
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF COMPUTER SCIENCE THESIS

AUTOMATED EXERCISE GENERATION FOR THREE

SELECTED SATISFIABILITY CHECKING PROCEDURES

Maria Kazantzi

Examiners:
Prof. Dr. Erika Ábrahám

Additional Advisor:
Prof. Dr. Ulrik Schroeder

Aachen, March 21, 2022

Abstract

For this thesis, an application has been created in order to generate exercises

for the students. These exercises aim to help the students practise with satis-

�ability checking. The methods that have been used for satis�ability checking

are SAT, Fourier-Motzkin variable elimination and Virtual Substitution. In the

following chapters, there will be further explanation regarding my criteria for

creating a task and how the solutions should be like. De�nitions of all the men-

tioned terms will be speci�ed. Some related tools regarding SAT solvers have

been found and are used for comparison with the algorithm used for this thesis.

Furthermore, the exact implementation will be described by using UML dia-

grams of all the three methods and pointing out the most important functions

that are implemented. The aim of this thesis is to mention the aspects of how

to create good and pedagogical exercises for students. The application has been

sent to some students that are currently taking part in the lecture "Satis�ability

Checking" or are already familiar with satis�ability checking and were asked for

a feedback. The results of the evaluation are mentioned at the end of the thesis

in order to show what was achieved.

iv

Acknowledgments

First of all, I would like to thank my family and friends who were always there for me
and supported me throughout my whole bachelor. Special thanks to my supervisor
Prof. Dr. Erika Abraham, who was always reachable and available to help me with all
kind of questions and for introducing me to this bachelor thesis thema. Furthermore, I
would like to thank Prof. Dr. Ulrik Schroeder who accepted to be the second reviewer
of my thesis. Lastly, thank you to all my friends who helped with proof reading and
to those who took part in the evaluation and made suggestions to improve this thesis.

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Related Work . 8

2 Basics 11
2.1 Criteria for Exercise Generation . 11

2.1.1 Problem . 11
2.1.2 Task Formulation . 11
2.1.3 Solution . 12

2.2 De�nitions . 13
2.2.1 SAT Algorithm . 13
2.2.2 Fourier-Motzkin Variable Elimination 15
2.2.3 Virtual Substitution . 16

3 Methodology 21
3.1 SAT . 21
3.2 Fourier-Motzkin . 21
3.3 Virtual Substitution . 21

4 Implementation 23
4.1 Class Hierarchy . 23
4.2 SAT Framework . 27
4.3 Fourier-Motzkin Framework . 29
4.4 Virtual Substitution Framework . 33

5 GUI 39

6 Evaluation 41

7 Conclusion 43
7.1 Summary . 43
7.2 Future Work . 43

8 Virtual Substitution Rules 45

Bibliography 47

vi Contents

Chapter 1

Introduction

In theoretical computer science and mathematical logic, the satis�ability problem is
the problem to decide whether a given formula is satis�able, i.e. whether there exists
a model that satis�es the given formula. One of the most known open problems in
computer science is, whether the satis�ability problem of propositional logic (SAT)
can be solved in polynomial time. More speci�c, if the formulas in CNF 2.2.1 can
be solved in polynomial time. P is the class of the problems that are solvable in
a polynomial time. By polynomial time we mean that the number of the Turing
machine's steps to solve a formula is bounded by a polynomial in the input length.
Nondeterministic polynomial (NP) is the set of problems that the solution of the
individual problems can be veri�ed in a polynomial time. NP includes all the problems
of P, since they can be solved in a polynomial time. This is because in the NP class
are all the problems that can be checked in polynomial time. Since problems in
P can be solved in polynomial time, checking is achieved by simply computing the
result. SAT can be solved in exponetial time by brute forcing all possible variable
assignments. This is possible for example, by creating a truth table. An assumption
in computer science is that, no algorithm exists which solves SAT in a polynomial
time and therefore, the problem lays only in the NP class and not in P.
The SAT problem is about a given propositional logic formula and the question,
whether this formula evaluates to true or false, after assigning all the variables in the
formula. SAT was the �rst problem whose NP-completeness has been proven [Tov84].
NP-complete is a class of problems. If the solution of one of the problems in the class
can be quickly computed then all the problems in the set can be quickly solved.
The second method used for satis�ability checking is the Fourier-Motzkin variable
elimination. This is a mathematical algorithm which eliminates variables one by one
from a system of linear inequalities [HLL90]. By using this method and repeating the
process, it is possible to obtain a system with at most one variable and we can see
whether the whole system has a solution or not.
Virtual Substitution is another method to check for satis�ability. It is similar to the
Fourier-Motzkin method but with quanti�er elimination.
In the scope of this work, solvers for each will be introduced. The goal of this thesis is
to create understandable and interesting exercises for students, either for examination
or practise. By using the programming language C++, an application for the students
has been created. The programming language C++ has been chosen, because it has
higher performance and modules, such as z3 1.2 that can be used to verify the results.

8 Introduction

To achieve a better interaction between the students and tasks, a GUI has been
developed. Other possibilities were to create a pdf or website. The used library for
creating such an interface was Qt, because i was able to create a user interface for
both operating systems.

1.1 Motivation

This application helps the students to practise their knowledge in satis�ability check-
ing while using these three methods. The students should use the whole algorithms
mentioned in the lecture "Satis�ability Checking" [ÁK16] in order to be able to solve
some of the tasks. For other tasks, just a partial question is asked. They have the
possibility to choose how di�cult a task should be. In this way, they can practise
exercises from easy to di�cult. Also, the solutions are shown to help the students un-
derstand all the important steps of the solutions. This is the most important aspect,
as the students learn from the solutions.

1.2 Related Work

As far as related work is concerned, the z3 tool is used for analysis of systems [DMB08].
Z3 is also known as Theorem Prover, which is a solver created by Microsoft. This
tool was developed in order to solve problems that appear in software veri�cation
and analysis. Z3 is a high-performance tool used for satis�ability modulo theories
(SMT). The solver uses a simpli�er at the beginning [DMB08]. The simpli�er applies
standard algebraic reduction rules and reduces as much as possible the formulas that
were given as inputs. This for instance, does not happen to the solvers that were im-
plemented for this thesis. All the input formulas are already merged and they can not
be more simpli�ed. One resemblance with the implemented SAT algorithm is that,
z3 is also based on a DPLL SAT solver that is able to handle equalities [DMB08].
Additionally, it uses the method of two-watched literals for propagation as well. In
case of con�ict, z3 resolves it by performing backtracking. Lastly, it returns models
for formulas that are satis�able and proof for unsatis�able formulas. One di�erence
is that z3 handles also bit-vectors and arrays.
Another relevant tool is CVC4. This shortcut stands for Cooperating Validity Checker.
It is based on the lazy DPLL algorithm [BCD+11]. By using the CVC4 tool, it is
possible to run a number of di�erent threads at the same time. Interruption of the
operations is possible, if results from other threads make them irrelevant. It can be
used to prove the satis�ability of �rst-order formulas. Both solvers can be used in the
C++ API and support real numbers.
Another related solver is SMTInterpol [CHN12]. Also this tool is based on the DPLL
algorithm, but the backtracking is not necessarily chonologically. In the algorithm
for this thesis the backtracking is possible only chronological. This means, that only
steps backwards according the order are possible. For satis�able formulas, models
are returned. Otherwise, it produces resolution proofs. SMTInterpol and CVC4 are
based on the simplex method, in the domain of theory solver for linear arithmetic.
Until now, there is a simplex solver as a known tool that generates exercises and
solves them by using the simplex method. It is a pivot tool that can be used to
solve linear programming problems. Other than that, there are currently no available

Related Work 9

tools that use SAT, Fourier-Motzkin and Virtual Substitution as methods for exercise
generation and solving.

10 Introduction

Chapter 2

Basics

2.1 Criteria for Exercise Generation

The exercises that are being generated must satisfy certain quality criteria. These
criteria are according to the problems, the task formulations and solutions that are
provided afterwards to the students, in order to be pedagogically useful.

2.1.1 Problem

The decision of the tasks should be whether they are relevant and meaningful for the
students to know this step of the process or not. Tasks must be easy to understand
and solvable. They should not be very complex, because the aim is to build up the
con�dence of the students about their knowledge. Another aspect is what exactly
should be asked. Because there are whole procedures for solving such exercises, if
only certain steps should be asked or the whole procedure. Moreover, if the questions
depend on following errors or not. The type of the exercise should also be taken into
consideration. Whether they are multiple choice, numerical answers or free text. This
aspect controls if the students can actually guess the answer or not.

