocessing options considered, there are equivalent
figures in appendix C.

• Figure 14b shows the plot of 14a with a logarithmic y-scale, to visualize the
differences between the MO and SO results, even for especially low MSE values.

Analysis

• For both MO and SO the worst results are visible in zone 5.
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Figure 14: Comparison of MO and SO average MSE values over all outputs of all zones
using 1 year of data and dropping columns with a correlation less than 0.1
to all outputs

• In zones 0, 2, 4, 8 and 22 the SO models achieved significantly better results than
the MO models.

• In zones 1, 5, 10, 12 and 20 the MO models achieved significantly better results
than the SO models.

• Zones 3, 7, 9, 11, 13, 14, 15, 16, 17, 18, 21 and 23 show similar results regarding
MO and SO MSE values.

• Especially zone 12 shows a large improvement in the MO models.

Conclusion
Since in most zones the losses are very similar, sometimes even better with MO, con-
verting to MO would be useful for this preprocessing combination.

4.3.3. Test 3: Zone MO comparison

In order to investigate the cause of the strong deviation of the results, we compare in
test 3 a zone with particularly good and a zone with particularly poor results in the
models that require one year of data and a correlation over 0.1.
For this purpose, we first look at the number of inputs and outputs as well as the
share of the outputs in the data. Equivalent figures for other preprocessing methods
are shown in appendix B.
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Figure 15: Number of in-/outputs when considering one year and dropping data with
a correlation less than 0.1 to all outputs
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Figure 16: Percentage of outputs in data

Description

• Figure 15a depicts the number of inputs of each zone. In most cases, the number
is between 8 and 15, with deviations in zones 9 and 10.

• The number of outputs is shown in figure 15b. The median is 2 with little
variation in some zones. Especially zones 5 and 22 deviate strongly upwards.

• The share of outputs in the data is shown by figure 16. There is considerable
variation in the height of the bars.
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Analysis

• Zone 16 is one of the zones with the fewest inputs.

• Zone 5 is a medium zone in terms of the number of inputs.

• The number of outputs in zone 16 average.

• Zone 5 has by far the most outputs.

• About one fifth of the data in zone 16 are outputs.

• More than one third of the data in zone 5 are outputs.

• A theory could be that Zone 5 could address Volume of the challenges considered
in section 2.1.2.3, but since the SO results are even worse for this zone, this theory
is most likely not the underlying issue.

Conclusion

• Both the number of outputs and the percentage of outputs in the data seem to
affect the outcome.

• It appears that the number of inputs has no significant influence as such.

Since we have only considered the average MSE values so far, we now examine the
MSE values of the individual outputs to assess whether the high or low MSE value is
produced by all or several or only one output.

Description

• Graphs 17 and 18 show the MSE value for each output of the selected zones and
models. Equivalent plots for all other zones can be found in Appendix D.

• Zone 5 has nine outputs and for each of these outputs the MO and SO MSE
values are represented by bars.

• In the case of zone 16, there are two outputs and the MSE value of the MO and
the SO model is shown.

Analysis

• Some outputs of zone 5 belong to ventilation system volume flow, but although
these should therefore represent similar data, 1a and 2c give good results but 2b
and 2a give poor results.

• In most cases of zone 5, SO and MO have either both high or both low MSE
values. The exception is Ventilation system RLT volume flow release, where the
SO MSE is significantly less than the MO MSE.
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Figure 17: MSE values of zone 5 with logarithmic scale

• All outputs in zone 16 have very low MSE values (∼≤ 0.04).

• All MO MSE values of zone 16 are below 0.01.

• One output has a higher MSE value for the MO model of zone 16, the other has
a higher MSE value for the SO model.

• The difference in MSE values of zone 16 between MO and SO are more pro-
nounced in the case where the MO MSE is better.

Conclusion

• The outputs of zone 5 do not deliver equally bad results.

• Losses are very different across similar data.
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Figure 18: MSE values of zone 16 with logarithmic scale

• For zone 16, all outputs achieve good results.

