
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHEOR OF SCIENCE THESIS

AN FMPLEX-INSPIRED SIMPLEX HEURISTICS

Kai Hilgers

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Marco Lübbecke

Additional Advisor:
Jasper Nalbach

Aachen, 01.03.2022





Abstract

The purpose of a Simplex heuristic is to reduce the need for costly pivot
steps. However, most heuristics only consider local criteria - they ignore the
previous steps. This paper investigates a pivoting rule, that limits which vari-
ables can be selected based on their bounds, effectively reducing the dimensions
of a problem when only a few bounds in one direction exist. Our approach is
based on the FMplex algorithm [Kob] but implemented as an adapted Simplex
heuristic. We have built a prototype and experimentally evaluated our perfor-
mance using the QF_LRA benchmarks from the SMT-LIB library [SMT]. Our
results are comparable to Bland’s Rule [Bla] both in number of problems solved
and performance. Given the prototypical implementation, this suggests, that it
is worth while to keep track of previous steps, as well as eliminating opposite
bounds, when applicable, to speed up the Simplex algorithm.



iv



v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennze-
ichnet.

Kai Hilgers
Aachen, den 28. März 2022



vi



Contents

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Own contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Boolean satisfiability problem SAT . . . . . . . . . . . . . . . . . . . . 11
2.2 Satisfiability modulo theories SMT . . . . . . . . . . . . . . . . . . . . 11
2.3 Linear real arithmetic LRA . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Fourier Motzkin (FM) variable elimination . . . . . . . . . . . . . . . . 12
2.5 FMplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 FMplex Simplex heuristic 17
3.1 Considering only one direction for each original variable . . . . . . . . 17
3.2 Required steps for the algorithm . . . . . . . . . . . . . . . . . . . . . 18
3.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Preventing dead ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Entering rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Exit rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Observation of required pivoting steps . . . . . . . . . . . . . . . . . . 27
3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Conclusion 31
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33



viii Contents



Chapter 1

Introduction

1.1 Motivation

Many real world problems can be expressed as Boolean combinations of inequations
between linear polynomials. These problems can be grouped together into the quanti-
fier free linear real arithmetic (QF_LRA). We are mostly interested in whether or not
a solution in these problems exists or if the problem is unsatisfiable. This process is
called satisfiability (SAT) checking. Simplex is one such satisfiability checking method
for QF_LRA and is broadly used. The Simplex algorithm maintains a tableau rep-
resentation of the problem and a variable assignment. When searching for solutions
in the Simplex context, we encounter bounds that are violated by the current as-
signment. In this case, Simplex applies a pivot step, which adapts the assignment to
satisfy the previously violated bound. Most of the time these violated bounds will not
be the tightest bound in a specific direction. This results in pivoting with the given
variable and later pivoting with another variable that was the actual largest bound.
Especially in larger problems, it is unlikely that we pivot with the correct bound in the
beginning. If we could know, for each variable, which is the most restricting bound
beforehand, we could solve the problem in linear time, in the number of original vari-
ables. However, we would need to compute the restrictiveness of a variable for each
of the bounds. Additionally, the restrictiveness depends on the previously selected
bounds. So we would need to compute a lot of different possibilities. Instead of doing
these computations, in this work we guess that a constraint is the most restrictive
and proceed forward. If we encounter a contradicting constraint to our previously
assumed largest bounds, we can backtrack and assume that this constraint is now the
most restrictive. This approach was used in a modified Fourier Motzkin (FM) variable
elimination algorithm [Kob], where iteratively guessing and backtracking reduced the
complexity of the problem. In this previous work, a static variable ordering obtained
from this idea was proposed and tested. While it did not surpass Bland’s Rule in
performance, we believe that the idea is still worth iterating on. Additionally, the
FM approach currently does not support incrementality. We attempt to transform
this attempt into a Simplex heuristic, where we restrict which variables we can pivot
with in respect to a direction. Our goal is to essentially reduce the dimensionality of
the problem in each step and greatly reduce the number of pivot steps required. We
aim to support the incremental approach used in modern SMT solvers.



10 Introduction

(a) Complex problem with many constraints (b) Reduced problem with only upper bounds
on either x1 or x2

Figure 1.1: Demonstration of our approach. By essentially ignoring some type of
bounds (in this case the lower bounds on x1 and x2) we can reduce the complexity of
the problem.

