
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

APPROXIMATE MODEL CHECKING FOR

PROBABILISTIC RECTANGULAR AUTOMATA WITH

CONTINUOUS-TIME PROBABILITY DISTRIBUTIONS

ON JUMPS

Mengzhe Hua

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Thomas Noll

Additional Advisor:
Stefan Schupp Aachen, May 05. 2021

Abstract

A system consists of both discrete and continuous components is hybrid sys-
tem. Most systems in our daily life are hybrid systems. A model to present the
hybrid system is hybrid automata. We model the systems into hybrid automata
to do mathematical analysis. Rectangular automata is an important subclass
of hybrid automata by adding restrictions to labeling functions, and this thesis
focus on rectangular automata. In oder to avoid nondeterministic behaviors, we
introduce probabilistic rectangular automata with continuous-time probability
distributions.

A popular approach to verify certain properties is to do reachability analysis.
We introduce forward and backward analysis to get the reachability of request
states. For each reachable state we can calculate the probability to reach it from
the initial states according to corresponding probability distributions.

iv

Contents

1 Introduction 9
1.1 Structure of the Thesis . 10

2 Preliminaries 13
2.1 Hybrid Automata . 13
2.2 Rectangular Automata . 16
2.3 Reachability Analysis . 19

3 Stochastic Rectangular Automata 23
3.1 Discrete-Time Probabilistic Rectangular Automata 23
3.2 Stochastic Rectangular Automata . 24

4 Reachability Analysis 29
4.1 Probability over Finite Path . 29
4.2 Forward Analysis for Probabilistic Rectangular Automata 33
4.3 Backward Analysis and Probability Calculation for Probabilistic Rect-

angular Automata . 35
4.4 Direct Backward Analysis for Probabilistic Rectangular Automata . . 36

5 Results 41
5.1 Simple Test Example . 41
5.2 A Two Room Shared Heater Example 44

6 Conclusion 47
6.1 Summary . 47
6.2 Future work . 48

Bibliography 49

vi Contents

Chapter 1

Introduction

Systems with discrete state changing are called discrete system [HMU01] and systems,
whose state variables change over time continuously, are called continuous systems. A
system that consists of both discrete and continuous components is a hybrid system.
Most systems in our daily life are hybrid systems, like computers, mobile-phones, air-
planes and so on. Figure 1.1(a) shows how variable x changes over time in a discrete
system, and Figure 1.1(b) shows how variable x changes over time in a continuous
system. If we combine the two systems, we will get a hybrid system and the evolution
of variable x shown in Figure 1.1(c). In oder to analyze the hybrid systems mathemat-
ically, hybrid automata is introduced to model those systems. An important subclass
of hybrid automata is rectangular automata, for which the model-checking problem
is decidable [HM00]. Examples such as Billiard Balls [PDMV15], which models the
motion of a billiard ball and its collisions with the wall, is a rectangular automaton.

Billiard balls system is a rectangular automaton without nondeterminism. How-
ever many systems contain nondeterministic behaviors, such as IEEE 802.11 WLAN
protocol [KNS02] which describes a two-way handshake mechanism to achieve commu-
nication between two devices, in the meanwhile introduce a randomized exponential
back-off rule to handle with possible transmission conclusions. In oder to deal with
the nondeterminism caused by the randomized behavior, we consider to model the
system as a probabilistic automaton.

One of the most popular modeling language to deal with probability is Continuous-
Time Markov Chain (CTMC for short). A CTMC is a stochastic process, in which the
probability of moving from one state to another state is dependent on a transition rate
matrix. However, a huge amount of probabilistic systems may allow different types
of probability distributions, such as discrete probability distribution. In this case
we consider to analyze models containing both continuous and discrete probability
distributions.

Stochastic Petri Nets (SPN for short) is one of the approaches which consist not
only stochastic process. In a SPN model, the probability of taking a transition is
associated with the probability distribution over delays on the state, i.e. the proba-
bility of taking a transition is related to the time spent on the source state [BK02].
Another approach is Stochastic Timed Automata (STA for short). In a STA model,
the probability of taking a transition is independent on the delays, which means that
the combined continuous and discrete probability distribution is associated to transi-
tions [BBB+14].

10 Chapter 1. Introduction

x

t
2 6

1

(a) Discrete system

x

t
2 6

2

6

(b) Continuous system

x

t
2 6 8

1

2

4

3

(c) Hybrid system

Figure 1.1: Variable changing over time in three types systems

Since timed automata is a subclass of rectangular automata [Kop96], we extend the
stochastic timed automata to stochastic rectangular automata and apply reachability
analysis on stochastic rectangular automata.

1.1 Structure of the Thesis

In oder to introduce stochastic rectangular automata properly, we introduce necessary
preliminaries in Chapter 2. Firstly we give the formal definition of hybrid automata,
which builds hybrid systems mathematically. By giving rectangular region restrictions
we introduce a subclass of hybrid automata, rectangular automata. In oder to check
some essential properties, we introduce reachability analysis consisting of forward and
backward methods.

After we get a clear view of rectangular automata, we define stochastic rectangular
automata in Chapter 3. Discrete-time probabilistic rectangular automata model the
systems which only associate discrete probability distribution over transitions. After
given the definition of probability distributions over delays and transition, we extend
it to the definition of stochastic rectangular automata.

The implementation is introduced in Chapter 4. The most critical part is the
interval calculation, because the probability to take a transition out-going of the
state and calculation of enabled transitions are dependent on the interval in which a

1.1. Structure of the Thesis 11

given transition may be taken from the state. Finally we introduce the brief idea of
how to achieve reachability analysis by forward and backward method in stochastic
rectangular automata.

At the end we present the experimental results in Chapter 5, starting with intro-
duction of the tool HyPro. The discussion of our future work is in Chapter 6.

12 Chapter 1. Introduction

Chapter 2

Preliminaries

Rectangular automata is a subclass of hybrid automata [HKPV98]. We present hybrid
automata first and then introduce rectangular automata based on the definition of
hybrid automata.

2.1 Hybrid Automata
Hybrid systems are systems which combine the continuous activities and discrete
transitions together [Bra05]. A bouncing ball system [JELS99] is a typical hybrid
system. An elastic ball is dropped from a certain height h0 and bounces with energy
loss after reaching the ground. The height and the velocity of the ball change con-
tinuously between each bounce, and the velocity of the ball changes discretely when
bouncing. In oder to model hybrid systems we introduce hybrid automata which are
graph specifications of hybrid systems. Hybrid automata specify discrete transitions
by edges and continuous activities by vertices.

Definition 2.1.1 (Syntax of Hybrid Automata [ACH+95]). A hybrid automaton
(HA) H is a tuple H = (Loc,Var,Lab,Edge,Act, Inv, Init) with

• Loc is a finite set of locations.

• Var is a finite set of real-valued variables. A valuation ν for the variables is a
function ν : Var → R assigning a real value to each variable x ∈ V ar. We use
V to denote the set of valuations.

A state is a pair s = (l,ν) where l ∈ Loc and ν ∈ V . We use Σ to denote the set
of states.

• Lab is a finite set of synchronization labels, including the stutter label τ ∈ Lab.

• Edge is a finite set of transitions. Each transition e = (l, a, µ, l′) consists of
a source location l ∈ Loc, a target location l′ ∈ Loc, a synchronization label
a ∈ Lab, and a transition relation µ ⊆ V 2. If (ν,ν′) ∈ µ we call ν the predecessor
and ν′ the successor. For all transitions with label τ we call τ -transitions.

• Act is a labeling function that assigns to each location l ∈ Loc a set of activities.
Each activity is a continuous function f : R→ V that assigns nonnegative reals
to a valuation in V. The activities of each location are time-invariant: for all

14 Chapter 2. Preliminaries

locations l ∈ Loc, all activities f ∈ Act(l), and nonnegative reals t ∈ R≥0,
(f + t) ∈ Act(l) holds where (f + t)(t′) = f(t+ t′) for all t′ ∈ R≥0.

• Inv is a labeling function, assigning an invariant Inv(l) ⊆ V to each location
l ∈ Loc.

• Init is a set of initial states with Init ⊆ Σ.

Intuitively, variable x ∈ Var represents a continuous activity of the hybrid system
and f ∈ Act(l) with l ∈ Loc shows how x changes according to time in state (l,ν)
where ν ∈ V . A transition e = (l, a, µ, l′) ∈ Edge represents a discrete transition of
the hybrid system. In the rest of this thesis we use → to denote both continuous
activities and discrete transitions.

Definition 2.1.2 (Semantics of Hybrid Automata [ACH+95]). As hybrid systems
contain discrete transitions and continuous activities, the semantics of a hybrid au-
tomaton H = (Loc,Var,Lab,Edge,Act, Inv, Init) consist of two parts that are discrete
instantaneous steps (also called jump) and continuous time steps (also called flow):

1. Discrete step semantics

(l, a, µ, l′) ∈ Edge (ν, ν′) ∈ µ ν′ ∈ Inv(l′)

(l, ν)
a−→ (l′,ν′)

Rulediscrete

for state s = (l, ν) ∈ Σ and for each discrete transition e = (l, a, µ, l′) ∈ Edge
with source location l we say that e is enabled if and only if some (ν,ν′) ∈ µ is
satisfied and synchronization label a occurs.

2. Time step semantics

f ∈ Act(l) f(0) = ν f(t) = ν′ t ≥ 0 f([0,t]) ⊆ Inv(l)

(l,ν)
t−→ (l,ν′)

Ruletime

for state s = (l, ν) ∈ Σ and for each continuous activity f ∈ Act(l) we say that
the system stay at location l for t time step and the valuation changes to f(t)
only if no valuation in [0,t] violates the invariant of the location l.

For a jump e = (l, a, µ, l′) ∈ Edge with (ν,ν′) ∈ µ we say that the predecessor ν
satisfies the guard g of e and the successor ν′ equals to the reset r of e. In the rest of
this chapter we denote µ = (g,r) for jumps.