One factor that has a major impact on the quality of the results is the assessment of
the training process to determine any over- or underfitting (2.1.2.2). For this purpose,
the loss of the training data is depicted for each training period (epoch). For MO
models, this means that the loss is calculated on average over all outputs. In addition,
there is validation data, in our case the test data, for which the loss was also calculated
in each epoch. However, the validation data has no influence on the model, so it is not
used for the training itself. The illustrations of all history can be found in Appendix E.
In more detail, we examine the history for zones 5 and 16, which are located in figures
64 - 67 and 85 - 86. The different scales of the y-axes should be noted.
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Figure 19: MO history for zones 5 and 16

Description

• The MO losses of the training and validation data over 1900 epochs is depicted
in figure 19a.

• Graphic 19b visualizes the MSE values of zone 16 for all epochs.

Analysis

• For both the test and the validation data of zone 5 the final loss is high. This
may indicate underfitting, which is not the case here.

• The validation data of zone 5 shows an upward trend. Together with the constant
tendency of the training data, this rather speaks against underfitting and is a
clear sign that the model has adapted too much to the training data and thus does
not deliver good results for unknown data. This is therefore a case of overfitting.

• The fact that the loss of training data in zone 5 is so high despite overfitting
suggests that the model may not be suitable for reproducing this data.

• In zone 16 it is visible that both data sets ultimately have low losses and develop
a constant tendency. Hence there is neither overfitting nor underfitting.

Conclusion

• Overfitting with nevertheless high losses can be observed in zone 5.

• An ideal training process can be seen in zone 16.
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An assessment of the associated SO models with regard to over- and underfitting,
including a brief justification, can be found in table 3.

Zone Output Assessment Reason

5

Ventilation ... 1b Overfitting Rising validation loss
heating ...
mass flow

Neither Both constant low losses

Ventilation ... 2c Unsuitable model Both constant high losses
Ventilation ... 1a Unsuitable model Both constant high losses
Ventilation ... 2b Unsuitable model Both constant high losses

Ventilation ...
release

Neither Both consistently low losses

Ventilation ... 2a Overfitting Rising validation loss,
decreasing traing loss

Heating ...
temperature

Overfitting Low training losses, high
validation losses

Ventilation ...
temperature

Neither Both consistently low losses

16
Cooling ...
temperature

Tendency towards
overfitting

Both low losses, validation
loss rising trend

Cooling ...
mass flow

Neither Both consistently low losses

Table 3: Evaluation of over- and underfitting for zones 5 and 16

Conclusion

• The cause of high MSE values can usually be attributed to a subset of the outputs.

• There is a possibility that the magnitude of the loss is related to the number and
proportion of outputs.

• In the case of zone 5, the results are poor due to an incompatibility with the
model, which leads to overfitting with high MSE values.

4.3.4. Test 4: MO evaluation

So far, we have primarily looked at how well the overall combination of preprocessing
and one model works for the different zones. In this test we want to take a look at
how well the data can be represented by this one model, independent of the exact
preprocessing method.
For this purpose, we first have illustrated the minimum MSE values (figure 20). Be-
tween the zones, as well as between MO and SO, there is no separation by preprocessing
method.
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Figure 20: Minimal MSE values of all zones

Description

• Minimal MSE values from all of our selected preprocessing methods are shown
in figure 20a with linear scaling.

• In order to allow the assessment of low MSE values, the minimum losses are
presented with logarithmic scaling in figure 20b.

• There is one bar per zone for the minimum MO and for the minimum SO values.

Analysis

• There are considerably higher minimum possible MSE values for zone 5 than
for the other zones, which supports the thesis that the chosen model is not an
adequate model for the data of the zone.

• The minimum possible MSE values are very similar for the MO and SO models.

• 14 out of 23 models have very low minimum losses.

Conclusion

• It can be seen that although for some zones the minimum possible MSE values
of the model are high, most zones provide good MSE values by means of varying
preprocessing options.

• Given the very similar minimal results, with the right choice of preprocessing
MO models offer a good alternative to SO models.
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In order to enable a reliable comparison of the minimum MSE values between the MO
and SO models, we look at the difference between these values in more detail below.
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Figure 21: Difference of MO and SO MSE values with different y-scales

Description

• Figure 21a calculates the difference of the minimal MO MSE and minimal SO
MSE values.

• A bar pointing downwards indicates a higher SO MSE, whereby the MO model
gives better results. Similarly, a bar pointing upwards indicates a better SO
model.

• An equivalent to graph 21a is provided by graph 21b with logarithmic scaling.

Analysis

• Zones 4 and 5 have the strongest spikes, with zone 4 having a better SO and
zone 5 a better MO model.