1.2 Related work
Our work is based on the Simplex algorithm [Dan] however, we aim to restrict which
variables are suitable for pivoting even further, in an attempt to reduce the amount
of combinations that need to be computed. This idea is based on the approach used
in [Kob]. Instead of eagerly computing each upper and lower bound in the Fourier
Motzkin algorithm, only one upper or lower bound was chosen and assumed to be
the most restrictive. This reduced the complexity from doubly exponential to being
singly exponential. Our goal for this thesis is to reproduce the steps that FMplex
takes in a Simplex heuristic.

1.3 Own contribution
Our contributions in this thesis are

• Converting the FMplex algorithm into a Simplex heuristic. We explain how to
obtain a Simplex heuristic and provide an implementation to the SMT-RAT
[CKJ+] codebase.

• Comparing differences that arise in the Simplex context. Introducing assign-
ments from the Simplex algorithm, that were not present in FM, lead to an
issue that we resolved.

• Experimentally evaluating our method when compared to other heuristics.

• Obtaining a deeper understanding about the structure of SMT solving to inspire
future research.



Chapter 2

Preliminaries

In the following chapter we will introduce all the preliminaries that our work is based
on. We explain the Simplex algorithm and show the steps that are needed to form a
heuristic.

2.1 Boolean satisfiability problem SAT
In the SAT problem we receive as input a boolean formula and need to determine,
whether a satisfying assignment to the variables exists. This is an NP-complete
problem as shown by Cook and Levin independently [Coo]. Hence finding efficient
solutions is of great interest as all NP problems can be expressed as a SAT problem.

2.2 Satisfiability modulo theories SMT
One can extend the SAT problem with theories such as bit-vectors, lists and real
numbers. Where in the SAT problem we have literals such as x and y, in the SMT
problem we could, for example, have uninterpreted functions f . Valid problems could
then be f(f(x,y),y) = f(x,y) where f is one such function. An SMT solver now uses
the SAT solver to find possible solutions in the boolean structure of the problem and
then checks whether these solutions are consistent with the underlying theory. In this
paper we focus on solving (quantifier free) linear real arithmetic (LRA) problems.

2.3 Linear real arithmetic LRA
Definition 2.3.1 (LRA). Linear Real Arithmetic is a first order theory using the
signature of (R,0,1,+,<)

Definition 2.3.2 (Constraint). Let x1, . . . ,xn be variables and a1, . . . ,an, b ∈ R con-
stants.
We define a linear constraint as

∑n
i=1(ai · xi) ▷◁ b, where ▷◁∈ {< , ≤ , = , > , ≥}.

Definition 2.3.3 (Most restrictive constraint). Assume variables x1, . . . ,xn, con-
straints c1,c2, assignment α : X 7→ R and an index set I ⊆ {1, . . . ,n}. Let c′1 and c′2
results from c1 respectively c2 by substituting α(xi) for each xi with i ∈ I. We define
c1 ≤α,I c2 iff c′2 implies c′1, i.e. if all assignments that satisfy c′1 also satisfy c′2.



12 Preliminaries

Figure 2.1: Most restrictive constraint visualization

Example 2.3.1. Let consider C1 := x1 + x2 ≤ 3 and C2 := x1 + 2x2 ≤ 4 (see
Figure 2.1). Now initially with an empty α and empty I neither C1 <α,I C2 nor
C2 <α,I C1 holds, since P1 = (1,2) is contradicting to C1 <α,I C2 and P2 = (4,0) is
contradicting C2 <α,I C1. However when we have I = {x1} and α : x1 7→ 0 it holds
that C1 <α,I C2, since C1 simplifies to x2 ≤ 3 and C2 to x2 ≤ 2. We can now see
that C2 is more restrictive than C1 since every solution to C2 is a solution in C1. The
visual intuition behind this is that on the dotted line - where x = 0 , the green area of
C2 is a sub-area of the blue one of C1.