Example 2.1.1. Figure 2.1 shows a simple hybrid automaton H1 = (Loc1,Var1,Lab1,
Edge1,Act1, Inv1, Init1) with

• Loc1 = {l0,l1},

• Var1 = {x,y},

• Lab1 = {τ,a},

• Edge1 = {e0,e1,e2,e3,e4} where

– e0 = (l0, τ, (ν,ν), l0) with ν ∈ Vl0 ,

– e1 = (l1, τ, (ν
′,ν′), l1) with ν′ ∈ Vl1 ,

2.1. Hybrid Automata 15

– e2 = (l0, a, ({y ≥ 5},{x := 0,y := 10}), l1),

– e3 = (l0, a, ({y ≥ 5},{x := 0,y := 0}), l0),

– e4 = (l1, a, ({y ≤ 5},{x := 0,y := 0}), l0),

e0 and e1 are τ -transitions, e2, e3 and e4 are jumps,

• activity functions are represented by differential equations: Act1(l0) = {ẋ =
1,ẏ = x} and Act1(l1) = {ẋ = −1,ẏ = x},

• Inv1(l0) = {y ≤ 10} and Inv1(l1) = {true},

• Init1 = (l0,{x = 0,y = 0}).

l0
ẋ = 1
ẏ = x
y ≤ 10

l1
ẋ = −1
ẏ = x
true

x := 0, y := 0

e2
a : y ≥ 5

x := 0,y := 10

e3

a : y ≥ 5

x := 0, y := 0

e0

τ

e4
a : y ≤ 5

x := 0,y := 0

e1

τ

Figure 2.1: A simple hybrid automaton H1

We introduce flows and jumps in detail separately. Firstly, we take flows in location
l0 as an example: if invariant Inv1(l0) = {y ≤ 10} is satisfied for each time point
in [0,t], then the system may stay in location l0 for t time step. Next, we take e2

as an example of jumps: If synchronization label a occurs and guard g = {y ≥ 5} is
satisfied at location l0, then e2 is enabled; If e2 is taken, then the system will set the
variables to the values given in effect r = {x := 0,y := 10}, i.e. x will be set to 0
and y will be set to 10, finally the system will reach location l1 from l0. However, we
notice that e2 and e3 have the same source location l0, and they could be enabled at
same time points, we say that the hybrid automaton H1 is non-deterministic, which
means that after e2 and e3 enabled the system choose one of enabled edges to take
non-deterministically.

To simplify the graphical representations, in the rest of this thesis we omit τ -
transition, non-synchronization labels and trivial invariant in graphical representa-
tions.

A finite run [AD94] % of hybrid automata H = (Loc,Var,Lab,Edge,Act, Inv, Init)
with state set Σ is a sequence of transitions

% = s0
t1,e1−−−→ s1

t2,e2−−−→ . . .
tn,en−−−→ sn

16 Chapter 2. Preliminaries

where n ∈ N, (si) = (li,νi) ∈ Σ with 0 ≤ i ≤ n, (ti)1≤i≤n ∈ R≥0, t0 = 0 and
ei = (li−1,ai,(gi,ri),li) ∈ Edge with 1 ≤ i ≤ n, ai ∈ Lab, gi ∈ Rn and ri ∈ Rn. Each
transition si−1

ti,ei−−−→ si with 1 ≤ i ≤ n satisfies the following requirements:

• νi−1 + fi−1(t) |= gi,

• νi−1 + fi−1([0,t]) ⊆ Inv(i− 1),

• νi = ri,

where t = ti − ti−1 and fi ∈ Act(li). We say that n is the length of the run %. We
use Runf (H,s0) to denote the set of all finite runs from s0 in H. Similarly an infinite
run [AD94] % of H is an infinite sequence of transitions.

% = s0
t1,e1−−−→ s1

t2,e2−−−→ s2
t3,e3−−−→ . . .

with (si)i∈N ∈ Σ, (ti)i∈N+ ∈ R≥0 and (ei)i∈N+ ∈ Edge, satisfying the above require-
ments. We use Run(H,s0) to denote the set of all infinite runs from s0.

2.2 Rectangular Automata

Rectangular automata is one of the particularly important subclasses of hybrid au-
tomata. Rectangular automata inherit all components of hybrid automata and restrict
their initializations, invariants, activities, and transition relations by rectangular re-
gions.

Definition 2.2.1 (Rectangular Region). Given a region R ⊆ Rn with n > 0, R is
called rectangular if it is a cartesian product of (possibly unbounded) intervals, all of
whose finite endpoints are rational:

R = I0 × I1 × . . .× In−1

= {(x0,x1, . . . ,xn−1) ∈ Rn | ∀0 ≤ i ≤ n− 1. xi ∈ Ii}.

We use Rn to denote the set of all rectangular regions in Rn.

Definition 2.2.2 (Syntax of Rectangular Automata [HKPV98]). An n-dimensional
rectangular automaton (shortly rectangular automaton or RA) is a hybrid automaton
H = (Loc,Var,Lab,Edge,Act, Inv, Init) with restricted labeling function:

• Edge is a finite set of transitions. Each transition e = (l, a, µ, jump, l′) consists
of a source location l ∈ Loc, a target location l′ ∈ Loc, a synchronization label
a ∈ Lab, and a transition relation (µ, jump) ⊆ (Rn × Rn) × 2{1,...,n} with
µ = (g,r). For each i ∈ jump the value of variable xi ∈ Var will be changed to
a value v ∈ ri non-deterministically and for each i /∈ jump the value of variable
xi ∈ Var does not change.

• Act : Loc→ Rn.

• Inv : Loc→ Rn.

• Init : Loc→ Rn.

2.2. Rectangular Automata 17

Definition 2.2.3 (Semantics of Rectangular Automata [HKPV98]). The semantics
of a rectangular automaton H = (Loc,Var,Lab,Edge,Act, Inv, Init) also consist of
two parts that are discrete instantaneous steps (also called jump) and continuous time
steps (also called flow):

1. Discrete step semantics

(l, a, (g, r), jump, l′) ∈ Edge
ν ∈ g ν′ ∈ r ∀i /∈ jump.ν′i = νi ν′ ∈ Inv(l′)

(l, ν)
a−→ (l′,ν′)

Rulediscrete

for state s = (l, ν) ∈ Σ and for each discrete transition e = (l, a, (g, r), jump, l′) ∈
Edge of location l we say that e is enabled if and only if the valuation ν satisfies
the guard g and synchronization label a occurs, the system may take the transi-
tion e and in the meanwhile update the value of variables in jump to r only if
updated valuation ν′ does not violate the invariant of target location.

2. Time step semantics

(t = 0 ∧ ν = ν′) ∨ (t > 0 ∧ (ν′ − ν)/t ∈ Act(l)) ν′ ∈ Inv(l)

(l,ν)
t−→ (l,ν′)

Ruletime

for state s = (l, ν) ∈ Σ the system may stay at location for t time step and
update valuation to ν′ only if either t is zero and valuation does not change or
the ratio of difference between ν′ and ν to t meets the continuous activities of l
and ν′ does not violate the invariant of l.

We say that the rectangular automaton H is initialized, if for every edge e =
(l, a, (g, r), jump, l′) of H, every variable index i ∈ {1, . . . ,n} with Act(l)i 6= Act(l′)i
we have i ∈ jump.

Example 2.2.1. Figure 2.2 shows a simple rectangular automaton H2 = (Loc2,Var2,
Lab2,Edge2,Act2, Inv2, Init2). H2 is quite similar to H1, the main difference between
H2 and H1 is the labeling function. Act1 in H1 contains linear differential equation
ẏ = x, which is not restricted to rectangular regions. However all activity functions in
Act2 = {{ẋ = 1,ẏ = 2},{ẋ = −1,ẏ ∈ [−2,−1]}} are obviously restricted to rectangular
regions. Another difference is that if e4 is taken, then the value of y in H2 will be
changed to a value v ∈ [0,10] non-deterministically. We notice that e2 and e3 have
the same source location, and they could be enabled at same time points. Therefore
H2 is also non-deterministic.

If we remove edge e3 in H2, we will get an initialized rectangular automaton,
because for each ei = (l,a,(g,r),jump,l′) ∈ Edge2 with i ∈ {2,4} we have Act2(l)(x) 6=
Act2(l′)(x) and Act2(l)(y) 6= Act2(l′)(y).

Given a rectangular automaton H = (Loc,Var,Lab,Edge,Act, Inv, Init) with state
set Σ, a finite run [AD94] % of H is a sequence of transitions

% = s0
t1,e1−−−→ s1

t2,e2−−−→ . . .
tn,en−−−→ sn

where n ∈ N, (si) = (li,νi) ∈ Σ with 0 ≤ i ≤ n, (ti)1≤i≤n ∈ R≥0, t0 = 0 and
ei = (li−1,ai,(gi,ri),jumpi,li) ∈ Edge with 1 ≤ i ≤ n, ai ∈ Lab, gi ∈ Rn and ri ∈ Rn.
Each transition si−1

ti,ei−−−→ si with 1 ≤ i ≤ n satisfies the following requirements:

18 Chapter 2. Preliminaries

l0
ẋ = 1
ẏ = 2
y ≤ 10

l1
ẋ = −1

ẏ ∈ [−2,− 1]

x := 0, y := 0

e2
y ≥ 5

x := 0,y := 10

e3

y ≥ 5

x := 0, y := 0

e4
y ≤ 5

x := 0,y := [0,10]

Figure 2.2: A simple rectangular automaton H2

• νi−1 + fi−1(t) |= gi,

• νi−1 + fi−1([0,t]) ⊆ Inv(i− 1),

• ∀x /∈ jumpi. νi(x) = νi−1 + fi−1(t),

• ∀x ∈ jumpi.νi(x) = ri(x),

where t = ti − ti−1 and fi ∈ Act(li). We say that n is the length of the run %. We
use Runf (H,s0) to denote the set of all finite runs from s0 in H. Similarly an infinite
run [AD94] % of H is an infinite sequence of transitions.