• Zones 0, 12, 18, 21 and 22 also still have relatively legible trends, which suggest
better MO models.

• Zones 1, 2, 4, 7, 15 and 23 show a trend towards SO models, albeit often minimal.

• A trend towards MO models is shown by zones 0, 3, 5, 8, 11, 12, 13, 14, 18, 20,
21 and 22.

• Even with a logarithmic y-scaling, zones 9, 10, 16 and 17 do not show a well
distinguishable difference between the MO and SO model results.
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Conclusion

• Most zones achieve better results with MO models than with SO models.

• The difference between MO and SO is usually minimal when SO is better.

Since the peaks are not in relation to the MSE values, the difference of the MSE values
seems greater in e.g. zone 5 than it does when comparing the MSE values themselves.
Therefore we also visualized the proportion of MO MSE values in the SO MSE values
(figure 22).
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Figure 22: Share of MO MSE values in SO MSE values

Description

• Figure 22 displays points for the diversion of the MO by the SO MSE values for
each zone.

• Values below one suggest better MO model results, while values higher than one
express better SO MSE values.

• The farther away the dot is from one, the greater is the difference between MO
and SO MSE values in relation to the level of the MSE values.

Analysis

• In comparison to figure 21 the peak of zone 5 is much less.

• The highest peak is produced by zone 17, which tends to SO.
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• Zones 9, 10 and 16 show better MO MSE values than SO MSE values.

Conclusion

• Most zones show better results for MO Models.

• The relative difference of the results is mostly higher when the SO models produce
better results.

4.3.5. Test 5: Pattern evaluation

In the final test, we want to look for patterns across all preprocessing methods, datasets
and zones. To this end, we have created a heatmap, and the creation process of this
heatmap is shown in figure 23.
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Figure 23: Procedure for creating the pattern heatmap

• General information such as the number of inputs, outputs and training data, as
well as the share of outputs in the data have been summarised.

• Average MSE values of the training and test data were compiled for all MO and
SO models respectively.

• To include the influence of correlations, we have
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– divided each heatmap into the correlations of outputs to outputs, inputs to
outputs and inputs to inputs.

– specified the intervals [0, 0.5), [0.5, 0.8) and [0.8, 1] for out-out and in-out
correlations and the intervals [0, 0.5) and [0.5, 1] for in-in correlations.

– counted how often the correlations in the respective areas lie in the corre-
sponding intervals. The diagonal was not integrated.

• In the end all collected data was combined for all preprocessing options.

• The corresponding heatmap is shown in figure 24.
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Figure 24: Pattern for all preprocessing methods
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Description

• Figure 24 is a heatmap of the elements from which we want to derive a pattern.

• High negative correlations do not occur, so a focus on positive values is sufficient.

• Groups of high correlations are indicated by their dark blue colour.

Analysis

• There is a significant correlation between the MSE values and the number of very
high correlations between outputs. It is important to note that the correlation
with the SO MSE values (0.77, 0.88) seems to be slightly higher than with the
MO MSE values (0.67, 0.82).

• The number of low correlations between inputs and outputs, also has a percepti-
ble relationship with the results (0.67, 0.74). Medium-high correlations also have
a relatively high correlation to the results (0.5, 0.55), only the number of very
high correlations does not seem to have a significant influence, which could also
be due to the possibly very low number of very high correlations.

• In general, the number of training data and inputs does not seem to have a
perceptible effect on the average MSE values either, which fits to the results
from 4.3.1 that none of the preprocessing methods provide ideal results for all
zones.

• The correlations between the inputs do not seem to have an explicit influence on
the MSE values.

• With a correlation between 0.6 and 0.76, the number of outputs, as well as the
share of outputs in the total data, offer an aspect that seems to have an influence
on the MSE values.

• The similarity between the MO and SO models is supported by the fact that the
correlation between the MO and the SO MSE values is 0.82.

• A generally good sign for the reliability of the models is the correlation of 0.84
and 0.89 between the training and test MSE values of the models.

Conclusion

• There is a significant correlation between the MSE values of the models and the
number of high correlations between outputs and between inputs and outputs.

• Another relevant factor seems to be the number of outputs, although there is
also a high correlation with the SO MSE values, which reduces the weighting of
this correlation.
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5. Conclusion and Future Work

5.1. Conclusion

In the course of this work, we have addressed the questions of the extent to which
a single model architecture is applicable to different building zones and whether SO
models can be replaced by MO models.

