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Basic Notations

We use the following standard notations:

Symbol Description

Sets and set operators

A ∪B = {x | x ∈ A ∨ x ∈ B} set union
A ∩B = {x | x ∈ A ∧ x ∈ B} set intersection
A\B = {x | x ∈ A ∧ x /∈ B} set minus
A×B = {(a, b) | a ∈ A ∧ b ∈ B} cross product of two sets A and B
Z set of integers
N set of natural numbers including 0
Nd = N× . . .× N︸ ︷︷ ︸

d times

the n-dimensional space of natural numbers

N>0 = N\{0} set of positive natural numbers
Q set of rational numbers
R set of real numbers
Rd = R× . . .× R︸ ︷︷ ︸

d times

the d-dimensional real space

R≥0 = {x ∈ R | x ≥ 0} set of non-negative real numbers
R>0 = {x ∈ R | x > 0} set of positive real numbers
2M = {P | P ⊆M} powerset of the set M

Mappings

id : M →M identity mapping for a set M with id(m) = m for all
m ∈M

f(M) = {f(m) | m ∈M} ⊆ D2 image of a set M ⊆ D1

according to a mapping f : D1 → D2
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Chapter 1

Introduction

Most areas of computer science deal with discrete systems, i.e., systems whose evolution can be
described by a sequence of discrete state changes. Prominent examples are programs executing
a sequence of computation steps, each of them possibly modifying the program's heap and stack.
When we are only interested in the program's input-output behavior, such computation steps
can be seen as instantaneous, discrete state changes.

Whereas the modeling and the analysis of discrete systems is a typical computer science
subject, the development of methods and tools for the modeling and simulation of dynamic
systems is hosted mainly in physics and control theory. Quantities of dynamic systems, like the
temperature of a room or the speed of an object, evolve continuously over time according to the
laws of physics in dependence on the current system state and the in�uence of the environment.

Discrete systems (e.g., sensors, chips, computer programs) are often used to control the
behavior (e.g., temperature, speed, acceleration) of dynamic systems. The resulting system,
consisting of the controller together with the controlled system, exhibits a combined discrete and
continuous behavior, and is therefore called a hybrid system. Hybrid systems can have quite
complex behavior, posing a challenging task for their analysis.

This book is devoted to modeling formalisms and algorithmic analysis techniques for di�erent
classes of hybrid systems, from the view point of computer science. It can be used as learning
material for undergraduate courses, but also as a state-of-the-art overview for graduate students
and researchers.

The contents of the book are as follows:

• In Chapter 2 we recall some automata-based modeling approaches for discrete systems, in
the absence of dynamic behavior. We use labeled state transition systems (Kripke struc-
tures) to model �nite-state systems, and labeled transition systems to model general discrete
systems with possibly in�nite state spaces. We de�ne the temporal logics LTL, CTL, and
CTL∗ to specify properties of discrete systems, and give a short introduction to (explicit)
CTL model checking for labeled state transition systems. We also discuss discrete-time
systems in a nutshell in Chapter 2.4 before we deal with continuous-time systems in the
following chapters.

• We introduce hybrid systems and as a modeling language hybrid automata in Chapter 3. In
the following chapters we consider di�erent subclasses of hybrid automata with increasing
expressive power, and methods for their safety analysis.

• Timed automata [AD94, BK08], extending discrete systems with a notion of time, are
introduced in Chapter 4. We use the timed temporal logic TCTL to specify properties

7



CHAPTER 1. INTRODUCTION

of timed automata. We show that the validity of TCTL properties for timed automata is
decidable by giving the standard model checking algorithm.
• Timed automata are quite restrictive in their modeling power. In Chapter 5 we de�ne
rectangular automata, a bit more general class, which is at the boundary of decidability:
though checking TCTL properties of initial rectangular automata is a decidable problem,
relaxing any of the restrictions on the expressivity of the modeling language leads to un-
decidability. We give the decidability proof following [HKPV98] in form of a reduction to
TCTL model checking for timed automata.
• Even if the reachability problem for more expressive modeling formalisms for hybrid sys-
tems is in general undecidable, we need them to model more complex systems without too
strong abstraction. Though undecidability implies that we cannot give any complete model
checking algorithm for them, there might exist useful incomplete algorithms for their anal-
ysis. Such a more expressive model class is given by linear hybrid automata I 1, being the
subject of Chapter 6. They are particularly interesting, because the bounded reachability
problem (reachability within a �xed �nite number of steps) is still decidable and e�ciently
computable for this class. We discuss a �xed-point-based algorithm from [ACH+95] and
mention some approximation and abstraction techniques.
• To increase the expressive power of modeling, in Chapter 7 we introduce linear hybrid
automata II. The dynamics in these models is speci�ed by linear ordinary di�erential equa-
tions. The reachability analysis for hybrid automata requires special (over-approximative)
representation techniques for state sets. We discuss representations by di�erent geomet-
ric objects like convex polyhedra, oriented rectangular hulls, zonotopes, support functions
and orthogonal polyhedra. Using such representations, we discuss an incomplete over-
approximative �xed-point-based algorithm for reachability analysis.

Regarding undergraduate courses, the contents are determined such that they demonstrate
the application and usefulness of a wide range of general computer science methods and tech-
niques:

• Formal modeling: labeled state transition systems (Section 2.1.1), labeled transition sys-
tems (Section 2.1.2), discrete-time models (Chapter 2.4), timed automata (Section 4.1),
rectangular automata (Section 5.1), linear hybrid automata (Section 6.1), general hybrid
automata (Section 3.2);
• Logics to formalize system properties: propositional logic (Section 2.2.1), temporal logics
LTL, CTL, CTL∗ (Section 2.2.2), timed temporal logic TCTL (Section 4.2);
• Decidability issues: proving decidability constructively by giving a �nite bisimulation-based
abstraction (Section 4.3 for timed automata), and proving decidability by reducing the
question to a known problem (Section 5.2 for initialized rectangular automata).
• Model checking: CTL properties for labeled state transition systems (Section 2.3), TCTL
properties for timed automata (Section 4.3), �xedpoint-based reachability analysis (Sec-
tions 6.2, 6.3 and ??), minimization (Section 6.5);
• Approximation: for state sets of linear (Section 6.4) and general (Section ??) hybrid au-
tomata.

1There are two di�erent notions of linear hybrid automata. We mean here systems with a linear behavior, and
not with linear di�erential equations describing the continuous behavior.
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Chapter 2

Discrete Systems

In the next chapters we address the modeling and analysis of hybrid systems. Before doing
so, in this chapter we �rst recall some fundamentals about the modeling of discrete systems in
Section 2.1 and about logics that allow to formalize properties of discrete systems in Section 2.2.
Finally, we explain the basic idea of (explicit) CTL model checking for discrete �nite-state systems
in Section 2.3.

2.1 Modeling Languages

As modeling languages we use in this chapter labeled state transition systems (generally known
as Kripke structures, see Section 2.1.1) and labeled transition systems (Section 2.1.2) which
additionally allow variables in the model.

2.1.1 Labeled State Transition Systems (LSTSs)

Labeled state transition systems consist of a set of states, a set of initial states where the execution
starts, and labeled transitions between the states.

De�nition 2.1 (Syntax of labeled state transition systems). A labeled state transition
system (LSTS) is a tuple LST S = (Σ,Lab,Edge, Init) with LSTS LST S

• a (possibly in�nite) set Σ of states, Σ

• a set Lab of ( synchronization) labels, Lab

• a set Edge ⊆ Σ× Lab × Σ of labeled transitions or edges, and Edge

• a non-empty set Init ⊆ Σ of initial states. Init

The semantics allows to build paths of an LSTS starting in an initial state and following
transitions.

De�nition 2.2 (Semantics of LSTS). The operational semantics of a labeled state transition
system LST S = (Σ,Lab,Edge, Init) is given by the following single rule:

(σ, a, σ′) ∈ Edge

σ
a→ σ′

Rulediscrete

We call σ
a→ σ′ an (execution) step. A path (or run or execution) π πof LST S is a (�nite or

in�nite) sequence π = σ0
a0→ σ1

a1→ . . ..

9



CHAPTER 2. DISCRETE SYSTEMS

For a path π = σ0 → σ1 → . . . of LST S and some i ∈ N, i ≤ |π|, let π(i) = σi and π
i = σi →

σi+1 → . . ..
We use ΠLST SΠ (or simply Π) to denote the set of all paths of LST S and de�neΠ(σ) ΠLST S(σ) =
{π ∈ ΠLST S | π(0) = σ}.
The path π is initial if π(0) is an initial state. A state is reachable i� there is an initial path
leading to it.

We sometimes simply write π = σ0 → σ1 → . . . when the labels of the edges are not of
interest. We say that σ′ ∈ Σ is a successor of σ ∈ Σ and σ is a predecessor of σ′ i� σ

a→ σ′ for
some a ∈ Lab. Note that for a path π = σ0

a0→ σ1
a1→ . . . the state σi+1 is a successor of σi for

each 0 ≤ i < |π|, where |π| denotes the number of steps in the path (possibly being in�nity).
The labels of the set Lab are attached to edges and are used for synchronization purposes in

the parallel composition (see page 10).
To be able to formalize properties of LSTSs, it is common to de�ne a set of atomic propositions

APAP , L and a labeling function L : Σ → 2AP assigning a set of atomic propositions to each state.
The set L(σ) ⊆ AP consists of all propositions that are de�ned to hold in the state σ. These
propositional labels on states should not be mixed up with the synchronization labels on edges.

A labeled state transition system LST S = (Σ,Lab,Edge, Init) can be represented as a di-
rected graph, where the vertices of the graph are the states from Σ and the (labeled) edges are
the transitions from Edge. The initial states are marked by an incoming edge without source.

Example 2.1 (Pedestrian light). We model a pedestrian tra�c light in a crossing by a labeled
state transition system LST S = (Σ,Lab,Edge, Init). The light can be red or green (we do
not model the light being o� or blinking). Thus we can represent the light's state set by Σ =
{red, green}. Assume the light is initially red, i.e., Init = {red}. Possible state changes go
from red to green and from green to red, yielding Edge = {(red, go, green), (green, stop, red)} for
a possible label set Lab = {go, stop}. The labels can be used, e.g., to synchronize state changes
with another light in the same crossing. The model LST S can be visualized as follows:

red green

go

stop

This model is deterministic, i.e., both of its states has a single possible successor state. The

system has the single initial run red
go→ green

stop→ red . . ..

Larger or more complex systems are often modeled componentwise, such that the whole sys-
tem is given by the parallel composition of the components. Component-local, non-synchronizing
transitions, having labels belonging to one component's label set only, are executed in an inter-
leaved manner. Synchronizing transitions of the components, agreeing on the label, are executed
synchronously.

De�nition 2.3 (Parallel composition of LSTS). Let

LST S1 = (Σ1,Lab1,Edge1, Init1) and

LST S2 = (Σ2,Lab2,Edge2, Init2)

be two LSTSs. The parallel composition LST S1||LST S2 = (Σ,Lab,Edge, Init)LST S1||
LST S2

is an LSTS
with
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CHAPTER 2. DISCRETE SYSTEMS

• Σ = Σ1 × Σ2,
• Lab = Lab1 ∪ Lab2,
• ((s1, s2) , a, (s′1, s

′
2)) ∈ Edge i�

1. a ∈ Lab1 ∩ Lab2, (s1, a, s
′
1) ∈ Edge1, and (s2, a, s

′
2) ∈ Edge2, or

2. a ∈ Lab1\Lab2, (s1, a, s
′
1) ∈ Edge1, and s2 = s′2, or

3. a ∈ Lab2\Lab1, (s2, a, s
′
2) ∈ Edge2, and s1 = s′1,

• Init = Init1 × Init2.

To demonstrate the advantages of compositional modeling, we give an example for the parallel
composition of two tra�c lights.

Example 2.2 (Two pedestrian lights). Assume now a crossing of two roads with two pedes-
trian lights, similar to those from Example 2.1, one in north-south and one in east-west direction.
The two lights are composed such that they allow pedestrians to pass alternatingly.

red1 green1

go1

go2

green2 red2

go2

go1

Formally, the two LSTSs are given by

LST S1 = ({red1, green1}︸ ︷︷ ︸
Σ1

, {go1, go2}︸ ︷︷ ︸
Lab1

, {(red1, go1, green1), (green1, go2, red1)}︸ ︷︷ ︸
Edge1

, {red1}︸ ︷︷ ︸
Init1

)

LST S2 = ({red2, green2}︸ ︷︷ ︸
Σ2

, {go1, go2}︸ ︷︷ ︸
Lab2

, {(red2, go2, green2), (green2, go1, red2)}︸ ︷︷ ︸
Edge2

, {green2}︸ ︷︷ ︸
Init2

)

The parallel composition LST S1||LST S2 = (Σ,Lab,Edge, Init) is by de�nition:

Σ = {(green1, green2), (green1, red2), (red1, green2), (red1, red2)}
Lab = {go1, go2}

Edge = {((red1, green2), go1, (green1, red2)), ((green1, red2), go2, (red1, green2))}
Init = {(red1, green2)}

The parallel composition can be visualized be the following graph:

(red1, green2) (green1, red2)

go1

go2

(red1, red2) (green1, green2)
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CHAPTER 2. DISCRETE SYSTEMS

Note that the states (red1, red2) and (green1, green2) are not reachable, i.e., the two lights are
never green respectively red at the same time.

Again, the composition is deterministic and has a single initial run (red1, green2)
go1→ (green1,

red2)
go2→ (red1, green2) . . ..

Another well-known example for the parallel composition is that of a railway crossing.

Example 2.3 (Railroad crossing). Assume the crossing of a railroad with a street, secured
by a gate. The system consists of three components: a train, a controller and a gate. The train
communicates with the controller, and the controller communicates with the gate as follows.

• Sensors recognize when the train is approaching to the gate and an �approach� signal is sent
to the controller. Similarly, if the train has left the railroad crossing, an �exit� signal gets
sent to the controller.
• The controller reacts to an incoming �approach� signal with the sending of a �lower� signal
to the gate. Similarly, when the controller receives an �exit� signal, it sends a �raise� signal
to the gate.
• The gate reacts to an incoming �lower� signal with closing the gate, and to a �raise� signal
with opening the gate.

If we are interested in the communication aspects only, we can model the railroad crossing
system as the parallel composition of the following three LSTS components:

Train:

far near past
approach enter

exit

Controller:

0 1

23

approach

lo
w
er

exit

ra
is
e

Gate:
up{up} coming down ∅

down {down}going up∅

lower

raise

Given the proposition set AP = {up, down}, we can de�ne a state labeling function L assigning
a set of propositions to the states of the gate as depicted in the above graph.

The formal speci�cation of the parallel composition is the content of Exercise ??. The parallel
composition's initial state is (far, 0, up). In the initial state the gate cannot execute, because the
only possible transition from the state up has the label lower that synchronizes with the controller,
but the controller �rst has to move to the state 1 to be able to synchronize on it. Thus �rst
synchronization on approach must take place. Therefore, each initial path of the composition

starts with the step (far, 0, up)
approach→ (near, 1, up).

12 ��- Draft version, please do not distribute ��-



CHAPTER 2. DISCRETE SYSTEMS

2.1.2 Labeled Transition Systems (LTSs)

Another, more expressive but still discrete modeling language are labeled transition systems
(LTSs), which additionally allow variables in the model. Here we consider real-valued variables
only, and in the following we restrict the formalisms accordingly.

Given a set of real-valued variables Var , Var , ν, Va valuation is a function ν : Var → R assigning
values to the variables. We use VVar (or short V ) to denote the set of all valuations for the
variable set Var .

An LTS has a �nite set of Loclocations, also called modes, which can possibly be entered with
di�erent valuations. The current state σ = (`, ν) σ,Σof an LTS is determined by the current location
l and the current valuation ν. A set of initial states speci�es the states in which the execution
may start.

The locations of an LTS are connected by labeled transitions (edges). In contrast to LSTSs,
each edge of an LTS can have a guard and an e�ect, speci�ed in form of a transition relation
µ ⊆ V × V : the transition can be taken with a valuation ν thereby changing the valuation to ν′

i� (ν, ν′) ∈ µ.

Example 2.4. Assume a variable set Var = {x} and a transition that is enabled if x > 0 holds
and it decreases the value of x by 1. The corresponding transition relation would be µ = {(ν, ν′) ∈
V 2 | ν(x) > 0 ∧ ν′(x) = ν(x)− 1}.

In the following de�nition of LTSs we also embed controlled variables and τ -transitions (also
called stutter transitions). Their role will become clear later when we de�ne the parallel compo-
sition of LTSs. Intuitively, these constructs help us to de�ne �local�, �output� or �write� variables
of an LTS whose values may not be changed by non-synchronizing steps of other parallel LTSs.

De�nition 2.4 (Syntax of labeled transition systems). A labeled transition system (LTS)
is a tuple LTS, LT SLT S = (Loc,Var ,Con,Lab,Edge, Init) with

• a �nite set Loc of locations,
• a �nite ordered set Var = {x1, . . . , xd} of real-valued variables,
• a function Con : Loc → 2Var Conassigning a set of controlled variables to each location,
• a �nite set Lab of labels, including the stutter label τ ∈ Labτ ∈ Lab,

• a �nite set Edge ⊆ Loc×Lab× 2V
2 ×Loc Edgeof edges or transitions including a τ -transition

(`, τ, Id , `) for each location ` ∈ Loc with IdId = {(ν, ν′) ∈ V 2
Var | ∀x ∈ Con(`). ν′(x) = ν(x)},

and where all edges with label τ are τ -transitions, and
• a set Init ⊆ Σ of initial states,

where Σ = Loc × VVar denotes the state space of LT S.

De�nition 2.5 (Semantics of LTSs). The operational semantics of a labeled transition system
LT S = (Loc,Var ,Con,Lab,Edge, Init) is speci�ed by the following single rule:

(`, a, µ, `′) ∈ Edge (ν, ν′) ∈ µ
(`, ν)

a→ (`′, ν′)
Rulediscrete

We call σ
a→ σ′ an (execution) step, which we also write as σ → σ′ when we are not interested

in its label. A path (or run or execution) π π, π(i), πiof LT S is a (�nite or in�nite) sequence π = σ0
a0→

σ1
a1→ . . .; for i ∈ N, i ≤ |π|, we de�ne π(i) = σi and π

i = σi → σi+1 → . . ..
We use ΠLT S Π(σ),Π(or simply Π) to denote the set of all paths of LT S and de�ne ΠLT S(σ) = {π ∈
ΠLT S | π(0) = σ}.
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CHAPTER 2. DISCRETE SYSTEMS

method mult(int y, int z){

int x;

`0 x := 0;

`1 while( y > 0 ) {

`2 y := y-1;

`3 x := x+z;

}

`4 }

`0 `1 `2

`3`4

y ≥ 0 x := 0 y > 0

y
:=

y
−

1

x
:=
x

+
z

y
≤

0

Figure 2.1: Modeling a simple while program with an LTS.

The path π is initial if π(0) is an initial state. A state is reachable i� there is an initial path
leading to it.

We sometimes simply write π = σ0 → σ1 → . . . when the labels of the edges are not of
interest. Note again that for a path π = σ0

a0→ σ1
a1→ . . . there is a transition σi

ai→ σi+1 between
all successive states σi and σi+1, 0 ≤ i < |π|, in the path, where |π| denotes the number of steps
in the path (possibly being in�nity).

Based on the operational semantics, an LTS induces an underlying LSTS state space model:
a transition (`, ν)

a→ (`′, ν′) can be performed in the induced LSTS if there is an edge (`, a, µ, `′)
from ` to `′ in the LTS with (ν, ν′) ∈ µ.

The guard {ν ∈ V | ∃ν′ ∈ V.(ν, ν′) ∈ µ} of a transition (l, a, µ, l′) ∈ Edge speci�es the set
of valuations from which the transition can be taken. Transition guards are often speci�ed
by formulae of the �rst-order logic over the reals (without quanti�ers). E.g., xi > 0 speci�es
the guard {ν ∈ V |ν(xi) > 0}. Transition resets are speci�ed by the second component in the
transition relation. Resets are often speci�ed by Boolean combinations of assignments xi := ei,
where xi is a variable and ei is an expression over the variables. E.g., the semantics of xi := ei
under a valuation ν is given by {ν′ ∈ V | ν′(xi) = ν(ei)}.

The next example shows how LTSs can be used to describe program execution.

Example 2.5 (Modeling a simple while program). The simple while program on the left
of Figure 2.1 calculates x := y · z for two input integers y and z with y ≥ 0. Each instruction
corresponds to a transition (`, a, µ, `′) with the source location l being the program location before
the instruction, the target location l′ being the program location after the instruction, a label
a which is omitted here because no synchronization is needed, and a set of valuation pairs µ
describing the condition or e�ect represented by the instruction.

Formally, this (closed) system can be de�ned as a transition system LT S = (Loc,Var ,
Con,Lab,Edge, Init) where

• Loc = {`0, `1, `2, `3, `4},
• Var = {x, y, z},
• V = {ν | ν : Var → R} and Σ = Loc × V ,
• Con(`) = Var for each ` ∈ Loc,
• Lab = {a, τ},
• Edge =
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{(`0, a, {(ν, ν′) ∈ V 2 | ν′(x) = 0 ∧ ν′(y) = ν(y) ∧ ν′(z) = ν(z)}, `1),
(`1, a, {(ν, ν′) ∈ V 2 | ν(y) > 0 ∧ ν′ = ν}, `2),
(`2, a, {(ν, ν′) ∈ V 2 | ν′(x) = ν(x) ∧ ν′(y) = ν(y)− 1 ∧ ν′(z) = ν(z)}, `3),
(`3, a, {(ν, ν′) ∈ V 2 | ν′(x) = ν(x) + ν(z) ∧ ν′(y) = ν(y) ∧ ν′(z) = ν(z)}, `1),
(`1, a, {(ν, ν′) ∈ V 2 | ν(y) ≤ 0 ∧ ν′ = ν}, `4),
τ`0 , τ`1 , τ`2 , τ`3 , τ`4},

• Init = {(`0, ν) ∈ Σ | ν(y) ∈ N ∧ ν(z) ∈ Z}

with τ`i = (`i, τ, {(ν, ν′) ∈ V 2 | ν = ν′}, `i) for all l ∈ Loc. This LTS model is illustrated on the
right of Figure 2.1 (without showing the transition label a and the τ -transitions).

The parallel composition of LTSs allows to model larger systems compositionally. Intuitively,
two LTSs running in parallel may execute non-synchronizing steps interleaved on their own,
whereas synchronizing steps are executed simultaneously in both components. Whether a step
is synchronizing or not depends on the fact whether both systems have the step's label in their
label sets. One of the components can take a transition with a common label only if the other
component also takes a transition with the same label. For this joint step the conditions and
e�ects of both transitions must be considered, i.e., the transition relation for the joint step is the
intersection of the transition relations of both local transitions.

If one of the components executes a local, non-synchronizing step, the other component is
basically not active. However, in the parallel composition of LTSs we de�ne the other component
to take a so-called τ -transition or stutter transition, a �do nothing� step. The reason for this is
twofold: Firstly, this makes the de�nitions and the underlying algorithms more unique, since in
each step both systems take a transition. Secondly, and more importantly, sometimes we would
like to de�ne components with variables local to this component, or with variables that can only
be read but not written by the other components. Then the τ -transitions of this component
will specify in their transition relation that the values of those variables are not modi�ed by the
environment's non-synchronizing steps. Variables that a component has under its control and
that must not be modi�ed by the local steps of its environment are de�ned by the function Con.