2.1.2 Task Formulation

The questions should be presented in a way, so that they have the same syntax as
in the lecture of "Satis�ability Checking" [ÁK16]. This is in order to avoid any
misunderstandings and to be as intuitive as possible for the students. They should
always �t the level of knowledge of the students and demand what they have already
learnt. It is important that the exercises are fair among each other and that they take
the same amount of time from student to student, when the tasks are for examination.
It is desired, that the representation of the result of the exercise is simple and the
calculations are not that complex for the students. Lastly, the tasks must always be
clear and speci�c enough, so that the students know exactly what they are asked.
The same goes for how the students should type their answers. For example, how
many digits after a komma are needed when they write down their answer.

12 Basics

2.1.3 Solution

Just like tasks, solutions must also use the same syntax and algorithms as in the "Sat-
is�ability Checking" lecture [ÁK16]. An important aspect for the solutions is that,
the generated solutions should have a fair amount of steps, which clarify how the
outcome was calculated. The results of the program must always be correct and easy
to understand, in order to help the students learn correctly. Also, the solutions can
return a small feedback to the given answer with the aim to motivate the students.
Presenting de�nitions can be helpful in the explanation of a solution. Last but not
least, the answers should be undestandable and have all the possible ways of solutions.

To be fair, all students should receive individual exercises that need the same ef-
fort to be solved. Fairness is a major point in all of the three procedures that have
been implemented. There are two ways to achieve it:

1. Isomorphism: Here the task of each student looks di�erent but has exactly the
same functionality. Function to achieve this is the changeVariableName().
This function replaces a variable with another one.

Example:
(a ∨ b) ∧ (b ∨ c) ⇒ (a ∨ d) ∧ (d ∨ c)
In this case b is replaced by d.

Next function is the changePositions(). By using this function, the position
of the clauses can be swapped.

Example:
(a ∨ b) ∧ (b ∨ c) ⇒ (b ∨ c) ∧ (a ∨ b)

Lastly, for the Fourier-Motzkin and Virtual Substitution there is also the func-
tion reverseInequalities() that swaps the terms and reverses the symbol of
the inequality.

Example:
3 + 2y < 5 ⇒ 5 > 3 + 2y

2. Fairness based on method's characteristics. This aspect in SAT is based on the
number of decision levels and backtracks. If this is not the case, some students
will have to apply more algorithmic steps in order to reach the solution. In the
Fourier-Motzkin variable elimination method, fairness depends on the number
of variables and clauses. If a student has an exercise with 3 variables then
another student must have a similar amount of variables as well. In similar
way lays also the fairness for Virtual Substitution, as the fairness depends on
the amount of variables and clauses of the exercise. If that is not the case, the
e�ort for the speci�c exercise will not be the same, as the point of those type of
exercises is to eliminate the variables.

To create a task in Fourier-Motzkin with simple representable results and not complex
calculations, the function createGoodExercise() is called. Also, in exercises for
virtual substitution the function generateSquareTerm() is called, in order to create

De�nitions 13

a term with integer as solution of the roots. Their functionality will be explained in
the implementation Chapter 4.

2.2 De�nitions

In this part, basic de�nitions as well as the used methods will be explained in order
to help with the comprehension of the terms used in this paper.

2.2.1 SAT Algorithm

The input of this method is a propositional logic formula ϕ in conjunctive normal form
(CNF). CNF is a conjunction of one or more clauses, where a clause is a disjunction
of literals.

Example:
(A ∨ C) ∧ (B ∨ C ∨D) is in CNF.
(A ∧B) ∨ C is not in CNF.

For this thesis the DPLL algorithm was used [ÁK16]. In this algorithm the vari-
ables are getting assigned. An assignment of variable can either be with false or true.
Before explaining the algorithm, we have to make some status of the clauses clear,
that occure after assignment of variables.

Satis�ed: At least one literal in the clause is true.
Unsatis�ed: All literals in the clause are false.
Unit: All literals but one are assigned to false.
Unresolved: All the other cases.

The algorithm starts from the left of the formula and if it �nds a unit clause it
propagates. This means, it assigns the last unassigned variable of the unit clause in a
way such that the clause is ful�lled. The step of propagation uses unit clauses which
imply the consequences of decisions. Then it checks again in case of another unit
clause. If it is not the case, it assigns the �rst variable that has priority, depending
on the variable order that is given. The default value that is used, is false. Then
again, it checks whether there is a unit clause. The algorithm decides for all the
variables until a unit clause is found and propagates it so that the clause is ful�lled.
If there is a con�ict then it backtracks the last decision and reassigns the variable
that was last assigned, to the opposite value. Con�ict is when the current assignment
does not satisfy the formula. If the con�ict continues, the backtrack goes on until all
the possibilities are checked. If all the clauses of the formula are satis�ed, then the
algorithm returns satis�able. If backtrack and propagation are not possible anymore,
the algorithm returns unsatis�able for the current formula. In case of a con�ict in
decision level 0, the formula is unsatis�able and does not have a solution.

14 Basics

Example of propagation:
Given: Φ := ((A ∨B) ∧ (B) ∧ (¬B ∨ C)) with the static order A < B < C.

Assign B = true, because (B) is a unit clause:
Φ = ((A ∨ 1) ∧ (1) ∧ (¬1 ∨ C))
The clause (¬1 ∨ C) is a unit.
Assign C = true:
Φ = ((A ∨ 1) ∧ (1) ∧ (¬1 ∨ 1))
Assign A = false, because it is already satis�able and it is the default value:
Φ = ((0 ∨ 1) ∧ (1) ∧ (¬1 ∨ 1))
The resulting formula is Φ = (1 ∧ 1 ∧ 1) ≡ 1
The algorithm returns satis�able for this formula.
A solution is: A = 0, B = 1, C = 1.

First example of backtrack:
Given: Φ := ((B) ∧ (A) ∧ (¬A ∨ ¬B)) with the static order A < B < C.

Assign A = true, because (A) is a unit clause:
Φ = ((B) ∧ (1) ∧ (0 ∨ ¬B))
Assign B = true:
Φ = ((1) ∧ (1) ∧ (0 ∨ 0))
The third clause is unsatis�ed. This means we should backtrack the last decision
and reassign B = false:
Φ = ((0) ∧ (1) ∧ (0 ∨ 1))
Now the �rst clause is unsatis�ed. We backtrack again but because the value of B
was already switched, we reassign the value of A to false:
Φ = ((B) ∧ (0) ∧ (1 ∨B))
The second clause is unsatis�ed.
Because those were all the possibilities, the formula does not have a solution and the
algorithm returns unsatis�able.

De�nitions 15

Second example of backtrack:
Given: Φ := ((¬A ∨B) ∧ (B ∨ C ∨D)) with the static order A < B < C < D.

There is no unit clause from decision level 0, so A should be �rst assigned.
A is assigned to false, because of the default value.
Assign A = false:
Φ = ((1 ∨B) ∧ (B ∨ C ∨D))
Next priority has the variable B and it is assigned to default value:
Φ = ((1 ∨ 0) ∧ (0 ∨ C ∨D))
Priority has now C and it is assigned to false due to default value:
Φ = ((1 ∨ 0) ∧ (0 ∨ 0 ∨D))
Because the clause (0 ∨ 0 ∨D) is a unit, D is assigned to true:
Φ = ((1 ∨ 0) ∧ (0 ∨ 0 ∨ 1))
The resulting formula is Φ = (1 ∧ 1) ≡ 1
The algorithm returns satis�able for this formula.
A solution is: A = 0 , B = 0 , C = 0 , D = 1.

With the procedure of �nding and direct assigning the variable of a unit clause,
the algorithm is able to �nd mandatory assignments and therefore performs better
than a simple brute force algorithm.