% = s0
t1,e1−−−→ s1

t2,e2−−−→ s2
t3,e3−−−→ . . .

with (si)i∈N ∈ Σ, (ti)i∈N+ ∈ R≥0 and (ei)i∈N+ ∈ Edge, satisfying the above require-
ments. We use Run(H,s0) to denote the set of all infinite runs from s0.

Definition 2.2.4 (Direct Successors [BK08]). Let H = (Loc,Var,Lab,Edge,Act, Inv,
Init) be a rectangular automaton. For s ∈ Σ and e ∈ Edge, the set of direct e-
successors of s is defined as:

Post(s,e) = {s′ ∈ Σ | ∃t ∈ R≥0.s
t,e−−→ s′},

and the set of direct successors of s is defined as:

Post(s) =
⋃
e∈Edge Post(s,e).

Each state s′ ∈ Post(s,e) is a direct e-successor of s, and each state s′ ∈ Post(s)
is a direct successor of s.

Given a rectangular automaton H = (Loc,Var,Lab,Edge,Act, Inv, Init) with state
set Σ, a finite path π̂(s0, e1 . . . en) of H is a set of all finite runs starting from s0

by taking e1,e2, . . . ,en, we define π̂(s0, e1 . . . en) = {% = s0
t1,e1−−−→ s1

t2,e2−−−→ . . .
tn,en−−−→

sn ∈ Runf (H,s0) | ∀i ∈ N.(1 ≤ i ≤ n ∧ ti ∈ R≥0 ∧ si ∈ Post(si−1,ei))}. An
infinite path π(s0, e1e2 . . .) of H is a set of all infinite runs that start from s0 and take
e1,e2, . . . in sequence, we define π(s0, e1e2 . . .) = {% = s0

t1,e1−−−→ s1
t2,e2−−−→ s2

t3,e3−−−→ . . . ∈
Run(H,s0) | ∀i ∈ N.(i ≥ 1 ∧ ti ∈ R≥0 ∧ si ∈ Post(si−1,ei))}.

2.3. Reachability Analysis 19

Example 2.2.2. We take a rectangular automaton H2 from Example 2.2.1. Assume
s0 = (l0,{x = 0,y = 0}) and s1 = (l1,{x = 0,y = 10}) are states of H2. A possible
finite run of H2 is %1 = s0

3,e3−−→ s0
7,e3−−→ s0

12,e2−−−→ s1, accordingly π̂(s0, e3e3e2) is
the finite path fragment with %1 ∈ π̂(s0, e3e3e2). A possible infinite run of H2 is
%2 = s0

3,e3−−→ s0
6,e3−−→ s0

9,e3−−→ . . ., accordingly π(s0, e3e3 . . .) is the infinite path
fragment with %2 ∈ π(s0, e3e3 . . .).

Given a rectangular automaton H = (Loc,Var,Lab,Edge,Act, Inv, Init), a state
s ∈ Σ and a transition e ∈ Edge of H, we define I(s,e) = {t ∈ R≥0 | ∃s′ ∈ ΣH.s

t,e−−→
s′} an interval that may be spent on s before e taken and I(s) =

⋃
e∈Edge I(s,e) an

union of intervals that may be spent on s before any transition taken.

Example 2.2.3. We take a rectangular automaton H2 from Example 2.2.1. Assume
s0 = (l0,{x = 0,y = 0}) and s1 = (l1,{x = 0,y = 10}) are states of H2. We have
I(s0, e3) is [2.5,5] and I(s0, e2) is also [2.5,5], so I(s0) is [2.5,5]. As Inv(l1) is true
the system may stay in l1 infinitely many time, we have I(s1,e4) = [2.5,+∞).

Given a rectangular automaton H, if I(s) 6= ∅ for every state s ∈ ΣH is satisfied,
we say that H is a non-blocking rectangular automaton. Intuitively, for each state
s of a non-blocking rectangular automaton there exists at least one jump transition
that may be taken at some time point. H1 and H2 above are both non-blocking. In
the rest of this thesis we only consider non-blocking rectangular automata.

2.3 Reachability Analysis

Generally we need to check whether certain functional events occur during the running
time, thus we verify if certain properties are satisfied by the hybrid automata. Usually
we consider the following two types of properties:

1. Safety properties: state that “nothing bad will happen”. We verify if all states,
which are defined as “bad states”, are not reachable.

2. Liveness properties: state that “something good will happen”. We verify if some
states, which are defined as “good states”, are reached.

In order to verify safety properties, we have to explore all the reachable states
of the hybrid automata and intersect the reachable states with “bad states”. If the
intersection is an empty set we say that the safety properties is satisfied, otherwise
not satisfied. This approach is called reachability analysis. Given a hybrid automaton
H = (Loc,Var,Lab,Edge,Act, Inv, Init) and s0, s1 are two states of H. We call s1 is
reachable from s0 if there is a path from s0 to s1, written as s0 7→∗ s1 [ACH+95].
The reachability problem of hybrid automata is to ask, whether s0 7→∗ s1 holds by
given a hybrid automaton H with its states s0 and s1.

The general reachability problem for hybrid automata is undecidable [ACHH92].
Fortunately the time-bounded reachability problem for rectangular automata is de-
cidable proved in [BDG+11]. Thus it is meaningful to apply reachability analysis on
rectangular automata.

20 Chapter 2. Preliminaries

2.3.1 Forward Analysis
Informally speaking forward analysis [ACH+95] is to compute the reachable state set
Reach+(Init) starting from initial state set Init as Reach+(Init) = {s ∈ Σ | ∃s0 ∈
Init. s0 7→∗ s}. As each hybrid automaton has two types of steps which are jump and
flow, we discuss one-step reachability separately.

We define the forward time closure 〈P 〉↗l over a set of valuations P ⊆ V at a
location l ∈ Loc as

ν ∈ 〈P 〉↗l ⇔ ∃νpre ∈ V, t ∈ R≥0. νpre ∈ P ∧ ν = Actl[ν
pre](t) ∧ Invl[ν],

a set of states is called region Rl = {(l,ν) | ν ∈ P}, and we define the region of
forward time closure 〈Rl〉↗l as

〈Rl〉↗l = (l, 〈P 〉↗l),

and we extend to regions of all locations R =
⋃
l∈LocRl:

〈R〉↗ =
⋃
l∈Loc

〈Rl〉↗l .

We define the postcondition poste[P] over a set of valuations P ⊆ V with respect
to an edge e = (l, a, µ, l′) as

ν ∈ poste[P] ⇔ ∃νpre ∈ V. νpre ∈ P ∧ (νpre, ν) ∈ µ ∧ Invl′ [ν],

the region poste[Rl] as
poste[Rl] = (l′, poste[P]),

where Rl = {(l, ν)|ν ∈ P}, and the the set of regions post[R] as

post[R] =
⋃

e∈Edge

poste[Rl],

where R =
⋃
l∈LocRl.

We use reachable region (I 7→∗) ⊆ Σ to denote the set of all reachable states from
states in the initial region I ⊆ Σ:

s ∈ (I 7→∗)⇔ ∃s0 ∈ I. s0 7→∗ s.

Example 2.3.1. Consider the hybrid automaton H2 in Figure 2.2. We compute the
following set by using forward analysis:

• the set 〈x = 0 ∧ y = 0〉↗l0 reachable from x = 0 ∧ y = 0 in location l0:

〈x = 0 ∧ y = 0〉↗l0 =∃xpre∃ypre∃t ∈ R≥0.xpre = 0 ∧ ypre = 0

∧ x = xpre + t ∧ y = ypre + 2t ∧ y ≤ 10

=∃t ∈ R≥0.x = t ∧ y = 2t ∧ y ≤ 10

=x ≥ 0 ∧ 0 ≤ y ≤ 10

• the region 〈Rl0〉
↗
l0

= (l0, x ≥ 0 ∧ 0 ≤ y ≤ 10)

2.3. Reachability Analysis 21

• the set poste2 [x ≥ 0∧ 0 ≤ y ≤ 10] reachable from x ≥ 0∧ 0 ≤ y ≤ 10 in location
l0 by taking transition e2:

poste2 [x ≥ 0 ∧ 0 ≤ y ≤ 10] =∃xpre∃ypre.xpre ≥ 0 ∧ 0 ≤ ypre ≤ 10 ∧ ypre ≥ 5

∧ x = 0 ∧ y = 10 ∧ y ≥ 0

=x = 0 ∧ y = 10

• the region poste2 [Rl0] = (l1, x = 0 ∧ y = 10)

The main idea of forward analysis is to calculate (I 7→∗) ⊆ Σ of states which are
reachable from the initial states I. The general forward reachability analysis algorithm
shows in Algorithm 1.

Algorithm 1: General forward reachability analysis algorithm [SFÁ19]
Input: Set of initial states I
Output: Set of reachable states R

1 R := I
2 Rnew := I
3 while Rnew 6= ∅ do
4 Rnew := Reach(Rnew) \ R
5 R := R

⋃
Rnew

6 end

2.3.2 Backward Analysis
Informally speaking backward analysis [ACH+95] could be seen as the reverse pro-
cess of forward analysis which is to compute the reachable state set Reach−(Goal)
starting from a set of target states Goal, written as Reach−(Goal) = {s ∈ Σ | ∃s′ ∈
Goal. s 7→∗ s′}. Similarly, we discuss one-step reachability under time and discrete
steps separately.

We define the backward time closure 〈P 〉↙l over a set of valuations P ⊆ V at a
location l ∈ Loc as

ν ∈ 〈P 〉↙l ⇔ ∃νpost ∈ V, t ∈ R≥0. νpost = Actl[ν](t) ∧ νpost ∈ P ∧ Invl[ν],

the region 〈Rl〉↙l where Rl = {(l, ν) | ν ∈ P} as

〈Rl〉↙l = (l, 〈P 〉↙l),

and the the set of region 〈R〉↙ as

〈R〉↙ =
⋃
l∈Loc

〈Rl〉↙l ,

where R =
⋃
l∈LocRl.