De�nition 2.6 (Parallel composition of LTSs). Let

LT S1 = (Loc1,Var ,Con1,Lab1,Edge1, Init1) and

LT S2 = (Loc2,Var ,Con2,Lab2,Edge2, Init2)

be two LTSs.The parallel composition or product

LT S1||
LT S2

LT S = LT S1 || LT S2 = (Loc,Var ,Con,Lab,Edge, Init)

of LT S1 and LT S2 is the LTS de�ned by

• Loc = Loc1 × Loc2,
• Con((`1, `2)) = Con1(`1) ∪ Con2(`2),
• Lab = Lab1 ∪ Lab2,
• ((`1, `2), a, µ, (`′1, `

′
2)) ∈ Edge i�

� there exist (`1, a1, µ1, `
′
1) ∈ Edge1 and (`2, a2, µ2, `

′
2) ∈ Edge2 such that

� either a1 = a2 = a or
a1 = a ∈ Lab1\Lab2 and a2 = τ , or
a1 = τ and a2 = a ∈ Lab2\Lab1, and

� µ = µ1 ∩ µ2, and

• Init = {((`1, `2), ν) | (`1, ν) ∈ Init1 ∧ (`2, ν) ∈ Init2}.
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Example 2.6. Assume the parallel composition of the following two LTSs:

LT S1 = (Loc1,Var ,Con1,Lab1,Edge1, Init1)

LT S2 = (Loc2,Var ,Con2,Lab2,Edge2, Init2)

with

• Loc1 = {`1, `2}, Loc2 = {`′1, `′2},
• Var = {x, y},
• Con1(`1) = Con1(`2) = {x}, Con2(`′1) = Con2(`′2) = {y},
• Lab1 = Lab2 = {a, τ},
• Edge1 = {(`1, a, {(ν, ν′) ∈ V 2 | ν′(x) = ν(y) + 1}, `2), τ`1 , τ`2},

Edge2 = {(`′1, a, {(ν, ν′) ∈ V 2 | ν′(y) = ν(x) + 1}, `′2), τ`′1 , τ`′2},
• Init1 = {(`1, {ν ∈ V |ν(x) = 0})}, Init2 = {(`′1, {ν ∈ V |ν(y) = 0})}

with τ` = {(ν, ν′) ∈ V 2 | ∀v ∈ Coni(`). ν(v) = ν′(v)} for all i = 1, 2 and ` ∈ Loci. Graphically
(without representing the control variables and τ -transitions):

`1

x = 0

`2
a : x := y + 1

`′1

y = 0

`′2
a : y := x+ 1

The graphical representation of the parallel composition (again without control variables and
τ -transitions) looks as follows:

(`1, `
′
1)

x = 0, y = 0

(`2, `
′
2)

a : x, y := y + 1, x+ 1

As the only non-τ -transitions of the LTSs are synchronized by the label a, all runs of the
system are of the form σ0

τ→ . . . σ0
a→ σ1

τ→ σ1 . . . with σ0(x) = σ0(y) = 0 and σ1(x) = σ1(y) = 1.
Let us modify the example such that the transitions do not synchronize:

`1

x = 0

`2
a : x := y + 1

`′1

y = 0

`′2
b : y := x+ 1

The parallel composition looks as follows:

(`1, `
′
1)x = 0, y = 0

(`2, `
′
1)

(`1, `
′
2)

(`2, `
′
2)

a : x := y + 1 b : y := x+ 1

b : y := x+ 1 a : x := y + 1

Now the transitions interleave, and if we skip the transitions where both components do a
τ -step, we get two possible runs:
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• σ0
a→ σ1

b→ σ2 with

� σ0 = ((`1, `
′
1), ν0), ν0(x) = ν0(y) = 0,

� σ1 = ((`2, `
′
1), ν1), ν1(x) = 1, ν1(y) = 0, and

� σ2 = ((`2, `
′
2), ν2), ν2(x) = 1, ν2(y) = 2, or

• σ0
b→ σ1

a→ σ2 with

� σ0 = ((`1, `
′
1), ν0), ν0(x) = ν0(y) = 0,

� σ1 = ((`1, `
′
2), ν1), ν1(x) = 0, ν1(y) = 1, and

� σ2 = ((`2, `
′
2), ν2), ν2(x) = 2, ν2(y) = 1.

2.2 Temporal Logics

For the formalization of properties for discrete systems, after introducing propositional logic in a
nutshell in Section 2.2.1 we deal with the temporal logics LTL, CTL and CTL∗ in Section 2.2.2.

2.2.1 Propositional Logic

Assume a set of states Σ, a set of atomic propositions AP , and a labeling function L : Σ→ 2AP

assigning to each state a set of propositions holding in that state. Then we can use proposi-
tional logic to describe properties of states. Propositional logic formulae are built from atomic
propositions using Boolean operators according to the following abstract syntax:

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) ∧,¬

with a ∈ AP and where ∧ is the �and�-operator for conjunction and ¬ is the operator for negation.
As syntactic sugar the constants true and false, and further Boolean operators like ∨ ∨,→,↔(�or�), →
(�implies�), ↔ (�if and only if�), etc. can be introduced. We often omit parentheses with the
convention that the strength of binding is in the order ¬,∧,∨,→,↔, i.e., ¬ binds the strongest
and ↔ the weakest. We use FormAP

prop
(or short Formprop) Formpropto denote the set of all propositional

logic formulae over the atomic proposition set AP .
Propositional logic formulae are evaluated in the context of a state with the help of the

labeling function. The semantics is given by the relation |=prop |=prop⊆ Σ × Formprop (or short |=),
which is de�ned recursively over the structure of propositional logic formulae as follows:

σ |=prop a i� a ∈ L(σ),
σ |=prop (ϕ1 ∧ ϕ2) i� σ |=prop ϕ1 and σ |=prop ϕ2,
σ |=prop (¬ϕ) i� σ 6|=prop ϕ.

Though propositional logic is well-suited to describe states of a system, we are also interested
in describing computations of systems. Propositional logic extended with temporal modalities
can be used for this purpose.

2.2.2 Temporal Logics

Assume in the following a labeled state transition system LST S = (Σ,Lab,Edge, Init), a set of
atomic propositions AP , and a labeling function L : Σ→ 2AP . The semantics of LST S speci�es
its behavior as a set of paths. This path set can also be seen as a set of trees, which we get by
sharing common pre�xes of paths and branching only at the place of the �rst di�erence. I.e., for
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each initial state there is a computation tree and each path of the system corresponds to a path
in one of the trees.

For deterministic systems with a single initial state, the computation tree is just a line. For
non-deterministic systems, the branching at a node of a computation tree represents possible
non-deterministic choices for further execution. Each reachable state is represented as a node in
one of the trees as many times as the number of di�erent (�nite) paths leading to it. Note that
this might happen in�nitely often when the state is part of a reachable loop.

In the following we assume deadlock-free systems, i.e., in�nite computation trees.

Example 2.7 (Computation tree). Assume the following simple state transition system,
where we omit synchronization labels on edges, but depict the labeling of states with atomic
propositions:

σ1 σ2{a} {b}

This system has the following computation tree:

σ1

σ1

σ1

σ1

. . . . . .

σ2

. . . . . .

σ2

σ1

. . . . . .

σ2

. . . . . .

σ2

σ1

σ1

. . . . . .

σ2

. . . . . .

σ2

σ1

. . . . . .

σ2

. . . . . .

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Next we describe the temporal logics LTL, CTL, and CTL∗, which are suited to argue about
paths in the computation tree.

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the computation
tree.

De�nition 2.7 (Syntax of LTL). Assume a set AP of atomic propositions. LTL has the
abstract syntax

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) | (Xϕ) |X ,U (ϕU ϕ)

where a ∈ AP . We use FormAP
LTL

(or short FormLTL)FormLTL to denote the set of LTL formulae over
AP .

Again, we omit parentheses when it causes no confusion, assuming that the Boolean operators
bind stronger than the temporal ones.
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Recall that for a path π = σ0 → σ1 → . . . of LST S and some i ∈ N, i ≤ |π|, we de�ned
π(i) = σi and π

i = σi → σi+1 → . . . (see De�nition 2.2).

A path π satis�es a proposition a ∈ AP if the proposition holds in the �rst state π(0) of π,
i.e., if a ∈ L(π(0)). Using the �next time� temporal operator X we can build LTL formulae Xϕ
(�next time ϕ�) which are satis�ed by a path π i� ϕ holds in π1, i.e., when removing the �rst
state from π. The second temporal operator is the �until� operator. The formula ϕ1 U ϕ2 (�ϕ1

until ϕ2�) is satis�ed by a path π = σ0 → σ1 → . . . i� ϕ2 holds for some su�x πj and ϕ1 holds
all the time before, i.e., for all πi with 0 ≤ i < j.

As syntactic sugar the temporal operators F (��nally� or �eventually�) F ,Gand G (�globally�) can
be introduced. The formula Fϕ (��nally ϕ) is de�ned as trueU ϕ, stating that ϕ will be true
after a �nite number of steps. The formula Gϕ (�globally ϕ�) is de�ned as ¬(true U ¬ϕ), stating
that ϕ holds all along the path.

Remark 2.1. Some approaches de�ne two further temporal operators which we do not use in the
following but mention them for completeness. The �rst one is the �release� operator: ϕ1Rϕ2, de�ned
as ¬((¬ϕ1)U (¬ϕ2)), expresses that ϕ2 holds either forever or until ϕ1∧ϕ2 gets valid. The second one is
the �weak until�: the formula ϕ1 Uweak ϕ2, de�ned as (ϕ1 U ϕ2) ∨ (Gϕ1), weakens the meaning of �until�
with the possibility that ϕ1 holds forever without ϕ2 becoming true.

It is also possible to de�ne operators �since�, �previous�, �once�, �always been� referring to the past.
They are symmetric to �until�, �next�, ��nally� and �globally�, but they refer to the past computation
instead of the future one.

De�nition 2.8 (Semantics of LTL). Assume an atomic proposition set AP , a labeled state
transition system LST S = (Σ,Lab,Edge, Init) and a state labeling function L : Σ → 2AP . The
semantics of LTL is given by the satisfaction relation |=LTL⊆ (Σ ∪ Π) × FormLTL |=LTL(or short |=)
which evaluates LTL formulae in the context of a path as follows:

π |=LTL a i� a ∈ L(π(0))
π |=LTL ϕ1 ∧ ϕ2 i� (π |=LTL ϕ1) ∧ (π |=LTL ϕ2)
π |=LTL ¬ϕ i� π 6|=LTL ϕ
π |=LTL Xϕ i� π1 |=LTL ϕ
π |=LTL ϕ1 U ϕ2 i� ∃j ≥ 0. (πj |=LTL ϕ2) ∧ ∀0 ≤ i < j. (πi |=LTL ϕ1) .

For a state σ ∈ Σ and an LTL formula ϕ we de�ne σ |=LTL ϕ to hold i� π |=LTL ϕ for all paths
π ∈ Π(σ) of LST S starting in σ, and LST S |=LTL ϕ i� σ0 |=LTL ϕ for all σ0 ∈ Init .

Example 2.8. We give some example LTL formulae and some paths of the system from Exam-
ple 2.7 satisfying them. Thereby we omit labelings irrelevant for the satisfaction.
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a : σ1 σ2 σ2 σ1 σ1 . . .

{a}

X b : σ1 σ2 σ1 σ1 σ1 . . .

{b}

aU b : σ1 σ1 σ1 σ2 σ1 . . .

{a} {a} {a} {b}

Fb : σ1 σ1 σ1 σ1 σ2 . . .

{b}

Ga : σ1 σ1 σ1 σ1 σ1 . . .

{a} {a} {a} {a} {a}

The initial state σ1 of the system LST S from Example 2.7 does not satisfy Fb (written
σ1 6|=LTL Fb), since there is a path π = σ1 → σ1 → . . . on which b never holds. But it satis�es
Fa, since the proposition a holds in the initial state.

Remark 2.2. There are two special subclasses of path properties: safety and liveness properties. In-
tuitively, a safety property states that something �bad� never happens. E.g., the safety property Ga
expresses that the proposition a holds all the time. Partial correctness of a program�whenever the
program terminates its output is correct�is also a safety property. The violation of a safety property
by a path π can be shown by looking at a �nite pre�x of π.

In contrast, liveness properties express that something �good� will eventually happen. E.g., Fa is
a liveness property meaning that a will happen after a �nite number of steps. Termination is a typical
liveness property. To show the violation of a liveness property we must consider in�nite paths.

Note that not all path formulae starting with the �globally� operator are safety properties. E.g.,
reactiveness, stating that something (let's say a) holds over and over again, is a typical liveness property
which can be formalized as GFa.

By de�nition, the sets of safety and liveness properties are disjoint. However, their union does not
cover all path properties. E.g., program correctness can be expressed only by the conjunction of a safety
property (partial correctness) and a liveness property (termination).

Remark 2.3. Besides the above notation, for the temporal operators there is another commonly used
alternative notation:

U for U
# # for X
♦ ♦ for F
2 2 for G

For example, the formula GFϕ can also be written as 2♦ϕ.
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Computation Tree Logic (CTL)

Whereas LTL argues about linear paths, CTL formulae specify properties of computation trees.
We distinguish between state formulae and path formulae. Intuitively, state formulae describe
properties of the states (nodes) in the computation tree, and path formulae describe properties
of paths in the tree. On the one hand, a path formula can be converted into a state formula by
putting an existential or a universal quanti�er in front of it, denoting that the path formula holds
for a path respectively for all paths starting in a given node of the computation tree. On the
other hand, state formulae are used to generate path formulae using the temporal operators. This
implies, that a CTL state formula contains quanti�ers and temporal operators in an alternating
manner.

De�nition 2.9 (Syntax of CTL). Assume a set AP of atomic propositions. CTL state for-
mulae can be built according to the abstract grammar

ψ ::= a | (ψ ∧ ψ) | (¬ψ) | (Eϕ) | (Aϕ)

with a ∈ AP and where ϕ is a CTL path formula.
CTL path formulae are built according to the abstract grammar

ϕ ::= Xψ | ψ U ψ

where ψ is a CTL state formula.
CTL formulae are CTL state formulae building the set FormAP

CTL
(or short FormCTLFormCTL).

We omit parentheses when it causes no confusion. Similarly to LTL, we can introduce the
��nally� and �globally� operators. For state formulae ψ we de�ne Fψ = trueU ψ as path formulae.
Note that the LTL de�nition Gψ = ¬(trueU ¬ψ) of �globally� cannot be directly adapted to CTL,
since it is not accepted by the CTL syntax. Instead, we de�ne

EGψ ↔ ¬Atrue U ¬ψ
AGψ ↔ ¬Etrue U ¬ψ .

De�nition 2.10 (Semantics of CTL). Assume an atomic proposition set AP , a labeled state
transition system LST S = (Σ,Lab,Edge, Init) and a state labeling function L : Σ → 2AP . The
satisfaction relation |=CTL |=CTL⊆ (Σ ∪ Π)× FormCTL (or short |=) evaluates CTL state formulae in
the context of a state, and CTL path formulae in the context of a path as follows:

σ |=CTL a i� a ∈ L(σ)
σ |=CTL ψ1 ∧ ψ2 i� (σ |=CTL ψ1) ∧ (σ |=CTL ψ2)
σ |=CTL ¬ψ i� σ 6|=CTL ψ
σ |=CTL Eϕ i� ∃π ∈ Π(σ). π |=CTL ϕ
σ |=CTL Aϕ i� ∀π ∈ Π(σ). π |=CTL ϕ

π |=CTL Xψ i� π(1) |=CTL ψ
π |=CTL ψ1 U ψ2 i� ∃0 ≤ j. (π(j) |=CTL ψ2) ∧ ∀0 ≤ i < j. (π(i) |=CTL ψ1) .

For ψ ∈ FormCTL we de�ne LST S |=CTL ψ i� σ0 |=CTL ψ for all σ0 ∈ Init .

Example 2.9. For our LST S from Example 2.7 the CTL formula AGEX b holds, since at each
node of the computation tree we can take a transition to σ2 labeled with b.

The CTL formula AGEGa does not hold, as the path σ1 → σ2 → σ2 → . . . violates the path
property GEGa.

However, the CTL formula AGEXEGa holds.
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Remark 2.4. Sometimes it is useful to de�ne sub-logics of CTL that allow quanti�cation in a restrictive
manner: ACTLACTL stays for the subset of CTL in which existential quanti�cation cannot be expressed and
ECTLECTL for the one excluding universal quanti�cation.

Remark 2.5. Additionally to the temporal operators in Remark 2.3, also quanti�ers have an alternative
notation:

∃ ∃ for E
∀ ∀ for A

For example, the formula AGEFϕ can also be written as ∀2∃♦ϕ.

CTL∗

The logic CTL∗ is an extension of LTL and CTL and allows arbitrary alternation of path quan-
ti�ers and temporal operators.

De�nition 2.11 (Syntax of CTL∗). Assume a set AP of atomic propositions. CTL∗ state
formulae can be built according to the abstract grammar

ψ ::= a | (ψ ∧ ψ) | (¬ψ) | (Eϕ)

with a ∈ AP and where ϕ is a CTL∗ path formula.
CTL∗ path formulae are built according to the abstract grammar

ϕ ::= ψ | (ϕ ∧ ϕ) | (¬ϕ) | (Xϕ) | (ϕU ϕ)

where ψ is a CTL∗ state formula.
CTL∗ formulae are CTL∗ state formulae building the setFormCTL∗ FormAP

CTL∗ (or short FormCTL∗).

Again, we omit parentheses when it causes no confusion. As in CTL, we can de�ne the
��nally� and �globally� operators also for CTL∗ as syntactic sugar. Note that the universal
quanti�cation is not part of the CTL∗ syntax since Aϕ can be de�ned as syntactic sugar by
¬E¬ϕ.

De�nition 2.12 (Semantics of CTL∗). Assume an atomic proposition set AP , a labeled state
transition system LST S = (Σ,Lab,Edge, Init) and a state labeling function L : Σ→ 2AP . CTL∗

state formulae are evaluated in the context of a state and CTL∗ path formulae in the context of
a path by the satisfaction relation |=CTL∗⊆ (Σ ∪Π)× FormCTL∗|=CTL∗ (or short |=) as follows:

σ |=CTL∗ a i� a ∈ L(σ)
σ |=CTL∗ ψ1 ∧ ψ2 i� (σ |=CTL∗ ψ1) ∧ (σ |=CTL∗ ψ2)
σ |=CTL∗ ¬ψ i� σ 6|=CTL∗ ψ
σ |=CTL∗ Eϕ i� ∃π ∈ Π(σ). π |=CTL∗ ϕ

π |=CTL∗ ψ i� π(0) |=CTL∗ ψ
π |=CTL∗ ϕ1 ∧ ϕ2 i� (π |=CTL∗ ϕ1) ∧ (π |=CTL∗ ϕ2)
π |=CTL∗ ¬ϕ i� π 6|=CTL∗ ϕ
π |=CTL∗ Xϕ i� π1 |=CTL∗ ϕ
π |=CTL∗ ϕ1 U ϕ2 i� ∃0 ≤ j. (πj |=CTL∗ ϕ2) ∧ ∀0 ≤ i < j. (πi |=CTL∗ ϕ1) .

For ψ ∈ FormCTL∗ we de�ne LST S |=CTL∗ ψ i� σ0 |=CTL∗ ψ for all σ0 ∈ Init .
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LTL CTL

CTL∗

Figure 2.2: The expressiveness of LTL, CTL, and CTL∗

The Relation of LTL, CTL, and CTL∗

The logics LTL and CTL are incomparable, and both are included in CTL∗, as shown in Fig-
ure 2.2. That LTL and CTL are incomparable means, that there are LTL formulae for which no
equivalent CTL formulae exist, and vice versa, there are CTL formulae which are not expressible
in LTL.

Example 2.10.

• The LTL formula FGa is not expressible in CTL.
• The CTL formula AFAGa is not expressible in LTL.

There are CTL∗ formulae that syntactically does not belong to LTL or to CTL but for that
semantically equivalent LTL or CTL formulae can be given. However, CTL∗ is more expressive
than LTL and CTL together, i.e., there are CTL∗ formulae that can be expressed neither in LTL
nor in CTL (see Exercise ??).

Example 2.11. The CTL∗ formula A¬GEFa with a ∈ AP is syntactically not a CTL formula.
However, it can be expressed by the semantically equivalent CTL formula AFAG¬a.

The CTL∗ formula AGAFGa with a ∈ AP is syntactically not an LTL formula. However, it
can be expressed by the semantically equivalent LTL formula FGa.

2.3 CTL Model Checking for LSTSs

Model checking of discrete systems is not the basic content of this lecture, therefore here we
restrict ourselves to the intuition behind explicit1 CTL model checking for LSTSs, which can
handle �nite-state systems, only. This will be relevant later, as we will build �nite abstractions
of in�nite-state systems to be able to apply model checking to them. For more details on model
checking we refer to [BK08].

Given an LSTS, an atomic proposition set AP , a state labeling function and a CTL (state)
formula ψ0, CTL model checking labels the states of the LSTS recursively with the sub-state-
formulae of ψ0 inside-out, depending on the type of the subformula:

a: The labeling with atomic propositions a ∈ AP is given by the labeling func-
tion.

1Explicit model checking is based on the enumeration of states, in contrast to symbolic model checking using
a symbolic state representation like, e.g., binary decision diagrams (BDDs).

��- Draft version, please do not distribute ��- 23



CHAPTER 2. DISCRETE SYSTEMS

ψ1 ∧ ψ2: Given the labelings for ψ1 and ψ2, we label those states with ψ1∧ψ2 that are
labeled with both ψ1 and ψ2.

¬ψ: Given the labeling for ψ, we label those states with ¬ψ that are not labeled
with ψ.

EXψ: Given the labeling for ψ, we label those states with EXψ that have a successor
state labeled with ψ.

Eψ1 U ψ2: Given the labeling for ψ1 and ψ2, we

• label all with ψ2 labeled states additionally with Eψ1 U ψ2, and
• label those states that have the label ψ1 and have a successor state with
the label Eψ1 U ψ2 also with Eψ1 U ψ2 iteratively until a �xed point is
reached, i.e., until no new labels can be added.

AXψ: Given the labeling for ψ, we label those states with AXψ whose successor
states are all labeled with ψ.

Aψ1 U ψ2: Given the labeling for ψ1 and ψ2, we

• label all with ψ2 labeled states additionally with Aψ1 U ψ2, and
• label those states that have the label ψ1 and all of their successor states
have the label Aψ1 U ψ2 also with Aψ1 U ψ2 iteratively until a �xed point
is reached.

The formula ψ0 is satis�ed by the LSTS i� after termination of the procedure the initial state
is labeled with ψ0.

Since ψ0 has only a �nite number of sub-formulae and since there is only a �nite number of
states that can be labeled in the iterative cases, the procedure always terminates. Note that this
model checking approach would not be complete, i.e., it would not terminate, for in�nite-state
systems.

Theorem 2.1 (Time complexity of CTL model checking for LSTS [BK08]). Assume an
LSTS LST S with N states and K edges, an atomic proposition set AP , a state labeling function
and a CTL formula ψ with M subformulae. Then the problem to decide whether LST S |=CTL ψ
holds can be answered in time O((N +K) ·M).

Example 2.12. Assume again the LSTS from Example 2.7:

σ1 σ2{a} {b}

In Example 2.9 we stated that this LSTS satis�es the CTL formula AGEXEGa. Now we can
prove this fact using model checking.

First we replace the syntactic sugar of the �globally� operator by its de�nition using

EGψ ↔ ¬Atrue U ¬ψ
AGψ ↔ ¬Etrue U ¬ψ.

This yields
ψ := ¬ (E trueU ¬ (EX¬ (AtrueU (¬a)))) .
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Model checking this property for the given system consists of labeling the states with the
following subformulae in this order:

1. ψ1 := ¬a

2. ψ2 := AtrueU ψ1

3. ψ3 := ¬ψ2

4. ψ4 := EXψ3

5. ψ5 := ¬ψ4

6. ψ6 := E trueU ψ5

7. ψ7 := ¬ψ6

Labeling with the atomic proposition a is given by the labeling function: it holds only in σ1.
For the labeling with the above subformulae we get:

1. ψ1 := ¬a: We label with ψ1 all those states where a does not hold. That means we label σ2

with ψ1.

2. ψ2 := AtrueU ψ1:

• We �rst label with ψ2 all those states where ψ1 holds. That means, we label σ2 with
ψ2.
• Those states that are not yet labeled with ψ2 but whose successors are all labeled with
ψ2 get also labeled with ψ2. However, there are no such states.

3. ψ3 = ¬ψ2: We label with ψ3 all states that are not labeled with ψ2. That means, we label
σ1 with ψ3.

4. ψ4 := EXψ3: We label with ψ4 all states that have a successor state labeled with ψ3. That
means, we label both σ1 and σ2 with ψ4.

5. ψ5 := ¬ψ4: Label with ψ5 all states that are not labeled with ψ4. As both states are labeled
with ψ4, no states get the label ψ5 attached.

6. ψ6 := E trueU ψ5:

• We label with ψ6 all states with the label ψ5. However, there are no such states.
• We label with ψ6 all states that are not yet labeled with ψ6 but that have a successor
state labeled with ψ6. There are no such states.

7. ψ7 := ¬ψ6: We label with ψ7 all states that are not labeled with ψ6. That means, we label
both states σ1 and σ2 with ψ7.

The labeling result is as follows:

σ1 σ2



a,

ψ3,
ψ4,
ψ7





b,
ψ1,
ψ2,

ψ4,
ψ7


As the initial state is labeled with ψ7, the LSTS satis�es ψ7.
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2.4 Discrete-Time Systems

Though discrete systems have no continuous components in their model, the real-time behavior
of the modeled systems may nonetheless be relevant. Assume a controller executing a program.
The program itself can be modeled as a discrete system, however, it may be critical if the program
executes too long and the control values arrive too late.

If we want to model time without having a hybrid model, we can use a discrete-time model :
Time is modeled by discrete time steps, also called ticks. Each transition step lasts for exactly
one tick. Thus the elapsed time between two actions is always a multiple of a tick.

In order to describe the time behavior of discrete-time systems, the temporal operators of
LTL, CTL, and CTL∗ can be extended with time bounds. This way we can express not only
that some events take place but also when they take place in time. However, this extension
does not increase the expressive power of the logics, i.e., a formula in the extended logics can be
represented with an equivalent formula without the discrete-time extension. This has the e�ect
that we can use model checking for LTL, CTL and CTL∗ also for their discrete-time extensions.