2.2.2 Fourier-Motzkin Variable Elimination

Before explaining the Fourier-Motzkin variable elimination method, there is another
method that should be mentioned. The Gaussian method [Cha93] is also used for
variable elimination. It is an algorithm used for solving systems of linear equations.
It determines whether a system of linear real arithmetic equalities has a solution or
not.
On the other hand, the Fourier-Motzkin method is used to solve linear inequality
systems [HLL90]. By using this algorithm it can be decided if a given set of lin-
ear inequalities over the real numbers is satis�able. The basic idea of the variable
elimination is to eliminate the equality constraints with the Gaussian method and
then to pick a variable from the inequalities and eliminate it. To do this, we collect
requirements on the lower and upper bounds of the variable we want to eliminate.
Then all the lower bounds will be combined with all the upper bounds. With this
we are able to �nd the condition that we need. This means the lowest upper bound
combined with the highest lower bound. We repeat this process until all variables are
eliminated. Then, we have a system of constant inequalities, where it is trivial to see
whether the resulting system is true or false.

The inequalities are in the form: ∑n
j=1 aij · xj ≤ bi,

where aij and bi integer/rational constants,
xj variables,
and i the constraint's index.

16 Basics

After resolving for variable xn: ain · xn ≤ bi −
∑n−1

j=1 aij · xj

(a)
ain > 0
=====⇒ xn ≤ bi

ain
−
∑n−1

j=1
aij

ain
· xj upper bound

(b)
ain < 0
=====⇒ xn ≥ bi

ain
−
∑n−1

j=1
aij

ain
· xj lower bound

Example:
Given the following inequality system:
1. x+ 2y ≥ 3
2. y ≤ 5
3. x = 0

Gaussian elimination is applied:
(1),(3): 2y ≥ 3 (4)

Lower bound: y ≥ 3
2

Upper bound: y ≤ 5

(2),(4): y ≥ 3
2 ∧ y ≤ 5

After combining the bounds:
⇒ 3

2 ≤ 5

⇒ True
The algorithm returns satis�able.

It is possible that some variables do not have upper or lower bounds. In these
cases the variables have on the one side no bounds which means it is enough to just
choose a value that satis�es all inequalities where the variable appears.

2.2.3 Virtual Substitution

The Virtual Substitution method constructs a �nite set T ⊂ R of test candidates with
∃x1...∃xn ϕ ≡ ∃x1...∃xn−1

∨
t∈T ϕ[t//xn] for a real-algebraic formula ∃x1...∃xnϕ with

n > 0 and ϕ quanti�er-free [Ko²16]. [A//B] stands for virtually substituting A for B.
The �nite set T contains representative points from sign-invariant regions. In order
to compute these regions, we �rst need to �nd the real roots of univariate polynomials
[Akr80]. This is achieved by using solution equations, which exist up to polynomial
degree 4.

For a polynomial ax2 + bx+ c ∈ Z[x], the real roots in x are:

1. Constant in x: the real root is any real number, if a = 0 ∧ b = 0 ∧ c = 0

2. Linear in x: ξ0 = − c
b , if a = 0 ∧ b ̸= 0

3. Quadratic in x, �rst solution: ξ1 = −b+
√
b2−4ac
2a , if a ̸= 0 ∧ b2 − 4ac ≥ 0

4. Quadratic in x, second solution: ξ2 = −b−
√
b2−4ac
2a , if a ̸= 0 ∧ b2 − 4ac > 0

De�nitions 17

Example of real roots of univariate polynomial:
Given: 2x2 + 4x+ 2 = 0
Step 1: Calculate real roots.
Because a = 2 and b2 − 4ac = 42 − 4 · 2 · 2 = 0 ≥ 0, real quadratic roots exist. By
using the third point mentioned above, the result is −1.

x

y

(−1,0)
•

Figure 2.1: The real root of the polynomial 2x2 + 4x+ 2 = 0

Finding real roots of a variable is also possible with multivariate polynomials.
Multivariate means that we have polynomials with several variables. They can be
solved exactly like the univariate polynomials with polynomial coe�cients.

Example:
Given the polynomial 2yzx2 + 2zx+ 3y − 1 ∈ Z[y,z,x].
It will be considered like this: 2yzx2 + 2zx + 3y-1
Coe�cients of x: a = 2yz, b = 2z and c = 3y − 1

Up until now we have discussed how to describe real zeros with solution equations
but not how to solve constraints yet. The method compares a multivariate polynomial
to zero. We do not want to see if only the polynomial can get zero but whether a
certain sign =, <,>,≤,≥, ̸= can be satis�ed. The goal of the method is to check for
satis�ability and return a solution or an explanation if it is unsatis�able. There are
two di�erent cases for polynomial p. If it is constant or has no real zeros at all then
we know that its sign will not change in the whole R. Otherwise, if the polynomial is
not constant, we have real zeros as de�ned above and we can �nd the possible solution
intervals.

� If p = 0 then the interval we take is the zeros and the constant case (if a = b = 0)
where we may take any point from the R to check the sign. This can be done
by taking the interval (−∞,∞).

18 Basics

� If p < 0, p > 0 or p ̸= 0 then we take the opposite intervals. That means we do
not want to take the zeros because p = 0 is false.

� If p ≤ 0 or p ≥ 0 then the intervals are like the second case but with the zeros
included.

It is possible to have several polynomial constraints. In this case, we construct a
possible common solution interval. The problem is that we do not know the exact
endpoints of the intersections, but we can represent each candidate solution interval
by its leftmost point. If the interval is open, then we take the leftmost point plus a
very small value ϵ. For each constraint we add test candidates.

� p = 0, p ≤ 0, p ≥ 0 : We take each real zero of p and −∞

� p < 0, p > 0, p ̸= 0 : We take each real zero of p plus ϵ and −∞

Example of test candidates generation:
Given: 2x2 + 4x+ 2 = 0, eliminate x

According to step 1, real root of the polynomial is −1.
Step 2: Generation of test candidates.
First test candidate: −∞, for all the constraints.
Second test candidate: −1, without adding an ϵ as it is not a strict inequality.

For the �nal step the Virtual Substitution is used. We substitute the test can-
didates for each occurance of the current variable in the whole formula, which in
the example above is only one inequality. If we have more than one inequality, we
substitute and with operand OR we connect each resulting formula that comes after
substitution.
Here the standard substitution ϕ[t/x] can lead to formulas which contain ϵ, −∞, √

or division. Therefore, we use Virtual Substitution ϕ[t//x] that generates real al-
gebraic formulas which are semantically equivalent to the standard substitution but
do not contain the symbols above. To do this, there are some rules that de�ne the
instructions concerning the usage of virtual substitution from a test candidate into a
constraint. These rules are mention in the Chapter 8.

If the test candidate is a fraction, then we multiply every term of each inequal-
ity with the highest degree of the substituted variable that appears in every inequality.

E.g., it works as following for equalities (ax2 + bx+ c = 0) [qr//x]:

Quadratic:

= (ax2 + bx+ c)[
q

r
/x] · r2

= (a
q2

r2
+ b

q

r
+ c) · r2

= aq2 + bqr + cr2 = 0

(2.1)

De�nitions 19

Linear:

= (bx+ c)[
q

r
/x] · r1

= (b
q

r
+ c) · r1

= b · q + c · r = 0

(2.2)

This is only achievable because we have 0 on the right-hand side. Otherwise, the
multiplication is not possible.

Example of Virtual Substitution:
Step 3: Virtual substitution.

1. (2x2 + 4x+ 2 = 0) [-∞//x]
⇒ (2 = 0 ∧ 4 = 0 ∧ 2 = 0)
⇒ (False ∧ False ∧ False)
⇒ False

2. (2x2 + 4x+ 2 = 0) [−1//x]
⇒ (2 · (−1)2 + 4 · (−1) + 2 = 0)
⇒ 2− 4 + 2 = 0
⇒ True

⇒ False ∨ True
⇒ True

The algorithm returns satis�able for this formula.

Something important to point out, is the problem when the algorithm �nds a test
candidate with a root, that contains a di�erent variable. The implemented algorithm
is able to make calculations when there are only numbers in the root, but in case a
variable is included, it is impossible.

Solution:

Every term (ax2 + bx + c) [q+r
√
t

s //x] can be written in the form q̂+r̂
√
t̂

ŝ where
q,q̂,r,r̂,s,ŝ,t,t̂ the polynomials. Then the algorithm applies the Virtual Substitution
rules for root.
In case of p(x) = 0 it generates these two inequalities: (q̂r̂ ≤ 0 ∧ q̂2 − r̂2t = 0)

Explanation:

q̂+r̂
√
t

s = 0 ⇔ q̂ + r̂
√
t = 0

⇔ q̂r̂ ≤ 0 ∧ ∥q̂∥ = ∥r̂
√
t∥

⇔ q̂r̂ ≤ 0 ∧ q̂2 − r̂2t = 0

Depending on the inequality symbol, di�erent inequalities are created 8.3.