2.4 Fourier Motzkin (FM) variable elimination

The Fourier Motzkin [Fou] variable elimination method can be used to solve LRA
systems of inequations. While we do not apply the computation in this paper, it is
still useful to understand the procedure, since our heuristic works in a similar manner.
The elimination works in two steps. First, a variable is chosen. Then each inequation
is rewritten as either a lower or an upper bound to this variable, or no bound at all.
In the second step, new equations are generated by combining every lower bound with
every upper bound. Therefore, in every step, one variable is eliminated. While this
is a straight-forward algorithm, it is not efficient in practice, since combining every
lower and upper bound leads to a combinatorial blow-up.

2.5 FMplex

The FMplex algorithm [Kob], that our heuristic is based on, aims to reduce the
combinatorial blow-up in the FM algorithm by assuming that one opposite bound is
the largest bound. Instead of combining every lower with every upper bound, every
lower bound only gets combined with this one upper bound. If one finds a SAT
solution, then it is of course valid. However, in the UNSAT case, one has to find out,
whether the system is UNSAT as a whole, or if the wrong bound was chosen. One
can backtrack to the position where the conflict originated from, and select a different
upper bound. If no such bound can be chosen, the conflict has to occur even prior to
this selection. Finally, one can find the conflict in the first step and prove, that the
system is UNSAT.

We propose a Simplex heuristic based on this approach and aim to take the exact
same steps, that FMplex would take.



Simplex 13

2.6 Simplex
The Simplex algorithm proposed by Dantzig [Dan] in 1990 improved upon the previ-
ous Fourier Motzkin variable elimination approach. The input is a set of QF_LRA
constraints over some variable set X. We now transform these inequalities into equal-
ities as follows. For each constraint cj of the form

∑n
i=1(ai · xi) ▷◁ b we introduce

a new so called slack variable sj to encode the non-constant part of the inequation,
setting

∑n
i=1(ai · xi) = sj . To compensate for the lost lower and upper bounds, we

introduce the bound sj ▷◁ b. Notice that when we find values for our so-called original
variables X and our slack variables S that satisfy both the equalities as well as the
bounds, we will have a satisfying assignment to our original problem. When combin-
ing our original variables as well as the slack variables, we obtain V = X ∪ S. We
partition this set into basic variables B := S as well as nonbasic variables N := X.
The constraints can now be rewritten as a |V| × |V| matrix called tableau T . We
denote by ti,j the value of the tableau in the i-th row and j-th column.

For every variable vi ∈ V, if vi is a slack variable, the i-th row contains the factors
in the equation for si , and −1 at ti,i. Otherwise vi is an original variable and the row
contains zeroes only. Additionally we require the lower and upper bounds l,u ∈ R|V|

where li = −∞ and ui =∞ except where si ▷◁ b in this case we insert the respective
lower or upper bound b.

We now need to assure that T ·α(V) = 0 and l ≤ α(V) ≤ u holds to find a satisfying
solution to the original problem. Here, α(V) assigns each variable in V a specific value
from R. There are two invariants that hold during the Simplex algorithm.

1. T · α(V) = 0

2. Every nonbasic variable satisfies its lower and upper bound.

In the beginning this holds, since all variables are assigned the value 0 and each of
the nonbasic variables is an original variable - that does not have a bound in this
transformed form. It can, however, happen that a basic variable violates its bound.
In this case, the Simplex algorithm uses a pivot method to update the assignment of
the variables.

void update ( int j, float δ )
1 α(vj)← α(vj) + δ
2 for all i ∈ [1, . . . ,|V|] with ti,j ̸= 0
3 do α(vi)← α(vi) + ti,j · δ

[KBD]

Algorithm 1: Update the assignment of the nonbasic variable vj by δ

void pivot ( int i, int j )
1 rj ← rj − 1

ti,j
· ri

2 for all k with vk ∈ B ∧ k ̸= j
3 do rk ← rk + tk,j · rj
4 B ← (B − {vi}) ∪ {vj}
5 N ← V\B

[KBD]

Algorithm 2: Pivot the basic variable vi with the nonbasic variable vj where ti,j ̸= 0



14 Preliminaries

void UpdateAndPivot ( int i, int j, float δ )
1 UPDATE(j, δ)
2 if i ̸= j
3 then PIVOT(i, j)

[KBD]

Algorithm 3: Update the assignment for the basic variable vj by δ and pivot vi with
vj

During the UpdateAndPivot method both, invariants are maintained. One can
now repeatedly use this method to resolve every conflict until a solution is found or
no variable is suitable for pivoting.