Remember that only the temporal operators �next� X and �until� U are basic, the remaining
ones like ��nally� F and �globally� G are syntactic sugar.

We extend the �next� operator X with an upper index. The formula X kϕ with k ∈ N denotes
that ϕ is true after k steps. This indexed �next� operator does not increase the expressiveness
of the logic, as it is syntactic sugar. In LTL it is de�ned recursively by

X kϕ =

{
ϕ if k = 0
XX k−1ϕ else.

Thus X kϕ = X . . .X︸ ︷︷ ︸
k

ϕ in LTL.

In CTL the quanti�ers and temporal operators are alternating. For CTL we de�ne

EX kψ =

{
ψ if k = 0
EXEX k−1ψ else.

Thus EX kψ = EX . . .EX︸ ︷︷ ︸
k

ψ. The de�nition in combination with the universal quanti�er AX kψ

is analogous.

The extension of the �until� U operator is similar, but here we allow intervals instead of �xed
values for the time bounds. The formula ϕ1 U [k1,k2] ϕ2 (k1, k2 ∈ N, k1 ≤ k2) states that there
exists a k ∈ N with k1 ≤ k ≤ k2 such that ϕ2 holds in k steps and ϕ1 holds all the time before.
We also allow right-open intervals with k2 being ∞, such that we can still represent the original
�until� operator by ϕ1 U [0,∞) ϕ2 = ϕ1 U ϕ2.
In LTL we de�ne

ϕ1 UI ϕ2 =


ϕ1 U ϕ2 for I = [0,∞)
ϕ2 for I = [0, 0]
ϕ1 ∧ X (ϕ1 U [k1−1,k2−1] ϕ2) for I = [k1, k2], k1 > 0
ϕ2 ∨ (ϕ1 ∧ X (ϕ1 U [0,k2−1] ϕ2)) for I = [k1, k2], k1 = 0, k2 > 0 .

In CTL we de�ne

Eψ1 UI ψ2 =


Eψ1 U ψ2 for I = [0,∞)
ψ2 for I = [0, 0]
ψ1 ∧ EXE (ψ1 U [k1−1,k2−1] ψ2) for I = [k1, k2], k1 > 0
ψ2 ∨ (ψ1 ∧ EXE (ψ1 U [0,k2−1] ψ2)) for I = [k1, k2], k1 = 0, k2 > 0 .
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We also write

• U≤k instead of U [0,k],
• U≥k for U [k,∞],
• U=k for U [k,k], and
• U for U [0,∞].

Example 2.13. The discrete-time LTL formula a U [2,3] b is de�ned as

a ∧ X (a ∧ X (b ∨ (a ∧ X b))).

It is satis�ed by paths of the following form:

. . .
{a} {a} {b}

. . .
{a} {a} {a} {b}

As the discrete-time temporal operators are de�ned as syntactic sugar, model checking can
be applied to check the validity of discrete-time temporal formulae for labeled state transition
systems [Kat99, CGP01].
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Chapter 3

General Hybrid Systems

3.1 Hybrid Systems

Discrete systems are systems with discrete, instantaneous state changes. E.g., when abstracting
away physical details, a sensor reporting whether a tank is full or whether the temperature is
above a certain threshold can be considered as a simple discrete system. Also a program running
on a computer can be seen as a discrete system, when we assume that each atomic execution step
changes the program's con�guration in a discrete manner. Note that, though the state space of
a program can be very large, due to the �nite memory it is �nite. Other systems might have
an in�nite or even uncountable state space, they are nevertheless classi�ed as discrete systems
when their state changes can be assumed to be discrete.

Dynamic systems are systems with a real-valued state space and continuous behavior. Physi-
cal systems with quantities like time, temperature, speed, acceleration etc. are dynamic systems.
There evolution over time can be described by continuous functions or ordinary di�erential equa-
tions.

Hybrid systems are systems with combined discrete and continuous behavior (cf. Figure 3.1).
Typical examples are physical systems controlled by a discrete controller. In modern cars there
are hundreds of embedded digital chips helping to drive the car, that means, controlling the
physical behavior like speed and acceleration. Behind the autopilot of an airplane there is a
program running on a computer and acting with the physical environment.

discrete

+

t

x(t)

continuous

=
t

x(t)

t

x(t)

hybrid

Figure 3.1: Hybrid systems exhibit a combined discrete-continuous behavior

In the following we introduce some hybrid system examples from [ACH+95, Hen96].

Example 3.1 (Thermostat). Assume a thermostat, which senses the temperature x of a room
and turns a heater on and o� in order to keep the temperature between 17◦C and 23◦C. Initially,
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the heater is on and the temperature is 20◦C. If the heater is on, the temperature increases
according to the di�erential equation ẋ = K(h − x) where h ∈ R>0 is a constant of the heater
and K ∈ R>0 is a room constant. If the temperature is 22◦C or above, but at latest when it
reaches 23◦C, the heater gets turned o�. If the heater is o�, the temperature falls according to
the di�erential equation ẋ = −Kx. If the temperature falls to 18◦C or below, but at latest if it
reaches 17◦C, the heater gets switched on. Figure 3.2 visualizes a possible behavior of the system,
both of its continuous dynamics (the temperature) and its discrete control (the heater being on
or o�).

This system is hybrid. The discrete part of the system's state consists of the control mode of
the heater being on or o�. The continuous part is the temperature which continuously evolves
over time, taking values from R. The discrete part controls the continuous part by changing the
discrete state and thereby in�uencing the continuous behavior.

Note that, since the heater gets switched on and o� within certain temperature intervals, the
system is non-deterministic. Replacing these intervals by �xed values would yield a deterministic
system.

t

x

20

18

17

22

23

t

on

o�

Figure 3.2: A possible behavior of the thermostat: the continuous dynamics for the temperature
(left) and the control state with the heater being on or o� (right) as a function of time

Example 3.2 (Water-level monitor). Assume two identical, constantly leaking water tanks
and a hose that re�lls exactly one of the tanks at each point in time (Figure 3.3 left). Let us
denote the water level in the two tanks by x1 and x2, respectively, and let the leaking lead to
a decrease of v1 and v2 units of tank height per time unit, respectively, for some v1, v2 ∈ R>0

without re�lling. The hose �lls w ∈ R>0 units of tank height per time unit. Thus the derivative
of the water height for the �rst tank is ẋ1 = w− v1 when it gets re�lled and ẋ1 = −v1 otherwise.
The water height in the second tank changes according to ẋ2 = w − v2 when it gets re�lled and
ẋ2 = −v2 otherwise. When re�lling the �rst tank, the hose switches to the second tank when its
water level x2 reaches a given lower threshold r2 ∈ R>0. The switch from the second tank to the
�rst one works analogously when x1 reaches some r1 ∈ R>0.

Also this is a hybrid system. The discrete part of the state space consists of the position
of the hose re�lling either the �rst or the second tank. The continuous part of the state space
corresponds to the water heights in the tanks which evolve continuously over time.

Example 3.3 (Bouncing ball). Assume a bouncing ball with the initial height h ∈ R≥0 and
with an initial upwards directed speed v ∈ R>0. Due to gravity, the ball has the acceleration
v̇ = −g. Thus the ball's speed is decreasing to 0 until the ball reaches its highest position, and
gets negative when the ball is falling down again. The ball bounces when it reaches the earth at
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r1

x1

v1

r2

x2

v2

w
t

x1

x2
r1
r2

t

�ll left tank

�ll right tank

Figure 3.3: Water-level monitor illustration (left) and a possible behavior (right)

position h = 0 with a speed v < 0. When bouncing, the sign of v gets inverted, and a part of the
ball's kinetic energy gets lost. Its speed after bouncing is −cv with some c ∈ (0, 1) ⊆ R and v the
speed before bouncing. Figure 3.4 illustrates the behavior of the system.

The continuous part of the state space covers the physical quantities of height and speed
which follow the same evolution rules all the time. Thus there is only a single mode (�moving�)
for the ball behavior, and the state space does not have any discrete component. However, the
discrete time points of bouncing introduce discrete events. That's why a bouncing ball can also
be considered as a hybrid system.

v

h

t

Figure 3.4: A possible behavior of the bouncing ball
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3.2 Hybrid Automata

In an LTS the values of the variables may change instantaneously by taking a discrete transition
from one location to another. Hybrid automata extend LTSs: Additionally to such discrete state
changes, while control stays in a location, times passes by, and the values of variables change
continuously according to some continuous functions. The combination of the discrete and the
continuous behaviour leads to the term �hybrid�.

De�nition 3.1 (Syntax of hybrid automata). A hybrid automaton HH is a tuple
(Loc,Var ,Con,Lab,Edge,Act , Inv , Init) where

• (Loc,Var ,Con,Lab,Edge, Init) is an LTS with real-valued variables Var , V the set of all
valuations ν : Var → R, and Σ = Loc × V the set of states,

• Act is a functionAct assigning a set of activities f : R≥0 → V to each location which are
time-invariant meaning that f ∈ Act(l) implies (f+ t) ∈ Act(l) where (f+ t)(t′) = f(t+ t′)
for all t′ ∈ R≥0, and

• a function InvInv assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc.

Compared to LTS, we have two new components: the activities and the invariants attached
to the locations. The activities describe the continuous state changes in the locations when time
passes by. The invariants restrict this behaviour such that time can evolve only as long as the
invariant of the current location is satis�ed. The control must leave the location before the
invariant gets violated using a discrete transition. Also entering a location by a discrete step is
only possible if the target location's invariant is satis�ed after the step.

The execution of a hybrid automaton starts in a state σ0 = (`0, ν0) ∈ Init from the initial
set. The invariant Inv(`0) of the initial location `0 must be satis�ed by the initial valuation ν0,
i.e., ν0 ∈ Inv(`0) must hold. Now two things can happen:

1. Time can pass by in the current location `0, and the values of the variables evolve according
to a function f : R≥0 → V from Act(`0). The function f must satisfy f(0) = ν0, i.e., it
assigns the initial valuation to the time point 0. After t time units the variables' values are
given by ν1 = f(t), i.e., the system reaches the state (`0, ν1).

However, the control may stay in `0 only as long as the invariant Inv(`0) of `0 is satis�ed.
I.e., t time can pass by only if ∀0 ≤ t′ ≤ t we have f(t) ∈ Inv(`0).

2. A discrete state change can happen if there is an enabled edge from `0, i.e., if there is a
(`0, a, µ, `1) ∈ Edge and a valuation ν1 ∈ V such that (ν0, ν1) ∈ µ. The invariant of the
target location must be satis�ed after the step, i.e., ν1 ∈ Inv(`1) must hold.

From the state resulting from such a time or discrete step the system can again take either a
time or a discrete step as described above.

De�nition 3.2 (Semantics of hybrid automata). The semantics of a hybrid automaton
H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) is given by an operational semantics consisting of
two rules, one for the discrete instantaneous steps and one for the continuous time steps.

1. Discrete step semantics

(l, a, (ν, ν′), l′) ∈ Edge ν′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν′)

Rulediscrete
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2. Time step semantics

f ∈ Act(l) f(0) = ν f(t) = ν′ t ≥ 0 f([0, t]) ⊆ Inv(l)

(l, ν)
t→ (l, ν′)

Ruletime

An execution step

→ =
a→ ∪ t→

of H is either a discrete or a time step. A path (or run or excecution) π πof H is a sequence
σ0 → σ1 → σ2 . . . with ν0 ∈ Inv(`0) and σi → σi+1 for all i ≥ 0. We use ΠH(σ) (or short Π(σ))
to denote the set of all paths of H starting in σ. A state σ of H is reachable i� there is a run of
H starting in an initial state of H and leading to σ.

As it is the case for LTS, the operational semantics of hybrid automata de�ne their induced
state transition system. In the hybrid setting the set of reachables states is in general uncountable,
as time progress leads to continuous behaviour.

As for LTS, guards and resets are often described logically by formulas respectively Boolean
combinations of assignments (see page 14). Similarly to guards, also invariants can be speci�ed
by logical formulas over the variables.

Furthermore, the activities of a hybrid automaton are often given implicitly by di�erential
equations, the activities being their solutions. E.g., ẋ = 1 speci�es a set of activities f : R≥0 → V
with f(t)(x) = t+ c for some c ∈ R being the value of x at time point 0.

Finally, similarly to LTSs, also hybrid automata are often given in a graphical representation.
We illustate the modeling by hybrid automata on our previous examples of the bouncing ball,
the thermostat, and the water-level monitor. In the graphical representations in the following
we omit the τ -transitions, non-synchronizing labels, trivial invariants, etc..

Example 3.4. Assume the following graphical visualization of a hybrid automaton:

`1

ẋ = 2
x ≤ 4

x = 0

`2
ẋ = −2
x ≥ 0

a: x ≥ 3

a: x := 0

The formal de�nition is as follows:

• Loc = {`1, `2},
• Var = {x},
• Con(`1) = Con(`2) = {x},
• Lab = {τ, a},
• Edge =

{ (`1, a, {(ν, ν′) ∈ V 2 | ν(x) ≥ 3 ∧ ν′(x) = ν(x)}, `2),

(`2, a, {(ν, ν′) ∈ V 2 | ν′(x) = 0}, `1),

(`1, τ, {(ν, ν′) ∈ V 2 | ν = ν′}, `1),

(`2, τ, {(ν, ν′) ∈ V 2 | ν = ν′}, `2) },
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• Act(`1) = {f : R≥0 → V | ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = 2t+ c},
Act(`2) = {f : R≥0 → V | ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = −2t+ c},
• Inv(`1) = {ν ∈ V | ν(x) ≤ 4},

Inv(`2) = {ν ∈ V | ν(x) ≥ 0},
• Init = {(`1, ν) ∈ Σ | ν(x) = 0}.

Note that the activity sets for both locations are time-invariant. The instances of the discrete
rule of the semantics for the two non-τ discrete transitions are:

ν(x) ≥ 3 ν′(x) = ν(x) (ν′(x) ≥ 0)

(`1, ν)
a→ (`2, ν

′)
Rule

`1→`2
discrete

ν′(x) = 0 (ν′(x) ≤ 4)

(`2, ν)
a→ (`1, ν

′)
Rule

`2→`1
discrete

The antecedents in parenthesis are implied by the other antecedents and are thus not needed.
Since the only variable x is in the control variable sets of both locations, the τ -transitions do not
allow any state change:

l ∈ Loc

(l, ν)
τ→ (l, ν)

Rule
τ
discrete

For the time steps we have the following rule instances:

ν′(x) ≤ 4 t ≥ 0 ν′(x) = ν(x) + 2t

(`1, ν)
a→ (`1, ν

′)
Rule

`1
time

ν′(x) ≥ 0 t ≥ 0 ν′(x) = ν(x)− 2t

(`2, ν)
a→ (`2, ν

′)
Rule

`2
time

The following picture visualizes the behavior of the system by depicting the possible values for
x at each point in time:

t0

x

1 2 3 4 5 6

1

2

3

4

Example 3.5. Assume another hybrid automaton:
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`1

ẋ = 1
ẏ = 0

x ≤ y + 1

x = y = 0

`2
ẋ = 0
ẏ = 1

y ≤ x+ 1

a:

a:

The formal de�nition is as follows:

• Loc = {`1, `2},
• Var = {x, y},
• Con(`1) = Con(`2) = {x, y},
• Lab = {τ, a},
• Edge =

{ (`1, a, {(ν, ν′) ∈ V 2 | ν = ν′}, `2),

(`2, a, {(ν, ν′) ∈ V 2 | ν = ν′}, `1),

(`1, τ, {(ν, ν′) ∈ V 2 | ν = ν′}, `1),

(`2, τ, {(ν, ν′) ∈ V 2 | ν = ν′}, `2) },

• Act(`1) = {f : R≥0 → V | ∃cx, cy ∈ R.∀t ∈ R≥0.f(t)(x) = t+ cx ∧ f(t)(y) = cy},
Act(`2) = {f : R≥0 → V | ∃cx, cy ∈ R.∀t ∈ R≥0.f(t)(x) = cx ∧ f(t)(y) = t+ cy},

• Inv(`1) = {ν ∈ V | ν(x) ≤ ν(y) + 1},
Inv(`2) = {ν ∈ V | ν(y) ≤ ν(x) + 1},

• Init = {(`1, ν) ∈ Σ | ν(x) = 0 ∧ ν(y) = 0}.

The behaviour can be visualized as follows by depicting the reachable (x, y) value pairs (without
representing the time):

x0

y

1 2 3 4

1

2

3

4

Example 3.6 (Thermostat). Assume again the thermostat from Example 3.1. The modeling
hybrid automaton is depicted on Figure 3.5.

In location `on the heater is on and the temperature raises according to the di�erential equation
ẋ = K(h − x). The location's invariant x ≤ 23 assures that the heater turns o� at latest when
the temperature reaches 23◦C. Analogously for the location `o�, where the heater is o�.
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`on

ẋ = K(h − x)
x ≤ 23

`o�

ẋ = −Kx
x ≥ 17

x = 20

x ≥ 22

x ≤ 18

Figure 3.5: The hybrid automaton model of the thermostat

Control may move from location `on to `o�, switching the heater o�, if the temperature is
at least 22◦C, and from `o� to `on if the temperature is at most 18◦C. The temperature x does
not change by jumping from `on to `o� or from `o� to `on. Initially, the heater is on and the
temperature is 20◦C.

Note that this model is non-deterministic. E.g., in location `on, if the temperature is between
22◦C and 23◦C, both time progress and switching the heater o� are possible.

Example 3.7 (Water-level monitor). The hybrid automaton model for the water-level mon-
itor Example 3.2 is depicted in Figure 3.6.

The automaton has two locations representing the control modes for re�lling the �rst tank in
`1 or re�lling the second tank in `2. The water levels in the tanks are represented by the variables
x1 and x2, being initially larger than r1 resp. r2 height units, i.e., initially x1 > r1 ∧ x2 > r2

holds.
Both tanks are leaking; the �rst tank looses v1 height unit per time unit by leaking, the second

tank v2. When re�lling a tank, w height unit per time unit is re�lled. That means, the activities
in `1 are represented by the di�erential equations ẋ1 = w − v1 and ẋ2 = −v2, and analogously
for `2. In order to increase the water level when re�lling a tank we assume w > v1 and w > v2.

The invariant x2 ≥ r2 of `1 assures that the �rst tank is getting re�lled only as long as there
is enough water in the second tank (water level at least r2). The hose will switch to re�lling the
second tank when the water level x2 reaches r2. This is done by taking the discrete transition
from `1 to `2. Note that the transition's condition allows to switch only if x2 is at most r2, and
the invariant assures that x2 is at least r2, such that the transition will be taken by the exact
value r2 of x2. Re�lling the second tank works analogously.

Note also that the discrete transitions can be taken only if the target location's invariant
x1 ≥ r1 is not violated. It can be shown that both invariants are globally valid, and thus the
discrete transitions are never blocked by the invariants.

Example 3.8 (Bouncing Ball). The hybrid automaton model of the bouncing ball from Exam-
ple 3.3 is depicted on Figure 3.7. Initially the height of the ball x1 is larger or equal 0 (height 0
corresponds to the earth and positive height above the earth) and its speed x2 is positive, stating
that the ball is initially raising.

The automaton has a single location `0. Time progress in this location corresponds to the
raising and falling of the ball. The di�erential equation ẋ1 = x2 de�nes x2 as the derivative of
the height, i.e., the ball's speed, and ẋ2 = −g with g the gravity constant de�nes the speed change
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q1

ẋ1 = w − v1

ẋ2 = −v2

x2 ≥ r2

q2

ẋ1 = −v1

ẋ2 = w − v2

x1 ≥ r1

x1 > r1 ∧ x2 > r2 x1 > r1 ∧ x2 > r2
x2 ≤ r2

x1 ≤ r1

Figure 3.6: The hybrid automaton model of the water-level monitor

`0

ẋ1 = x2

ẋ2 = −g
x1 ≥ 0

x1 ≥ 0 ∧ x2 > 0

x1 = 0 ∧ x2 < 0
x2 := −cx2

Figure 3.7: The hybrid automaton model of the bouncing ball

due to gravity.
The ball can raise and fall only as long as it has a non-negative height as stated by the invariant

x1 ≥ 0. After raising and reaching the highest point, it starts falling and reaches the earth when
x1 = 0 and x2 < 0. Then it bounces, represented by the single discrete transition. Note that
the bounce is forced by the invariant. The bounce changes the speed's direction and reduces its
absolute value due to some loss of kinetic energy during bouncing as denoted by x2 := −cx2.
After bouncing, x1 is still 0 but x2 is now positive, and the ball raises again.

For the ease of modeling, also hybrid systems can be modeled componentwise. The resulting
global system is given by the parallel composition of the di�erent components. The parallel
composition of hybrid automata extends the de�nition of the parallel composition for LTSs as
follows.

De�nition 3.3 (Parallel composition of hybrid automata). Let

H1 = (Loc1,Var ,Con1,Lab1,Edge1,Act1, Inv1, Init1) and

H2 = (Loc2,Var ,Con2,Lab2,Edge2,Act2, Inv2, Init2)

be two hybrid automata. The parallel composition or product H1||H2 H1||H2of H1 and H2 is de�ned
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to be the hybrid automaton

H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init)

with

• The LTS part (Loc,Var ,Con,Lab,Edge, Init) equals the parallel composition

(Loc1,Var ,Con1,Lab1,Edge1, Init1)||(Loc2,Var ,Con2,Lab2,Edge2, Init2)

of the LTS parts of the components,
• Act(`1, `2) = Act1(`1) ∩Act2(`2) for all (`1, `2) ∈ Loc, and
• Inv(`1, `2) = Inv1(`1) ∩ Inv2(`2) for all (`1, `2) ∈ Loc.

In the following chapters we consider di�erent subclasses of hybrid automata with increasing
expressivity.
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Chapter 4

Timed Automata

The popular modeling formalism of timed automata combines labeled transition system models
with a notion of time as the only continuous component. Its success is based on two main
facts: Firstly, this model class, despite its rather weak expressiveness, already allows to model a
wide range of real-time systems. Secondly, the model checking problem for safety and liveness
properties of timed automata is still e�ciently decidable. Driven by both academic and industrial
interests, a lot of e�ort was put into tool support. Uppaal is one of the most widely used tools
for model checking timed automata.

In this chapter we �rst introduce timed automata in Section 4.1. In Section 4.2 we extend
the logic CTL with continuous-time aspects, resulting in the logic timed CTL (TCTL). In this
book we restrict ourselves to the introduction of TCTL. Another popular timed temporal logic
is, e.g., metric LTL (MTL). We discuss model checking TCTL properties of timed automata in
Section 4.3. For further reading on timed automata and its model checking algorithm we refer
to [BK08].

4.1 Syntax and Semantics

A timed automaton has a �nite number of clocks as variables. A clock measures the time, i.e.,
it continuously evolves at rate 1. The values of the clocks can only be accessed in a limited way.
For read access, the only fact we can observe about a clock value is the result of a comparison of
its value with a constant. Such comparisons can be formulated by clock constraints. For write
access, clocks can only be reset, i.e., their values can only be set to 0.

De�nition 4.1 (Syntax of clock constraints). Clock constraints over a �nite set C of clocks
can be built using the following abstract grammar:

g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g

where c ∈ N1 and x ∈ C.
Clock constraints which are not a conjunction are called atomic. The set of atomic clock con-
straints over a set C of clocks is denoted by ACC C. The set of all clock constraints over C is
referred to as CC C.

Clock constraints are evaluated in the context of a valuation ν : C → R≥0 assigning non-
negative real values to clocks. We use VC (or short V ) for the set of all valuations.

1We could also allow c ∈ Q.
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De�nition 4.2 (Semantics of clock constraints). The semantics of clock constraints over a
�nite set C of clocks is given by the relation |=CC ⊆ V × CC C|=CC (or short |=) de�ned as follows:

ν |=CC x < c i� ν(x) < c
ν |=CC x ≤ c i� ν(x) ≤ c
ν |=CC x > c i� ν(x) > c
ν |=CC x ≥ c i� ν(x) ≥ c
ν |=CC g1 ∧ g2 i� (ν |=CC g1) ∧ (ν |=CC g2) .

For the sake of readability we also use notations like

true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

with the expected meaning. E.g., x = c can be de�ned using x ≥ c ∧ x ≤ c.
Based on its semantics, a clock constraint g ∈ CC C can also be seen as the set {ν ∈ V | ν |= g}

of all valuations that satisfy g.

Remark 4.1. Note that the syntax of clock constraints allows conjunction but no negation, assuring
that the sets de�ned by clock constraints are convex. This has the big advantage that, when we start
time progress with a valuation ν ∈ V satisfying a clock constraint g ∈ CC C then, since time progress is
linear, when a valuation ν + t after some time elapse t ∈ R≥0 still satis�es the clock constraint g then
we know that all the valuations inbetween also satis�ed g, i.e., ν + t′ |= g for all 0 ≤ t′ ≤ t.