20 Basics

Example:
Given: Φ := ((x2 − 2x− y ≥ 0) ∧ (x ≥ 0)).

Real roots: 2+
√
4+4y
2 , 2−

√
4+4y
2 and 0.

Test candidates: 2+
√
4+4y
2 , 2−

√
4+4y
2 , 0 and −∞ for all constraints.

For this example we will only focus on the �rst test candidate 2+
√
4+4y
2 and

substitute it in the second inequality x ≥ 0.
Resulting inequality: 2+

√
4+4y
2 ≥ 0.

Now we substitute the variable y. We observe that it is in a root, so we apply the
transform root rules mentioned above.

Polynomials: q = 2, r = 1, t = 4 + 4y, s = 2
Inequalities: 2 · 1 ≤ 0 ∧ 22 − 1(4 + 4y) = 0 ⇒ 2 ≤ 0 ∧ −4y = 0

With the remaining inequalities we repeat the process of �nding real roots
and test candidates as known.

Chapter 3

Methodology

In this part, a rough introduction of the work will be described in order to have a
�rst overview on how each method works.

3.1 SAT

For the SAT exercises, the students have a choice of 3 di�culties (1-3). According to
the di�culties the algorithm chooses how many variables and clauses it can generate
for the current exercise. In order to solve this exercise, the class SATSolver is created.

3.2 Fourier-Motzkin

The Fourier-Motzkin variable elimination creates an exercise with the option to choose
a di�culty (1-3) as well. The number of variables and clauses of this exercise can be
adjusted according to the level of di�culty. The class FMSolver tries to solve the
given exercise.

3.3 Virtual Substitution

The students can choose for the Virtual Substitution exercises whether the exercise
will have one or two variables. Di�culty 1 has always one variable to substitute. Dif-
�culty 2 has sometimes one or two, whereas with di�culty 3 the program generates
exercises that include two variables. For such exercises, the class VSSolver is called
to solve the current task.

More details about the algorithms are explained in the next chapter.

22 Methodology

Chapter 4

Implementation

4.1 Class Hierarchy

Task

FourierMotzkin

+FormulaFM* getTaskFM()

+FormulaFM* getFairTask()

+bool getSolution(FormulaFM* exercise)

+FormulaFM* createGoodFormula()

SAT

+EntrySAT* getTask()

+EntrySAT* getFairTask()

+bool getSolutionS(EntrySAT* exercise)

+EntrySAT* getSpecifiedTask()

VirtualSubstitution

+FormulaVS* getTaskVS()

+FormulaVS* getFairTask()

enum Method

1. SAT
2. Fourier-Motzkin
3. VisualSubstitution

Figure 4.1: UML diagram for creating a task

24 Implementation

SAT

+EntrySAT* getTask()

+EntrySAT* getFairTask()

+bool getSolutionS(EntrySAT* exercise)

+EntrySAT* getSpecifiedTask()

EntrySAT

VariableSAT

-bool negationPresent

-char var

-int res

Clause

-std::vector<EntrySAT*> content

-OperantBoolean operant

SATSolver

-std::vector<SATTrailEntry*> trail

-int decisionLevel

-int backtrackAmount

-bool sat

+bool solve()

+bool BCP()

+bool decide()

+bool backtrack()

SATTrailEntry

-char var

-bool flagWasUsed

-bool value

enum OperantBoolean

1. AND
2. OR

Figure 4.2: UML for SAT

Class Hierarchy 25

FourierMotzkin

+FormulaFM* getTaskFM()

+FormulaFM* getFairTask()

+bool getSolution(FormulaFM* exercise)

+FormulaFM* createGoodFormula()

FormulaFM

-std::vector<Inequality*> content

-OperantBoolean operant = AND

Inequality

-bool isNegated

-std::vector<OperantFMIneq> operants

- std::vector<Term*> terms

Term

-std::vector<OperantFMCal> operants

-std::vector<Symbol*> symbols

Symbol

VariableValue

-int value

-char var

Number

-double num

FMSolver

+bool solve()

+FormulaFM* solveFormulaForChar()

+std::vector<Inequality*> collectUpperBounds()

+std::vector<Inequality*> collectLowerBounds()

+std::vector<Inequality*> unitBounds()

+std::vector<Inequality*> collectNoBounds()

+std::vector<Inequality*> combineBounds()

+Inequality* eliminateVariable()

+bool checkSAT()

+void solveEquality()

enum OperantFMIneq

1. SMALLER
2. GREATER
3. SMALLEQ
4. GREATEQ
5. EQUAL

enum OperantFMCal

1. PLUS
2. MINUS
3. MULT
4. DIV

Figure 4.3: UML for Fourier-Motzkin

26 Implementation

VSSolver

+bool solve()

+std::vector<TermVS*> findRealRoots()

+std::vector<TermVS*> findTestCandidates()

+FormulaVS* substitution()

+int checkSat()

VirtualSubstitution

+FormulaVS* getTaskVS()

+FormulaVS* getFairTask()

FormulaVS

-std::vector<EntryVS*> content;

-OperantBoolean operant = AND

ClauseOr

-std::vector<FormulaVS*> contentOR

-OperantBoolean operant = OR

EntryVS

InequalityVS

-std::vector<OperantVSIneq> operants

-std::vector<TermVS*> terms

TermVS

-std::vector<OperantVSCal> operants

-std::vector<SymbolVS*> symbols

SymbolVS

VariableValueVS

-int value

-char var

NumberVS

-double num

RootVS

-TermVS* term

enum OperantVSCal

1. PLUSvs
2. MINUSvs
3. MULTvs
4. DIVvs

enum OperantVSIneq

1. SMALLERvs
2. GREATERvs
3. SMALLEQvs
4. GREATEQvs
5. EQUALvs
6. UNEQAULvs

Figure 4.4: UML for Virtual Substitution

SAT Framework 27

4.2 SAT Framework

The class hierarchy of the SAT problem generator is illustrated as an UML diagram
in Figure 4.2.
SAT exercises are generated after the function getTask() is called. This function
creates a vector of clauses that are connected with operand AND. In the OR clauses
there is another vector of random chosen variables.
These have 3 characterics:

1. They can be either negated or not.

2. The name of the variable.

3. The res of the variable.

The res is used for the solution to see if the variable is assigned or not. If res = 1
then the variable is assigned to true. If res = 0 then the variable is assigned to false.
Otherwise, the default value of res is −1 when the variable is unassigned.
The result of the function is an EntrySAT. EntrySAT is a clause with variables or a
single variable. After creating the OR clauses the algorithm packs them all together
in another EntrySAT which in this case the operand is AND. This results into a con-
juctive normal form formula 2.2.1.

The function getFairTask() is able to take the current exercise and generate a sim-
ilar one. It randomly selects which action the algorithm must follow.

There are 3 possibilities:

1. Change of the positions of variables or clauses of the current exercise.

2. Change the name of the variable throughout the whole formula.

3. Both of the above.

The di�culty stays exactly the same as selected from the previous exercise, in order
to be fair.

Another function that needs to be explained is the getSpeci�edTask(). Here the
students have the opportunity to choose a number of decision levels, backtracks and
di�culties. By creating a fair task using this function, the number or decision levels
and backtracks must be approximately the same. Because the di�culty of the exercise
depends mostly on those two factors and both generated exercises should require the
same e�ort to be solved.

To solve a SAT exercise the class SATSolver is created. The function getSolutions()
tries to solve and give a solution for the given formula. The class SATSolver includes
a function called solve() which has as input the exercise that needs to be solved.

28 Implementation

This function looks like this:

Algorithm 1 solve(EntrySAT* exercise)

if !BCP(exercise) then
sat ← false;
return false;

end if

while true do
if !decide(exercise) then

sat ← true;
return true;

end if
while (!BCP(exercise)) do

if !backtrack(exercise) then
sat ← false;
return false;

end if
end while

end while
return false;

Let us now get in more detail about the three functions used in solve().

1. The BCP() function is for propagation. The algorithm start searching from left
to right for a unit clause that exists from the beginning. If it is the case, then
regardless the default value that has to be assigned to the variable, it assigns
it to true. Propagation only takes place when the clause is a unit. When from
a unit clause or more unit clauses the result is unsatis�able then the algorithm
returns directly unsatis�able for the current task.