We define the precondition pree[P] over a set of valuations P ⊆ V with respect to
an edge e = (l′, a, µ, l) as

ν ∈ pree[P] ⇔ ∃νpost ∈ V. νpost ∈ P ∧ (ν, νpost) ∈ µ ∧ Invl′ [ν],

22 Chapter 2. Preliminaries

the region pree[Rl] as
pree[Rl′] = (l′, pree[P]),

where Rl′ = {(l′, ν)|ν ∈ P}, and the the set of region pre[R] as

pre[R] =
⋃

e=(l′,a,µ,l)∈Edge

pree[Rl′],

where R =
⋃
l′∈LocRl′ .

We use initial region (7→∗ R) ⊆ Σ to denote the set of all states from which states
in the target region R ⊆ Σ are reachable:

s ∈ (7→∗ R)⇔ ∃s′ ∈ R. s 7→∗ s′.

Chapter 3

Stochastic Rectangular
Automata

Rectangular automata may be non-deterministic, i.e. if more than one transitions,
which have the same source location, are enabled at the same time, then system
will choose one of the enabled transitions to take non-deterministically. Probabilistic
rectangular automata generalize the subclass of rectangular hybrid automata that
represent the non-deterministic behavior of the system by probability. Discrete-time
probabilistic rectangular automata extend rectangular automata with discrete prob-
ability distributions over transitions.

3.1 Discrete-Time Probabilistic Rectangular Automata

Definition 3.1.1 (Syntax of Discrete-Time Probabilistic Rectangular Automata [Spr11]).
A discrete-time probabilistic rectangular automaton (DTPRA) is a tuple H is a tuple
H = (Loc,Var,Lab,Edge,Act, Inv, Init, P) where:

• (Loc,Var,Lab,Edge,Act, Inv, Init) is a rectangular automaton

• P is a transition probability function P : Edge→ [0,1] such that:

∀l ∈ Loc.

 ∑
e∈Edge

P (l,e) = 1


Definition 3.1.2 (Semantics of Probabilistic Rectangular Automata [Spr11]). The
semantics of a probabilistic rectangular automaton H = (Loc,Var,Lab,Edge,Act, Inv,
Init, P) also consist of jumps and flows:

1. Discrete step semantics

e = (l, a, pre, post, jump, l′) ∈ Edge P (l,e) > 0
ν ∈ pre ν′ ∈ post ∀i /∈ jump.v′i = vi ν′ ∈ Inv(l′)

(l.ν)
a−→ (l′,ν′)

Rulediscrete

24 Chapter 3. Stochastic Rectangular Automata

except conditions of discrete step semantics of rectangular automata, transition
e may be taken under the condition that probability of taking transition e at
location l is greater than zero additionally.

2. Time step semantics are same as that in rectangular automata

Example 3.1.1. Figure 3.1 shows a simple discrete-time probabilistic rectangular
automaton H3 = (Loc3,Var3,Lab3,Edge3,Act3, Inv3, Init3). Compared to the rect-
angular automaton H2 in Figure 2.2, H3 resolve the non-determination in H2 by
probability. If y ≥ 5 is satisfied in location l0, the system will reach location l1 with
the probability 0.9 and reach location l0 with the probability 0.1 respectively.

l0
ẋ := 1
ẏ := 2
y ≤ 10

l1
ẋ := −1

ẏ :∈ [−2,− 1]

y ≥ 5x := 0, y := 0

e2
x := 0,y := 10

0.9
e3

x := 0, y := 0

0.1

e4
y ≤ 5

x := 0,y := [0,10]

Figure 3.1: A simple discrete-time probabilistic rectangular automaton H3

3.2 Stochastic Rectangular Automata
Probabilistic rectangular automata using rules based on stochastic process are called
stochastic rectangular automata. Intuitively the probability distribution of stochastic
rectangular automata has two part, one is over delays, the other is over transitions.
In the following we extend stochastic timed automata introduced in [BBB+14] to
stochastic rectangular automata. We introduce probability distribution over delays
firstly.

Definition 3.2.1 (Probability Distribution over Delays of Rectangular Automata).
Let H = (Loc,Var,Lab,Edge,Act, Inv, Init) with state set Σ be a non-blocking rect-
angular automaton. The probability distribution on state s ∈ Σ over delays is a
probability measure µs over R≥0 which satisfies the following requirements:

(H.1) µs(I(s)) = µs(R≥0) = 1, where I(s) is not empty as H is non-blocking. The
probability distribution is defined over delays in interval I(s), i.e. the probability
of all value out of interval I(s) is zero, so we define that µs(R≥0\I(s)) = 0;

(H.2) Let λ be a standard Lebesgue measure on R≥0. We consider the following two
situations:

• If λ(I(s)) = 0, then µs is equivalent to the uniform distribution over
points of I(s). In this case I(s) is a set of single points, because a point
has measure zero.

3.2. Stochastic Rectangular Automata 25

• Otherwise, µs is equivalent to λ on I(s). As I(s) is one-dimensional set,
λ(I(s)) measures the length of interval I(s).

In both cases we say that two measures µ and µ′ are equivalent, if for every
measurable set I, µ(I) = 0 ⇐⇒ µ′(I) = 0 holds. Intuitively, we cannot set
the probability of enabling some transitions outgoing from s to zero.

Notice that the probability measure µs is defined on Borel σ − algebra.

Next we introduce the probability distribution over transitions.

Definition 3.2.2 (Probability Distribution over Transitions of Rectangular Automata).
Let H = (Loc,Var,Lab,Edge,Act, Inv, Init) with state set Σ be a non-blocking rectan-
gular automaton. Let ps be a probability distribution of state s over transitions. By
assigning a weight w(e) > 0 to each transition e ∈ Edge the probability of taking e is
defined as:

e is enabled in s ⇐⇒ ps(e) = w(e)∑
e′ is enabled w(e′) > 0.

We extend rectangular automata to stochastic rectangular automata by adding
probability distribution over delays and transitions.

Definition 3.2.3 (Stochastic Rectangular Automata). A stochastic rectangular au-
tomaton (SRA) is a tuple H = (Loc,Var,Lab,Edge,Act, Inv, Init,µ, w, ιinit) with state
set Σ where:

• (Loc,Var,Lab,Edge,Act, Inv, Init) is a rectangular automaton,

• µ is a set of probability distribution over delays: µ =
⋃
s∈Σ µs where µs is defined

as in Definition 3.2.1,

• w is a set of weight functions: w =
⋃
e∈Edge w(e), the probability ps(e) is defined

as in Definition 3.2.2,

• ιinit is a initial distribution over states: ιinit(s) = 0 for all states s /∈ Init and∑
s∈Σ ιinit(s) = 1.

We will discuss the reachability in the rest of this thesis, if the set of target states
is not reachable from initial states after infinitely many steps, i.e. there is no such
finite run that ever reaches one of target states, we say that target states are not
reachable. In other words once there exists a finite run that reaches at least one of
target states, we say that the set of target states is reachable. So what we really
interested in is the probability distribution over finite paths that may reach the set
of target states.

Definition 3.2.4 (Probability Distribution over Finite Paths of SRA). Let H =
(Loc,Var,Lab,Edge,Act, Inv,µ, w, ιinit) with state set Σ be a stochastic rectangular au-
tomaton and let π̂(s0, e1 . . . en) be a finite path of H. The probability of π̂(s0, e1 . . . en)
starting from s0 and taking e1,e2, . . . ,en in sequence is defined as:

PH(π̂(s, e1e2 . . . en)) =

∫
t∈I(s,e1)

ps+t(e1) · PH(π̂(s′,e2 . . . en))dµs(t)

where s+t represents the state that stays at the location of s and changes the valuation
according to the activities of the location. We use s t−→ s + t

e−→ s′ to denote the

26 Chapter 3. Stochastic Rectangular Automata

transition over states which takes flow s
t−→ s + t and jump s + t

e−→ s′ in sequence.
Initially, we define PH(π̂(s0)) = 1.

We define the probability that the system starts from s0 and takes e1,e2, . . . ,en in
sequence as:

PH((s, e1e2 . . . en)) = ι(s) · PH(π̂(s, e1e2 . . . en)).

l0
ẋ = 1
ẏ = 2
y ≤ 10

l1
ẋ = −1

ẏ ∈ [−2,− 1]

e2 : 1
y ≥ 5

x := 0,y := 10

e3 : 2

y ≥ 5

x := 0, y := 0

e4 : 1
y ≤ 5

x := 0,y := [0,10]

Figure 3.2: A simple stochastic rectangular automaton H4

Example 3.2.1. Figure 3.2 shows a simple stochastic rectangular automaton H4 =
(Loc4, V ar4Lab4, Edge4, Act4, Inv4, Init4,µ, w, ιinit). Assume that s0 = (l0,{x =
0,y = 0}) is a state of H4, µs0 is uniform distribution over I(s0) and ιinit(s0) = 1.
The weight of each transition is marked with numbers in blue. The probability of
starting from s0 and taking e3,e3 in sequence is:

PH4
((s0,e3e3)) =ι(s0) · PH4

(π̂(s0,e3e3))

=1 ·
∫
t∈I(s0,e3)

ps0+t(e3) · PH4
(π̂(s0,e3)dµs0(t)

=

∫ 5

2.5

w(e3)

w(e2) + w(e3)
· PH4(π̂(s0,e3))d

1

|I(s0)|
· t

=

∫ 5

2.5

2

3
· PH4

(π̂(s0,e3))d
1

2.5
· t

=
2

3

∫ 5

2.5

(∫
u∈I(s0,e3)

ps0+u(e3) · PH4
(π̂(s0))dµs0(u)

)
d

1

2.5
· t

=
2

3

∫ 5

2.5

(
w(e3)

w(e2) + w(e3)
· PH4

(π̂(s0))d
1

|I(s0)|
· u
)
d

1

2.5
· t

=
2

3

∫ 5

2.5

(∫ 5

2.5

2

3
· PH4(π̂(s0))d

1

2.5
· u
)
d

1

2.5
· t

=
2

3
· 2

3

∫ 5

2.5

(∫ 5

2.5

1d
1

2.5
· u
)
d

1

2.5
· t

=
2

3
· 2

3

∫ 5

2.5

1d
1

2.5
· t

3.2. Stochastic Rectangular Automata 27

=
2

3
· 2

3

=
4

9

The probability of starting from s0 and taking transition e3 n-times is PH4
((s0,e

n
3)) =

1 ·
(

2
3

)n with n ∈ N. If n is infinitely close to positive infinity, then the probability
PA(π̂((s0,e

n
3)) is infinitely close to zero, which means that the probability of continu-

ously taking transition e3 infinitely many times is zero.