2.6.1 Suitable for pivoting
When a basic variable xi ∈ B violates any of its bounds, xi is violating. Assume
that l(xi) > α(xi) i.e. the lower bound is greater than the assignment. We can now
consider a nonbasic variable xj ∈ N . There exist three cases.

ti,j > 0 The factor of xj is positive. Increasing the assignment of ti,j will increase xi.
If xj is not already at its upper bound α(xj) < u(xj) we call xj suitable for
pivoting.

ti,j = 0 Changing the assignment of xj will not change the assignment of xi. We do
not need to consider this pair.

ti,j < 0 The factor of xj is negative. Decreasing the assignment of tij will increase
xi. If xj is not already at its lower bound l(xj) < α(xj) we call xj suitable for
pivoting.

In practice, multiple basic variables will be violating with multiple nonbasic variables
being suitable for pivoting. We need a rule for selecting which basic variable to choose
and then which nonbasic variable to pivot with. These rules are called entering rule
and exit rule respectively.

2.6.2 Entering rule
At every pivot step, some variable will become nonbasic. Selecting which variable
to choose has a significant impact on performance. Consider, for example, the case
where we have multiple lower bounds that each subsume another.

Example 2.6.1. Assume s1 = y, s1 ≤ 3, s2 = y, s2 ≤ 2, s3 = y, s3 ≤ 1 When we
now pivot with s1 first, s2 and s3 will still be violating, and therefore, we will need an
additional pivot step as opposed to pivoting with s3 immediately - since it subsumes
the other bounds.

2.6.3 Exit rule
After selecting a variable according to the entering rule, we also need a variable to
become basic and leave the nonbasic variables. This variable has to be suitable for
pivoting. This selection will again have performance implications. One should aim to
keep the most restrictive bounds in the basis to ensure that the problem reduces in
dimensionality.



Simplex 15

2.6.4 Heuristic
Such rules for entering and leaving the basis form a heuristic. Several such heuristics
exist and all of them aim to reduce the number of pivot steps required. Whereas
correctness does not depend on the heuristics, to ensure that the Simplex algorithm
is still complete, the heuristic needs to be terminating. To ensure termination in
the Simplex algorithm, it is sufficient to ensure, that no pivoting cycles exist. Some
heuristics are not terminating themselves, but use a complete heuristic such as Bland’s
Rule [Bla] as a fallback after a given amount of pivot steps. In Bland’s Rule, variables
are ordered and when a choice needs to be made, the smallest possible variable is
taken, with ties being broken by selecting the smallest index.



16 Preliminaries



Chapter 3

FMplex Simplex heuristic

3.1 Considering only one direction for each original
variable

Our hypotheses is that it is valid to only consider either the lower or the upper
bounds for a given original variable but not both. If we do not find a solution under
this relaxed set of bounds, no solution exists.

We show this with an inductive proof. Consider the one-dimensional case. When
there exist no upper and lower bounds, the problem is unbounded, and it is of course
valid to only consider lower or upper bounds - since no bounds exist.

In case the problem is unbounded in one direction, we will have to ensure that
the other direction is selected as the bounds that we chose. Then the opposite set is
empty, just like in the solution.

Otherwise, if there is a solution then at this point, one of the lower bounds will
be the largest and one of the upper bounds will be the smallest.

Now consider that we have an n-dimensional problem that we know has a solution
where we consider only one direction for each dimension. When we now consider
the n + 1-dimensional case, we can project the original solution space onto the new
axis. The projection will again be an interval with lower and upper bounds since the
solutions are always convex. We will again be able to choose whether to consider the
upper and lower bounds - for each of them a solution exists.

Example 3.1.1. Consider the cube in Figure 3.1. For this example we only consider
the upper bounds on each original variable x,y,z. On the cube the three upper bounds
are marked in a dark shade of red.

In the first step we project the cube onto the x-y plane. Now we have only two
upper bounds, one for each dimension. We choose the upper bound on y and continue.
Finally, we arrive at the last dimension where we only consider the closed interval
[1,2]. Since we only consider the upper bounds, we choose 2 (point A”) and arrive at
a solution to the problem. Substituting back into the previous projections, you can see
how we obtained A” from A’, which we got from A. Different selection of lower and
upper bounds, with different variable orderings can lead us to selecting any 8 of the
cubes vertices.