2. If there is no unit clause the function decide() is called. The algorithm starts
by collecting the two unassigned literals for each clause in the formula. If there
are no unassigned literals, there is no decision to be made. With the variable
that has priority, which is given by the static order and the algorithm assigns
it to the default value. Default in the program is the variable named SATVari-
ableDecisionInitial. It is initialized to 0 but it can also be changed to 1. After
the assignment, the algorithm looks again for a unit clause starting from the
leftmost clause. If a unit clause is found, BCP() is called and assigns the last
variable. If not the same process is repeated. All the decision levels and propa-
gations are written in the trail. For this list a new class called SATTrailEntry
has been made in order to save every entry of the trail.

3. The last function backtrack() is used when the formula is unsatis�able in the
last decision level. Here the algorithm tries to �nd a solution by backtracking
the last decision. If there was no decision made, which means the trail contains
only assignments at decision level 0, then it can not take back any decisions

Fourier-Motzkin Framework 29

and the solver returns unsatis�able. Otherwise, it deletes the last entry of the
trail with backtracking and change the value from true to false, if it was true
before and vice versa if it was false to true. To make sure that this conversion
has not been already made, we use a �ag. This �ag shows if the value has
already been changed or not. If yes, then we can not do the same again and
wind up in an endless loop. This being the case, the algorithm goes another
step back, if possible. It repeats the same process until the �ag is set to false
and checks if the new decision returns satis�able as an answer. If it is again not
the case, and the trail is not yet at decision level 0, we do this all over again
including propagation and new decisions. If the formula is unsatis�able and
all the possibilities of assigning the variables have been taken then the solver
returns unsatis�able. If not, the formula has a solution.

4.3 Fourier-Motzkin Framework

The class hierarchy of the Fourier-Motzkin modules is shown in the Figure 4.3.
To generate an exercise to be solved with Fourier-Motzkin variable elimination, the
function getTaskFM() is called. This function creates a new FormulaFM which
contains a vector of inequalities that are connected with the operand AND. Each in-
equality contains a vector as well, which contains terms. Every term in the inequality
contains a vector of symbols. The class Symbol is an upper class of VariableValue
and Number. This means that symbol can either be a variable or a number. The
class TermVS includes an enum OperantFMCal which has calculation symbols
such as plus, minus, multiplication and division. The class InequalityVS on the
other hand, uses the enum OperantFMIneq, which includes all ∼ ∈ {< , > , = ,
≤ , ≥}. The variables are chosen randomly like in the SAT exercises. The same goes
for the numbers, symbols and inequalities that are used. In this type of exercise, the
clauses that are with operand OR connected are not present, because they were not
treated in the lecture of satis�ability checking [ÁK16].

The class FourierMotzkin has a relevant function to the SAT class, getFairTask().
The only di�erence is that it also includes a function called reverseInequalities().
An example for this has been mentioned above 1. It is also possible to change the
name of the variable or the positions of inequalities. Again, just like in SAT, the
actions are chosen randomly.

Next is the createGoodFormula() function. By using this one, students are given
the chance to have exercises in which the results are small integers and not something
complex with fractions.

This function has as input three parameters:

1. The di�culty, that determines how many inequalities should be created at the
beginning.

2. The mutationDepth which determines the maximal number of mutations that
an inequality can have.

3. The parameter totalIneq which decides how many inequalities should be at the
end.

30 Implementation

In a while loop, the algorithm checks whether it is okay to add a new variable to
one of the inequalities. By adding a variable, from one inequality results two. As long
as the size of the content of the formula, which means the number of the inequalities
is smaller than the parameter totalIneq, the algorithm adds new variables. At the
end, the algorithm as long as the depth is not zero, mutates random inequalities with
either adding or multipling by a random number or even both.

The algorithm looks like this:

1. Automatic generation of inequalities that contain only two terms with one num-
ber each.

2. Mutation by inserting variables into one inequality.

3. Mutation by adding a random number on both sides of the inequality.

4. Or mutation by multiplying each side by a random number.

5. Or both.

For personal preference the following amount is computed so that an inequality will
be in average so many times mutated:

AmountOfMutations = (number of inequalities · mutationDepth) · 2
3

Some inequalities will have more and some less mutations. It is chosen randomly
which inequality will be mutated. In the class Inequality there is an attribute which
has the current number of mutations of each inequality. With this attribute the algo-
rithm checks if another mutation is possible for this inequality. As mentioned above,
each inequality can have maximal mutation number equal to the mutationDepth.

Example:
Given: dif = 1 , mutationDepth = 2 , totalIneq = 3:
Computing the amountOfMutations = (3 · 2) · 2

3 = 4 mutations.

Step 1: (0 < 3)
Step 2: Insert variable x: ((0 < x) ∧ (x < 3))
Step 3: Insert variable y: ((0 < y) ∧ (y < x) ∧ (x < 3))
Step 4: Add a random number: ((0 + 4 < y + 4) ∧ (y < x) ∧ (x < 3))
Step 5: Add a random number: ((4 < y + 4) ∧ (y + 1 < x+ 1) ∧ (x < 3))
Step 6: Multiply by a random number: ((4 < y+4)∧ (y+1 < x+1)∧ (x · 2 < 3 · 2))
Step 7: Add a random number: ((4 + 1 < y + 4 + 1) ∧ (y + 1 < x+ 1) ∧ (x · 2 < 6))

Every time a mutation is made, the function mergeTerm() is called. This func-
tion simpli�es the terms. In order to make it less obvious for the students the al-
gorithm scrambles the formula such as swapping two inequalities or reversing them.
For randomization, the function rand() % x is used, which in C++ gives a random
number between 0 and x. In this way, a variety of exercises is being generated. An
interesting feature of the function createGoodFormula() is that a constructor in
the Inequality class with an input of boolean sat is called. If sat = false then it
creates an inequality which is unsatis�able. Otherwise, satis�able. To achieve this, we
create the terms according to the input of this function. The �rst term is completely

Fourier-Motzkin Framework 31

random but the second one has an interval of the possible values in order to be the
result of the inequality false or true at the end. Here the inequalities are also able to
be negated at the beginning or not.

The solver of a Fourier-Motzkin task is in the class FMSolver. This class con-
tains the function solve(), which solves the given exercise.

Algorithm 2 solve(FormulaFM* exercise)

std::set<char> setChars = exercise→getAllUsedVariables();
std::vector<char> vecChar(setChars.begin(), setChars.end());
sort(vecChar.begin(), vecChar.end());
FormulaFM* input = exercise→copy();

for unsigned long i = 0 ; i < vecChar.size() ; ++i do
FormulaFM* output = solveFormulaForChar(input,vecChar.at(i));
input = output;

end for

if checkSAT(input) then
return true;

else
return false;

end if

In this algorithm a set of all the used variables of the given exercise is created.
After that, for the �rst variable of the set, the function solveFormulaForChar() is
called. This function mainly eliminates the current variable. After the elimination,
the same process will be repeated until all variables are eliminated, if it is possible.
The input of the solveFormulaForChar() changes with the current variable and
the current formula. The formula changes after the elimination of the �rst variable,
and so on until there are no variables in the formula left.

32 Implementation

Algorithm 3 solveFormulaForChar(FormulaFM* exercise, char c)

FormulaFM* res = new FormulaFM();
FormulaFM* modi�edExercise = exercise→copy();

preprocessFormula(modi�edExercise);

solveEquality(modi�edExercise,c);

std::vector<Inequality*> upper = collectUpperBounds(modi�edExercise, c);
std::vector<Inequality*> lower = collectLowerBounds(modi�edExercise, c);
std::vector<Inequality*> unit = unitBounds(upper,lower);
std::vector<Inequality*> noBounds = collectNoBounds(modi�edExercise, unit, c);
std::vector<Inequality*> resIneq = combineBounds(upper, lower , c);

for auto it : noBounds do
res→content.push_back(it);

end for

for auto it : resIneq do
res→content.push_back(it);

end for
return res;

Before eliminating the variables, the function preprocessFormula() is called.
This function calls:

� The function resolveNegatedIneq(), which removes the negation from the
inequalities while applying the necessary modi�cations. Then it resolves the
zeros.