As mentioned above, write access to clocks is restricted to resetting their values to 0.

De�nition 4.3 (Syntax of clock reset). Given a �nite set C of clocks, a clock reset is an
expression of the form reset(C)reset(C) with C ⊆ C.

Sometimes we also write reset(x1, . . . , xn) instead of reset({x1, . . . , xn}).
Also the semantics of a clock reset is given in the context of a valuation. Semantically, a

clock reset reset(C) denotes that the values of all clocks in C get reset to 0, and the values of all
other clocks from C\C remain unchanged.

De�nition 4.4 (Semantics of clock reset). Let C be a �nite set of clocks and C ⊆ C. The
result of reset(C) applied to a valuation ν ∈ V is given by the valuation satisfying

(reset(C) in ν)(x) =reset(C) in ν

{
0 if x ∈ C
ν(x) otherwise

for all x ∈ C.

The following notation formalizes time delay.

De�nition 4.5. For all valuations ν ∈ V and constants t ∈ R≥0 we de�ne the valuation ν+ tν + t by
(ν + t)(x) = ν(x) + t for all x ∈ C.

Example 4.1 (Clock access). Assume a clock set C = {x, y} and a valuation ν : C → R≥0 with
ν(x) = 2 and ν(y) = 3. Then

• ν + 9 assigns 11 to x and 12 to y,
• reset(x) in (ν + 9) assigns 0 to x and 12 to y,
• (reset(x) in ν) + 9 assigns 9 to x and 12 to y,
• reset(x) in (reset(y) in ν) assigns 0 to both x and y, and
• reset(x, y) in ν assigns 0 to both x and y.
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Next we give the de�nition of timed automata. These models have an LTS component with
a rectricted syntax for discrete steps, allowing only clock constraints and clock resets in the
de�nition of the transition relation. This discrete model is extended by introducing time as a
continuous quantity: while the control stays in a location, time ellapses and the values of the
clocks increase continuously. The main di�erences to LTS models are the following:

• The variable set of a timed automaton is denoted by C instead of Var to express the fact
that all variables of a timed automaton are clocks. assign the value 0 to all clocks. A state
of a timed automaton is a location-valuation pair (l, ν) ∈ Loc×VC = Σ, storing the location
of the timed automaton in that the control currently stays together with the current values
of the clocks.
• In order to restrict the transition relation of the discrete edges to the less powerful clock
access, we use enabling conditions in form of clock constraints combined with reset sets in
place of general transition relations. Given a pair (g, C) ∈ CC C × 2C of a clock constraint
g and a reset set C, the corresponding transition relation µ ⊆ V 2 is given by

µ = {(ν, ν′) ∈ V 2 | ν |= g ∧ ν′ = reset(C) in ν} .

Thus edges have the form (`, a, (g, C), `′) ∈ Loc × Lab × (CC C × 2C)× Loc).
• As long as the control stays in a location, the values of all clocks evolve with the derivative

1. That means, when a location is entered with a valuation ν, after t time the valuation
will be ν + t.
• The locations can be annotated with invariants. Control may stay in a location only as
long as the invariant of the location is not violated. Invariants allow to enforce discrete
transitions; without invariants, the control could stay in a location forever. Similarly to
the guards of the discrete transitions, also invariants are de�ned by clock constraints.
• There is a further di�erence between LTS and timed automata regarding the parallel com-
position. For LTS the parallel composition supports shared variables accessible by di�erent
components. However, allowing shared variables in the timed automata composition would
lead to some complications, which we do not discuss here. Instead, we restrict the com-
position of timed automata to components having disjoint variable sets. Note that when
excluding shared variables, the only way of communication is label synchronization. Thus
the de�nition of the controlled variable sets Con and also the τ -transitions get super�uous.

De�nition 4.6 (Syntax of timed automata). A timed automaton is a tuple T = (Loc, C,Lab,
Edge, Inv , Init) with

• Loc is a �nite set of locations,
• C is a �nite set of real-valued variables called clocks,
• Lab is a �nite set of synchronization labels,
• Edge ⊆ Loc × Lab × (CC C × 2C)× Loc is a �nite set of edges,
• Inv : Loc → CC C is a function assigning an invariant to each location, and
• Init ⊆ Loc × VC = Σ a set of initial states with ν(x) = 0 for all (`, ν) ∈ Init and each
x ∈ C.

To simplify the formalisms, we extend the notations for valuations to states and use σ |=CC g
for a state σ = (`, ν) to express that ν |=CC g. Similarly, for σ = (`, ν) we also write reset(x) in σ
to denote (`, reset(x) in ν).
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De�nition 4.7 (Semantics of timed automata). The operational semantics of a timed au-
tomaton T = (Loc, C,Lab,Edge, Inv , Init) is given by the following two rules:

(`, a, (g, C), `′) ∈ Edge ν |= g ν′ = reset(C) in ν ν′ |= Inv(`′)

(`, ν)
a→ (`′, ν′)

Rulediscrete

t ∈ R≥0 ν′ = ν + t ν′ |= Inv(`)

(`, ν)
t→ (`, ν′)

Ruletime .

We write σ → σ′ instead of σ
a→ σ′ or σ

t→ σ′ when the type of the step is not of interest.
A run (or path or execution) of T is an in�nite sequence σ0 → σ1 → σ2 . . . with σi ∈ Σ and
σ0 = (`0, ν0) ∈ Inv(`0); if additionally σ0 ∈ Init then we call π an initial path.
We use ΠT (σ) (or short Π(σ)) to denote the set of all paths of T starting in σ ∈ Σ, and de�ne
ΠT =

⋃
σ∈Σ ΠT (σ) (or short Π). A state is reachable if there is an initial path leading to it; we

write ReachT (or short Reach) for the set of reachable states of T .

Note that, since the invariants are convex sets, it is enough to require that they hold after each
time step, and we do not need the requirement that they hold during the whole period of a time
step. Together with the requirement that the starting states of paths satisfy the corresponding
invariants, we get by induction that the invariants hold on all paths at each time point.

Again, the semantics of a timed automaton induces an LSTS for its (in general uncountable)
state space. As in the case of discrete systems, also timed automata can be augmented by a
labeling function. However, since the state space is now uncountable, we attach propositions to
the locations (instead of the states) by a labeling function L : Loc → 2AP where AP denotes the
set of atomic propositions. To simplify the notation, we overload the labeling function de�ning
L : Σ→ 2AP with L((`, ν)) = L(`).

Timed automata are often represented graphically, where non-synchronizing labels, trivial
conditions and empty reset sets are skipped. As all clocks evolve with derivative 1 we do not
represent the time behavior in the graphs.

Example 4.2. The graphical representation

`
x ≤ 2

`′

x ≤ 4

a : x ≥ 1

b : x ≥ 3 reset(x)

denotes the timed automaton T = (Loc, C,Lab,Edge, Inv , Init) with

• Loc = {`, `′}
• C = {x},
• Lab = {a, b},
• Edge = {(`, a, (x ≥ 1, ∅), `′), (`′, b, (x ≥ 3, {x}), l)},
• Inv(`) = x ≤ 2, Inv(`′) = x ≤ 4,
• Init = {(`, ν0)} with ν0(x) = 0.

De�nition 4.8 (Parallel composition of timed automata). Let T1 = (Loc1, C1,Lab1, Edge1,
Inv1, Init1) and T2 = (Loc2, C2,Lab2,Edge2, Inv2, Init2) two timed automata with C1 ∩ C2 = ∅.
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The parallel composition T1||T2 is a timed automaton T = (Loc, C,Lab,Edge, Inv , Init) with
valuations ν : C → R≥0, valuation set V , and states Σ = Loc × V , where

• Loc = Loc1 × Loc2

• C = C1 ∪ C2
• Lab = Lab1 ∪ Lab2

• Inv((`1, `2)) = Inv1(`1) ∧ Inv2(`2) for all (`1, `2) ∈ Loc
• Init = {((`1, `2), ν) ∈ Σ | (`1, ν) ∈ Init1 ∧ (`2, ν) ∈ Init2}
• Edge =

{((`1, `2), a, (g1 ∧ g2, C1 ∪ C2), (`′1, `
′
2)) | (`1, a, (g1, C1), `′1) ∈ Edge1 ∧

(`2, a, (g2, C2), `′2) ∈ Edge2}
{((`1, `2), a, (g, C), (`′1, `2)) | (`1, a, (g, C), `′1) ∈ Edge1 ∧ a /∈ Lab2}
{((`1, `2), a, (g, C), (`1, `′2)) | (`2, a, (g, C), `′2) ∈ Edge2 ∧ a /∈ Lab1} .

To illustrate the parallel composition, we extend our previous LSTS railroad crossing model
to a timed automaton model.

Example 4.3 (Railroad crossing). We extend Example 2.3 with real-time behavior as follows:

• After the train triggers the �approach� signal it reaches the gate between 2 and 3 minutes.
It passes the track between the �approach� and the �exit� sensors within 5 minutes. The
timed automaton HTrain modeling the train has a clock x which is a control variable in each
location.
• After receiving an �approach� signal, the controller delays 1 minute before it sends a �lower�
signal to the gate. After receiving an �exit� signal it noti�es the gate by emitting a �raise�
signal with a delay of at most one minute. The timed automaton model HController of the
controller has a clock y being a control variable in each location.
• The gate needs at most one minute to be lowered and between one and two minutes to be
raised. The timed automaton model HGate has its own clock z, being a control variable in
each location.

Adapting the syntax of timed automata we get the following graphical representation:
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far near
x ≤ 3

past
x ≤ 5

approach:

reset(x)

enter:

x ≥ 2

exit:

0 1
y ≤ 1

23
y ≤ 1

reset(y)

approach:

lo
w
er:

y
=

1

exit:

reset(y)

ra
is
e:

up coming down
z ≤ 1

downgoing up
z ≤ 2

reset(z)

lower:

reset(z)

raise:

z
≥

1

4.1.1 Continuous-Time Phenomena

Similarly to LTS, the semantics of a timed automaton induces a LSTS. Each path in the in-
duced LSTS corresponds to a possible system behavior. However, some of the paths may model
unrealistic behavior.

Time convergence: There are syntactically inavoidable paths of timed automata along which
time converges, i.e., time never evolves beyond some value. For example, the timed au-
tomaton from Example 4.2 has a path

(`, ν1)
1→ (`, ν2)

1/2→ (`, ν3)
1/4→ (`, ν4)

1/8→ . . .

starting in the initial state and executing time steps with durations converging to 0. The
time duration

∑n
i=1

1
i converges to 2 with path length n → ∞. Such a path is called

time-convergent. Paths that are not time-convergent are called time-divergent.

Time-convergent paths are not realizable, but are unavoidable in the modeling. We will
explicitly exclude such paths in the semantics of the logic TCTL for the property speci�-
cation.

Timelock: There could be states in the LSTS of a timed automaton from which all paths are
time-convergent, such that there is no possibility that time progresses forever. Such states
do not allow time divergence, and are therefore called timelock states. Timed automata
in which no timelock states are reachable are called timelock-free. Timelocks are modeling
�aws, i.e., they can be avoided by appropriate modeling.

Zeno paths: Paths along which in�nitely many discrete steps are performed in a �nite amount
of time are called Zeno paths. Note that all Zeno paths are time-convergent. Zeno paths
are not realizable, as they would require in�nitely fast processors. They are also modeling
�aws and can be avoided by careful modeling.

Next we formalize the above properties.

44 ��- Draft version, please do not distribute ��-



CHAPTER 4. TIMED AUTOMATA

De�nition 4.9 (Time convergence, timelock, Zeno paths). For a timed automaton T =
(Loc, C,Lab, Edge, Inv , Init) we de�ne the time duration of a step by the function ExecTime :
(Lab ∪ R≥0)→ R≥0 ExecTimewith

ExecTime(α) =

{
0 if α ∈ Lab
α if α ∈ R≥0

.

The time duration of an in�nite path π = σ0
τ0→ σ1

τ1→ σ2
τ2→ . . . of T is de�ned by the (overloaded)

function

ExecTime(π) =

∞∑
i=0

ExecTime(τi).

• An in�nite path π ∈ Π is said to be time-divergent if ExecTime(π) = ∞, and time-
convergent otherwise.
For a state σ ∈ Σ we de�ne Πdiv (σ) ⊆ Π(σ) Πdiv (σ),Πdivto be the set of time-divergent in�nite paths
starting in σ, and Πdiv =

⋃
σ∈Σ Πdiv (σ).

• A state σ ∈ Σ contains a timelock i� Πdiv (σ) = ∅. A timed automaton is said to be
timelock-free if none of its reachable states contains a timelock.
• An in�nite path π ∈ Π is said to be Zeno if it is time-convergent and in�nitely many
discrete actions are executed within π. The timed automaton T is said to be non-Zeno if
it has no Zeno paths.

As mentioned above, Zeno paths a modeling �ows. To check whether a timed automaton is
non-Zeno is algorithmically di�cult. However, there is a su�cient (but not necessary) condition
which is simple to check.

Theorem 4.1 (Su�cient condition for non-Zenoness). Assume a timed automaton T =
(Loc, C,Lab,Edge, Inv , Init) such that for each sequence of edges

`0
α1:g1,C1// `1

α2:g2,C2// `2 . . .
αn:gn,Cn// `n = `0

in T there exists a clock x ∈ C such that

1. x ∈ Ci for some 0 < i ≤ n and

2. for all valuations ν ∈ V there exists a c ∈ N>0 such that

ν(x) < c → (ν 6|= gj or ν 6|= Inv(`j))

for some 0 < j ≤ n.

Then T is non-Zeno.

4.2 Timed Computation Tree Logic (TCTL)

Timed automata often model real-time systems that are time-critical in the sense that for their
correct functioning certain events must occur within some time bounds. For example, in case of
an accident the airbag of a car must react within very tight time limits. Also other controller
are supposed to support control values within some prede�ned time bounds.
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The untimed logics of the previous section are not yet able to argue about such time con-
straints. In this section we extend them for this purpose. Thereby we restrict ourselves to the
extension of CTL to timed CTL (TCTL). The extensions of LTL and CTL∗ are analogous.

The main di�erences between CTL and TCTL are as follows:

• For discrete systems we used an atomic proposition set and a labeling function to assign
atomic propositions to states. Besides such atomic propositions, for timed automata we
also want to argue about clock values in form of atomic clock constraints. Therefore, both
atomic propositions and atomic clock constraints are atomic TCTL state formulae.
• Since timed automata model continuous time, there is no �next� operator in TCTL.
• Remember that a CTL �until� formula ψ1 U ψ2 is satis�ed by a path if ψ2 is satis�ed by a
state somewhere on the path, and ψ1 holds in all the states before. In TCTL, the �until�
operator of CTL gets indexed with a time interval. TCTL �bounded until� formulae have
the form ψ1 U [t1,t2] ψ2, where the time interval [t1, t2] puts a restriction when ψ2 gets valid.
A path satis�es the formula ψ1 U [t1,t2] ψ2 if, when measuring the time from the beginning
of the path, ψ2 is valid at a time point t ∈ [t1, t2], and ψ1 ∨ ψ2 holds all the time before.
(Note that we do not require ψ1 to hold all the time before, but only the weaker statement
ψ1 ∨ ψ2.)
• There is a di�erence between the CTL and the TCTL semantics of quanti�cation over
paths. CTL quanti�cation ranges over all paths. However, timed automata have time-
convergent paths that cannot be excluded by modeling. Since those paths are not realistic,
they are not considered in the TCTL semantics. Therefore, TCLT quanti�cation ranges
over time-divergent paths, only.

De�nition 4.10 (Syntax of TCTL). TCTL state formulae over a set AP of atomic proposi-
tions and a set C of clocks can be built according to the abstract grammar

ψ ::= a | g | (ψ ∧ ψ) | (¬ψ) | (Eϕ) | (Aϕ)

with a ∈ AP , g ∈ ACC C, and ϕ are TCTL path formulae. TCTL path formulae are built
according to the abstract grammar

ϕ ::= ψ UJ ψ

with J ⊆ R≥0 is an (open, half-open or closed) interval with integer bounds (open right bound
may be ∞), and where ψ are TCTL state formulae. TCTL formulae are TCTL state formulae.

Similarly to CTL, we introduce further operators as syntactic sugar. Besides the ��nally� and
�globally� operators, we consider TCTL formulae with intervals [0,∞) as CTL formulae.

FJψ := true UJ ψ
EGJψ := ¬AFJ¬ψ
AGJψ := ¬EFJ¬ψ
ψ1 U ψ1 := ψ1 U [0,∞) ψ2

Fψ := F [0,∞)ψ

Gψ := G[0,∞)ψ

For the time bounds on temporal operators, we sometimes write ≤ c, < c, . . . instead of the
intervals [0, c], [0, c), . . ..
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De�nition 4.11 (Semantics of TCTL). Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed
automaton, AP a set of atomic propositions, and L : Loc → 2AP a state labeling function. The
satisfaction relation |=TCTL⊆ (Σ∪ΠT )×FormTCTL (or short |=) evaluates TCTL state and path
formulae as follows:

σ |=TCTL true
σ |=TCTL a i� a ∈ L(σ)
σ |=TCTL g i� σ |=CC g
σ |=TCTL ¬ψ i� σ 6|=TCTL ψ
σ |=TCTL ψ1 ∧ ψ2 i� σ |=TCTL ψ1 and σ |=TCTL ψ2

σ |=TCTL Eϕ i� π |=TCTL ϕ for some π ∈ Πdiv (σ)
σ |=TCTL Aϕ i� π |=TCTL ϕ for all π ∈ Πdiv (σ)

where σ ∈ Σ, a ∈ AP , g ∈ ACC (C), ψ, ψ1 and ψ2 are TCTL state formulae, and ϕ is a TCTL
path formula.
For an in�nite path π = σ0

α0→ σ1
α1→ σ2

α2→ . . . ∈ Πdiv let di = ExecTime(αi). The satisfaction
relation for bounded until formulae is de�ned by

π |=TCTL ψ1 UJ ψ2 i� there is an i ≥ 0 such that σi + d |=TCTL ψ2

for some d ∈ [0, di] with (
∑i−1
k=0 dk) + d ∈ J

and for all j ≤ i it holds that σj + d′ |=TCTL ψ1

for any d′ ∈ [0, dj ] with either j < i or d′ < d .

We de�ne Sat

Sat(ψ) = {σ ∈ Σ | σ |=TCTL ψ}

and
T |=TCTL ψ i� ∀σ = (`, ν) ∈ Init ∩ Inv(`). σ |=TCTL ψ.

Note that TCLT quanti�cation ranges over time-divergent paths, only.

Remark 4.2. The TCTL semantics introduced above is the so-called continuous semantics. There is
another interpretation of TCTL formulae based on a pointwise semantics, the main di�erence being that
along a path π = σ0 → σ1 → . . . only the states σi are considered in the satisfaction relation but not
the other states visited during time steps.

There is also another established variant of the above-de�ned continuous TCTL semantics, di�ering
in the meaning of the bounded until formula ψ1 UJ ψ2: instead of ψ1 the weaker requirement ψ1 ∨ ψ2

must hold before the time point of ψ2.

π |=TCTL ψ1 UJ ψ2 i� there is an i ≥ 0 such that σi + d |=TCTL ψ2

for some d ∈ [0, di] with (
∑i−1

k=0 dk) + d ∈ J
and for all j ≤ i it holds that σj + d′ |=TCTL ψ1 ∨ ψ2

for any d′ ∈ [0, dj ] with either j < i or d′ < d .

4.3 Model Checking TCTL for Timed Automata

After introducing timed automata and the logic TCTL to de�ne properties of timed automata,
in this section we give a model checking algorithm to check whether a TCTL formula holds for
a given timed automaton. The main problem for model checking TCTL for timed automata lies
in the in�nite state space. We use abstraction to solve this problem.

The basic structure of the model checking algorithm is as follows:
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Input: Non-Zeno timed automaton T with clock set C,
a labeling function L over a set of atomic propositions AP , and
a TCTL formula ψ over AP and C

Output: The answer to the question whether T |=TCTL ψ

1. Eliminate the timing parameters from ψ, resulting in a formula ψ̂ which contains atomic
clock constraints but no intervals on the temporal operators. If we see atomic clock con-
straints as atomic propositions then ψ̂ is a CTL formula.

2. Make a �nite abstraction of the state space, with the abstract states called regions.

3. Construct an abstract �nite transition system RT S (region transition system) with re-
gions as abstract states, and label the regions with atomic propositions and atomic clock
constraints. We have T |=TCTL ψ i� RT S |=CTL ψ̂.

4. Apply CTL model checking to check whether RT S |=CTL ψ̂.

5. Return the result of the CTL model checking.

Assume in the following an input for the algorithm in form of a timed automaton T =
(Loc, C,Lab,Edge, Inv , Init), a set of atomic propositions AP , a labeling function L : Loc → 2AP ,
and a TCTL formula ψ over AP and C.

4.3.1 Eliminating Timing Parameters

Let T ′ = T ⊕ z result from T by adding a fresh clock z which never gets reset. We use this
auxiliary clock to measure the time from the beginning of a path and express the time bound of
a bounded until as atomic clock constraint. For any state σ of T it holds that

σ |=TCTL E (ψ1 UJ ψ2) i� reset(z) in σ |=TCTL Eψ1 U ((z ∈ J) ∧ ψ2)
σ |=TCTL A(ψ1 UJ ψ2) i� reset(z) in σ |=TCTL Aψ1 U ((z ∈ J) ∧ ψ2) .

We transform all subformulae of the TCTL formula ψ to be checked applying the above
equivalences, resulting in the formula ψ̂. Correctness of the transformation is straightforward
for non-nested formulae. For nested formulae we need to slightly adapt the CTL model checking
algorithm, as will be explained later (see Section 4.3.4).

Example 4.4. The TCTL formula EF≤2AG[2,3]a gets transformed into EF(z ≤ 2 ∧ AG(2 ≤
z ≤ 3→ a).

4.3.2 Finite State Space Abstraction

Since the state space of a timed automaton is in general in�nite, to enable model checking
we de�ne a �nite abstraction of the state space. In this abstraction we represent a (possibly
in�nite) number of states that behave �equivalent� by a single abstract state. That two states
behave �equivalent� means, that no observation can distinguish between their behavior. Here we
do not formalize the notion of observation and observational equivalence, neither the notion of
bisimulation. Instead, we de�ne that two states may (but do not have to) be equivalent only
if they satisfy the same formulae of a given logic. This de�nition implies, that model checking
the concrete system without abstraction would yield the same result as model checking the
abstraction.
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Up to the identity relation, an abstraction has in general less states than the concrete system.
For this reason, abstraction is widely used also for �nite-state systems, since model checking is
faster and needs less memory for smaller systems than for larger ones. For in�nite-state systems,
for which state enumeration is not possible, abstraction may give us a �nite-state system which
can be model checked.

Before we deal with the abstraction for timed automata and TCTL, let us have a short look at
abstractions for the simpler case of labeled state transition systems and the logic CTL∗. Assume
a labeled state transition system LST S with state set Σ, a set of atomic propositions AP , a
labeling function L : Σ→ 2AP , and two states σ1, σ2 ∈ Σ. The following conditions assure that
σ1 and σ2 satisfy the same CTL∗ formulae:

• To satisfy the same atomic CTL∗ formulae, i.e., atomic propositions, σ1 and σ2 must be
labeled with the same set of atomic propositions, i.e., L(σ1) = L(σ2).

• To satisfy the same nested CTL∗ formulae, for each successor state of σ1 there must be
a successor state of σ2 such that the two successor states again satisfy the same CTL∗

formulae, and vice versa, for each successor state of σ2 there must be a successor state of
σ1 satisfying the same CTL∗ formulae. Thus we require that if there is a transition from
σ1 to a state σ′1, than there is also a transition from σ2 to a state σ′2 that is equivalent to
σ′1, and vice versa.

Due to this inductive de�nition, we say that equivalent states can �mimic� each other's be-
havior in terms of atomic propositions.

The transition system LST S may be parallel composed with other LSTSs. In this case
label synchronization has to be considered. In order to be able to do the same synchronization
steps from equivalent states, we extend the previous requirements as follows (the extensions are
emphasized):

• As before, to satisfy the same atomic CTL∗ formulae, i.e., atomic propositions, σ1 and σ2

must be labeled with the same set of atomic propositions, i.e., L(σ1) = L(σ2).
• We require that if there is a transition from σ1 to a state σ′1 with label a, than there is also
a transition with the same label a from σ2 to a state σ′2 that is equivalent to σ′1, and vice
versa.

We say that equivalent states can �mimic� each other's behavior in terms of atomic proposi-
tions and transition labels. For a LSTS, a bisimulation is de�ned to be an equivalence relation
on the state set satisfying the above conditions for each pair of equivalent states.

Let us try to extend the above conditions to timed automata and for the logic TCTL. Due to
the discrete steps of timed automata, we will need similar conditions as above to cover atomic
propositions and discrete steps. However, timed automata has additionally continuous steps,
and TCTL may refer to atomic clock constraints. Thus we additionally require that equivalent
states can mimic also the time steps of each other, and that equivalent states satisfy, in addition
to atomic propositions, also the same atomic clock constraints.