28 Chapter 3. Stochastic Rectangular Automata

Chapter 4

Reachability Analysis

4.1 Probability over Finite Path
Given a stochastic rectangular automatonH = (Loc,Var,Lab,Edge,Act, Inv, Init,µ, w,
ιinit) with state set Σ and a finite path π̂(s0, e1 . . . en). We calculate the probability
PH(π̂(s0,e1e2 . . . en)) as following:

PH(π̂(s,e1e2 . . . en)) =

∫
t∈I(s,e1)

ps+t(e1) · PH(π̂(s′,e2 . . . en))dµs(t)

where s t−→ s+ t
e−→ s′ with s,s+ t,s′ ∈ Σ, t ≥ 0 and e ∈ Edge, and initially we define

PH(π̂(s)) = 1 for every state s ∈ Σ. The most important part is the calculation of
interval I(s,e) that may be spent on state s before transition e taken.

4.1.1 Interval Calculation
Intuitively we could get the intersection of current valuation, activities, invariants,
guards and resets, then eliminating variables except the time variable. Intersection
of current valuation, activities and invariants is the set of all valuations that may be
reachable in current location of current state, which is similar to forward time closure.

We define the interval [(s,e)] over time with a state set S = (l,φinit) before taking
transition e = (l,a,(guard,reset),jump,l′) in location l as:

t ∈ [(s,e)] ⇔ ∃νpre, ν, νpost ∈ V. 0 ≤ t ∧ νpre |= φinit ∧ ν = Actl[ν
pre](t) ∧ Invl[ν]

∧ guard[ν] ∧ νpost = reset[ν] ∧ Invl′ [νpost]

Stochastic timed automata is a subclass of stochastic rectangular automata, whose
variables are a finite set of clocks. Clocks are a set of variables, that change with rate
one and can only be inspected and reset to zero. Thus a clock indicates the amount of
time after reseting. As our point of Section 4.1 is to describe the calculation process
clearly, our examples in Section 4.1 deal with stochastic timed automata that are
relatively simpler than stochastic rectangular automata in terms of calculation.

Example 4.1.1. Figure 4.1 shows a simple stochastic timed automaton A1 with a
single clock {x} and two locations {l0,l1}. The weight of each transition is marked
with numbers in blue. We consider transition e0 and e1: by taking e0 clock x will not

30 Chapter 4. Reachability Analysis

be reseted, however by taking e1 clock x will be reseted to zero. We compute I(s0,e0)
and I(s0,e1) where s0 is a state to find how reseting influences the interval calculation
result:

• the interval [(s0,e0)] from state s0 = (l0,{x = 0}) before taking e0 which does
not reset x:

[(s0,e0)] =∃xpre, x, xpost. 0 ≤ t ∧ xpre = 0 ∧ x = xpre + t ∧ x ≤ 10

∧ 5 ≤ x ∧ xpost = x ∧ xpost ≤ 8

=∃x, xpost. 0 ≤ t ∧ x = 0 + t ∧ x ≤ 10

∧ 5 ≤ x ∧ xpost = x ∧ xpost ≤ 8

=∃xpost. 0 ≤ t ∧ t ≤ 10 ∧ 5 ≤ t ∧ xpost = t ∧ xpost ≤ 8

=0 ≤ t ∧ 5 ≤ t ∧ t ≤ 8 ∧ t ≤ 10

=5 ≤ t ≤ 8,

so I(s0,e0) = [5,8];

• the interval [(s0,e1)] from state s0 = (l0,{x = 0}) before taking e1 which resets
x:

[(s0,e0)] =∃xpre, x, xpost. 0 ≤ t ∧ xpre = 0 ∧ x = xpre + t ∧ x ≤ 10

∧ 5 ≤ x ∧ xpost = 0 ∧ xpost ≤ 8

=∃x, xpost. 0 ≤ t ∧ x = 0 + t ∧ x ≤ 10

∧ 5 ≤ x ∧ xpost = 0 ∧ xpost ≤ 8

=∃xpost. 0 ≤ t ∧ t ≤ 10 ∧ 5 ≤ t ∧ xpost = 0 ∧ xpost ≤ 8

=0 ≤ t ∧ 5 ≤ t ∧ t ≤ 10 ∧ 0 ≤ 8

=5 ≤ t ≤ 10,

so I(s0,e1) = [5,10];

We find that if clock x is reseted by taking transition e1 to reach location l1 from loca-
tion l0, the restriction Invl1 on x does not influence the result of interval calculation;
otherwise the result depends on Invl1 on x.

l0
x ≤ 10

l1
x ≤ 8

x := 0

e0 : 1 x ≥ 5

e1 : 2

x ≥ 5 x := 0

e2 : 1
x ≥ 6 x := 0

Figure 4.1: A simple stochastic timed automaton A1

4.1. Probability over Finite Path 31

4.1.2 Transition Probability Calculation

Once I(s,e) is determined, the probability distribution over transitions can also be
calculates. For each transition e′ if the intersection of I(s,e) and I(s,e′) is not empty,
we say that transition e′ is enabled at some time point in I(s,e). We use I∩(s,e) =
{I(s,e) ∩ I(s,e′) | ∀e′ ∈ Edge. I(s,e) ∩ I(s,e′) 6= ∅} to denote a set of intersections of
I(s,e) and I(s,e′) with e′ enabled at some time point in I(s,e). However we notice
that for every possible enabled transitions e′, if I(s,e) ∩ I(s,e′) 6= I(s,e), we need to
divided I(s,e) into:

• I(s,e) ∩ I(s,e′) in which e′ is enabled,

• I(s,e)\(I(s,e) ∩ I(s,e′)) in which e′ is not enabled.

Therefore, it is essential to construct a set of intervals for transitions, that each transi-
tion is either enabled or not enabled in each interval of the set, rather than enabled in
part of the interval. We apply Algorithm 2 to separate the interval I(s,e) into disjoint
intervals, such that for each transition and each disjoint interval, transition is either
enabled during the interval or not enabled at any time point of the interval. We use
Idisj(s,e) = {I | I ⊆ I(s,e)} with ∪I∈IdisjI = I(s,e) and ∀I1,I2 ∈ Idisj . I1 ∩ I2 = ∅
to denote resulted disjoint intervals, E+(s,I) = {e′ | I ⊆ I(s,e′)} to denote the set
of enabled transitions in interval I, and I+(s,e) = {(I,E+(s,I)) | I ∈ Idisj(s,e)} to
denote the pair of interval and set of enabled transition in it.

Algorithm 2: Disjoint Intervals Calculation
Input: Set of intervals I∩(s,e), interval I(s,e)
Output: Set of new intervals Idisj

1 begin
2 Idisj := ∅;
3 Intervals := I∩(s,e) ∪ I(s,e);
4 while Intervals 6= ∅ do
5 I := Intervals.front();
6 Intervals.pop();
7 i := Intervals.begin();
8 while i 6= Intervals.end() do
9 tempI := Intervals.at(i);

10 interI := I ∩ tempI;
11 if interI 6= ∅ then
12 if I\interI 6= ∅ then
13 if Intervals.find(I\interI) = NULL then
14 Intervals.push(I\interI);

15 if tempI\interI 6= ∅ then
16 if Intervals.find(tempI\interI) = NULL then
17 Intervals.push(tempI\interI);

18 I := interI ;
19 Intervals.erase(i);

20 i++;

21 Idisj .push(I)

32 Chapter 4. Reachability Analysis

Example 4.1.2. Consider the stochastic timed automaton A1 in Figure 4.1. In
Example 4.1.1 we calculate I(s0,e0) and (s0,e1) with s0 = (l0,{x = 0}), and the
results are [5,8] and [5,10] respectively. We calculate the probability ps0+t(e1) with
t ∈ I(s0,e1) by applying Algorithm 2 we have:

• I∩(s0,e1) = {[5,10],[5,8]},

• Idisj(s0,e1) = {[5,8],(8,10]},

• E+(s0,[5,8]) = {e0,e1} and E+(s0,(8,10]) = {e1},

• I+(s,e) = {([5,8],{e0,e1}),((8,10],{e1})},

• t ∈ [5,8]: ps0+t(e1) = w(e1)∑
e∈E+(s0,[5,8]) w(e) = w(e1)

w(e0)+w(e1) = 2
3 ,

• t ∈ (8,10]: ps0+t(e1) = w(e1)∑
e∈E+(s0,(8,10]) w(e) = w(e1)

w(e1) = 1.

4.1.3 Path Probability Calculation
We refine the calculation of probability PH(π̂(s,e1e2 . . . en)) as following:

PH(π̂(s,e1e2 . . . en))

=

∫
t∈I(s,e1)

ps+t(e1) · PH(π̂(s′,e2 . . . en))dµs(t)

=
∑

(I′,E+(s,I′))∈I+(s,e1)

(∫
t∈I′

ps+t(e1) · PH(π̂(s′,e2 . . . en))dµs(t)

)

=
∑

(I′,E+(s,I′))∈I+(s,e1)

(∫
t∈I′

w(e1)∑
e′1∈E+(s,I′) w(e′1)

· PH(π̂(s′,e2 . . . en))dµs(t)

)

where s t−→ s+ t
e−→ s′ with s,s+ t,s′ ∈ Σ, t ≥ 0 and e ∈ Edge, and initially we define

PH(π̂(s)) = 1 for every state s.