� The function resolveZeros() that checks each term and returns zero in case of
multiplication with zero or division with zero as dividend.

� The function merge(), which merges the inequalities. This function is often
called in the program to make the inequalities more compact. Its functionality
is exactly the same as the functionmergeTerm(), but for the whole inequality.

After the preprocess is done, the algorithm searches to �nd equalities in the for-
mula that contain the current variable that must be eliminated. If such an equality
exists, the three following functions are called:

First function: NormalizeIneq().
If the term which contains the current variable is negated, the function changes the
minus to plus and switches it to the other side of the inequality.

Example:
4 = 5− 2x ⇒ 2x+ 4 = 5

Virtual Substitution Framework 33

Second function: IsolateTerm().
It seperates the term that includes the current variable from all the others.

Example:
2x+ 4 = 5 ⇒ 2x = 5− 4 ⇒ 2x = 1

Third function: IsolateVariable().
Isolates the variable if it is multiplied with another symbol.

Example:
2x = 1 ⇒ x = 1

2

After these steps, the algorithm substitutes the result of the equality to every variable
in the formula that is the current eliminating variable. Then it �nds the upper and
lower bounds of the current variable. The function unitBounds() returns all the
bounds together. Then with the function collectNoBounds(), all the inequalities
from the formula that do not include lower and upper bounds of the variable are
collected. Then all the upper bounds will be combined with all the lower bounds and
create a new formula with the combined inequalities. Here the variable is eliminated
by combining the lower bound of the variable with its upper bound. The inequalities
that are collected from the collectNoBounds() function are directly inserted to the
resulting formula. This process will be repeated so many times, until all the variables
are eliminated. It is possible that a variable can not be eliminated if it has only lower
or only upper bounds. At the end, this does not a�ect the solution, since we can just
pick a solution that satis�es the remaining bound. After the algorithm eliminates as
much as possible variables, it checks each resulting inequality for satis�ability.

4.4 Virtual Substitution Framework

For Virtual Substitution exercises, the class getTaskVS() is called. The function cre-
ates a FormulaVS. This formula contains either inequalities or clauses with operand
OR. If the entry in the formula is an OR clause, then this clause has also a vector
of formulas that include inequalities. Every inequality in the formula is merged with
the function merge() and packed to the left term whereas on the right term is just
a zero. This is done in order to match the presented examples shown in the lecture
"Satis�ability Checking" [ÁC12]. Inequalities have a vector of terms and a vector of
operands with the inequality symbols. The terms of the inequalities contain exactly
like in the Fourier-Motzkin symbols, that are in the class SymbolVS. The numbers and
variables of the exercises are from the classes NumberVS and VariableValueVS
analog. These are underclasses of SymbolVS. Special term in this type of exercise
is the root. The class RootVS is also an underclass of SymbolVS and contains one
term under a root. The class TermVS uses the enum class OperantVSCal, which
contains the same symbols as in Fourier-Motzkin. Terms contain a vector of those
calculation symbols. The enum OperantVSIneq is used in the class InequalityVS,
where the only di�erence from the enum OperantFMIneq is that the symbol ̸= also
appears in the exercises. The resulting formula is connected with the operand AND.
To create an exercise with square roots that are integers the algorithm uses the func-
tion generateSquareTerm(). This function generates a quadratic polynomial that

34 Implementation

contains only one variable and its solutions are numbers that belong to the set of
integers.
Similar to the other two methods, Virtual Substitution has also its solver in the class
VSSolver. The solve() function is shown in Algorithm 4.

Algorithm 4 solve(FormulaVS* exercise)

std::set<char> setChars = exercise→getAllUsedVariables();
std::vector<char> vecChar(setChars.begin(), setChars.end());
sort(vecChar.begin(), vecChar.end());
FormulaVS* cur = exercise→copy();

for unsigned long i = 0 ; i < vecChar.size() ; ++i do
cur->transformRootRule(vecChar.at(i));
std::vector<TermVS*> testCand = getTestCand(cur, vecChar.at(i));
removeDuplicateCandidates(&testCand);
FormulaVS* resSubstitution = substitution(cur, testCand, vecChar.at(i));
simplifyFormula(resSubstitution);

if checkSat(resSubstitution, VSCheckSatDebug) == 0 then
return false;

end if

cur = resSubstitution;
end for

return true;

The algorithm starts by sorting all the variables used in the exercise. Then the
function transformRootRule() is called. This function searches through the whole
formula to �nd whether there is an inequality with a root that contains the current
variable. If this is the case all the necessary parameters are calculated to form the
inequalities by applying the root rules 8.3.
Then the function getTestCand() is called. This function �nds the real roots of
the variable by calling �ndRealRoots. The function �ndRealRoots() in the class
InequalityVS is shown in the upcoming algorithm.

Virtual Substitution Framework 35

Algorithm 5 �ndRealRoots(char c)

isolateRightSide();
std::vector<TermVS*> abcPositions = �ndPositionsInPolynomial(c);

if operants.at(0) == SMALLERvs || operants.at(0) == GREATERvs || oper-
ants.at(0) == UNEQUALvs then

addEpsilon = true;
end if

if a == 0 then
if b == 0 then

if c is NumberVS then
double num = abcPositions.at(2)→symbols.at(0)→num;
if abcPositions.at(2)→operants.at(0) == MINUSvs then

num *= -1;
end if
NumberVS* n = new NumberVS(num);
TermVS* newT = new TermVS();
newT→symbols.push_back(n);
res.push_back(newT);
return res;

else
TermVS* newT = terms.at(0)→copy();
res.push_back(newT);
return res;

end if
else

TermVS* t = �ndRealRootsLinear(c);
if addEpsilon then

add epsilon to the terms in t
end if
res.push_back(t);
return res;

end if
else

TermVS* t = �ndRealRootsLinear(c);
if addEpsilon then

add epsilon to the term t
end if
res.push_back(t);
return res;

end if

std::vector<TermVS*> temp = �ndRealRootsQuadratic(c);

if addEpsilon then
for auto it: temp do

add epsilon to it
end for

end if

for auto it2 : temp do
res.push_back(it2);

end for

for unsigned long i = 0; i < res.size();++i do
res.at(i) = mergeTerm(res.at(i));

end for
return res;

36 Implementation

The algorithm calls at the beginning merge() to the inequality and isolates its
right term. If the inequality does not contain the current variable then there is nothing
to be done with the inequality and iteratively go to the next one. Using the function
�ndPositionsInPolynomial(), has as output the coe�cients of the searched vari-
able in the current polynomial. The output is a vector of TermVS. The �rst position
of this vector is always the coe�cient of the quadratic current variable. The next po-
sition is the coe�cient infront of the variable with degree 1 and lastly is the constant
where the variable has degree 0. These positions are also described as a b and c, in
order to match the syntax of the lecture [ÁK16]. If the sign infront of the coe�cient
is negated, then the term in the vector is multiplied by −1.

Example:
Given: 2x2 − x+ 3− y ≤ 0
The function �ndPositionsInPolynomial(x) returns the vector [2,-1,3-y].

Afterwards, the algorithm adds an ϵ if the inequality symbol is <, > or ̸=. There are
three possible real roots types.

1. The polynomial is neither square nor linear. Then there is only a constant in
the inequality and it is returned.

2. The polynomial is linear. The function �ndRealRootsLinear() is called. To
calculate the real linear roots of this polynomial the second calculation point is
used 2.2.3.

3. The polynomial is quadratic. The function �ndRealRootsQuadratic() re-
turns the real roots for this polynomial. Again, in section 2.2.3 it is mentioned
in step 3 and 4 how to calculate those roots.

For each root, an ϵ is added if the inequality symbol is strict. The function �nd-
RealRoots() returns a vector of terms. These terms are the real roots of the current
variable from the current inequality. This process will be repeated for all the inequal-
ities of the formula in order to collect all the real roots of the current variable.