Assume now a timed automaton with state space Σ. Two states σ1 = (`1, ν1) ∈ Σ and
σ2 = (`2, ν2) ∈ Σ are equivalent, implying that they satisfy the same TCTL formulae, if the
following conditions hold (the extensions are again emphasized):

• To satisfy the same atomic TCTL formulae, i.e., atomic propositions and atomic clock
constraints, σ1 and σ2 must be labeled with the same set of atomic propositions, i.e.,
L(`1) = L(`2), and must satisfy the same atomic clock constraints.

• We require that if there is a discrete transition from σ1 to a state σ′1 with label a, than
there is also a discrete transition with label a from σ2 to a state σ′2 that is equivalent to
σ′1, and vice versa.
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• For each time step from σ1 in a successor state σ′1 there is also a time step from σ2 to some
σ′2 such that σ′2 is equivalent to σ′1, and vice versa.

The above conditions are similar to the de�nition of time-abstract bisimulation (which does
not consider atomic clock constraints). Note that for the time steps, the actual duration of the
mimicking time step is not important, as long as the successor states cannot be distinguished by
any TCTL formulae. This fact will become more clear later, when de�ning the abstraction for
timed automata.

The above conditions would still lead to an in�nite abstract state space, since there are
in�nitely many di�erent clock constraints with di�erent satisfying state sets. However, we need
a �nite abstraction to check a certain TCTL property. Consequently, equivalent states do not
have to satisfy the same TCTL formulae but only the same subformulae of the given TCTL
property. Thus we can release the requirements for all clock constraints to clock constraints
appearing in the given timed automaton or in the given formula.

Assume a timed automaton T with locations Loc, clocks C, and state space Σ. Assume
furthermore an atomic proposition set AP , a labeling function L : Loc → 2AP , and a TCTL
formula ψ. Below we de�ne an abstraction by an equivalence relation ∼=⊆ Σ×Σ on the states of
T . We use

• brc to denote the integral part of r ∈ R, i.e., max {c ∈ N | c ≤ r}, and
• fr(r) to denote the fractional part of r ∈ R, i.e., r − brc.

For clock constraints x < c with c ∈ N we have:

ν |= x < c ⇔ ν(x) < c ⇔ bν(x)c < c.

For clock constraints x ≤ c with c ∈ N we have:

ν |= x ≤ c ⇔ ν(x) ≤ c ⇔ bν(x)c < c ∨ (bν(x)c = c ∧ fr(ν(x)) = 0) .

That means, if we would require that equivalent states should satisfy the same clock con-
straints over the clock set C, then only states (`, ν) and (`, ν′) satisfying

bν(x)c = bν′(x)c and fr(ν(x)) = 0 iff fr(ν′(x)) = 0

for all x ∈ C could be equivalent. However, as mentioned above, if we distinguish between all
possible integral parts in N, we would generate in�nitely many equivalence classes.

Given the timed automaton T and the TCTL formula ψ, we are only interested in those
clock constraints that play a role in the satisfaction or violation of ψ by T . I.e., it is su�cient if
equivalent states satisfy the same clock constraints occurring in T or ψ.

Let cx be the largest constant which a clock x is compared to in T or in ψ. Then there is
no observation which could distinguish between the x-values in (`, ν) and (`, ν′) if ν(x) > cx and
ν′(x) > cx. I.e., equivalent states (`, ν) ∼= (`, ν′) should satisfy

(ν(x) > cx ∧ ν′(x) > cx) ∨(4.1)

(bν(x)c = bν′(x)c ∧ fr(ν(x)) = 0 iff fr(ν′(x)) = 0)

for all x ∈ C.

Example 4.5. Assume that T has two clocks x and y with cx = 3 and cy = 2, i.e., the largest
constant that x is compared to in T or in ψ is 3, and for y this is 2.
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Then we can possibly observe di�erent behavior for states satisfying x = 0, 0 < x < 1, x = 1,
1 < x < 2, x = 2, 2 < x < 3, x = 3, and x > 3. I.e., two states that satisfy two di�erent clock
constraints from the above list must not be equivalent.

Similarly for y, only states satisfying the same clock constraint from the list y = 0, 0 < y < 1,
y = 1, 1 < y < 2, y = 2, and y > 2 may be equivalent.

In the graphical representation below, valuations belonging to di�erent points, line fragments,
or boxes must not be equivalent. This yields at least 48 equivalence classes.

x

y

0

1

2

0 1 2 3

2 < x < 3
1 < y < 2

x = 3
y = 2

x = 3
0 < y < 1

As the following example illustrates, we must make a further re�nement of the abstraction.

Example 4.6. Assume the following fraction of a timed automaton and the corresponding clas-
si�cation of states according to the above observations:

. . .

. . .

y ≤ 1

. . .

. . .

x ≥ 2

x

y

0

1

0 1 2

ν

ν′

If the control is in location l with a valuation ν with, e.g., ν(x) = 1.2 and ν(y) = 0.5, then the
transition with condition x ≥ 2 cannot be taken, since the invariant y ≤ 1 forces the control to
leave the location before the value of x reaches 2. But if the valuation assigns, e.g., ν′(x) = 1.5
and ν′(y) = 0.2, then the transition gets enabled before the invariant gets violated.

Though the classi�cation respects Equation 4.1, the valuations in the classes are not yet of
the same behavior.

What we need is a re�nement taking the order of the fractional parts of the clock values
into account. I.e., we must extend the condition of Equation 4.1 with the requirement that
states (`, ν) and (`, ν′) may be equivalent only if for all clock pairs x, y ∈ C with ν(x), ν′(x) ≤
cx ∧ ν(y), ν′(y) ≤ cy

fr(ν(x)) < fr(ν(y)) iff fr(ν′(x)) < fr(ν′(y)) ∧
fr(ν(x)) = fr(ν(y)) iff fr(ν′(x)) = fr(ν′(y)) ∧
fr(ν(x)) > fr(ν(y)) iff fr(ν′(x)) > fr(ν′(y)).

Because of symmetry requiring

fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y)).(4.2)

is su�cient.
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Example 4.7. We extend the graphical representation of the clock equivalence classes from Ex-
ample 4.5 taking the conditions of both Equations 4.1 and 4.2 into account. Below, the left
picture shows the division of the state space into regions, whereas the right picture enumerates
the resulting regions.
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De�nition 4.12. For a timed automaton T and a TCTL formula ψ, both over a clock set C, we
de�ne the clock equivalence relation ∼=⊆ Σ× Σ∼= by (`, ν) ∼= (`′, ν′) i� ` = `′ and

• for all x ∈ C, either ν(x) > cx ∧ ν′(x) > cx or

bν(x)c = bν′(x)c ∧ (fr(ν(x)) = 0 iff fr(ν′(x)) = 0)

• for all x, y ∈ C if ν(x), ν′(x) ≤ cx and ν(y), ν′(y) ≤ cy then

fr(ν(x)) ≤ fr(ν(y)) iff fr(ν′(x)) ≤ fr(ν′(y)).

The clock region of an evaluation ν ∈ V is the set [ν] = {ν′ ∈ V | ν ∼= ν′}. The state region of a
state (`, ν) ∈ Σ is the set [(`, ν)] = {(`, ν′) ∈ Σ | ν ∼= ν′}. We also write (`, r) for {(`, ν) | nu ∈ r}.

4.3.3 The Region Transition System

After we have de�ned state regions, next we de�ne how to connect them by abstract transitions,
yielding an abstract transition system, which we call the region transition system.

We extend the satisfaction relation for clock constraints to regions by de�ning

r |= g i� ∀ν ∈ r. ν |= g

(`, r) |= g i� r |= g.

for r being a clock region of T with clocks C and a TCTL formula ψ, and g ∈ ACC C ∪ ACCψ.
On the right-hand side, instead of the universal quanti�cation we could have also required just
the existence of a valuation in r satisfying g, as it holds that

∀ν, ν′ ∈ r. ν |= g ↔ ν′ |= g.

We also extend the reset operator to regions as follows:

reset(C) in r = {(`, reset(C) in ν) ∈ Σ | (`, ν) ∈ r}.

Note that reset(C) in r is again a region.
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De�nition 4.13. The clock region r∞ = {ν ∈ V | ∀x ∈ C. ν(x) > cx} is called unbounded.
Let r, r′ be two clock regions. The region r′ is the successor clock region of r, denoted by r′ =
succ(r), if either

• r = r′ = r∞, or
• r 6= r∞, r 6= r′, and for all ν ∈ r:

∃d ∈ R>0. (ν + d ∈ r′ ∧ ∀0 ≤ d′ ≤ d. ν + d′ ∈ r ∪ r′).

The successor state region is de�ned as succ((`, r)) = (`, succ(r)).

De�nition 4.14. Let T = (Loc, C,Lab,Edge, Inv , Init) be a non-Zeno timed automaton and let

ψ̂ be an unbounded TCTL formula over C and a set AP of atomic propositions. The region tran-
sition system of T for ψ̂ is a labeled state transition system RT S(T , ψ̂) = (Σ′,Lab′,Edge ′, Init ′)
with

• Σ′ the �nite set of all state regions,
• Lab′ = Lab ∪ {τ},
• Init ′ = {[σ] | σ ∈ Init},

and
(`, a, (g, C), `′) ∈ Edge

r |= g r′ = reset(C) in r r′ |= Inv(`′)

(`, [ν])
a→ (`′, [ν′])

Rule discrete

r |= Inv(`) succ(r) |= Inv(`)

(`, r)
τ→ (`, succ(r))

Rule time

Assume a labeling function L : Σ→ 2AP of T . We de�ne

• AP ′ = AP ∪ACC (T ) ∪ACC (ψ)
• L′((`, r)) = L(`) ∪ {g ∈ AP ′\AP | r |= g}

Example 4.8. Assume the following timed automaton having a single clock x:

l a : x ≥ 2, reset(x)

Without taking any TCTL formula into account, the abstraction distinguishes the following equiv-
alence classes:

r[0,0] = {(`, ν) ∈ Σ | ν(x) = 0}
r(0,1) = {(`, ν) ∈ Σ | 0 < ν(x) < 1}
r[1,1] = {(`, ν) ∈ Σ | ν(x) = 1}
r(1,2) = {(`, ν) ∈ Σ | 1 < ν(x) < 2}
r[2,2] = {(`, ν) ∈ Σ | ν(x) = 2}
r(2,∞) = {(`, ν) ∈ Σ | ν(x) > 2}

For the transitions, τ -transitions are de�ned from each region into its successor region:

r[0,0]
τ→ r(0,1) r(0,1)

τ→ r[1,1] r[1,1]
τ→ r(1,2)

r(1,2)
τ→ r[2,2] r[2,2]

τ→ r(2,∞) r(2,∞)
τ→ r(2,∞)
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Discrete transitions are possible from the regions with x ≥ 2 into the region with x = 0:

r[2,2]
a→ r[0,0] r(2,∞)

a→ r[0,0]

The resulting region transition graph can be visualized as follows, where for clarity we write
into the states the locations and the constraints to which they correspond:

l
x = 0

l
0 < x < 1

l
x = 1

l
x > 2

l
x = 2

l
1 < x < 2

τ τ

τ

ττ

a a

τ

Example 4.9. Assume the same timed automaton as in the previous Example 4.8, but now
additionally consider the TCTL formula EF (0,2](x = 0). After removing the bound we get the
unbounded formula EF(0 < z ≤ 2 ∧ x = 0). Thus we have cx = 2 and cz = 2.

We get the following region transition system, where we omit unreachable abstract states.
Dotted lines in the coordinate system represent possible behaviors, moving through the di�erent
regions.
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l α : x ≥ 2, reset(x) ∃F (0,2] (x = 0)
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The following graph shows again the region transition system where the abstract states are
annotated with the information determining the regions:
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l
x = 0
z = 0

fr(x)=fr(z)

l
0 < x < 1
0 < z < 1

fr(x)=fr(z)

l
x = 1
z = 1

fr(x)=fr(z)

l
1 < x < 2
1 < z < 2

fr(x)=fr(z)

l
x = 2
z = 2

fr(x)=fr(z)

l
x > 2
z > 2

l
x = 0
z = 2

fr(x)=fr(z)

l
0 < x < 1
z > 2

l
x = 1
z > 2

l
1 < x < 2
z > 2

l
x = 2
z > 2

l
x = 0
z > 2

τ τ τ τ

τ

τ

τ
τ τ τ

α

α

τ
α

τ

The next lemma states that in�nite time-convergent paths of a timed automaton correspond
to �nite paths in the region transition system.

Lemma 4.1. For non-Zeno T and π = s0 → s1 → . . . an in�nite path of T :

• if π is time-convergent, then there is an index j and a state region (`, r) such that si ∈ (`, r)
for all i ≥ j.

• if there is a state region (`, r) with r 6= r∞ and an index j such that si ∈ (`, r) for all i ≥ j
then π is time-convergent.

Theorem 4.2. A non-Zeno timed automaton T is timelock free i� its region transition system
does not have any deadlocks, i.e., reachable terminal states.

4.3.4 TCTL Model Checking

The procedure is quite similar to CTL model checking for �nite automata. The only di�erence
concerns the handling of nested time bounds in TCTL formulae.

As in CTL model checking, we label the abstract states of the region transition system with
subformulae of the formula ψ to be checked, inside-out starting with the inner-most subformulae.
However, since we want to use a single auxiliary clock, we must additionally represent the �restart�
of the auxiliary clock at some places.

To explain the problem, consider the formula EF [0,1](a ∧ EF [1,2]b). Removing the bounds
yields EF(0 ≤ z ≤ 1∧a∧EF(1 ≤ z ≤ 2∧b)). The labeling with the atomic propositions a and b
is de�ned by the labeling function. The labeling with atomic clock constraints is done upon the
generation of the region transition system. The �rst step of the model checking algorithm would
label those regions with 1 ≤ z ≤ 2∧ b that are labeled with 1 ≤ z, z ≤ 2, and b. Now we come to
the more interesting part: the algorithm would determine all those regions from which a region
labeled with 1 ≤ z ≤ 2 ∧ b is reachable, and may label them with EF(1 ≤ z ≤ 2 ∧ b). Now we
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make two observations: Firstly, EF [1,2]b is satis�ed only by those determined regions that are
labeled with z = 0. Secondly, the start value z = 0 of the auxiliary clock is just a convention,
we could also have started with a value, e.g., z = 2 and check reachability of 3 ≤ z ≤ 4 ∧ b.
Consequently, we should label all those regions r with EF [1,2]b for that the region reset(z) in r
is labeled with EF(1 ≤ z ≤ 2 ∧ b). The labeling for the other subformulae is analogous. After
termination, the timed automaton satis�es the above TCTL formula i� each initial region is
labeled with it.

Lemma 4.2. For a non-Zeno timed automaton T and an unbounded TCTL formula ψ:

T |=TCTL ψ iff RT S(T , ψ) |=CTL ψ̂

Lemma 4.3. The model checking problem for timed automata and TCTL properties is complete
for PSPACE.
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Chapter 5

Rectangular Automata

In the previous chapter we have seen that TCTL for timed automata, a special class of hybrid
automata, is decidable, thus model checking is possible. In this chapter we discuss a bit more
general class, the class of rectangular automata, and analyse decidability. The contents of this
chapter are based on [HKPV98].

Rectangular automata build an interesting class of hybrid automata because on the one hand
they allow a more expressive modeling than timed automata and on the other hand (under some
additional conditions) both safety and liveness for rectangular automata are decidable. However,
they lie on the boundary of decidability in the sense that several slight generalizations lead to
undecidability.

In the previous chapters we used temporal logics supporting the speci�cation of both safety
and liveness properties. From now on we restrict ourselves to safety properties, stating that each
reachable state of an automaton is included in a given set of safe states.

In the following Section 5.1 we de�ne syntax and semantics of rectangular automata, before
discussing decidability in Section 5.2.

5.1 Syntax and Semantics

In the following we �rst formally de�ne the syntax and semantics of rectangular automata. As
rectangular automata are special hybrid automata, their states σ = (l, ν) ∈ Σ = Loc × V also
consist of a discrete component describing the current location, and of a valuation component,
assigning values to the real-valued variables. To simplify the notation, in the following we
assume that the real-valued variables Var = {x1, . . . , xd} of the automata are ordered and write
(l, v) ∈ Loc × Rd for a state (l, ν) with ν(xi) = vi for all i = 1, . . . , d.

To de�ne rectangular automata we �rst need to de�ne rectangular sets.

De�nition 5.1 (Rectangular set). A set R ⊂ Rd is rectangular if it is a cartesian product of
(possibly unbounded) intervals, all of whose �nite endpoints are rational. The set of rectangular
sets in Rd is denoted by Rd.
Given a set Loc of locations, a subset of the state space Loc ×Rd is called a zone. Each zone Z
is decomposable into a collection

⋃
l∈Loc{l} ×Zl of zones. The zone Z is rectangular i� each Zl

is rectangular. A zone is multirectangular, if it is a �nite union of rectangular zones.

Rectangular automata are hybrid automata whose invariants, activities, and transition rela-
tions are all described by rectangular sets. For the invariants and transition guards it means that
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those conditions may not compare the values of di�erent variables to each other, but to constant
values only. Similarly, a transition may reset the value of a variable to a non-deterministically
chosen value from an interval, whose end-points are constants, i.e., they do not depend on the
values of other variables. Finally, the activities assign constant lower and upper bounds to the
derivatives, allowing also non-linear behaviour. However, since the evolution of a variable may
not depend on the value of another variable, the set of states reachable via time steps from a
rectangular set is again a rectangular set.

De�nition 5.2 (Syntax of rectangular automata). A d-dimensional rectangular automaton
(or short rectangular automaton) is a tuple H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

• a �nite set Loc of locations;
• a �nite set Var = {x1, . . . , xd} of d ordered real-valued variables; we write x = (x1, . . . , xd)
for the ordered sequence of the variables;
• a function Con : Loc → 2Var assigning a set of controlled variables to each location;
• a �nite set Lab of synchronization labels;
• a set Edge ⊆ Loc × Lab × (Rd ×Rd × 2{1,...,n})× Loc of edges;
• a �ow function Act : Loc → Rd;
• an invariant function Inv : Loc → Rd;
• initial states Init : Loc → Rd.

A rectangular automaton is initialized i� for all edges e = (l, a, pre, post , jump, l′) ∈ Edge and
all i ∈ {1, . . . , n} we have that if Act(l)i 6= 0 and Act(l)i 6= Act(l′)i then i ∈ jump, where Act(l)i
is the projection of Act(l) to the ith dimension.

For the �ows, the �rst time derivatives of the �ow trajectories in location l ∈ Loc are within
the rectangular set Act(l). For the jumps, an edge e = (l, a, pre, post , jump, l′) ∈ Edge may move
control from location l to location l′ starting from a valuation in pre, changing the value of each
variable xi ∈ jump to a nondeterministically chosen value from post i (the projection of post to
the ith dimension), and leaving the values of the other variables unchanged.

An initialized rectangular automaton has the property that whenever the �ow of a variable
changes due to a discrete transition, the variable is re-initialized to a value from an interval with
constant bounds. The reachability problem for initialized rectangular automata is decidable.
However, it becomes undecidable if the restriction of being initialized is relaxed.

Example 5.1. The following graph illustrates is an initialized rectangular automaton:

v1

ċ ∈ [1, 3]

ḋ ∈ [−3,−2]

c := 0

d := 0

v4

ċ ∈ [1, 3]

ḋ ∈ [1, 2]

v3

ċ ∈ [−4,−2]

ḋ ∈ [1, 2]

v2

ċ ∈ [−4,−2]

ḋ ∈ [−3,−2]

a

c ≥ 0 ∧ d ≤ 2→ d := 1

b
c ≥ −3 ∧ d ≤ −2→

c :∈ [−1,−2]

c

d ≤ −5→ d := −4

d
c ≤ 5 ∧ d ≤ −3→
c := 4
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Note that a timed automaton is a special rectangular automaton such that every variable is a
clock, the initial sets Init(l) are empty or are singletons for each location l ∈ Loc, and the edges
reset variables to 0 only. Furthermore, if we replace rectangular regions with linear regions, we
obtain linear hybrid automata, a super-class of rectangular automata, which are the subject of
the next chapter.

The semantics of rectangular automata is derived from the semantics of hybrid automata as
follows.

De�nition 5.3 (Semantics of rectangular automata). The operational semantics of a rect-
angular automaton H = (Loc,Var ,Con,Lab,Edge, Act , Inv , Init) is given by the following two
rules:

(l, a, pre, post, jump, l′) ∈ Edge

v ∈ pre v′ ∈ post ∀i /∈ jump.v′i = vi v′ ∈ Inv(l′)

(l, v)
a→ (l′, v′)

Rule discrete

(t = 0 ∧ v = v′) ∨ (t > 0 ∧ (v′ − v)/t ∈ Act(l)) v′ ∈ Inv(l)

(l, v)
t→ (l, v′)

Rule time

The one-step transition is given by → =
a→ ∪ t→, its transitive closure by →∗. A path is a

sequence σ0 → σ1 → σ2 . . .. starting in an initial state σ0 = (`0, v0) with v0 ∈ Init(`0)∩ Inv(`0).
A state is reachable i� there exists a path leading to it.

Note that, similarly to timed automata, the invariant sets of rectangular automata are convex.
Furthermore, though the time behaviour can be non-linear, for each non-linear time �ow there is
a corresponding linear one leading to the same state in the same time. Thus for the time steps
we do not need to require the invariant to hold at each time point during the time step, but it
is su�cient to require that the invariant holds initially and after each step.

Lemma 5.1. For every multirectangular zone Z of a d-dimensional rectangular automaton H,
and every label lab ∈ Lab ∪R≥0, the zones Post lab(Z) = {(l′, v′) ∈ Loc×Rd | ∃(l, v) ∈ Z. (l, v)

lab→
(l′, v′)} and Pre lab(Z) = {(l, v) ∈ Loc × Rd | ∃(l′, v′) ∈ Z. (l, v)

lab→ (l′, v′)} are multirectangular.

Proof. It su�ces to prove the lemma for elementary regions of the form Z = ({l},R) with R
rectangular. We distinguish between discrete and time steps.

For discrete steps assume lab = a ∈ Lab. Let furthermore e = (l, a, pre, post , jump, l′) be an
edge. Then Posta(Z) = {l′} × S with

Si =

 Ri ∩ prei ∩ post i ∩ Inv(l′)i if i 6∈ jump,
post i ∩ Inv(l′)i if i ∈ jump and Ri ∩ prei 6= 0,
∅ if i ∈ jump and Ri ∩ prei = 0.

Thus Posta(Z) is rectangular, and the union over all edges starting in l with label a is a multi-
rectangular zone.

For time steps, if lab = 0 then Post0(Z) = Z. Thus assume lab = t ∈ R with t > 0. Let
L = inf (Ri) + t · inf (Act(l)i) and U = sup(Ri) + t · sup(Act(l)i).

��- Draft version, please do not distribute ��- 59



CHAPTER 5. RECTANGULAR AUTOMATA

Then Post t(Z) = {l} × S with

Si =


Inv(l)i ∩ [L,∞) ∩ (−∞, U ] if Ri and Act(l)i are closed,
Inv(l)i ∩ (L,∞) ∩ (−∞, U ] if Ri or Act(l)iare left-open and

both are right-closed, and
Inv(l)i ∩ [L,∞) ∩ (−∞, U) if Ri or Act(l)iare right-open and

both are left-closed.

Thus Post t(Z) is a rectangular zone.

Note that the reachable zone of a rectangular automaton is in general an in�nite union of
rectangular zones, and may thus be not multirectangular.

5.2 Decidability of Rectangular Automata

The reachability problem for initialized rectangular automata is decidable.

Lemma 5.2. The reachability problem for initialized rectangular automata is PSPACE complete.

The proof makes use of the fact that the reachability problem for timed automata is complete
for PSPACE. It de�nes a (polynomial) transformation of initialized rectangular automata to
timed automata thereby proving PSPACE completeness. The transformation is done in three
steps:

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton

In the following we describe these steps. Note that the transformation does not only prove
decidability, but also gives us a model checking algorithm for initialized rectangular automata,
since we can apply the previously discussed model checking algorithm to the resulting timed
automaton.

5.2.1 From Initialized Stopwatch Automata to Timed Automata

Let us start with the �rst step transforming an initialized stopwatch automaton into a timed
automaton.

De�nition 5.4. • A rectangular automaton has deterministic jumps, if (1) Init(l) is empty
or a singleton for all l, and (2) the post-interval for each variable from the jump-set of each
edge is a singleton.
• A stopwatch is a variable with derivatives 0 or 1 only.
• A stopwatch automaton is a rectangular automaton with deterministic jumps and stopwatch
variables only.

Initialized stopwatch automata can be polynomially encoded by timed automata, as shown
below. This implies the decidability of initialized stopwatch automata. However, the reachability
problem for non-initialized stopwatch automata is undecidable.
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Lemma 5.3. The reachability problem for initialized stopwatch automata is PSPACE complete.