• Using one preprocessing method and one model for all zones does not give ideal
results and no preprocessing method is significantly better than the others. One
year’s data with forecasts instead of real weather data and a correlation of at
least 0.1 from each input to at least one output still shows the best results most
of the time, but also with one other preprocessing method the most poor results.

• It depends strongly on the zones how well the MO models represent the different
outputs. There are zones that have better MO models as well as zones that have
better SO models. For some zones, the results are quite similar.

• Comparing the best MO and SO models, it became clear that for some zones
the model itself is not suitable for representing the data. The MO models most
often provide the better models, but the relative difference is greatest when the
SO models perform best.

• There is a significant correlation between the MSE values of the models and the
number of high correlations between outputs and between inputs and outputs.
Another relevant factor seems to be the number of outputs, although there is
also a high correlation with the SO MSE values, which reduces the weighting of
this correlation.

All in all, we have seen success in using MO models. Two thirds of the zones show better
minimal results with MO models and apart from one zone the absolute differences
between the other MO and SO results are marginal. Finding a preprocessing method
that gives good results with the given model for all zones may not have had conclusive
success, but the model itself seems to work for most of the zones.

5.2. Future Work

In the future, it would make sense to evaluate:

• How well a different model could represent the data.

• To what extent other correlation methods such as Spearman are suitable for
preprocessing.

• Whether another assessment method such as cross-validation would be more
appropriate.
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• If other patterns can be discovered.

The GUI could be extended to include related functions, where one can select the type
of correlation or the model itself, i.e. number of layers, nodes and type of model.
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A. Models
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Figure 25: Exemplary MO model structure for zone 0 where too many nodes are shown
in reduced number and noted in the margin
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Figure 26: Exemplary SO model structure for zone 0 where too many nodes are shown
in reduced number and noted in the margin
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B. Data evaluation
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Figure 27: Comparison number of training samples of the zones after dropping non-
forecast data
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Figure 28: Comparison number of inputs of the zones after dropping non-forecast data
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Figure 29: Comparison number of inputs of the zones after dropping non-forecast data
and data with no correlation >0.05 to at least one output
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Figure 30: Comparison number of inputs of the zones after dropping non-forecast data
and data with no correlation > 0.1 to at least one output
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Figure 31: Comparison number of outputs of the zones
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C. MO SO evaluation
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Figure 32: Comparison of MO and SO average MSE values over all outputs of all zones
after dropping non-forecast data
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Figure 33: Comparison of MO and SO average MSE values over all outputs of all zones
after dropping non-forecast data and data with no correlation > 0.05 to at
least one output
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Figure 34: Comparison of MO and SO average MSE values over all outputs of all zones
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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D. Zone MSE evaluation
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Figure 35: MSE values of each output of zone 0 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 36: MSE values of each output of zone 1 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output

61



Ve
nt

ila
tio

n_
sy

st
em

_s
up

pl
y_

ai
r_

te
m

pe
ra

tu
re

Ve
nt

ila
tio

n_
sy

st
em

_v
ol

um
e_

flo
w_

re
le

as
e

In
di

vi
du

al
_r

oo
m

_c
on

tro
l_h

ea
tin

g_
cir

cu
it_

ro
om

_t
em

pe
ra

tu
re

_b
as

ic_
se

tp
oi

nt

Output

0.0
2.5
5.0
7.5

10.0
12.5
15.0

M
SE

Comparison MO/SO MSE
MO
SO

Figure 37: MSE values of each output of zone 2 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 38: MSE values of each output of zone 3 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 39: MSE values of each output of zone 4 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 40: MSE values of each output of zone 7 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 41: MSE values of each output of zone 8 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 42: MSE values of each output of zone 9 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 43: MSE values of each output of zone 10 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output