Example 4.1.3. Consider the stochastic timed automaton A1 in Figure 4.1. In
Example 4.1.2 we have I+(s,e) = {([5,8],{e0,e1}),((8,10],{e1})}. Intuitively there are
two disjoint interval sets, which are I0 = [5,8] and I1 = (8,10]. Assume that s0 =
(l0,{x = 0}) is a state of A1, µs0 is uniform distribution over I(s0) and ιinit(s0) = 1.
The weight of each transition is marked with numbers in blue in Figure 4.1. The
probability of starting from s0 and taking e1 is:

PA1((s0,e1)) =ι(s0) · PA1(π̂(s0,e1))

=1 ·
∫
t∈I(s0,e1)

ps0+t(e1) · PA1(π̂(s0)dµs0(t)

=

∫
t∈I0

ps0+t(e1) · PA1(π̂(s0)dµs0(t)

+

∫
t∈I1

ps0+t(e1) · PA1(π̂(s0)dµs0(t)

=

∫ 8

5

w(e1)

w(e0) + w(e1)
· PA1

(π̂(s0))d
1

|I(s0)|
· t

4.2. Forward Analysis for Probabilistic Rectangular Automata 33

+

∫ 10

8

w(e1)

w(e1)
· PA1

(π̂(s0))d
1

|I(s0)|
· t

=

∫ 8

5

2

3
· PA1(π̂(s0))d

1

5
· t+

∫ 10

8

1 · PA1(π̂(s0))d
1

5
· t

=

∫ 8

5

2

3
· 1d1

5
· t+

∫ 10

8

1 · 1d1

5
· t

=
2

3
· 3

5
+

2

5

=
12

15

4.2 Forward Analysis for Probabilistic Rectangular
Automata

Intuitively our analysis is based on the idea of computation tree. The nodes of the
tree denote every reachable state set. For each state set s, if s′ is reachable from s
by taking transition e, we say that s′ is a child of s. A path from node s to s′ of the
tree denote a transition s

t,e−−→ s′ with state sets s,s′, time t ≥ 0, and transition e.
Figure 4.2 illustrates how the computation tree constructed (bad states are marked
in red). The main difficulties during our implementation is to solve the following
situations in Figure 4.2 properly:

s0

s1

s3

...

t3,e3

s4

t4,τ

t1,e1

s2

s′′5
s′5

s8

...

t8,e8

t5,e5

s6

t6,e6

s7

s9

s10

t10,e10

...
s11

t11,e11

t9,e9

t7,e7

t2,e2

s5

Figure 4.2: A forward analysis computation tree

1. Time-step successor contains bad states: after time t4 and taking τ -transition
from s1 a bad state s4 is reached; As τ -transition does not change the location,
s4 stays in the location of s1; we need not to calculate the successors of s4.

2. Jump-step successors contain bad states:

• transition s2
t6,e6−−−→ s6 is simple to deal with. As s6 is a bad state, we

simply ignore all successors of s6.

34 Chapter 4. Reachability Analysis

• for transition s2
t5,e5−−−→ s5 we notice that only part of s5 is bad. Before

doing further calculation we separate s5 into s′5 and s′′5 with s′5 ∪ s′′5 = s5

and s′5∩s′′5 = ∅, where s′′5 is the intersection of s5 and bad states. Therefore
we simplify the calculation by ignoring all successors of s′′5 .

3. Successors have been visited before:

• s11 is one of the successors of s9, besides s11 equals to s7 and s7 is one of
the predecessors of s9; In other words, if there exists a loop along the path,
we only need to calculate every states of the loop once.

• s10 is one of the successors of s9 and s10 equals to s8, however there is no
such path that s8 −→∗ s9; To solve this problem we construct an unbounded
queue to store visited states, therefore if s8 is visited we need not to do
calculation on s10 which is the successor of s9.

4.2.1 Implementation

The basic idea of step successor calculation is depicted in Algorithm 3. Time-step
successor and jump-step successor are calculated in sequence. Line 4 to 9 and Line 12
to 15 describe how we deal with the situation if the time-step successor st contains bad
states and the jump-step successor s′ contains bad states respectively. We separate
the successors into two parts, one called sbad is the intersection of st and bad states.
We do not need to do further calculation on sbad.

Algorithm 3: Forward Reachability
Input: State: s, bad states: Bad
Output: Set of pairs Results = {(safe,(e,s′))}

1 begin
2 Results := ∅;
3 calculate time-step successor st according to s;
4 if st ∩Bad 6= ∅ then
5 sbad := st ∩ Bad;
6 e := τ ;
7 s′ := sbad;
8 Results.push((false,(e,s′)));
9 st := st\sbad;

10 calculate jump-step successors JumpSucc according to st;
11 for (e,s′) ∈ JumpSucc do
12 if s′ ∩ Bad 6= ∅ then
13 sbad := s′ ∩ Bad;
14 Results.push((false,(e,sbad)));
15 s′ := s′\sbad;
16 Results.push((true,(e,s′)));

The significant calculation is how to get S\Sbad where S = (l,φ), Sbad = (l,φbad) ∈
Σ and Sbad is bad state set. Assume that φbad = a0∧a1∧ . . .∧an with n ∈ N, in order
to calculate S\Sbad we need to calculate φ\φbad. The problem is that φ∧qφbad may

4.3. Backward Analysis and Probability Calculation for Probabilistic Rectangular
Automata 35

contain disjunctions, which we need to avoid. The idea of eliminating disjunctions is
to separate φ\φbad into subsets φ0 = {φ∧qa0}, φ1 = {φ ∧ a0∧qa1}, . . . , φn = {φ ∧
. . .∧ an−1∧qan}. Thus we get a set of states S0 = (l,φ0), S1 = (l,φ1),. . . ,Sn = (l,φn).
The successor calculation is then applied on S0, . . . , Sn respectively.

The forward analysis is depicted in Algorithm 4. The forward analysis starts from
initial states, and we use breadth-first search to implement the tree construction.
For each unprocessed state we use forward reachability calculation described above
to get the corresponding transitions and successors. Then we add the successors of
processed state as a child of current node. If the successor is processed before we avoid
to process second time which is indicated in Line 18 to 19. At the end we collect all
reachable bad states.

Algorithm 4: Forward Analysis
Input: Hybrid Automaton HA
Output: Set of unsafe states: UnsafeStates, reach tree: ReachTree

1 begin
2 Init is the set of initial states of HA;
3 Bad is the set of bad states of HA;
4 Reached = ToProcess := ∅;
5 ReachTree := ∅;
6 UnsafeStates := ∅;
7 for s0 ∈ Init do
8 ToProcess.push(s0);
9 add s0 as a root of the tree ReachTree;

10 while !ToProcess.empty() do
11 s := ToProcess.front();
12 ToProcess.pop();
13 Reached.push(s);
14 Results := ForwardReachability(s,Bad);
15 for (safe, (e,s′)) ∈ Results do
16 add s′ as a child of s in the tree ReachTree;
17 if safe then
18 if s′ /∈ Reached then
19 ToProcess.push(s′);

20 else
21 UnsafeStates.push(s′) ;

4.3 Backward Analysis and Probability Calculation
for Probabilistic Rectangular Automata

After collecting unsafe states, we could do backward analysis as well as probability
calculation. Figure 4.3 illustrates how backward analysis works based on computation
tree. Figure 4.3(a) depicts a computation tree constructed by forward analysis, there
are two unsafe paths π1 = s0

t1,e1−−−→ s1
t4,e4−−−→ s4

t7,e7−−−→ s7 and π2 = s0
t3,e3−−−→ s3

t6,e6−−−→ s6,

36 Chapter 4. Reachability Analysis

among which π1 is the longest. Figure 4.3(b) depicts that we get s′4 by one step
predecessor calculation on longest path π1. If there are more than one paths which
are longest, we calculate one step predecessors of the longest paths at the same level.
Figure 4.3(c) depicts that both π′1 = s0

t1,e1−−−→ s1
t4,e4−−−→ s′4 and π2 are longest paths, we

process them in sequence in this step. Figure 4.3(d) depicts that s′1 of π′′1 = s0
t1,e1−−−→ s′1

and s′3 of π′2 = s0
t3,e3−−−→ s′3 have the same parent, the predecessor s′0 is dependent not

only on s′1 but also on s′3.

s0

s1

s4

s7

t7,e7

t4,e4

s5

t5,e5

t1,e1

s2

t2,e2

s3

s6

t6,e6

t3,e3

π1

π2

(a)

s0

s1

s′4

s7

t7,e7

t4,e4

s5

t5,e5

t1,e1

s2

t2,e2

s3

s6

t6,e6

t3,e3

π1

π2

(b)

s0

s′1

s′4

t4,e4

s5

t5,e5

t1,e1

s2

t2,e2

s′3

s6

t6,e6

t3,e3

π′
1

π2

(c)

s′0

s′1

t1,e1

s2

t2,e2

s′3

t3,e3

π′′
1 π′

2

(d)

Figure 4.3: A simple backward analysis based on computation tree

4.3.1 Implementation

Algorithm 5 illustrates the backward analysis along with probability calculation. We
first find a longest path and bad state sbad which is indicated in Line 6. Line 17 to
Line 20 depict that the probability of the state is dependent on all its children.