The encoding works as follows. First notice, that a timed automaton is a stopwatch automa-
ton such that every variable is a clock.

Assume that H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) is a d-dimensional (i.e. |Var | = d)
initialized stopwatch automaton. Let κ be the set of rational constants used in the de�nition of
H, and let κ⊥ = κ ∪ {⊥}.

Intuitively, if the ith stopwatch of H is running (slope 1), then its value is tracked by the
value of the ith clock of H′; if the ith stopwatch is halted (slope 0) at value ki ∈ κ, then this
value is remembered by the current location of H′.

Example 5.2. Consider the following initialized stopwatch automaton:

`0
ẋ = 1 ẏ = 0x = 0 ∧ y = 0

`1
ẋ = 0 ẏ = 1
x ≤ 2 ∧ y ≤ 5

`2
ẋ = 0 ẏ = 1
x ≤ 2 ∧ y ≤ 5

x:=2

x:=1

This automaton can be transformed to a timed automaton with the following reachable frag-
ment:

(`0,⊥,⊥)
ẋ = 1 ẏ = 1x = 0 ∧ y = 0

(`1, 2,⊥)
ẋ = 1 ẏ = 1
x ≤ 2 ∧ y ≤ 5

(`2, 1,⊥)
ẋ = 1 ẏ = 1
x ≤ 2 ∧ y ≤ 5

(`1, 1,⊥)
ẋ = 1 ẏ = 1
x ≤ 2 ∧ y ≤ 5

x:=2

y:=0

x:=1

5.2.2 From Initialized Singular Automata to Initialized Stopwatch Au-
tomata

De�nition 5.5.

• A variable xi is a �nite-slope variable if flow(l)i is a singleton in all locations l.
• A singular automaton is a rectangular automaton with deterministic jumps such that every
variable of the automaton is a �nite-slope variable.

Lemma 5.4. The reachability problem for initialized singular automata is PSPACE complete.

The proof is again based on automata transformation. Initialized singular automata can be
rescaled to initialized stopwatch automata as follows.
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Let B be a d-dimensional initialized singular automaton with ε-moves. We de�ne a d-
dimensional initialized stopwatch automaton CB with the same location set, edge set, and label
set as B.

Each state q = (l, v) of CB corresponds to the state β(q) = (l, β(v)) of B with β : Rd → Rd
de�ned as follows:

For each location l of B, if ActB(l) = Πd
i=1[ki, ki], then β(v1, . . . , vd) = (`1 · v1, . . . , `d · vd)

with `i = ki if ki 6= 0, and `i = 1 if ki = 0;
β can be viewed as a rescaling of the state space. All conditions in the automaton B occur

accordingly rescaled in CB .
The reachable set Reach(B) of B is β(Reach(CB)).

5.2.3 From Initialized Rectangular Automaton to Initialized Singular
Automaton

Lemma 5.5. The reachability problem for initialized rectangular automata is PSPACE complete.

The proof is based on the translation of a d-dimensional initialized rectangular automaton H
into a (2n+1)-dimensional initialized singular automaton B, such that B contains all reachability
information about H.

The translation is similar to the subset construction for determinizing �nite automata.
The idea is to replace each variable c of H by two �nite-slope variables cl and cu: cl tracks

the least possible value of c, and cu tracks the greatest possible value of c.
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Chapter 6

Linear Hybrid Automata I

In this chapter we discuss a further class of hybrid automata called linear hybrid automata I.
Linear hybrid automata I are time-deterministic hybrid automata whose de�nitions contain linear
terms, only. They are more expressive than timed or rectangular automata, and the reachability
problem for linear hybrid automata I is in general undecidable. However, bounded reachability,
i.e., reachability within a �xed number of steps, is still decidable and can be e�ciently computed.
Approximation and minimization techniques can be additionally used for the successful analysis
of linear hybrid automata I.

We introduce linear hybrid automata I in Section 6.1. Forward and backward analysis tech-
niques are discussed in the Sections 6.2 and 6.3, respectively. Approximation methods for linear
hybrid automata I are described in Section 6.4, and we handle minimization in Section 6.5

The contents of this chapter are based on [ACH+95].

6.1 Syntax and Semantics

De�nition 6.1. • A linear term over the set Var of variables is a linear combination of
variables in Var with integer (rational) coe�cients.
• A linear formula over Var is a Boolean combination of (in)equalities between linear terms
over Var .
• A hybrid automaton is time deterministic i� for every location l ∈ Loc and every valuation
ν ∈ V there is at most one activity f ∈ Act(l) with f(0) = ν. The activity f , then, is
denoted by fl[ν]fl[ν], its component for x ∈ Var by fxl [ν]fxl [ν].

The restrictions on the syntax of linear hybrid automata I a�ect the activities, the invariants,
and the discrete edges.

De�nition 6.2 (Syntax of linear hybrid automata I). A linear hybrid automaton I is a
time-deterministic hybrid automaton with the following properties:

• Intial states Init(l) are described by the linear formula ϕl
′

Init , where

Init(l) = {(ν, l′)|l = l′ ∧ ϕl
′

Init [ν(x)/x]}

• Activities Act(l) follow derivatives ẋ ∈ [L − x, ux] for each variable x ∈ Var , with lx, ux
integer (rational) constants. They are described by a linear formula

ϕlAct =
∧

x∈Var

x+ lx · t ≤ x′ ∧ x′ ≤ x+ ux · t
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l0
ẋ = 1
ẏ = 1
y ≤ 10

x = 0

∧y = 1

l1
ẋ = 1
ẏ = 1
x ≤ 2

l2
ẋ = 1
ẏ = −2
y ≥ 5

l3
ẋ = 1
ẏ = −2
x ≤ 2

y = 10→ x := 0

x = 2

y = 5→ x := 0

x = 2

Figure 6.1: Water-level monitor

l1
ẋ = 1
ẏ = 1
ż = 1
x ≤ 1

x = 0 ∧ y = 0 ∧ z = 0

l2
ẋ = 1
ẏ = 1
ż = 0

x := 0

30 ≤ x→ x := 0

Figure 6.2: Leaking gas burner

such that

Act(l) = {f |∀t ∈ R≥0.ϕlAct [f(0), f(t)/x, x′]}}

• Invariants Inv(l) are de�ned by linear formulae ϕlInv over Var :

Inv(l) = {ν|ϕlInv [ν(x)/x]}

• For all edges, the transision relation is de�ned by a guarded set of nondeterministic assign-
ments:

e = (l, µ, l′)

de�ning

µ = {(ν, ν′)|ϕe,guard [ν(x)/x] ∧ ϕe,reset [ν(x), ν′(x)/x, x′]}

ϕe,reset =
∧

x∈Var

elower
x ≤ x′ ∧ x′ ≤ eupperx

where the guard ϕe,guard is a linear formula.

Figures 6.1 and 6.2 give two examples for linear hybrid automata I.
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l0

ẋ1 ∈ [l1, u1]
ẋ2 ∈ [l2, u2]

x1 + x2 ≤ d∧
−c ≤ 2x1 − x2 ≤ c

x1 = 0 x2 = 0

l1

ẋ1 = 0
ẋ2 ∈ [l2, u2]

x1 + x2 ≤ d∧
2x1 − x2 ≥ 0

l2

ẋ1 ∈ [l1, u1]
ẋ2 = 0

x1 + x2 ≤ d∧
2x1 − x2 ≤ 0

l3

ẋ ∈ [l, u]

x ≥ 0

0 < l1 < u1, 0 < l2 < u2, l ≤ u < 0, d > 0, c > 0

2x1 − x2 = c

2x1 − x2 = 0

x1 + x2 = d
x := d

2x1 − x2 = −c

2x1 − x2 = 0

x1 + x2 = d
x := d

x1 + x2 = d
x := d

x = 0
x1 := 0
x2 := 0

Figure 6.3: Mixer of �uids

The semantics of linear hybrid automata I is given by the semantics of hybrid automata,
speci�ed by the following rules for discrete and time steps:

(l, a, µ, l′) ∈ Edge (ν, ν′) ∈ µ ν′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν′)

Rule discrete

f ∈ Act(l) f(0) = ν f(t) = ν′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l, ν)
t→ (l, ν′)

Rule time

For time-deterministic hybrid automata the time-step rule can be simpli�ed using the follow-
ing predicate.

De�nition 6.3. For time-deterministic hybrid automata we de�ne the �time can progress� pred-
icate: tcpl[ν](t)

tcpl[ν](t) iff ∀0 ≤ t′ ≤ t. fl[ν](t′) ∈ Inv(l).

Thus for time-deterministic automata we can rewrite the time-step rule to

t ≥ 0 tcpl[ν](t)

(l, ν)
t→ (l, fl[ν](t))

Rule′
time
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6.2 Forward Analysis

The reachability problem for linear hybrid automata I is in general undecidable. However,
bounded reachability is still decidable. Despite of undecidability, for the general rechability
analysis of linear hybrid automata I there exist incomplete algorithms. In this section we describe
such a technique, a forward analysis approach based on �xed-point computation.

In general, forward analysis techniques start from the initial state set R0 of a system, and
compute the state set R1 reachable from R0 within one computation step. For the resulting set
the same computation is repeated, i.e., the state set R2 reachable in one transition step from R1

is computed. The algorithm terminates if after a number of steps no new states can be reached,
i.e., if Rk ⊆

⋃k−1
i=0 Ri for some k > 0. Termination corresponds to �nding the least �xed-point

for the one-step (forward) reachability starting from the initial set. After termination we can
check if all states in the determined reachable set satisfy the required property. Note that the
computation may in general not terminate if the state space is in�nite.

The one-step reachability for continuous steps is described by the following notion of forward
time closure:

De�nition 6.4. We de�ne the forward time closure 〈P 〉↗l of P ⊆ V at l ∈ Loc as the set of
valuations reachable from P by letting time progress:〈P 〉↗l

ν′ ∈ 〈P 〉↗l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν](t) ∧ ν′ = fl[ν](t).

We extend the de�nition to regions R = ∪l∈Loc(l, Rl) as follows:〈R〉↗l

〈R〉↗ = ∪l∈Loc(l, 〈Rl〉↗l ).

For the discrete steps, the corresponding one-step relation is formalized by postconditions:
We de�ne the postcondition poste[P ] of P with respect to an edge e = (l, a, µ, l′) as the set of
valuations reachable from P by e:poste[P ]

ν′ ∈ poste[P ] iff ∃ν ∈ P. (ν, ν′) ∈ µ.

An extension to regions R = ∪l∈Loc(l, Rl) is de�ned as follows:post [R]

post [R] = ∪e=(l,a,µ,l′)∈Edge(l′, poste[Rl]).

Note that, due to the τ -transitions, R ⊆ post [R]. Similarly, due to time steps of duration 0
we have R ⊆ 〈R〉↗.

Lemma 6.1. For all linear hybrid automata I, if P ⊆ V is a linear set of valuations, then for
all l ∈ Loc and e ∈ Edge, both 〈P 〉↗l and poste[P ] are linear sets of valuations.

The set of states reachable in a �nite number of steps from the initial state set form the
reachable region of the automaton.

De�nition 6.5. Given a region I ⊆ Σ, the reachable region(I, 7→∗) (I 7→∗) ⊆ Σ of I is the set of all
states that are reachable from states in I:

σ ∈ (I 7→∗) iff ∃σ′ ∈ I. σ′ →∗ σ.

The following lemma states, that if the forward analysis procedure terminates, then the result,
being the least �xed-point of the one-step relation, gives us the set of all reachable states.
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Lemma 6.2. Let I = ∪l∈Loc(l, Il) be a region of the linear hybrid automaton I A. The reachable
region (I, 7→∗) = ∪l∈Loc(l, Rl) is the least �xed-point of the equation

X = 〈I ∪ post [X]〉↗

or, equivalently, for all locations l ∈ Loc, the set Rl of valuations is the least �xed-point of the
set of equations

Xl = 〈Il ∪
⋃

e=(l′,a,µ,l)∈Edge

poste[Xl′ ]〉↗l .

Example 6.1 (Example forward reachability computation). Consider the example au-
tomaton from Figure ?? and assume that bad states (l, ν) are characterized by ν(x) = ν(y) + 2,
independently of the location. We represent the initial sets, activities, invariants, transition
relations and the bad states by linear real arithmetic formulas as follows:

Init`1(x, y) = x = 0 ∧ y = 0 Init`2(x, y) = false
fx`1(x, y)(t) = x+ t fx`2(x, y)(t) = x
fy`1(x, y)(t) = y fy`2(x, y)(t) = y + t
Inv `1(x, y) = x ≤ y + 1 Inv `2(x, y) = y ≤ x+ 1

µx`2→`1(x, y) = x µx`1→`2(x, y) = x
µy`2→`1(x, y) = y µy`1→`2(x, y) = y

Bad`1(x, y) = x = y + 2 Bad`2(x, y) = x = y + 2

The forward reachability analysis computes the following state sets represented again as linear
real arithmetic formulas:

R0
`1

(x, y) = Init`1(x, y) ∧ Inv `1(x, y) = x = 0 ∧ y = 0 ∧ x ≤ y + 1
R0
`2

(x, y) = Init`2(x, y) ∧ Inv `2(x, y) = false

R1
`1

(x, y) = T +

`1
(R0

`1
)

= ∃x′, y′, t. R0
`1

(x′, y′) ∧ t ≥ 0 ∧ x = fx`1(x′, y′)(t) ∧ y = fy`1(x′, y′)(t) ∧ Inv `1(x, y)
= ∃x′, y′, t. x′ = 0︸ ︷︷ ︸

elim. x′

∧ y′ = 0︸ ︷︷ ︸
elim. y′

∧x′ ≤ y′ + 1 ∧ t ≥ 0 ∧ x = x′ + t ∧ y = y′ ∧ x ≤ y + 1

= ∃t. 0 ≤ 1 ∧ t ≥ 0 ∧ x = t︸ ︷︷ ︸
elim. t

∧y = 0 ∧ x ≤ y + 1

= x ≥ 0 ∧ y = 0 ∧ x ≤ y + 1
R1
`2

(x, y) = T +

`2
(R0

`2
)

= ∃x′, y′, t. R0
`2

(x′, y′) ∧ t ≥ 0 ∧ x = fx`2(x′, y′)(t) ∧ y = fy`2(x′, y′)(t) ∧ Inv `2(x, y)
= false

R2
`1

(x, y) = D+(R1
`2

)
= ∃x′, y′. R1

`2
(x′, y′) ∧ x = µx`2→`1(x′, y′) ∧ y = µy`2→`1(x′, y′) ∧ Inv `1(x, y)

= false
R2
`2

(x, y) = D+(R1
`1

)
= ∃x′, y′. R1

`1
(x′, y′) ∧ x = µx`1→`2(x′, y′) ∧ y = µy`1→`2(x′, y′) ∧ Inv `2(x, y)

= ∃x′, y′. x′ ≥ 0 ∧ y′ = 0 ∧ x′ ≤ y′ + 1 ∧ x = x′︸ ︷︷ ︸
elim. x′

∧ y = y′︸ ︷︷ ︸
elim. y′

∧y ≤ x+ 1

= x ≥ 0 ∧ y = 0 ∧ x ≤ y + 1 ∧ y ≤ x+ 1
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R3
`1

(x, y) = T +

`1
(R2

`1
)

= ∃x′, y′, t. R2
`1

(x′, y′) ∧ t ≥ 0 ∧ x = fx`1(x′, y′)(t) ∧ y = fy`1(x′, y′)(t) ∧ Inv `1(x, y)
= false

R3
`2

(x, y) = T +

`2
(R2

`2
)

= ∃x′, y′, t. R2
`2

(x′, y′) ∧ t ≥ 0 ∧ x = fx`2(x′, y′)(t) ∧ y = fy`2(x′, y′)(t) ∧ Inv `2(x, y)
= ∃x′, y′, t. x′ ≥ 0 ∧ y′ = 0︸ ︷︷ ︸

elim. y′

∧x′ ≤ y′ + 1 ∧ y′ ≤ x′ + 1 ∧ t ≥ 0∧

x = x′︸ ︷︷ ︸
elim. x′

∧y = y′ + t ∧ y ≤ x+ 1

= ∃t. x ≥ 0 ∧ x ≤ 1 ∧ 0 ≤ x+ 1 ∧ t ≥ 0 ∧ y = t︸ ︷︷ ︸
elim. t

∧y ≤ x+ 1

= x ≥ 0 ∧ x ≤ 1 ∧ y ≥ 0 ∧ y ≤ x+ 1

R4
`1

(x, y) = D+(R3
`2

)
= ∃x′, y′. R3

`2
(x′, y′) ∧ x = µx`2→`1(x′, y′) ∧ y = µy`2→`1(x′, y′) ∧ Inv `1(x, y)

= ∃x′, y′. x′ ≥ 0 ∧ x′ ≤ 1 ∧ y′ ≥ 0 ∧ y′ ≤ x′ + 1 ∧ x = x′︸ ︷︷ ︸
elim. x′

∧ y = y′︸ ︷︷ ︸
elim. y′

∧x ≤ y + 1

= x ≥ 0 ∧ x ≤ 1 ∧ y ≥ 0 ∧ y ≤ x+ 1 ∧ x ≤ y + 1
R4
`2

(x, y) = D+(R3
`1

)
= ∃x′, y′. R3

`1
(x′, y′) ∧ x = µx`1→`2(x′, y′) ∧ y = µy`1→`2(x′, y′) ∧ Inv `2(x, y)

= false

R5
`1

(x, y) = T +

`1
(R4

`1
)

= ∃x′, y′, t. R4
`1

(x′, y′) ∧ t ≥ 0 ∧ x = fx`1(x′, y′)(t) ∧ y = fy`1(x′, y′)(t) ∧ Inv `1(x, y)
= ∃x′, y′, t. x′ ≥ 0 ∧ x′ ≤ 1 ∧ y′ ≥ 0 ∧ y′ ≤ x′ + 1 ∧ x′ ≤ y′ + 1∧

t ≥ 0 ∧ x = x′ + t︸ ︷︷ ︸
elim. x′

∧ y′ = y︸ ︷︷ ︸
elim. y′

∧x ≤ y + 1

= ∃t. x− t ≥ 0 ∧ x− t ≤ 1 ∧ y ≥ 0 ∧ y ≤ x− t+ 1 ∧ x− t ≤ y + 1∧
t ≥ 0 ∧ x ≤ y + 1

= ∃t. x ≥ t︸ ︷︷ ︸
upper bound

∧x− 1 ≤ t︸ ︷︷ ︸
lower bound

∧y ≥ 0 ∧ t ≤ x− y + 1︸ ︷︷ ︸
upper bound

∧x− y − 1 ≤ t︸ ︷︷ ︸
lower bound

∧

t ≥ 0︸ ︷︷ ︸
lower bound

∧x ≤ y + 1

= x− 1 ≤ x ∧ x− 1 ≤ x− y + 1 ∧ x− y − 1 ≤ x ∧ x− y − 1 ≤ x− y + 1∧
0 ≤ x ∧ 0 ≤ x− y + 1 ∧ y ≥ 0 ∧ x ≤ y + 1

= y ≤ 2 ∧ 0 ≤ x ∧ y ≤ x+ 1 ∧ y ≥ 0 ∧ x ≤ y + 1
R5
`2

(x, y) = T +

`2
(R4

`2
)

= ∃x′, y′, t. R4
`2

(x′, y′) ∧ t ≥ 0 ∧ x = fx`2(x′, y′)(t) ∧ y = fy`2(x′, y′)(t) ∧ Inv `2(x, y)
= false

This computation sequence will not terminate, since each new iteration reaches some new
states, but none of the computed sets intersect with the sets of bad states (which are actually not
reachable).
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6.3 Backward Analysis

There is a similar backward approach for the �xed-point-based reachability analysis of linear
hybrid automata I. Instead of starting from the initial set and computing successors like in the
forward approach, the backward search starts from a target set, de�ned as the set of states vio-
lating the property to be proved, and computes stepwise predecessors. The algorithm terminates
if it �nds the least �xed-point for the reversed one-step relation, thereby determining the set of
states from which the target set can be reached. If the intersection of the resulting set with the
initial set is empty, the property holds, otherwise the property does not hold.

Analogously to the forward time closure for the time steps and the postcondition for discrete
steps in the forward approach, we de�ne for the reversed steps a backward time closure for time
steps and a precondition for discrete steps.

De�nition 6.6. We de�ne the backward time closure 〈P 〉↙l〈P 〉↙l of P ⊆ V at l ∈ Loc as the set of
valuations from which it is possible to reach a valuation in P by letting time progress:

ν′ ∈ 〈P 〉↙l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν
′](t) ∧ ν = fl[ν

′](t).

We extend the de�nition to regions R = ∪l∈Loc(l, Rl) as follows: 〈R〉↙

〈R〉↙ = ∪l∈Loc(l, 〈Rl〉↙l ).

We de�ne the precondition pree[P ]pree[P ] of P with respect to an edge e = (l, a, µ, l′) as the set of
valuations from which it is possible to reach a valuation from P by e:

ν′ ∈ pree[P ] iff ∃ν ∈ P. (ν′, ν) ∈ µ.

For regions R = ∪l∈Loc(l, Rl) we de�ne pre[R]

pre[R] = ∪e=(l′,a,µ,l)∈Edge(l′, pree[Rl]).

Note that, due to the τ -transitions, R ⊆ pre[R]. Similarly, due to time steps of duration 0
we have R ⊆ 〈R〉↙.

Lemma 6.3. For all linear hybrid automata I, if P ⊆ V is a linear set of valuations, then for
all l ∈ Loc and e ∈ Edge, both 〈P 〉↙l and pree[P ] are linear sets of valuations.

For a target state set we de�ne its initial region as the set of states from which the target set
is reachable.

De�nition 6.7. Given a region R ⊆ Σ, the initial region (7→∗ R)( 7→∗ R) ⊆ Σ of R is the set of all
states from which a state in R is reachable:

σ ∈ (7→∗ R) iff ∃σ′ ∈ R. σ →∗ σ′.

The following lemma states that if the backward algorithm terminates, it determines the
states from which the target region is reachable.

Lemma 6.4. Let R = ∪l∈Loc(l, Rl) be a region of the linear hybrid automaton I A. The initial
region (7→∗ R) = ∪l∈Loc(l, Il) of R is the least �xed-point of the equation

X = 〈R ∪ pre[X]〉↙
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or, equivalently, for all locations l ∈ Loc, the set Il of valuations is the least �xed-point of the set
of equations

Xl = 〈Rl ∪
⋃

e=(l,a,µ,l′)∈Edge

pree[Xl′ ]〉↙l .

Example 6.2 (Example backward reachability computation). Consider again the example
automaton from Figure ?? and the same representations of intial sets, activities, invariants,
transition relations and bad states as in Example 6.1.

The backward reachability computation generates the following set representations:

R0
`1

(x, y) = Bad`1(x, y) ∧ Inv `1(x, y) = x = y + 2 ∧ x ≤ y + 1 = false
R0
`2

(x, y) = Bad`2(x, y) ∧ Inv `2(x, y) = x = y + 2 ∧ y ≤ x+ 1

R1
`1

(x, y) = T −`1 (R0
`1

)
= ∃x′, y′, t. R0

`1
(x′, y′) ∧ t ≥ 0 ∧ x′ = fx`1(x, y)(t) ∧ y′ = fy`1(x, y)(t) ∧ Inv `1(x, y)

= false
R1
`2

(x, y) = T −`2 (R0
`2

)
= ∃x′, y′, t. R0

`2
(x′, y′) ∧ t ≥ 0 ∧ x′ = fx`2(x, y)(t) ∧ y′ = fy`2(x, y)(t) ∧ Inv `2(x, y)

= ∃x′, y′, t. x′ = y′ + 2 ∧ t ≥ 0 ∧ x′ = x+ t︸ ︷︷ ︸
elim. x′

∧ y′ = y︸ ︷︷ ︸
elim. y′

∧x ≤ y + 1

= ∃t. x+ t = y + 2︸ ︷︷ ︸
elim. t

∧t ≥ 0 ∧ x+ t ≤ y + 1

= y − x+ 2 ≥ 0 ∧ x+ y − x+ 2 ≤ y + 1

= false

Already the �rst iteration does not yield any new state, i.e., the algorithm terminates. Since
none of the computed stes intersects with the initial state sets, no bad states can be reached from
any initial state. (Note that it is even not possible to reach a bad state from any good state.)

6.4 Approximative Analysis

If the (forward or backward) iterative techniques does not converge, we can compute over-
approximations of the sets

• (I 7→∗) of states which are reachable from the initial states I (forward analysis), or
• ( 7→∗ R) of states from which the region R is reachable (backward analysis).

Below we discuss two approaches for over-approximation: the �rst one is based on building
convex hulls, and the second one is a widening technique.