68



Co
ol

in
g_

cir
cu

it_
ce

ilin
g_

flo
w_

te
m

pe
ra

tu
re

Co
ol

in
g_

cir
cu

it_
ce

ilin
g_

di
st

rib
ut

or
_m

as
s_

flo
w

Output

0.00

0.05

0.10

0.15

0.20

M
SE

Comparison MO/SO MSE
MO
SO

Figure 44: MSE values of each output of zone 11 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 45: MSE values of each output of zone 12 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 46: MSE values of each output of zone 13 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 47: MSE values of each output of zone 14 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 48: MSE values of each output of zone 15 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 49: MSE values of each output of zone 17 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 50: MSE values of each output of zone 18 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 51: MSE values of each output of zone 20 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 52: MSE values of each output of zone 21 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 53: MSE values of each output of zone 22 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 54: MSE values of each output of zone 23 when considering 1 year of data and
after dropping non-forecast data and data with no correlation > 0.1 to at
least one output
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Figure 55: MO training history of zone 0 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Heating circuit heater massflow
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(b) Ventilation system supply air temperature chute
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(c) Heating circuit heater flow temperature

Figure 56: SO training history of zone 0 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 57: Training history of zone 1 when considering 1 year of data and after dropping
non-forecast data and data with no correlation > 0.1 to at least one output
(only one output)
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Figure 58: MO training history of zone 2 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Ventilation system supply air temperature
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(b) Individual room control heating circuit
room temperature basic setpoint
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(c) Ventilation system volume flow release

Figure 59: SO training history of zone 2 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 60: MO training history of zone 3 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Heating circuit floor FBH mass flow
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(b) Heating circuit floor FBH flow temperature

Figure 61: SO training history of zone 3 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 62: MO training history of zone 4 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Heating circuit mass flow
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(b) Heating circuit pharmacy flow temperature

Figure 63: SO training history of zone 4 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 64: MO training history of zone 5 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Ventilation volume flow 1b
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(b) Heating circuit heater 1 mass flow
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(c) Ventilation system volume flow 2c

Figure 65: SO training history of zone 5 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output

90



0 250 500 750 1000 1250 1500 1750
Epoch

2000

2500

3000

3500

4000

Lo
ss

loss
validation loss

(a) Ventilation system volume flow 1a
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(b) Ventilation system volume flow 2b
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(c) Ventilation system RLT volume flow release

Figure 66: SO training history of zone 5 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Ventilation system volume flow 2a
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(b) Heating circuit heater 1 flow temperature
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(c) Ventilation system RLT supply air temperature

Figure 67: SO training history of zone 5 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 68: MO training history of zone 7 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Ventilation system RLT volume flow release1

0 250 500 750 1000 1250 1500 1750
Epoch

0

50

100

150

200

250

300

350

Lo
ss

loss
validation loss

(b) Ventilation system RLT supply air temperature

Figure 69: SO training history of zone 7 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 70: MO training history of zone 8 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Ventilation system volume flow release
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(b) Ventilation system supply air temperature R
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(c) Ventilation system supply air temperature A

Figure 71: SO training history of zone 8 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 72: MO training history of zone 9 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Radiation loop massflow
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(b) Reheat loop massflow

Figure 73: SO training history of zone 9 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 74: MO training history of zone 10 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Radiation loop massflow
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(b) Reheat loop massflow

Figure 75: SO training history of zone 10 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 76: MO training history of zone 11 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Cooling circuit ceiling distributor mass flow
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(b) Cooling circuit ceiling flow temperature

Figure 77: SO training history of zone 11 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 78: MO training history of zone 12 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Floor activation FBH mass flow
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(b) Floor activation FBH forecast temperature

Figure 79: SO training history of zone 12 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 80: MO training history of zone 13 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Cooling circuit flow temperature
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(b) Cooling circuit mass flow

Figure 81: SO training history of zone 13 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 82: MO training history of zone 14 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Climate sensor RBG basic setpoint room temperature
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(b) Climate sensor presence

Figure 83: SO training history of zone 14 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 84: Training history of zone 15 when considering 1 year of data and after drop-
ping non-forecast data and data with no correlation > 0.1 to at least one
output (only one output)
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Figure 85: MO training history of zone 16 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Cooling circuit component activation flow temperature
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(b) Cooling circuit activation mass flow

Figure 86: SO training history of zone 16 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 87: MO training history of zone 17 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Cooling circuit activation mass flow
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(b) Cooling circuit component activation flow temperature

Figure 88: SO training history of zone 17 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 89: MO training history of zone 18 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Heating circuit heater mass flow
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(b) Ventilation system volume flow
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(c) Ventilation system supply air temperature