4.4 Direct Backward Analysis for Probabilistic Rect-
angular Automata

In Section 4.2 and Section 4.3 we propose a reachability analysis approach by first
going through all reachable states by forward analysis and then calculating the prob-
ability from reached bad states by backward analysis. This approach gives a complete

4.4. Direct Backward Analysis for Probabilistic Rectangular Automata 37

Algorithm 5: Backward Analysis and Probability Calculation
Input: Hybrid Automaton: HA, set of unsafe states: UnsafeStates, tree

constructed after forward analysis: ReachTree
Output: The probability to reach bad states: probunsafe

1 begin
2 ιinit is a initial distribution of HA;
3 probunsafe := 0;
4 probs := ones();
5 while !UnsafeStates.empty() do
6 sbad is the state whose path from initial state is the longest;
7 treeNode is corresponding node of sbad;
8 while treeNode→ parent() ! = NULL do
9 ebad is the transition to reach treeNode from the parent node

treeNode→ parent();
10 calculate jump-step predecessor st according to sbad and ebad;
11 calculate time-step predecessor sprebad according to st;
12 spre is the state of the parent node treeNode→ parent();
13 s := sprebad ∩ spre;
14 if ebad = τ then
15 probs[s] := probs[sbad];
16 else
17 if probs[s] = 1 then
18 probs[s] :=

∫
t∈I(s,ebad)

ps+t(ebad) · probs[sbad]dµs(t);
19 else
20 probs[s] :=

probs[s] +
∫
t∈I(s,ebad)

ps+t(ebad) · probs[sbad]dµs(t);

21 sbad := s;
22 treeNode := treeNode→ parent();

23 probunsafe := probunsafe + probs[s] · ιinit(s)

view of reachable states. However, sometimes we do not need to collect all informa-
tions of reachable states. Thus we consider to do backward analysis directly. The
idea of backward analysis is also tree based, but bottom to top. The construction
of the tree is similar to that in Section 4.2, we do not repeat it. We introduce the
implementation directly.

Algorithm 6 shows the basic idea of backward reachability calculation, comparing
to forward reachability calculation in Algorithm 4 we start from bad state to calculate
its predecessors and once initial states are reached we do not calculate the predecessors
any more.

Algorithm 7 illustrate the tree construction and probability calculation by applying
backward analysis directly.

38 Chapter 4. Reachability Analysis

Algorithm 6: Backward Reachability
Input: Bad state: sbad, initial states Initial
Output: Set of pairs Results = {(initial,(s′,e))}

1 begin
2 Results := ∅;
3 calculate time-step predecessor st according to sbad;
4 if st ∩ Initial 6= ∅ then
5 sinit := st ∩ Intial;
6 e := τ ;
7 Results.push((true,(sinit,e));
8 st := st\sinit;
9 calculate jump-step successors JumpSucc according to st;

10 for (s′,e) ∈ JumpSucc do
11 if s′ ∩ Initial 6= ∅ then
12 sinit := s′ ∩ Initial;
13 Results.push((true,(sinit,e));
14 s′ := s′\sinit;
15 Results.push((false,(s′,e)));

4.4. Direct Backward Analysis for Probabilistic Rectangular Automata 39

Algorithm 7: Backward Analysis
Input: Hybrid Automaton: HA
Output: Set of unsafe states: UnsafeStates, reach tree: ReachTree

1 begin
2 Init is the set of initial states of HA;
3 Bad is the set of bad states of HA;
4 Reached = ToProcess := ∅;
5 ReachTree := ∅;
6 probunsafe := 0;
7 probs := ones();
8 for sbad ∈ Bad do
9 ToProcess.push(sbad);

10 add sbad as node the tree ReachTree;

11 while !ToProcess.empty() do
12 sbad := ToProcess.front();
13 ToProcess.pop();
14 Reached.push(sbad);
15 Results := BackReachability(sbad,Init);
16 for (initial, (s′,e)) ∈ Results do
17 add s′ as a parent of sbad in the tree ReachTree;
18 if e = τ then
19 probs[s

′] := probs[sbad];
20 else
21 if probs[s′] = 1 then
22 probs[s

′] :=
∫
t∈I(s′,e) ps+t(e) · probs[sbad]dµs′(t);

23 else
24 probs[s

′] := probs[s
′] +

∫
t∈I(s′,e) ps+t(e) · probs[sbad]dµs′(t);

25 if !initial then
26 if s′ /∈ Reached then
27 ToProcess.push(s′);

28 else
29 probunsafe := probunsafe + probs[s

′] · ιinit(s)

40 Chapter 4. Reachability Analysis

Chapter 5

Results

The basic idea of reachability analysis on stochastic rectangular automata is presented
in previous chapter. The library our implementation based is called HyPro [SAMK17].
HyPro provides the implementation of state set representations for hybrid automata.

5.1 Simple Test Example

In oder to give a brief idea of how the program runs, we introduce a simple test
example firstly. Figure 5.1 shows a stochastic rectangular automata with two locations
l0, l1 and one variables x. Location l0 has two out-going transitions e0, e1 to reach
l1, l0 respectively, and location l1 has one out-going transition e2 to reach l0.

l0
ẋ = [1,2]

l1
ẋ = [3,5]

e0 : 1
x ∈ [4,10]

x := [−1,1]

e1 : 2

x ∈ [0,5]

x := [−1,1]

e2 : 1
x ∈ [0,10]

x := [−1,1]

Figure 5.1: A simple stochastic rectangular automaton H1

5.1.1 Reachable Bad State Analysis

Assume that the initial state is s0 = (l0,{x ∈ [−1,1]}) and the bad state is sbad =
(l1,{x ∈ [6,8]}). We apply the forward analysis introduced in Section 4.2 to construct
a reach tree. Figure 5.2 shows the construction of a reach tree by applying forward
analysis. To minimize the figure we eliminate the constraints which do not effect the
variable value. For example, assume that the constraint set is {[0,1],[−1,7]}, then we

42 Chapter 5. Results

only use {[0,1]} in the following reach tree figure. Figure 5.2(a) shows that we add
the initial state s0 as the root of the tree. In Figure 5.2(b) we add jump successors
s1, s2 as child nodes of s0. As s2 = s0 we mark s2 as a processed node and do
not calculate further successor of s2 any more. Figure 5.2(c) shows that after time-
successor calculation the bad state s3 is reached. We do not need to calculate the
successors of bad state s3. As mentioned in Section 4.2.1 we separate the state set,
which does not contain bad state, into substate sets to avoid disjunction. s4, s5 in
Figure 5.2(c) are two substates after separation, and the jump-successors of s4, s5

are s6, s7. For the reason that s6 = s0 and s7 = s0 we mark s6 and s7 as processed
nodes. Thus forward analysis is finished.

s0
l0

[−1,1]

(a)

s0
l0

[−1,1]

s1
l1

[−1,1]

e0

s2
l0

[−1,1]

e1

(b)

s0
l0

[−1,1]

s1
l1

[−1,1]

s3
l1

[6,8]

τ

s4
l1

[−1,6)

s6
l0

[−1,1]

e2

τ

s5
l1

(8,∞)

s7
l0

[−1,1]

e2

τ

e0

s2
l0

[−1,1]

e1

(c)

Figure 5.2: Computation tree after forward analysis

After the reach tree construction we apply backward analysis and calculate the
probability at the same time. Figure 5.4 shows that we apply backward analysis
starting from bad state s3. In Figure 5.3(a) we do backward reachability analysis

5.1. Simple Test Example 43

one step back. We get the predecessor s′1 and the probability from s′1 to reach s3 is
2
3 . We do one more step backward reachability analysis and get the predecessor s0

in Figure 5.3(b), which is the initial state. The probability of reaching s3 from s0

through s′1 is 13
33

s′1
l1

[−1,8]

s3
l1

[6,8]

τ

prob = 1

prob = 2
3

(a)

s0
l0

[−1,1]

s′1
l1

[−1,8]

s3
l1

[6,8]

τ

e0

prob = 1

prob = 2
3

prob = 13
33

(b)

Figure 5.3: Computation tree after backward analysis

If we use direct backward analysis introduced in Section 4.4, we get a similar
reach tree as shown in Figure 5.4. The only difference is that s′1 by applying direct
backward analysis is (l1,(∞,8]), because by applying direct backward analysis we do
not have any restrictions of predecessors, which is given by forward analysis when we
apply first forward analysis and then backward analysis.

5.1.2 Not Reachable Bad State Analysis

Assume that the initial state is s0 = (l0,{x ∈ [−1,1]}) and the bad state is sbad =
(l1,{x ∈ [−10, − 9]}). We first apply the forward analysis introduced in Section 4.2
to construct a reach tree. We get a reach tree shown in Figure 5.4(a). The initial
state s0 is the root of the tree, and after traveling through all reachable state we find
the bad state sbad is not reachable. There is no need to do backward analysis, since
the bad state is not reachable. Then we apply direct backward analysis introduced
in Section 4.4, the reach tree is shown in Figure 5.4(b). Instead of traveling through
all reachable states, we only do one step backward reachability analysis to find that
the bad state sbad is not reachable.

5.1.3 Comparing the Two Approaches

Section 5.1.1 shows that the forward analysis offers more execution information of the
process, which may reduce a part of the calculation when we do backward analysis.
Section 5.1.2 shows that if only information we need to know is the probability to
reach bad states, then apply direct backward analysis may be a better approach.
Thus for different scenarios we could choose one proper approach to apply. The basic

44 Chapter 5. Results

s0
l0

[−1,1]

s1
l1

[−1,1]

s3
l0

[−1,1]

e2

e0

s2
l0

[−1,1]

e1

(a)

NULL

sbad

l1
[−10,− 9]

(b)

Figure 5.4: Computation tree after backward analysis

principle is that if we only need to analysis the reachability of bad states, we apply
direct backward analysis , otherwise first apply forward analysis and then backward
analysis.

5.2 A Two Room Shared Heater Example
UPPAAL [upp] is a tool to model, validate and verificate the real-time systems. Some
of the case studies modeled in UPPAAL are hybrid automata, which we may use as
benchmarks after some adaption. A two room shared heater [DLL+15] is a Statistical
Model Checking(SMC) example which can be analyzed by UPPAAL. In this example,
we consider a heater which is shared by two independent rooms. At any time at most
one room can be heated. The model shown in [DLL+15] is a set of parallel hybrid
automata, the first step of adaption is to build the parallel composition of hybrid
automata.