1. Instead of computing the union of sets, we can compute their convex hull, i.e., the smallest
convex polyhedron containing the operands of the union (see Figure 6.4). Though this
set over-approximates the exact result, it may help the algorithms to terminate. On the
one hand, if with the over-approximation we can show the correctness of the property we
want to prove, then we are happy with the result: if the property holds even for the over-
approximation then if holds also for the over-approximated reachable set. On the other
hand, if the proof fails, then, due to the over-approximation, it does not mean that the
property does not hold: those states of the over-approximation that violate the property
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Figure 6.4: Two sets (left) and their convex hull (right)
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Figure 6.5: A sequence of three sets (left three pictures) and their widening (right)

may lie outside of the exact, over-approximated set and are thus perhaps not reachable. In
this case we must try to �nd a more accurate over-approximation.

2. To enforce the convergence of iterations, we can apply a widening technique. The basic
idea is to extrapolate the limit of the state set sequence occurring in the non-terminating
�xed-point computation. The standard widening algorithm applies the widening for at
least one location in each loop of the hybrid automaton graph. Figure 6.5 illustrates the
widening technique.

6.5 Minimization

In this section we discuss another approach called minimization for the analysis of linear hybrid
automata I, based on abstraction and abstraction re�nement. We introduce a forward method
but it is also possible to de�ne it for a backward search.

Assume a linear hybrid automaton I and a safety property whose validity we want to check.
The property divides the state space of the hybrid automaton into a set of �good� states that
satisfy the property and a set of �bad� states that violate it. Let Rbad denote the set of violating
states. To check the validity of the property we check if a state from Rbad is reachable.

The abstraction is based on partitioning the state space of a linear hybrid automaton into a
�nite set Π = {Rbad, R1, . . . , Rn} of regions with Rbad ∩ Ri = ∅ for all 1 ≤ i ≤ n, Ri ∩ Rj = ∅
for all 1 ≤ i < j ≤ n, and Σ = Rbad ∪

⋃n
i=1Ri. Each such partitioning induces a LSTS being an

abstraction of the linear hybrid automaton I. The abstract states of the LSTS are the regions
of the partitioning. The regions containing at least one concrete initial state are the abstract
initial states. There is a transition from a region R to a region R′ of the partitioning, denoted
by R 7→ R′, i� from at least one state in R at least one state in R′ is reachable in one step. Since
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R’R

Figure 6.6: The next relation 7→ on regions

we are only interested in the reachability of bad states, we de�ne no successors for Rbad. The
abstract transitions are formalized as follows:

De�nition 6.8. The next relation 7→ on regions is de�ned by7→

R 7→ R′ iff R 6= Rbad ∧ ∃σ ∈ R. ∃σ′ ∈ R′. σ → σ′.

Figure 6.6 illustrates the next relation.

Such an abstraction in general over-approximates the behaviour of the concrete system: For
each reachable state of the concrete system the region of the abstraction that contains that state
is also reachable. However, there may be regions reachable in the abstraction that contain no
states reachable in the concrete system.

That implies on the one hand, that if Rbad is not reachable in the abstraction then the
property holds for the concrete system. But on the other hand, from the reachability of Rbad

in the abstraction we cannot conclude that the property does not hold for the original system.
However, we can de�ne a su�cient condition under that the second implication also holds, i.e.,
a condition that assures that Rbad is reachable in the abstraction if and only if the concrete
system violates the property. This condition is that all regions reachable in the abstraction
have at least one state reachable in the concrete system. The minimization algorithm starts
with an initial partitioning and splits regions of the partitioning iteratively until it satis�es that
su�cient condition. Note that, since the reachability problem for linear hybrid automata I is
not decidable, the re�nement loop does not always terminate. But in case it terminates, the
abstraction is �nite, and we can answer the reachability question.

How can we be sure that a region R reachable in the abstraction contains at least one state
reachable in the concrete system? First we only know that all initial regions contain at least
one initial state by de�nition. Now assume a reachable region R that contains at least one state
σ ∈ R reachable in the concrete system, and assume a successor region R′ of R with R 7→ R′.
From R 7→ R′ we conclude that there is a state in R with a successor state in R′, however, we
do not know if this state is σ. But, if all states in R have a successor state in R′, then also σ has
a successor state σ′ ∈ R′, and from the reachability of σ together with σ → σ′ we can conclude
that there is at least one reachable state in R′.

De�nition 6.9. Let Π be a partitioning of the state space Σ and let R,R′ ∈ Π. The region R is
called stable for R′ i�

R 7→ R′ implies ∀σ ∈ R. {σ} 7→ R′.

We call R stable i� it is stable for all regions in Π. We call Π stable i� all reachable regions of
Π are stable.
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R’R R’R

Figure 6.7: Stability of regions: a stable region (left) and a non-stable one (right)

Figure 6.7 illustrates the stability of regions.
Now we come to the algorithm as speci�ed by Figure 6.8. The set of initial states of the

concrete system is denoted by I, and Rbad is the set of �bad� states. The algorithm stores the
current partitioning in Π. Initially there are two regions in the patitioning: the region Rbad

contains all �bad� states and the region Σ\Rbad the �good� states.
The algorithm uses two sets reach and completed. In the set reach we store those reachable

regions of the current partitioning for which we know that they contain at least one concrete
state that is reachable in the concrete system. In the set completed ⊆ reach we store regions from
which we know that their successor regions are all in reach, i.e., regions that currently cannot be
used to derive further in the concrete system reachable regions. Initially, reach contains those
regions of the initial partitioning that contain at least one concrete intial state. The set completed
is initially empty.

In each re�nement step we determine a reachable region R ∈ reach from that we already know
that it has at least one reachable state, but we do not yet know if all of its successor regions
contain reachable states, i.e., such that R is not in completed. For all those successor regions of
R for which R is stable we can conclude that also they contain at least one reachable state, thus
we put them into the reach set.

If, after that update, all successor regions of R are in reach, i.e., they all have at least one
reachable state, then we put R into the completed set.

Otherwise, if there is still a successor region R′ /∈ reach of R then R is not stable for R′.
We use such an R′, found at last, to split R into two parts, one containing all states with a
successor in R′ and a second part containing the rest. The splitting of a region is formalized by
the following de�nition:

De�nition 6.10. split(Π, R,R′)

split(Π, R,R′) :=

{
{R′′, R \ R′′} if R′′ = pre[< R′ >↙] ∩R ∧R′′ 6= ∅ ∧R′′ 6= R,
{R} otherwise.

Figure 6.9 illustrates the splitting mechanism.
We split R according to the splitting result remembered in S = {S1, S2}, and update the

partitioning. The reach set gets updated in that we remove R and add Si, i = 1, 2, if they contain
concrete initial states. Note that, though we know that there is a concrete state either in S1 or in
S2 that is reachable in the concrete system, we do not know which of both sets contains it. Thus
we can add S1 or S2 to reach only if they contain concrete initial states. Note also that all other
elements R′ 6= R in reach can stay in the set. Previous predecessors of R are now predecessors of
S1 and/or S2. For such predecessors that are in completed we check if still all of their successors
are in reach, and remove them from completed if it is not the case. All other regions in completed
remain in the set.
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minimize(Σ, Rbad) {
Π := {Rbad,Σ \ Rbad}; reach := {R ∈ Π|R ∩ I 6= ∅}; completed := ∅;
while (Rbad /∈ reach ∧ reach 6= completed) {

choose R ∈ (reach \ completed); S := ∅;
for each (R′ ∈ (Π \ reach) with R 7→ R′) {
reach′ := split(Π, R,R′);

if (reach′ = R) then reach := reach ∪ {R′};
else S := reach′;

}
if (S = ∅) then completed := completed ∪ {R};
else {

Π := (Π \ {R}) ∪ S;

reach := (reach \ {R}) ∪ {Si ∈ S | Si ∩ I 6= ∅};
completed := completed \ {R′ ∈ Π | ∃Si ∈ (S\reach). R′ 7→ Si};
}
}
return Rbad ∈ reach;

}

Figure 6.8: The minimization algorithm

We observe that, since �bad� regions do not have outgoing transitions in the abstract LSTS,
they are never split. Thus there is always a single �bad� region in the partitioning.

Before each iteration we check if one of the termination conditions hold: If Rbad ∈ reach then
the system violates the property. Otherwise, if Rbad /∈ reach but reach = completed then Rbad is
not reachable in the abstraction, and the property holds.

Note that if the regions Rbad and I are linear, all regions that are constructed by the procedure
are linear.

Lemma 6.5. The procedure in Figure 6.8 returns TRUE i� I 7→∗ Rbad.

Example 6.3. Assume the linear hybrid automaton I shown in Figure 6.10. We want to prove
that 0 ≤ y always holds.

We have

Rbad = (`1, y < 0) ∪ (`2, 0 ≤ x ∧ y < 0)

R1 = (`1, 0 ≤ y) ∪ (`2, 0 ≤ x ∧ 0 ≤ y)

The algorithm initializes

Π = {Rbad, R1}
reach = {R1}

completed = ∅ .
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Figure 6.9: The splitting of regions

l1
ẋ = 1
ẏ = 2

x = 0 ∧ y = 0

l2
ẋ = −1
ẏ = −1
0 ≤ x

Figure 6.10: Leaking gas burner

Since Rbad /∈ reach and reach 6= completed the main loop is entered. We choose the only
element R1 ∈ reach. Its only successor region is Rbad. We �rst compute the time predecessor of
Rbad:

〈Rbad〉↙ = 〈(`1, y < 0) ∪ (`2, 0 ≤ x ∧ y < 0)〉↙

= 〈(`1, y < 0)〉↙ ∪ 〈(`2, 0 ≤ x ∧ y < 0)〉↙

To compute 〈(`1, y < 0)〉↙ assume a time step resulting in a state from (`1, y < 0). Then the
control is in `1 also before the time step. For the valuation, if x and y denote the values before
the time step, then after the time step the values change to x+ t and y + 2t for some 0 ≤ t, and
we know that y + 2t < 0. We have to eliminate t from the equation set

0 ≤ t ∧ y + 2t < 0,

i.e.,
0 ≤ t ∧ t < −y/2

which yield 〈(`1, y < 0)〉↙ = (`1, y < 0).
To compute 〈(`2, 0 ≤ x ∧ y < 0)〉↙ assume a time step resulting in a state from (`2, 0 ≤

x ∧ y < 0). Then before the time step control is in `2. Let again x and y denote the variable
values before the time step. The time step changes the values to x− t and y − t for some 0 ≤ t.
Due to the invariant 0 ≤ x and 0 ≤ x− t, and since the target state should be from Rbad we have
y − t < 0. Eliminating t from the equation system

0 ≤ x ∧ 0 ≤ x− t ∧ 0 ≤ t ∧ y − t < 0,

i.e.,
0 ≤ x ∧ t ≤ x ∧ 0 ≤ t ∧ y < t,
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we get 0 ≤ x ∧ y < x. Thus 〈(`2, 0 ≤ x ∧ y < 0)〉↙ = (`2, 0 ≤ x ∧ y < x).
Collecting the above information, 〈Rbad〉↙ = (`1, y < 0) ∪ (`2, 0 ≤ x ∧ y < x).
Now we compute the discrete step predecessor of this set.

pre [〈Rbad〉↙] =
pre [(`1, y < 0) ∪ (`2, 0 ≤ x ∧ y < x)] =
(`1, y < 0)︸ ︷︷ ︸

τ`1

∪ (`2, 0 ≤ x ∧ y < x)︸ ︷︷ ︸
τ`2

∪ (`2, 0 ≤ x ∧ y < 0)︸ ︷︷ ︸
edge from `2 to `1

∪ (`1, 0 ≤ x ∧ y < x)︸ ︷︷ ︸
edge from `1 to `2

=

(`1, y < 0 ∨ 0 ≤ y < x) ∪ (`2, (0 ≤ x ∧ y < 0) ∨ (0 ≤ y < x))

The intersection of this predecessor set with R1 yields

pre [〈Rbad〉↙] ∩R1 = [(`1, y < 0 ∨ 0 ≤ y < x) ∪ (`2, (0 ≤ x ∧ y < 0) ∨ (0 ≤ y < x))] ∩
[(`1, 0 ≤ y) ∪ (`2, 0 ≤ x ∧ 0 ≤ y)]

= (`1, 0 ≤ y < x) ∪ (`2, 0 ≤ y < x)

=: R2.

We de�ne

R3 := R1\R2 = (`1, 0 ≤ x ≤ y) ∪ (`2, 0 ≤ x ∧ 0 ≤ y ∧ x ≤ y).

Thus we have split(Π, R1, Rbad) = {R2, R3}. The corresponding updates result in

Π = {Rbad, R2, R3}
reach = {R3}

completed = ∅

In the next iteration the termination conditions are still not met thus we execute the loop
once more. For R3 ∈ reach we have no successor regions, thus the region does not get split and
the update results in

Π = {Rbad, R2, R3}
reach = {R3}

completed = {R3}.

In the next iteration we detect that the termination condition reach = completed holds.
Since Rbad /∈ reach, the algorithm returns that the property holds.

The minimization of linear hybrid automata I is a special case of a more general approach
frequently used for the reachability analysis of general hybrid systems. The general approach
de�nes an initial partitioning of the state space and re�nes it by region splitting until it becomes
�ne enough to prove or violate the requested safety property. The di�erent instances of this
general approach use di�erent methods to determine the regions to be split and the splitting
itself.

76 ��- Draft version, please do not distribute ��-



Chapter 7

Linear Hybrid Automata II

In the previous chapter we have seen an approach for the reachability analysis of hybrid systems
with linear behavior (i.e., where the derivatives are independent of the current state) based on
�xed point computations. There we represented the states sets logically by formulas.

In this chapter we discuss state set representation and reachability analysis techniques for
a more general class of hybrid automata, where the dynamics (�ows) of the systems are given
by linear di�erential equations. Due to the vast variety of hybrid systems reachability analysis
algorithms and tools, we focus on �owpipe-construction-based techniques.

7.1 Flowpipe-construction-based Reachability Analysis

At the heart of hybrid systems safety veri�cation is the computation of the set of reachable
states. Basic safety properties specify a set of bad states, whose reachability is safety-critical.
Whenever the intersection of the reachable state set with the bad state set is empty the system
can be considered as safe.

As the reachability problem for hybrid systems is in general undecidable, most approaches aim
at computing an over-approximation of the set of states reachable via bounded �ow durations
and a bounded number of jumps. The bound on the �ow duration is usually called the time
horizon, the bound on the number of jumps the jump depth. Due to the over-approximation,
results of such analysis methods allow to declare a system safe (within the speci�ed execution
bounds) whenever the intersection of the bad state set with the obtained reachable state set is
empty, but provide no conclusion when this intersection is not empty.

Current reachability analysis tools for hybrid systems use di�erent approaches to solve this prob-
lem. Some approaches are based on theorem proving and combine deductive, real algebraic, and
computer-algebraic prover technologies. Such techniques can prove also unbounded safety, but in
most cases need user interaction. Other SMT-solving-based approaches use logical characterisa-
tions of the reachability problem and employ bounded model checking and SAT-module-theories
(SMT) solving technologies to check safety.

Here we focus on �owpipe-construction-based approaches for reachability analysis. These
approaches iteratively compute successors of a given initial state set; to over-approximate time-
evolution trajectories (�owpipes) for a given time horizon, they pave the �owpipe with state sets
(see Figure 7.1).
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Figure 7.1: Flowpipe-construction-based reachability analysis.

7.1.1 General Reachability Analysis Algorithm

Next we describe the general algorithm for �owpipe-construction-based reachability analysis.
The algorithms gets as input a hybrid system model (here we assume a hybrid automaton)
and iteratively computes successors of the hybrid system's initial state set(s). The successor
computation considers �ows and jumps in an alternating manner. Optionally, a set of bad states
could be considered as input; in this case the algorithm would terminate whenever any discovered
reachable state is included in the set of bad states.

The general algorithm is presented in Algorithm 1. It maintains two sets which we assume
to be globally accessible: R, a set of state sets currently known to be reachable (up to over-
approximation), and Rnew, a set of state sets which need to be processed. After initialising
Rnew with the initial state sets of the hybrid system, the algorithm picks an unprocessed state
set stateset from Rnew (Line 4) and computes a set of state sets whose union covers all states
reachable from stateset via a single �ow and a single jump (Line 6).

Additionally, the algorithms might put e�ort into �nding �xed-points during analysis, e.g.,
to detect when successor state sets are fully included in previously discovered state sets (whose
successors were or will already be handled by the algorithm). Such �xed-point analysis might be
expensive due to frequent intersection computations, but it might pay o� when leading to earlier
termination of the search.

In case we are interested not only in computing the reachable state set but also in checking
the reachability of a set of bad states, the intersection of each reachable state set with the bad
state set needs to be checked for emptiness.

The �owpipe is computed by the computeF lowPipe method. This method returns a set R′ of
state sets which cover the whole �owpipe (for time-bounded search up to a given time horizon),
according to the speci�ed dynamics and the invariant in the respective location. For time-
unbounded analysis, if further time evolution beyond some currently considered time horizon
should be considered later, the state set covering the last �owpipe segment is added to Rnew.
Furthermore, �xed-point checks might lead to the removal of some of the state sets, and clustering
and aggregation (see pages 87 and Section 7.1.5 on page 87) can be applied to replace a subset
of R′ by a single over-approximating state set.

After the computation of a �owpipe, all possible jump successors from all state sets in R′

are computed by the method computeJumpSuccessors (Line 7). This computation involves the
intersection of those sets with the guards of jumps starting in the respective location, and in
case of a non-empty intersection, the application of the reset function to compute the successor
sets (see also Figure 7.1). The resulting successor are collected, and after optional �xed-point
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detection, clustering and aggregation, they are added to R and Rnew.
This procedure terminates if Rnew, the set of state sets which have to be processed, is empty,

i.e. a �xed-point is reached. In this case, the union of all sets in R is an over-approximation
of the set of reachable states for the given model. For bounded search, local time horizons can
bound the length of the computed �owpipes, a prede�ned jump depth can bound the number of
jumps along considered paths, or an iteration bound can bound the number of loop iterations.
Such bounds guarantee the termination of the algorithm.

Input: Hybrid system model H.
Output: Set of reachable states RH .

1 R := InitH ;
2 Rnew := R;
3 while Rnew 6= ∅ ∧ ¬termination_cond do
4 let stateset ∈ Rnew;
5 Rnew := Rnew\{stateset} ; /* modifies R and Rnew */

6 R′ := computeF lowPipe(stateset) ; /* modifies R and Rnew */

7 computeJumpSuccessors(R′);

8 end
9 return R
Algorithm 1: Abstract �owpipe-construction-based reachability analysis algorithm for hybrid
systems.

7.1.2 Flowpipe Construction

One of the main ingredients of the previously presented algorithm is the computation of �owpipes:
given an initial set, we need to compute an over-approximation of the time successors of this
initial set within a prede�ned time horizon.

Flowpipe-construction-based methods discretise the time horizon into equal segments (time
steps) of length δ, and iteratively compute the reachable set of states for each δ. Most algorithms
over-approximate the �rst segment (for the time interval [0, δ]) by a chosen state set represen-
tation and compute all other segments by a recurrence relation, which depends on the constant
time-step size δ, the initial set in which the evolution starts, and the dynamics in the given
location.

In the following we describe how to construct the �owpipe. For this computation we have to
take the shape of the dynamics of the location into account and we di�erentiate between linear
and non-linear models.

Flowpipe Construction for Linear Hybrid Automata I

The �ow inside a location of an autonomous linear hybrid system is described by a system of
linear ODEs

ẋ(t) = A · x(t) .(7.1)

A non-autonomous system is an extension of the dynamics by a time-dependent function u(t),
which is used to represent external inputs in�uencing the system evolution and results in a
dynamics of the form

ẋ = A · x+B · u(t) .
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(a) Computation of the �rst
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Figure 7.2: Two approaches towards the computation of the �rst �owpipe segment.

A solution to 7.1 has the form x(t) = etAx0 specifying the state reachable from the initial state
x0 with the �ow matrix A at time point t. As previously mentioned, the set of reachable states is
obtained by time discretisation. For autonomous systems, computing the set of states reachable
from a state set Ωi at time δ can be obtained by the recurrence relation

Ωi+1 = eδAΩi .(7.2)

This allows to iteratively compute the set of reachable states at certain time points i · δ, i ≥ 0
by applying a linear transformation on the previously computed segments. For non-autonomous
systems an additional bloating is needed (via Minkowski sum, see below) in each iteration.

The behaviour in between these discrete time points, i.e., at time points t with i · δ < t <
(i+ 1) · δ, is not yet covered by this relation. To be able to make statements about the reachable
states for a time interval [i·δ, (i+1)·δ], an over-approximation has to be computed (see Figure
7.2). Note that we only have to compute the �rst set Ω0 over-approximating the set of states
reachable from the initial state set X0 within the time interval [0, δ], and using Equation 7.2 we
can obtain the subsequent sets by applying linear transformations to Ω0. There are two main
approaches to compute the �rst segment, which both utilize bloating to completely cover the
�owpipes.

Uniform bloating [Gir05] covers the dynamics of the autonomous part by adding a bloating
factor α to the convex hull of the union of the initial set X0 and the set eδAX0 reachable from X0

at time δ. For non-autonomous systems, an additional factor β can be computed, which covers
the in�uences of the external input. Using this method, the �rst time interval can be computed
as

Ω0 = conv(X0 ∪ eδAX0)⊕ B(α+β) ,

where B(α+β) is a ball of radius (α+ β), which is added to the convex hull of the union of both
sets. The radius α is dependent on the shape of the �ow, the time step size and the initial
set; details on its computation can be found in [Gir05]. The Minkowski sum of a ball and the
convex hull of the union results in a uniform bloating in all directions (see Figure 7.2(a)). In
case the modelled system is non-autonomous, the bloating is increased to re�ect the in�uence of
the external input [LG09].

Improved bloating (see Figure 7.2(b)) was �rst presented in [Gir04]. In contrast to uniform
bloating, which computes the convex hull of the union and bloats afterwards, this approach
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Figure 7.3: Flowpipe computation as an over-approximation of the reachable set.

bloats the reachable set at time δ and computes the convex hull of the union of the initial set
and the bloated set at time δ. Thus, the �rst time interval can be computed as

Ω0 = conv(X0 ∪ (eδAX0 ⊕ B(α′+β′))) ,(7.3)

where B(α′+β′) is a ball of radius (α′ + β′). As for uniform bloating, the parameter α′ is used
to cover the autonomous dynamics inside the location and is dependent on the time step size,
the �ow and the initial set X0. The additional factor β′ is used to encapsulate e�ects of the
external input. As a result, �owpipes created with this method usually are more smooth and
might produce a smaller over-approximation than uniform bloating.

After computing an over-approximation of the �rst �owpipe segment covering reachability
within the time interval [0, δ], all further segments up to the time horizon T can be obtained by
iterative linear transformation applied on the previously computed segment; in case the system
is non-autonomous, an additional bloating is needed to cover the in�uence of the external input
(see Figure 7.3). Basically, this results in an alternating application of linear transformation and
Minkowski sum, which in general increases the complexity of the set representation (see Section
7.1.4). In [LG09] another approach has been proposed, which allows to separate these operations
to reduce the increase in the representation size.

Flowpipe Construction for Non-linear Hybrid Automata

The �owpipe construction for non-linear hybrid systems is more involved, but its basic ideas are
similar to those of the linear case. Also here, the �owpipe is over-approximated segment-wise,
however, the over-approximation of the �owpipe segments works di�erently. These computations
do not involve linear transformation and bloating, but employ for example Taylor models, which
will be described on page 84.

Jump Successor Computation

After the �owpipe segments are over-approximated by a sequence of state sets, we need to
check for each of these sets whether they intersect with the guards of outgoing transitions. For
each intersecting set, we need to apply a transformation to re�ect the e�ect of the jump's reset
function. The involved computations depend on the state set representations used, and on the
form of the guard condition and the reset function. E.g., a projection operation can be applied
to compute the e�ect of setting a variable to a constant value.

After the intersection and the transformation, the resulting sets are to be processed in the
target location for �owpipe construction in future iterations.
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Figure 7.4: Box representation.

7.1.3 State Set Representations

To implement the reachability analysis Algorithm 1, we need datatypes for the representation
of state sets, and certain (over-approximative) operations (union, intersection, linear transfor-
mation, Minkowski sum etc.) on them. Most �owpipe-construction-based reachability analysis
approaches rely on geometric representations (e.g., boxes/hyperrectangles, oriented rectangular
hulls, convex polyhedra, template polyhedra, orthogonal polyhedra, zonotopes, ellipsoids) or
other symbolic representations (e.g., support functions or Taylor models) for state sets.

The variety of representations is rooted in the general problem of deciding between compu-
tational e�ort and precision (see Section ??). Generally, faster computations often come at the
cost of precision loss and vice versa, more precise computations need higher computational e�ort.
The representations might di�er in their size, i.e., the required memory consumption, which has a
further in�uence on the computational costs for operations on these representations. While some
representations are able to perform certain operations very e�ciently, other operations on the
same representation, which are also needed for the analysis, can be computationally expensive.