0 250 500 750 1000 1250 1500 1750
Epoch

250

500

750

1000

1250

1500

1750

2000

2250

Lo
ss

loss
validation loss

(d) Heating circuit heater flow temperature

Figure 90: SO training history of zone 18 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 91: MO training history of zone 20 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Heating circuit heater mass flow
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(b) Heating circuit heater flow temperature

Figure 92: SO training history of zone 20 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 93: MO training history of zone 21 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Heating circuit mass flow
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(b) Ventilation system RLT volume flow release
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(c) Heating circuit flow temperature
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(d) Ventilation system RLT supply air temperature

Figure 94: SO training history of zone 21 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 95: MO training history of zone 22 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Cooling circuit ceiling flow temperature
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(b) Heating circuit wall flow temperature
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(c) Heating circuit wall mass flow

Figure 96: SO training history of zone 22 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Cooling circuit wall mass flow
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(b) Ventilation system supply air temperature
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(c) Ventilation system supply air temperature.1

Figure 97: SO training history of zone 22 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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Figure 98: MO training history of zone 23 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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(a) Component activation flow temperature
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(b) Component activation mass flow

Figure 99: SO training history of zone 23 when considering 1 year of data and after
dropping non-forecast data and data with no correlation > 0.1 to at least
one output
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F. Heatmaps

Figure 100: Colorbar for all heatmaps
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Figure 101: Visualization of Correlations between data for zone 0
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Figure 102: Visualization of Correlations between data for zone 1
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Figure 103: Visualization of Correlations between data for zone 2
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Figure 104: Visualization of Correlations between data for zone 3
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Figure 105: Visualization of Correlations between data for zone 4
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Figure 106: Visualization of Correlations between data for zone 5
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Figure 107: Visualization of Correlations between data for zone 7
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Figure 108: Visualization of Correlations between data for zone 8
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Figure 109: Visualization of Correlations between data for zone 9
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Figure 110: Visualization of Correlations between data for zone 10
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Figure 111: Visualization of Correlations between data for zone 11
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Figure 112: Visualization of Correlations between data for zone 12
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Figure 113: Visualization of Correlations between data for zone 13
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Figure 114: Visualization of Correlations between data for zone 14
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Figure 115: Visualization of Correlations between data for zone 15
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Figure 116: Visualization of Correlations between data for zone 16

141



Co
ol

in
g_

cir
cu

it_
ac

tiv
at

io
n_

m
as

s_
flo

w
Co

ol
in

g_
cir

cu
it_

co
m

po
ne

nt
_a

ct
iv

at
io

n_
flo

w_
te

m
pe

ra
tu

re
Te

m
pe

ra
tu

re
_f

or
ec

as
t_

in
_C

el
siu

s
Cl

im
at

e_
pr

of
ile

_m
in

_t
em

pe
ra

tu
re

Cl
ou

d_
co

ve
ra

ge
_f

or
ec

as
t

Re
la

tiv
e_

hu
m

id
ity

_f
or

ec
as

t
W

in
d_

di
re

ct
io

n_
fo

re
ca

st
Fo

re
ca

st
_w

in
d_

sp
ee

d
De

w_
po

in
t_

fo
re

ca
st

_in
_C

el
siu

s
Cl

im
at

e_
pr

of
ile

_m
ax

_t
em

pe
ra

tu
re

Fo
re

ca
st

_e
ffe

ct
iv

e_
clo

ud
_c

ov
er

Un
it_

lo
ad

Gl
ob

al
_r

ad
ia

tio
n_

fo
re

ca
st

M
on

th
Da

y
Ho

ur
M

in
ut

e

Cooling_circuit_activation_mass_flow
Cooling_circuit_component_activation_flow_temperature

Temperature_forecast_in_Celsius
Climate_profile_min_temperature

Cloud_coverage_forecast
Relative_humidity_forecast

Wind_direction_forecast
Forecast_wind_speed

Dew_point_forecast_in_Celsius
Climate_profile_max_temperature

Forecast_effective_cloud_cover
Unit_load

Global_radiation_forecast
Month

Day
Hour

Minute

Figure 117: Visualization of Correlations between data for zone 17
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Figure 118: Visualization of Correlations between data for zone 18
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Figure 119: Visualization of Correlations between data for zone 20
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Figure 120: Visualization of Correlations between data for zone 21
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Figure 121: Visualization of Correlations between data for zone 22
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Figure 122: Visualization of Correlations between data for zone 23
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