Then the algorithm creates a vector with all the test candidates. As mentioned
above to the de�nition of the virtual substitution, the test candidates are also a vec-
tor that contains terms. In addition to that, the real root −∞ is inserted for all the
constraints.
After all the test candidates for the variable are listed into the vector, removeDu-
plicateCandidates() is called to remove duplicated test candidates in the vector.
Then Virtual Substitution is applied to the formula with the test candidates of the
variable. If the test candidate includes an ϵ the rules for ϵ are applied 8.4. For test
candidates in form q

r the function multiplyR() is used to multiply the polynomial
with the highest degree of the variable in order to avoid possible fractions. New in-
equalities are created due to the rules shown in the tables in Chapter 8.2.
The function simplifyFormula() is called after substitution for simplifying the re-
sulting inequalities so that the result is more clear.
It contains the following functions:

1. SimplifyFormula(): Replaces the unsatis�able inequalities with (1=0) and
the satis�able with (0=0).

Virtual Substitution Framework 37

2. SummarizeFormula(): Summarizes inequalities that already contain at least
one unsatis�able inequality to unsatis�able.

3. CombineBooleanAssignments(): Removes all the satis�able inequalities
and lets all the inequalities that are unde�ned.

4. ResolveDepth(): Reduces the depth of the formula. In case the formula
contains only one clause with operand OR and this clause has another clause
with operant ∧, it reduces it to just the last formula.

Examples:
SimplifyFormula(): ((5 < 0) ∧ (1 ≥ 0)) ⇒ ((1 = 0) ∧ (0 = 0))
SummarizeFormula(): ((1 = 0) ∧ (1 = 0) ∧ (x+ 3 > 0)) ⇒ ((1 = 0))
CombineBooleanAssignments(): ((0 = 0) ∧ (x+ 3 > 0)) ⇒ ((x+ 3 > 0))
ResolveDepth(): ((((x+ y < 6)))) ⇒ ((x+ y < 6))

After all the variables are substituted, the algorithm checks for satis�ability of the
formula by calling checkSat(). This function is called recursive to all the clauses of
the formula. It creates a vector with 1 for satis�able, 0 for unsatis�able and -1 for
unde�ned. Unde�ned is the case when another variable is still in the formula and the
algorithm can not compare the terms of the inequality. For a clause with operand
AND all the inequalities should be true for satis�able. When there is at least one
false, unsatis�able is returned. If there are some unde�ned inequalities in the clause
then the whole result is unde�ned. For OR clauses, it needs at least one satis�able
clause to return 1. If all of them are unsatis�able then 0 is returned. In case of some
unsatis�able and some unde�ned the result is again unde�ned and solve() is called
again.

38 Implementation

Chapter 5

GUI

For this thesis a user interface has been created by using Qt Creator.

Main Choose method

Choose difficulty

FM

VS

Satisfiability

BT and DL

Assignment of Variables

Choose exercise

Satisfiability

Number of Inequalities

Bounds

Choose exercise

Satisfiability

Test Candidates of Variable

Choose exercise

Number of Test Candidates

Choose difficulty

Choose difficulty

SAT

Figure 5.1: An overview of the user interface

The students can choose the method they want to exercise and then the di�culty.
Each method has three types of exercises:

SAT:

1. Satis�ability: The students should answer with yes or no if the given formula is
satis�able.

2. Backtrack and decision level: The number of backtracks and decision levels is
asked, that have been made in order to solve the exercise.

3. Assignment of variables: The variables are given in the solution and the students
should click true if the variable is assigned to true and false otherwise. If the

40 GUI

exercise is unsatis�able then there is an option to click unsatis�able.

For all the tasks the students should solve the whole exercise in order to be able to
answer these three types of questions.

Fourier-Motzkin:

1. Satis�ability: Similar to the �rst task of SAT, the students have to decide
whether the given formula is satis�able or not.

2. Number of inequalities: This subtask asks the number of the remaining non-
trivial constraints inequalities, after the elimination of the �rst variable. Non-
trivial constraints inequalities are the inequalities that contain at least one vari-
able.

3. Bounds: In this type of exercise the number of the lower and upper bounds of
the �rst variable is asked. The student should not solve the whole exercise to
answer this question.

Virtual Substitution:

1. Satis�ability: The students are asked to apply the method of Virtual Substitu-
tion to the current formula and decide whether it is satis�able or not.

2. Number of test candidates: This task requires the number of test candidates of
the �rst variable that will be substituted.

3. Test candidates of variable: The students have a range of possible test candi-
dates and must click the right ones for the �rst variable.

After the students have inserted their answer, the click button prints a label
with the feedback. When the check button is clicked, another button for explanation
appears. The students can see all the steps of the solutions. In SAT exercises the trail
is given. For Fourier-Motzkin tasks, all the preprocess steps are included, the lower
and upper bounds, their combination and the resulting formula after elimination of
one variable. In the explanation of Virtual Substitution exercises the test candidates
are shown and every step after substituting each test candidate.

Chapter 6

Evaluation

In this chapter, the results of the questionnaire will be presented. Eight students have
been asked to download the application, use it and then anwswer some questions.
Most of the students tried all the methods, whereas some others only SAT or Fourier-
Motzkin exercises. All the students agreed that it took them fewer as 10 minutes
to read one exercise and almost all of them understood the tasks immediately. The
tasks are considered as enough meaningful to be asked for those purposes. The 7
out of 8 students found the questions of the tasks very clear. To solve an exercise it
did not take them more than 10 minutes. The solutions were for the students mostly
understandable but some of them consider that not all important steps were included.
Of course, for di�culty 3, where the exercises are more complex, the solutions are
more complicated. The numbers of the results were not too complicated. Only one
student answered that it was possible to guess the answer whereas the others said
either sometimes or not at all. It is possible to guess the answers for the tasks
"Satis�ability". However, for the majority of the tasks it is not that easy because
more answers than two are provided. The following task is for assigning the variables
in SAT exercise.

42 Evaluation

Figure 6.1: Assigning variables in SAT exercise

For those who changed the di�culty, it was noticable that the numbers of variables
or clauses changed.
Some feedbacks from the students were that the application was very helpful for
practising for SAT checking. Some of them wrote that the variaty of the tasks and
the generated exercises is really good. Also the purpose of this application is clear,
since the students are able to repeat exercises and always generate new ones. Another
feedback was that the solutions could have been more detailed with more de�nitions.
Suggestions have also been given from some students. One of them was to provide
examples to the de�nitions that were explained in the explanation part. There were
a lot of suggestions for scaling and changing the size of the window of the application
and its buttons. This will be �xed in order to make it more �exible for the users to
scale it depending on their needs. There was a suggestion for the Fourier-Motzkin
exercises that said to make clear when there are no bounds. Also, to state at the end
of the explanation if the formula is satis�able or not. Both of them are now �xed in
the application so that it is more easy for the students to understand.

Chapter 7

Conclusion

7.1 Summary

In this thesis an introduction to the satis�ability checking has been made. The used
methods SAT, Fourier-Motzkin, Virtual Substitution and their solvers have been
explained, in order to understand the implementation. Related work such z3 tool
has been pointed out and compared to the current algorithm of the application 1.2.
The application provides something that does not currently exist, since only simplex
solvers are currently available. Criteria according the problems, tasks and solutions
have been listed in order to create a good pedagogical application for the students
[2.1]. For this thesis an exercise generator has been implemented for students to prac-
tise satis�ability checking. This application generates three types of exercises for each
method. Its structure is described in the implementation Chapter 4. In the following,
the user interface and its structure were presented. All the tasks have been men-
tioned and in a few words described. The evaluation Chapter shows the results after
giving a questionnaire to some students that are familiar with satis�ability checking.
The questions of this questionnaire were mainly if the application has clear questions
and understandable solutions. Also if the students were able to understand the tasks
immediately and if the application was helpful. In general, if the criteria that were
listed at the beginning of the thesis were succesfully presented in the application.
According to the results, most of the students found the exercise easy to read and
to understand. The solutions were helpful but some students suggested to make the
explanations more detailed and include examples. The interval for the students to
read and solve an exercise lays approximately 5-10 minutes. Most of them stated
that the result numbers where not complicated. Some of them wrote that it depends
on the di�culty. In general, they concidered this application very helpful to practise
satis�ability checking.

7.2 Future Work

Improvements are always possible for an application. New features such as timer
could be added to the application. With this feature the students know how much
time they needed for an exercise. In addition, the solutions can give points to the right
answers or give tips and advices to the students. Moreover, in the implementation

44 Conclusion

and more speci�c in Virtual Substitution, the exercises that can be generated are
polynoms up to degree 2. More complex exercises can be generated but that is not
the case for this implementation. Also for the Fourier-Motzkin exercises there are no
clauses with operand OR. This could appear but because it was not treated in the
lecture, it is left out. There were also some suggestions from the students to include
a progress bar or a score for the students, but due to limited time this can not be
contained in the application.