In the following we describe some of the most popular state set representations. Let I be
the set of all intervals [a, b], [a,∞), (−∞, b], (−∞,+∞) ⊆ R with a, b ∈ R; for simplicity, we call
cross-products of intervals from I also intervals. An interval is bounded if both of its bounds are
�nite.

Boxes A box is de�ned by the cross product of intervals, one for each dimension of the state
space (see Figure 7.4(a)).

De�nition 7.1 (Box). A set B ⊆ Rd is a box if there exist intervals I1, . . . , Id ∈ I such that

B = I0 × . . .× Id .

A box can be represented by the sequence (I1, . . . , Id) of the intervals de�ning it. Alternatively,
we can represent a box by its minimal and its maximal point (see Figure 7.4(b)). Boxes are
well-suited for fast computations in �owpipe construction, however, they often lead to large
over-approximations. Boxes are widely used also in other �elds such as in interval constraint
propagation (ICP), which itself is used for SMT-solving-based reachability analysis of hybrid
systems [FHR+07]. Implementations of boxes are also contained in most polytope libraries.

Convex polytopes A convex polyhedron can be de�ned by the intersection of �nitely many
halfspaces.
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Figure 7.5: Convex polytope representation.

De�nition 7.2 (Convex polyhedron). A set P ⊆ Rd is a convex polyhedron if there are
n ∈ N and ci ∈ Rn, di ∈ R, i = 1, . . . , n such that

P =

n⋂
i=1

hi where hi = {x ∈ Rd | cix ≤ di} .

In the following we restrict ourselves to closed convex polyhedra called convex polytopes, which
have two widely used representations. An H-representation (C, d) consists of a n × d matrix
C with ci being its ith row and an n-dimensional vector d with di being its ith components,
and speci�es the polytope P =

⋂n
i=1{x | cix ≤ di} (see Figure 7.5(a)). Alternatively, a V-

representation consists of a �nite set V of d-dimensional points and speci�es a polytope as the
convex hull P = conv(V ) of those points (see Figure 7.5(b)).

Polytopes are a more complex representation as for instance boxes but allow for a more pre-
cise description of a set. The two presented representations are complementary in the complexity
of the required operations for reachability analysis. Computing the convex hull of union requires
little computational e�ort in the V-representation but is hard in the V-representation, whereas
intersection can easily be performed with the H-representation of a polytope but it is hard in
the V-representation. Unfortunately, conversion between the two representation requires either
facet enumeration of a set of vertices or vertex enumeration of a set of hyperplanes, which are
both computationally di�cult. There are libraries already providing implementations of convex
polytopes such as [BHZ08] [GJ00], but as they are intended to provide general purpose imple-
mentations, functionality required for hybrid systems reachability analysis is not fully optimized
(e.g. PPL does currently not provide Minkowski sum implementations).

Zonotopes Zonotopes, sometimes also referred to as parallelotopes, are point-symmetric sets
that can be de�ned as the Minkowski sum of a �nite set of line segments shifted to a given centre
point (see Figure 7.6).

De�nition 7.3 (Zonotope). A set Z ⊆ R is a zonotope if there is a center c ∈ Rn and a �nite
set G = {g1, . . . , gn} of generators gi ∈ Rd such that

Z =

{
x

∣∣∣∣ x = c+

n∑
i

λi · gi, −1 ≤ λi ≤ 1

}
.

Zonotopes can be represented by their de�ning vectors (c, g1, . . . , gn), i.e., by their centre and
the generators. Zonotopes allow for a fast computation of the operations union and Minkowski
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Figure 7.6: Zonotope representation of a set centred at c using two generators g0 and g1.
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Figure 7.7: A set represented by a support function evaluated in 5 directions.

sum. However, intersections with halfspaces or other zonotopes are hard to compute. Zonotopes
are often used due to their reduced storage requirement in comparison to for example convex
polytopes. Zonotope implementations are contained in the C++ library polymake as well as in
the Matlab tool collection Cora.

Support functions Support functions are, in contrast to the above presented representations,
a symbolic representation, which allows queries for speci�c directions and will return a support
value (see Figure 7.7).

De�nition 7.4 (Support function). A support function is a function σ : Rd → R de�ning a
set

S =
{
x ∈ Rd

∣∣ r · x ≤ σ(r) for all r ∈ Rd
}
,

where σ(r) ∈ R is called the support value for the given direction r ∈ Rd.

The de�nition of support functions allows for an implementation, which reduces computation
time during reachability analysis signi�cantly. This is due to the fact that while other represen-
tations always maintain the whole object, support functions only need to store the operation and
its parameters. Whenever the support value of a given direction is queried, the stored operations
are applied reversed on the direction vector instead of applying them to the whole object. This
implies that only directions are computed which are of interest instead of the whole object. The
disadvantage of this representation is, that unless in�nitely many directions are queried, the exact
shape of the set is hidden. Support functions are used for example in the tool SpaceEx, which
successfully makes use of algorithms optimized for support functions (LGG [LGG10, FGD+11],
STC [FKL13, Fre15]).

Taylor models are a state set representation, which can be used for the reachability analysis
of non-linear hybrid systems. The basic idea is to over-approximate the given dynamics by a
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Figure 7.8: Taylor model approximations of di�erent degrees.

polynomial of �xed degree k bloated by a suitable interval I, such that for a �xed initial set and a
�xed time interval, all solutions of the ODE are contained in the area spanned by the Minkowski
sum of the polynomial and the interval (see Figure 7.8).

Formally, assume a bounded domain D ∈ Id. A given polynomial p is a k-order Taylor
approximation of a function f : D → R i�

(a) all partial derivatives of f up to order k exist and are continuous, denoted by f ∈ Ck, and

(b) f(c) = p(c) for the centre point c of D and for each 0 < m ≤ k, all of the order m partial
derivatives of f and p coincide at c.

For any f, g : D → R, f, g ∈ Ck and k ≥ 0, we write f ≡k g i� there is a polynomial p which is a
k-order approximation of both f and g. Taylor models are based on the equivalence relation ≡k.

De�nition 7.5 (Taylor Model). A Taylor model of order k > 0 over a bounded domain D ∈ Id
is a pair (p, I) of a polynomial p of degree at most k over d variables x and a remainder interval
I ∈ I. We say that (p, I) is a k-order over-approximation of a function f : D → R, written
f ∈ (p, I), i� (i) p ≡k f and (ii) ∀x ∈ D. f(x) ∈ p(x) + I := {p(x) + y | y ∈ I}.

7.1.4 Operations on State Set Representations

Flowpipe-construction-based reachability analysis algorithms need to apply certain operations on
sets, whose complexity depends on the state set representation used. These operations include
the (convex hull of) union, intersection, Minkowski sum, linear transformation as well as tests
for emptiness and membership. Assume a domain D, and subsets A,B, S ⊆ D.

• conv(·
⋃
·) (union): As convex sets are not closed under the operation union, for convex

state set representations the convex hull of the union is computed; nevertheless, we often
refer to this operation just as union:

A
⋃
B = conv

{
x
∣∣ x ∈ A or x ∈ B

}
.
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·
⋃
· ·

⋂
· · ⊕ · A(·)

Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

Table 7.1: State set operations and their complexity

The convex hull of the union of two sets is required for the computation of the �rst segment
of a �owpipe and in case aggregation of segments is used.
• ·
⋂
· (intersection): The intersection of two sets is de�ned as

A
⋂
B =

{
x
∣∣ x ∈ A and x ∈ B

}
.

Intersection of two sets is required whenever a �owpipe segment is checked against the
invariant of the current location, for checking whether a guard condition holds, for checking
the reachability of bad states, and for �xed-point detection. Note that all mentioned checks
also imply a test for emptiness of the result of the intersection.
• · ⊕ · (Minkowski sum): The Minkowski sum is the set-theoretic equivalent of addition:

A⊕B =
{
x
∣∣ x = a+ b, a ∈ A, b ∈ B

}
.

In case of an autonomous system, Minkowski sum is only required for the computation
of the �rst �owpipe segments (bloating). In case of a non-autonomous system, additional
bloating for each segment is added via the application of the Minkowski sum.
• A(·) (linear transformation): The linear transformation of a given set S is de�ned as

A(S) =
{
x
∣∣ x = A · y + b, y ∈ S

}
,

with A a d × d-dimensional transformation matrix and b ∈ Rn speci�es a translation.
The application of a linear transformation does not increase the representation size. In
�owpipe construction, the recurrence relation (see Section 7.1.1) allows to compute the
next �owpipe segment from the current one by applying linear transformation, which makes
linear transformation in general a frequently used operation.
• Test for emptiness is a predicate checking whether a set is empty, i.e., whether S = ∅ holds.
• Test for membership is a further predicate which checks whether a given value is contained
in the set, i.e., whether x ∈ S for some input value x ∈ D.

These (and possibly further) operations must be de�ned and implemented for all state set
representations used in the reachability analysis algorithm. We do not describe the single imple-
mentations here, but emphasize that the complexity of these operations might strongly di�er for
di�erent representations.

To �nd the right balance between e�ciency and precision, the choice of the state set represen-
tation as well as di�erent kinds of optimisations play a crucial role in �owpipe-construction-based
methods. Unfortunately, there is no optimal representation for which all necessary operations
can be easily computed (see Table 7.1). While support functions seem to be optimal in most
operations, they usually require more storage. We also can observe that representations based on
points, such as V-polytopes or boxes, perform good on operations such as union, linear transfor-
mation or Minkowski sum. Representations that are based on constraints, such as H-polytopes,
naturally perform good on intersection computations.
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Besides the complexity of the single operations, one has to keep in mind that not all opera-
tions are used in the same frequency. Based on the hybrid system model we want to analyse and
on the approach we utilise for reachability analysis, the usage of operations varies. For example
for linear autonomous systems, the operations Minkowski sum and union are performed only
once per �owpipe, whereas a similar but non-autonomous system requires a more frequent ap-
plication of the Minkowski sum. When enhancing standard algorithms for reduction techniques,
the operation union is used more frequent, otherwise it is used again only once for each �owpipe
computation (main loop iteration). The operation intersection is generally used on every com-
puted �owpipe segment, but when the �owpipes are holding only a small number of segments
and there are more locations, its signi�cance for computation time might be reduced. There are
also some results on reducing the frequency of applications for problematic operations, see e.g.
[AK12] for avoiding intersection computations.

As the complexity of some operations is representation-dependent, to improve e�ciency,
most algorithms change the representation for certain computations using over-approximative
transformations. Another e�ciency-relevant issue is the reduction of the number of state sets
for which successors need to be computed by clustering and aggregation: several state sets in a
�owpipe or several successors for a jump can be over-approximated by a single set (see Section
7.1.5 below). Last but not least, the representation size is often reduced on the cost of an
additional over-approximation error.

For practical applicability it is furthermore important to be able to increase the precision,
i.e., to reduce the approximation error on the cost of increased computational e�ort. One natural
method is to reduce the time-step size for the �owpipe construction. Because of its crucial impact
on the tightness of the �owpipe, di�erent approaches have been suggested in the literature to
tighten the initial sets for �owpipe construction [FR09, Gir05, LG09].

7.1.5 Clustering and Aggregation

To reduce complexity, some tools apply techniques to over-approximate several sets that should
be processed by a single set. This reduces the future computational e�ort, however, it naturally
leads to less precision.

The sets that will be over-approximated stem from segments of the same �owpipe. E.g., we
could consider several consecutive �owpipe segments, or the sets resulting from them after their
intersection with the guard of a jump.

One method is clustering of sets. In this case, the considered sets are clustered into several
groups and each group is over-approximated by a single set. The over-approximation can be of
di�erent representation types. For example, we can apply the convex hull operation, the result
being in general a convex polyhedron. Alternatively we can apply union operation to achieve a
result in the same representation. The targeted number and size of the clusters can be used to
drive the balancing between e�ciency and precision.

Aggregation is a special type of clustering building a single �cluster�, i.e., it over-approximates
all of the considered sets by a single set. Similar to clustering, the resulting over-approximation
can be obtained in di�erent representations.

Clustering and aggregation are sometimes used in combination: this is useful if we use two
di�erent state set representations having di�erent computational complexities for the union com-
putations. We can apply the computationally less expensive (but usually also less precise) repre-
sentation for a clustering into several smaller groups, and use the other representation to compute
a more precise over-approximation of the resulting, smaller number of sets.

In the following we have a closer look at representation by convex polyhedra.
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7.2 Convex Polyhedra

Next we discuss state set representation by convex polyhedra in more detail. Some polyhedra are
depicted in Figure 7.9

Figure 7.9: Polyhedra

De�nition 7.6. A (convex) polyhedron in Rd is the solution set to a �nite number of inequalities
with real coe�cients in d real variables. A bounded polyhedron is called polytope.

In the following we restrict ourselves to convex polytopes. An extension to convex polyhedra
is possible, but a bit more involved.

We introduce two representation forms for convex polytopes. De�ning a polytope by its facets
yields an H-representation, whereas the V-representation stores the vertices1.

De�nition 7.7 (Closed halfspace). A d-dimensional closed halfspace is a set H = {x ∈ Rd |
c · x ≤ z} for some c ∈ Rd, called the normal of the halfspace, and a z ∈ R.

De�nition 7.8 (H-polyhedron, H-polytope). A d-dimensional H-polyhedron P =
⋂n
i=1Hi

is the intersection of �nitely many closed halfspaces. A bounded H-polyhedron is called an H-
polytope.

The facets of a d-dimensional H-polytope are d− 1-dimensional H-polytopes.
An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{x ∈ Rd | ci · x ≤ zi}

can also be written in the form

P = {x ∈ Rd | Cx ≤ z}.

We call (C, z) the H-representation of the polytope. Each row ci of C is the normal vector to
the ith facet of the polytope. Note that each H-polytope P has a �nite number of vertices which
we denote by V (P ).

De�nition 7.9. A set S is called convex, if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. λx+ (1− λ)y ∈ S.

H-polyhedra are convex sets.

1H stays for halfspace and V for vertex.
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De�nition 7.10 (Convex hull). Given a set V ⊆ Rd, the convex hull CH (V ) CH (V )of V is the
smallest convex set that contains V .

For a �nite set V = {v1, . . . , vn} the convex hull can be computed by

CH (V ) = {x ∈ Rd | ∃λ1, . . . , λn ∈ [0, 1] ⊆ Rd.
n∑
i=1

λi = 1 ∧
n∑
i=1

λivi = x}.

De�nition 7.11 (V-polytope). A V-polytope P = CH (V ) is the convex hull of a �nite set
V ⊂ Rd. We call V the V-representation of the polytope.

Note that all V-polytopes are bounded. Note furthermore that both representations are in
general not canonical as they may be non-redundant: The H-representation may contain redun-
dant subsumed inequations, and the V-representation may contain redundant inner points that
are not vertices. This implies that there may be di�erent representations of a single polyhe-
dron. Such super�uous data do not pose theoretical problems, but of course increase the e�ort of
computations. Redundant information can be removed by solving (a set of) linear programms.

For each H-polytope, the convex hull of its vertices de�nes the same set in the form of a
V-polytope, and vice versa, each set de�ned as a V-polytope can be also given as an H-polytope
by computing the halfspaces de�ned by its facets. This is stated by Motzkin's theorem. However,
the translations between the H- and the V-representations of polytopes can be exponential in
the state space dimension d.

Given a convex polytope, the sizes of the H- and V-representations can strongly di�er. For
example, on the one hand the d-dimensional cube

{x = (x1, . . . , xd) ∈ Rd | ∀1 ≤ i ≤ d. − 1 ≤ xi ≤ 1}

has 2d facets and 2d vertices. On the other hand, the d-dimensional crosspolytope

{x = (x1, . . . , xd) ∈ Rd |
d∑
i=1

|xi| ≤ 1}

has 2d vertices and 2d facets.

If we represent reachable sets of hybrid automata by polytopes, we again need certain oper-
ations on convex polytopes. In the following we discuss

• the membership problem,
• the intersection, and the
• the union of two polytopes.

As we will see, the computations have di�erent complexities in the di�erent representations.
Many operations are easily solvable in one of the representation and hard in the other one
and vice versa. One could think of converting polytopes for each needed operation into the
representation for which the operation is cheap (indeed this is sometimes done). However, note
that the conversion can have exponential costs.

• The membership problem can be solved in linear time in d in the H-representation. Given
an H-polytope de�ned by Cx ≤ z and a point p ∈ Rd, to check if p is contained in the
polytope just substitute p for x in Cx ≤ z to check if the inequation holds.
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For the V-representation we have to solve a linear programming problem. Given a V-
polytope de�ned by the vertex set V , we have to check satis�ability of

∃λ1, . . . , λn ∈ [0, 1] ⊆ Rd.
n∑
i=1

λi = 1 ∧
n∑
i=1

λivi = x .

Alternatively we can also convert the V-polytope into an H-polytope by computing its
facets and check membership for the H-representation.
• The intersection for two polytopes P1 and P2 in the H-representation is again cheap: Given
an H-polytope de�ned by C1x ≤ z1 and C2x ≤ z2, their intersection is represented by the

H-polytope with
(
C1

C2

)
x ≤

(
z1

z2

)
. Note that the resulting representation is in general

not minimal.
Again, the intersection computation for the V-representation is more complex (NP-hard);
we do not discuss it here. Assume two V-polytopes P1 and P2 having the vertex sets V1

respectively V2. We can convert the polytopes to H-polytopes, compute their intersection,
and convert the result back to a V-polytope.
• For the union, note that the union of two convex polytopes is in general not a convex
polytope. The standard way to make the union computation closed under convex polytopes
is to take the convex hull of the union.
This time the computation for the V-representation is more e�cient. Assume two V-
polytopes de�ned by the vertex sets V1 and V2. The V-representation of their union is
given by V1 ∪ V2. Note again that the representation is not redundant (however, it can be
made minimal with additional e�ort).
To compute the union of two H-polytopes de�ned by C1x ≤ z1 and C2x ≤ z2 is more com-
plex (NP-hard), and we do not handle it here. Alternatively we can convert the polytopes
to V-polytopes, compute the union, and compute back the result.

90 ��- Draft version, please do not distribute ��-



Subject index

τ -transition, 13, 15, 41

abstraction, 23
timed automaton, 48�52

activity, 32, 41
∼of a rectangular automaton, 57

always operator, see globally operator
atomic proposition, 17, 42
atomic propositions, 10
automaton

hybrid, see hybrid automaton
linear hybrid I, see linear hybrid au-

tomaton I
rectangular, see rectangular automaton
singular, see singular automaton
stopwatch, see stopwatch automaton

bisimulation, 48
bouncing ball, 30, 36
bounded until operator, 46

clock, 39, 41
clock constraint, 39

atomic ∼, 39
semantics, 39
syntax, 39

clock reset, 39
semantics, 40
syntax, 40

computation tree, 18
computation tree logic, see CTL
continuous system, 29
continuous transition, 32, 41

linear hybrid automaton I, 65
rectangular automaton, 59

controlled variable, 13, 15, 34, 41
convex, 40, 42, 59
CTL, 20�22

semantics, 21

syntax, 21
CTL∗, 22

semantics, 22
syntax, 22

determinism, 10
deterministic jump, 60
di�erential equation, 33
discrete system, 29
discrete transition, 9, 13, 32, 41, 43

linear hybrid automaton I, 64
rectangular automaton, 59

discrete-time system, 26�27

eventually operator, see �nally operator
example

railroad crossing, 43
examples

bouncing ball, 30, 36
pedestrian light, 10, 11
railroad crossing, 11, 43
thermostat, 29, 35
water-level monitor, 30, 36
while program, 14

execution, see path

�nally operator, 19, 21, 22, 26
�nite-state system, 23, 29
forward time closure, 66

globally operator, 19, 21, 22, 26
graphical representation

hybrid automaton, 33
labeled state transition system, 10
labeled transition system, 14
timed automaton, 42

HA, see hybrid automaton
hybrid automaton, 32�38

activity, 32
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controlled variable, 34
invariant, 32
parallel composition, 37
path, 33
reachable state, 33
semantics, 32
syntax, 32

hybrid behaviour, 32
hybrid system, 29

induced transition system, 14, 33, 42
in�nite-state system, 23, 24, 48
initialized, 58
interleaving, 15
interval, 46
invariant, 32, 41, 42

∼of a rectangular automaton, 57

labeled state transition system, 9�12
parallel composition, 10
path, 9
reachable state, 10
semantics, 9
syntax, 9

labeled transition system, 12�17
controlled variable, 13, 15
parallel composition, 15
path, 13
reachable state, 13
semantics, 13
state, 13
syntax, 13

labeling function, 10, 17, 23, 42
linear formula, 63
linear hybrid automaton I, 63�65

approximation, 69�71
backward analysis, 67�69
forward analysis, 65�67
minimization, 71�76
semantics, 64
syntax, 63

linear temporal logic, see LTL
linear term, 63
liveness property, 20
location, 13
logic

CTL, see CTL
CTL∗, see CTL∗

LTL, see LTL

propositional, 17
relation of LTL, CTL, and CTL∗, 22
TCTL, see TCTL
temporal, 17�23
timed temporal ∼, see TCTL

LSTS, see labeled state transition system
LTL, 18�20

semantics, 19
syntax, 18

LTS, see labeled transition system

model checking, 23�25
linear hybrid automaton I, 65�76
TCTL, 47, 55�56
timed automaton, 39

next operator, 22, 26, 46
next time operator, 18, 21
non-determinism, 30, 36, 57, 64
non-Zeno, 45

su�cient condition, 45

operator
bounded until, 46
�nally, 19, 21, 22, 26
globally, 19, 21, 22, 26
next, 22, 26, 46
next time, 18, 21
until, 18, 21, 22, 26, 46

parallel composition
hybrid automaton, 37
labeled state transition system, 10
labeled transition system, 15
timed automaton, 41, 42

path
hybrid automaton, 33
labeled state transition system, 9
labeled transition system, 13
rectangular automaton, 59
time-convergent, 44, 45
time-divergent, 44, 45
timed automaton, 42
Zeno, 44, 45

pedestrian light, 10, 11
postcondition, 66
property

liveness, 20
safety, 20

propositional logic
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semantics, 17
syntax, 17

quanti�er, 20, 22, 46

railroad crossing, 11, 43
reachable state

timed automaton, 42
real-time system, 45
rectangular automaton, 57�60

activity, 57
decidability, 60�62
initialized, 58
invariant, 57
path, 59
reachable state, 59
semantics, 59
syntax, 58

rectangular set, 57
region, 66

reachable, 66
timed automaton, 48

region transition system, 48, 52�55
RTS, see region transition system
run, see path

safety property, 20
semantics

clock constraint, 39
clock reset, 40
CTL, 21
CTL∗, 22
hybrid automaton, 32
labeled state transition system, 9
labeled transition system, 13
linear hybrid automaton I, 64
LTL, 19
propositional logic, 17
rectangular automaton, 59
TCTL, 46
timed automaton, 41

shared variable, 41
singular automaton, 61
state

abstract, 48
initial, 41
labeled state transition system, 9
labeled transition system, 13
reachable
hybrid automaton, 33

labeled state transition system, 10
labeled transition system, 13
rectangular automaton, 59
timed automaton, 42

stopwatch, 60
stopwatch automaton, 60
stutter transition, see τ -transition
synchronization, 15, 41
syntax

clock constraint, 39
clock reset, 40
CTL, 21
CTL∗, 22
hybrid automaton, 32
labeled state transition system, 9
labeled transition system, 13
linear hybrid automaton I, 63
LTL, 18
propositional logic, 17
rectangular automaton, 58
TCTL, 46
timed automaton, 41

system
continuous, 29
discrete, 29
discrete-time, 26�27
�nite state, 23, 29
hybrid, 29
in�nite state, 23, 48
real-time, 45
time-critical, 45

TCTL, 45�47
model checking, 47, 55�56
semantics, 44, 46
syntax, 46

thermostat, 29, 35
tick, 26
time
∼lock, 44, 45
bound, 26
continuous, 39, 44
convergence, 44, 45
discrete, 26
divergence, 44, 45

time delay, 40
time deterministic, 63, 65
time step, see continuous transition
time-critical system, 45
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time-invariant, 32, 34
timed automaton, 39�45

graphical representation, 42
model checking, 47, 55�56
parallel composition, 41, 42
path, 42
reachable state, 42
semantics, 41
syntax, 41

timed computation tree logic, see TCTL
timed temporal logic, see TCTL
transition, 42

continuous, see continuous transition
discrete, see discrete transition

transition relation, 13, 41
∼of a rectangular automaton, 57
linear hybrid automaton I, 64

transition system
induced, 14, 33, 42
labeled ∼, see labeled transition system
labeled state ∼, see labeled state tran-

sition system
region ∼, see region transition system

until operator, 18, 21, 22, 26, 46
bounded ∼, 46

valuation, 13, 39, 40
variable, 13

clock, 41
controlled, 13, 15, 34, 41
�nite-slope, 61
shared, 41

water-level monitor, 30, 36
while program, 14

Zeno, 44, 45
zone, 57, 59

multirectangular, 57
rectangular, 57
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