As committed location in UPPAAL does not effect the variable values, we build
the parallel composition of hybrid automata by ignoring committed location. We get
the automata shown in Figure 5.5. As our purpose is to do reachability analysis,
we eliminate the locations which are not reachable from the initial location and get
the automata shown in Figure 5.6. Another significant adaption is to modify the
non-rectangular labeling functions in [DLL+15] to labeling functions in rectangular
regions. We choose proper rectangular regions to simulate the temperature changing.
The final stochastic rectangular automata is shown in Figure 5.7, and for simplifi-
cation we use OFF , ONr0 , ONr1 to represent the location (OFF, OFFr0 , OFFr1),
(ON0, ONr0 , OFFr1), (ON1, OFFr0 , ONr1) in Figure 5.6 respectively. Assume that
the initial state is (OFF,{x = 0,T0 ∈ [20,25],T1 ∈ [20,25]}), the probability that the
room r0 is heated to T0 = 70 by switch on the heater once time is 0.000030, close to
zero. The constructed reach tree is shown in Figure 5.8.

5.2. A Two Room Shared Heater Example 45

OFF, OFFr0 , OFFr1ON0, ONr0 , OFFr1 ON1, OFFr0 , ONr1

OFF, OFFr0 , ONr1

ON0, ONr0 , ONr1

OFF, ONr0 , OFFr1

ON1, ONr0 , ONr1

Figure 5.5: The parallel composition of hybrid automata of a two room shared heater
example.

OFF, OFFr0 , OFFr1ON0, ONr0 , OFFr1 ON1, OFFr0 , ONr1

Figure 5.6: The parallel composition of hybrid automata of a two room shared heater
example after eliminate unreachable locations.

OFF
ẋ := 1

Ṫ0 := [−8,0]

Ṫ1 := [−8,0]
x ≤ 4

ONr0
ẋ = 0

Ṫ0 = [0,10]

Ṫ1 = [−8,0]
expontialrate : 2

ONr1
ẋ = 0

Ṫ0 = [−8,0]

Ṫ1 = [0,10]
expontialrate : 1e0 : 1

e2 : 1

x := 0

e1 : 3

e3 : 1

x := 0

Figure 5.7: The stochastic rectangular automata of a two room shared heater example.

46 Chapter 5. Results

OFF
x = 0

T0 ∈ [20,25]
T1 ∈ [20,25]

ONr0
x ∈ [0,4]

T0 ∈ [−12,25]
T1 ∈ [−12,25]

ONr0
x ∈ [0,∞)

T0 ∈ [−12,70)
T1 ∈ (−∞,25]

OFF
x = 0

T0 ∈ [−12,70)
T1 ∈ (−∞,25]

...

e2

τ

ONr0
x ∈ [0,∞)
T0 ∈ [70,∞)
T1 ∈ (−∞,25]

τ

e0

ONr1
x ∈ [0,4]

T0 ∈ [−12,25]
T1 ∈ [−12,25]

OFF
x = 0

T0 ∈ (−∞,25])
T1 ∈ [−12,∞)

ONr0
x ∈ [0,4]

T0 ∈ (−∞,25]
T1 ∈ [−44,∞]

OFF
x = 0

T0 ∈ (−∞,∞)
T1 ∈ [−44,∞]

...

e2

e0

ONr1
x ∈ [0,4]

T0 ∈ (−∞,25]
T1 ∈ [−44,∞)

...

e1

e3

e1

prob = 1

prob = 0.000123

prob = 0.000030

Figure 5.8: The tree constructed after forward analysis for a two room shared heater
example.

Chapter 6

Conclusion

6.1 Summary

In this thesis we introduce the reachability analysis for stochastic rectangular au-
tomata. Stochastic rectangular automata, which is an extension of stochastic timed
automata, is a kind of probabilistic rectangular automata with continuous-time prob-
ability distribution. The probability distribution of stochastic rectangular automata
has two parts, one is over delays and the other is over transitions. The probability
distribution over delays is continuous. The probability distribution over transitions
is dependent on enabled transition in a given time interval.

The most important part of reachability analysis implementation is time interval
calculation. For a state s, the time interval before taking transition e to s′ is deter-
mined by eliminating the variables expect time in intersection of the states valuation,
activities, invariants, guards and resets. Then the probability calculation is based on
the time intervals.

One approach to implement reachability analysis is to do forward and backward
analysis in sequence. Forward analysis is to travel through all reachable states by
breadth-first search, after that it builds a computation tree for processed states. Ac-
cording to the reach tree constructed by forward analysis we do backward analysis
from reachable bad states. For each step we calculate the predecessors of the current
state and the probability of moving from each predecessor to current state respec-
tively. Once the root of the reach tree is arrived, the backward analysis is completed
and we get the probability of starting from initial state to reach at least one bad state.

Another approach to implement reachability analysis is to do backward analysis
directly. Starting from one of the bad states, we do backward reachability calculation
step by step, in the meanwhile calculate the probability of reaching a bad state from
currently processing state. Once the predecessor is marked as processed states, we
repeat backward reachability calculation from one of unprocessed bad states. Until
all bad states are marked as a processed states, we sum up the probability of moving
from the initial states to bad states.

The two approaches are applied in different scenarios. In Chapter 5 we compare the
two approaches by applying them for the same example. None of them is absolutely
efficient than the other. The basic principle is that if we need the information of all
reachable states, then the first approach is a proper way, otherwise we choose the
second approach.

48 Chapter 6. Conclusion

6.2 Future work
Probabilistic Rectangular Automata with pure continuous-time probabil-
ity distribution. Stochastic rectangular automata introduced in this paper has two
parts of probability distribution. The probability distribution over transitions is de-
pendent on the weights of enabled transitions in a given time interval, which is still
discrete-time probability distribution. By adapting the probability distribution over
transitions to a continuous-time probability distribution, we would introduce a prob-
abilistic Rectangular Automata with pure continuous-time probability distribution,
which is more efficient to model the systems in our daily life.

Probabilistic Hybrid Automata with continuous-time probability dis-
tribution. Rectangular automata is a subclass of hybrid automata. The labeling
function of rectangular automata is restricted to rectangular regions. However, in
oder to model a more complicated systems we need a more expressible model. In the
future, we could extend the probabilistic rectangular automata first to probabilistic
linear hybrid automata and then to probabilistic general hybrid automata. In which
case, the valuation of variables is not only dependent on time but also on the value
of variables.

Bibliography

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical
computer science, 138(1):3–34, 1995.

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid systems, pages 209–229. Springer,
1992.

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[BBB+14] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet,
Christel Baier, Marcus Größer, and Marcin Jurdzinski. Stochastic timed
automata. arXiv preprint arXiv:1410.2128, 2014.

[BDG+11] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-
François Raskin, and James Worrell. On reachability for hybrid automata
over bounded time. In International Colloquium on Automata, Languages,
and Programming, pages 416–427. Springer, 2011.

[BK02] Falko Bause and Pieter S Kritzinger. Stochastic petri nets, volume 1.
Citeseer, 2002.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[Bra05] Michael S. Branicky. Introduction to Hybrid Systems, pages 91–116.
Birkhäuser Boston, Boston, MA, 2005.

[DLL+15] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal smc tutorial. International Journal on
Software Tools for Technology Transfer, 17(4):397–415, 2015.

[HKPV98] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of computer and
system sciences, 57(1):94–124, 1998.

[HM00] Thomas A Henzinger and Rupak Majumdar. Symbolic model checking
for rectangular hybrid systems. In International Conference on Tools and

50 Bibliography

Algorithms for the Construction and Analysis of Systems, pages 142–156.
Springer, 2000.

[HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduc-
tion to automata theory, languages, and computation. Acm Sigact News,
32(1):60–65, 2001.

[JELS99] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar
Sastry. On the regularization of zeno hybrid automata. Systems & control
letters, 38(3):141–150, 1999.

[KNS02] Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Probabilis-
tic model checking of the ieee 802.11 wireless local area network proto-
col. In Joint International Workshop von Process Algebra and Proba-
bilistic Methods, Performance Modeling and Verification, pages 169–187.
Springer, 2002.

[Kop96] Peter W Kopke. The theory of rectangular hybrid automata. Technical
report, Cornell University, 1996.

[PDMV15] Pavithra Prabhakar, Parasara Sridhar Duggirala, Sayan Mitra, and Ma-
hesh Viswanathan. Hybrid automata-based cegar for rectangular hybrid
systems. Formal Methods in System Design, 46(2):105–134, 2015.

[SAMK17] Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. H y p ro: A c++ library of state set representations for
hybrid systems reachability analysis. In NASA Formal Methods Sympo-
sium, pages 288–294. Springer, 2017.

[SFÁ19] Stefan Schupp, Goran Frehse, and Erika Ábrahám. State set represen-
tations and their usage in the reachability analysis of hybrid systems.
Technical report, Fachgruppe Informatik, 2019.

[Spr11] Jeremy Sproston. Discrete-time verification and control for probabilistic
rectangular hybrid automata. In 2011 Eighth International Conference
on Quantitative Evaluation of SysTems, pages 79–88. IEEE, 2011.

[upp] Uppaal. https://uppaal.org.

https://uppaal.org

	Introduction
	Structure of the Thesis

	Preliminaries
	Hybrid Automata
	Rectangular Automata
	Reachability Analysis

	Stochastic Rectangular Automata
	Discrete-Time Probabilistic Rectangular Automata
	Stochastic Rectangular Automata

	Reachability Analysis
	Probability over Finite Path
	Forward Analysis for Probabilistic Rectangular Automata
	Backward Analysis and Probability Calculation for Probabilistic Rectangular Automata
	Direct Backward Analysis for Probabilistic Rectangular Automata

	Results
	Simple Test Example
	A Two Room Shared Heater Example

	Conclusion
	Summary
	Future work

	Bibliography