Chapter 8

Virtual Substitution Rules

p(x) ∼ 0 (p(x) ∼ 0) [−∞//x]
bx+ c = 0 b = 0 ∧ c = 0
bx+ c ̸= 0 b ̸= 0 ∨ c ̸= 0
bx+ c < 0 b > 0 ∨ (b = 0 ∧ c < 0)
bx+ c > 0 b < 0 ∨ (b = 0 ∧ c > 0)
bx+ c ≤ 0 b > 0 ∨ (b = 0 ∧ c ≤ 0)
bx+ c ≥ 0 b < 0 ∨ (b = 0 ∧ c ≥ 0)
ax2 + bx+ c = 0 a = 0 ∧ b = 0 ∧ c = 0
ax2 + bx+ c ̸= 0 a ̸= 0 ∨ b ̸= 0 ∨ c ̸= 0
ax2 + bx+ c < 0 a < 0 ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c < 0)
ax2 + bx+ c > 0 a > 0 ∨ (a = 0 ∧ b < 0) ∨ (a = 0 ∧ b = 0 ∧ c > 0)
ax2 + bx+ c ≤ 0 a < 0 ∨ (a = 0 ∧ b > 0) ∨ (a = 0 ∧ b = 0 ∧ c ≤ 0)
ax2 + bx+ c ≥ 0 a > 0 ∨ (a = 0 ∧ b < 0) ∨ (a = 0 ∧ b = 0 ∧ c ≥ 0)

Figure 8.1: The rules of substitution by test candidate −∞

p(x) ∼ 0
(p(x) ∼ 0) [e//x] for e = q

r , let k be the maximum degree
of x in p and δ = 1 if k is odd, otherwise δ = 0

p(x) = 0 p(e) · rk = 0
p(x) ̸= 0 p(e) · rk ̸= 0
p(x) < 0 (rδ > 0 ∧ p(e) · rk < 0) ∨ (rδ < 0 ∧ p(e) · rk > 0)
p(x) > 0 (rδ > 0 ∧ p(e) · rk > 0) ∨ (rδ < 0 ∧ p(e) · rk < 0)
p(x) ≤ 0 (rδ > 0 ∧ p(e) · rk ≤ 0) ∨ (rδ < 0 ∧ p(e) · rk ≥ 0)
p(x) ≥ 0 (rδ > 0 ∧ p(e) · rk ≥ 0) ∨ (rδ < 0 ∧ p(e) · rk ≤ 0)

Figure 8.2: The rules of substitution by test candidate e = q
r

46 Virtual Substitution Rules

p(x) ∼ 0 (p(x) ∼ 0) [e//x] for e = q+r
√
t

s , let k be the maximum degree of x in p
and δ = 1 if k is odd, otherwise δ = 0

p(x) = 0 q̂r̂ ≤ 0 ∧ q̂2 − r̂2t = 0
p(x) ̸= 0 q̂r̂ > 0 ∨ q̂2 − r̂2t ̸= 0
p(x) < 0 (q̂ŝδ < 0 ∧ q̂2 − r̂2t > 0) ∨ (r̂ŝδ ≤ 0 ∧ q̂ŝδ < 0) ∨ (r̂ŝδ ≤ 0 ∧ q̂2 − r̂2t < 0)
p(x) > 0 (q̂ŝδ > 0 ∧ q̂2 − r̂2t > 0) ∨ (r̂ŝδ ≥ 0 ∧ q̂ŝδ > 0) ∨ (r̂ŝδ ≥ 0 ∧ q̂2 − r̂2t < 0)
p(x) ≤ 0 (q̂ŝδ ≤ 0 ∧ q̂2 − r̂2t ≥ 0) ∨ (r̂ŝδ ≤ 0 ∧ q̂2 − r̂2t ≤ 0)
p(x) ≥ 0 (q̂ŝδ ≥ 0 ∧ q̂2 − r̂2t ≥ 0) ∨ (r̂ŝδ ≥ 0 ∧ q̂2 − r̂2t ≤ 0)

Figure 8.3: The rules of substitution by test candidate e = q+r
√
t

s

p(x) ∼ 0 (p(x) ∼ 0) [e+ ϵ//x]
bx+ c = 0 b = 0 ∧ c = 0
bx+ c ̸= 0 b ̸= 0 ∨ c ̸= 0
bx+ c < 0 (bx + c < 0) ∨ ((bx + c = 0 ∧ b < 0))
bx+ c > 0 (bx + c > 0) ∨ ((bx + c = 0 ∧ b > 0))
bx+ c ≤ 0 (bx + c < 0) ∨ ((bx + c = 0 ∧ b < 0)) ∨ ((b = 0 ∧ c = 0))
bx+ c ≥ 0 (bx + c > 0) ∨ ((bx + c = 0 ∧ b > 0)) ∨ (b = 0 ∧ c = 0)
ax2 + bx+ c = 0 a = 0 ∧ b = 0 ∧ c = 0
ax2 + bx+ c ̸= 0 a ̸= 0 ∨ b ̸= 0 ∨ c ̸= 0

ax2 + bx+ c < 0
(ax2+bx+c < 0)∨(ax2+bx+c = 0∧2ax+b < 0)∨(ax2+bx+c = 0∧2ax+b =
0 ∧ 2a < 0)

ax2 + bx+ c > 0
(ax2+bx+c > 0)∨(ax2+bx+c = 0∧2ax+b > 0)∨(ax2+bx+c = 0∧2ax+b =
0 ∧ 2a > 0)

ax2 + bx+ c ≤ 0
(ax2 + bx + c < 0) ∨ ((ax2 + bx + c = 0 ∧ 2ax + b < 0)) ∨ ((ax2 + bx + c =
0 ∧ 2ax+ b = 0 ∧ 2a < 0)) ∨ (a = 0 ∧ b = 0 ∧ c = 0)

ax2 + bx+ c ≥ 0
(ax2 + bx + c > 0) ∨ ((ax2 + bx + c = 0 ∧ 2ax + b > 0)) ∨ ((ax2 + bx + c =
0 ∧ 2ax+ b = 0 ∧ 2a > 0)) ∨ (a = 0 ∧ b = 0 ∧ c = 0)

Figure 8.4: The rules of substitution by test candidate e + ϵ

For this case we also calculate the �rst and second derivation of the polynomial in
order to interprate these rules.

Bibliography

[ÁC12] Erika Ábrahám and Florian Corzilius. Non-linear real arithmetic: Virtual
substitution. pages 23�24, 2012.

[ÁK16] Erika Ábrahám and Gereon Kremer. Satis�ability checking: Theory and
applications. In International Conference on Software Engineering and

Formal Methods, pages 9�23. Springer, 2016.

[Akr80] Alkiviadis G Akritas. The fastest exact algorithms for the isolation of the
real roots of a polynomial equation. Computing, 24(4):299�313, 1980.

[BCD+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In International Conference on Computer Aided Veri�cation, pages 171�
177. Springer, 2011.

[Cha93] Vijay Chandru. Variable elimination in linear constraints. The Computer
Journal, 36(5):463�472, 1993.

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An
interpolating SMT solver. In International SPIN Workshop on Model

Checking of Software, pages 248�254. Springer, 2012.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver.
In International conference on Tools and Algorithms for the Construction

and Analysis of Systems, pages 337�340. Springer, 2008.

[HLL90] Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Fourier algorithm
revisited. In International Conference on Algebraic and Logic Program-

ming, pages 117�131. Springer, 1990.

[Ko²16] Marek Ko²ta. PhD Thesis: New concepts for real quanti�er elimination
by virtual substitution. 2016.

[Tov84] Craig A Tovey. A simpli�ed NP-complete satis�ability problem. Discrete
applied mathematics, 8(1):85�89, 1984.

	Introduction
	Motivation
	Related Work

	Basics
	Criteria for Exercise Generation
	Problem
	Task Formulation
	Solution

	Definitions
	SAT Algorithm
	Fourier-Motzkin Variable Elimination
	Virtual Substitution

	Methodology
	SAT
	Fourier-Motzkin
	Virtual Substitution

	Implementation
	Class Hierarchy
	SAT Framework
	Fourier-Motzkin Framework
	Virtual Substitution Framework

	GUI
	Evaluation
	Conclusion
	Summary
	Future Work

	Virtual Substitution Rules
	Bibliography