Of course, we still have to consider that is has to be possible to reach these upper
bounds in the Simplex context.



18 FMplex Simplex heuristic

Figure 3.1: Projection of a cube solution to each underlying dimension

3.2 Required steps for the algorithm
• For each original variable compute which constraints are lower or upper bounds

for this variable.

• Introduce a data structure for our bookkeeping efforts.

• Form a complete pivoting heuristic, consisting of an entering and leaving rule
as well as updating our data structure.

• Work incrementally and generate infeasible subsets. While this step is imple-
mented in the provided source code, the introduction of incrementality would
exceed the limitations of this thesis.

3.2.1 Classification into lower and upper bounds
We consider a slack variable si. si can have one of three bounds.

l ≤ si : si is a lower bound

si ≤ u : si is an upper bound

l ≤ si ≤ u : si has both bounds (we use this to represent equalities)

Now it also holds before doing any pivot steps that si =
∑n

j=1 αj · xj

We can classify the pair (si,αj) to be the bound that we obtain from Table 3.1



Construction 19

si is lower si is upper si is both
αj > 0 lower upper both
αj < 0 upper lower both

Table 3.1: Classification of the bound for the pair (si,αj)

Example 3.2.1. Let us consider the following constraint:
S1 = −2 · x1 + 4 · x2 where S1 ≤ 3. We notice that S1 is an upper bound.
Now for each of the original constraints we obtain from Table 3.1 in the "S1 is

upper" column.

(S1,x1) is a lower bound, since -2 is negative.

(S1,x2) is an upper bound, since 4 is positive.

To speed up future lookups, we construct a mapping where we map each slack
variable and bound pair to the list of original dependencies.

3.3 Construction
To store information about the steps that we have already taken, we construct the
following list of containers. Each container contains the following four information:

Original variable xi The original variable selected at this step.

Original bound bi Whether we collect lower, upper or both bounds for this original
variable.

Selected sselected The current selected variable for this original variable and bound.

Tested Stested The previous tested variables for this combination of original variable
and bound.

There are now a few properties that we will have to ensure to hold at every step
of the algorithm.

I sselected ∈ Stested

II |Stested| monotonically increases - we do not allow any tested variables to be
removed.

III sselected ← s′selected =⇒ s′selected /∈ Stested if we select a variable, we have not yet
tested it.

3.3.1 Method backtrackingLength
Assume a constraint si that violates its bound b. We can now compute the backtrack-
ing length required to insert this constraint into our list.

We begin by collecting all original dependencies of this constraint-bound combi-
nation as defined in Table 3.1. We then iterate over our list backwards and keep track
of the length until the following condition is met.



20 FMplex Simplex heuristic

The original variable of the container equals one of the original dependencies of
our constraint.

The bound in the container equals the bound of our constraint.

The constraint is not already in the tested set.

We can then return the length to the first container that fulfills all of these condi-
tions. For an easier understanding of this algorithm, we instead calculate the distance
for each original dependency and bound and return the minimum - in practice this is
inefficient.

int backtrackingLength ( Variable original, Variable constraint, Bound bound)
1 i← 0
2 for container ∈ reversed(Containers)
3 do i← i+ 1
4 if container.originalV ariable = original
5 ∧ container.bound = bound
6 ∧ constraint /∈ container.tested
7 then return i

Algorithm 4: Calculate the backtracking length of a given original variable, constraint
and bound b

3.3.2 Method insert

When we insert a constraint si with its original dependence xj and bound b, we start
from the end of our list.

If the xj is not already in our list of original variables, we can add a new container
to the list and set its original variable to be xj , the bound to be b and selected and
tested to be si.

Otherwise we might require backtracking. While the original dependency differs
from that of the list, we remove this container from the list. We repeat this until we
arrive at the container with the correct original variable.

We then update the selected variable to be si and add si to the tested set.



Construction 21

void insert ( Variable originalV ariable, Variable constraint , Bound bound)
1 if originalV ariable /∈ list.allOriginalV ariables
2 then
3 list.append(constraint,originalV ariable,bound)
4 return
5
6 while container := Containers.popback()
7 do if container.originalV ariable = originalV ariable
8 ∧ container.bound == bound
9 ∧ constraint /∈ container.tested

10 then container.tested.add(constraint)
11 container.selected = constraint
12 Containers.append(container)
13 return
14

Algorithm 5: Insert the constraint into our list

Notice that this ensures that at most one container for each original variables
exists.

3.3.3 Dead ends

We initially believed that it could be sufficient to always only consider one direction
for each variable.

One might assume that either the lower bounds are smaller than the upper bounds
or that the system is unsatisfiable. This is incorrect though, since even in satisfi-
able systems there might exist assignments where the most restrictive lower bound
is greater than the most restrictive upper bound. We will demonstrate this in an
example shortly.

This issue did not appear in the FM implementation that this heuristic is based
on, since no concrete variable assignments were required. Instead, only symbolic
representations are used.

The following example will show that it is sometimes necessary to change the
direction of the bounds.

Example 3.3.1. Consider the example in Figure 3.2 our constraints are
s1 = x1 + x2, 2 ≤ s1 and s2 = x1, s2 ≤ 1

In the beginning, only s1 is violated. We pivot with the first variable that is suitable,
which is x1. After inserting this into our list, we arrive at a conflict.The bound of the
basis variable s2 is now violated, but we can not pivot, because s2 is an upper bound
on x1, but we chose to only consider lower bounds for x1.

This is a fundamental issue in the algorithm, and we identified three ways to
address this.

In our current implementation we allow the switching of bounds, should such a
problem occur. We can notice the issue when a basic variable is violated, but no
original variable is suitable or requires backtracking. When we encounter such a



22 FMplex Simplex heuristic

Selected: S1

Tested: {S1}
Original: x1

Bound: L

Figure 3.2: A visualization where bound switching is necessary

variable, we choose the original dependency with the shortest backtracking length
and change the direction to now include the opposite bounds.

Obviously this results in basically reversing our previous efforts of only considering
one direction, as well as removing all progress that we have already achieved in the
previous direction.

Another option would be to essentially move the conflicting selected variable up
through the list, until it is suitable for insertion. In our example we would move the
conflicting selection S1 up to its other possibility of a lower bound on x2. This way
we would free up the x1 to now represent the upper bound S2. Due to the limitations
of this thesis, this approach is not yet implemented nor proven to be correct.

Instead of switching the direction of the bound, we believe that it is actually
possible to prevent these cases from appearing in the first place.

3.4 Preventing dead ends

This section discusses ideas that have not yet been fully validated, but rather are
intended to serve as a basis for future work.

At the moment we greedily insert the first original variable and bound for the
variable, that we encounter. This results in two main issues.

First of all, we are more likely to encounter a bound when there are many of these
bounds. However, we would prefer selecting the bound with the fewest constraints.
Therefore, reducing our options the most, while still ensuring correctness.

Additionally, we can encounter the dead ends described in the previous section.
We believe that there is a way to resolve both of these issues with a bit of pre-

computation.
We begin by iterating over all of our basic variables and classifying them into xiL

and xiU as we are already doing. Instead of using these sets just for our lookups, we
aim to arrive at an ordering that respects the following rule.

Let xiB be the selected bounds for xi, xiB = xiL or xiU .
Let now xis be one variable in xiB . It must now hold that the xjB ⊈ {xis |i < j} for

all possible selection of each xis . The intuition behind this is as follows. If xjB would
be a subset, then it would be possible to arrive at a point where we do not have a



Entering rule 23

basic variable to pivot into our basis for this original variable, effectively reducing the
dimension of the problem which is not equisatisfiable as we have seen in the example.
However this rule is not correct for some edge cases, consider for example the case
where s1 = x + y is the only bound for x and y respectively, then with this rule no
ordering would be possible, even though the system with s1 and s2 = z, s1 ≤ 1, s2 ≤ 1
is satisfiable.

Future work will form a concise rule that hopefully does not need to compute each
of the possible orderings, as this would lead to combinatorial blow-up while aiming
to select the smallest sets possible to reduce the amount of pivoting steps. We can
still use the intuition behind this idea, to solve our previous example.

Example 3.4.1. Assume s1 = x1 + x2, 2 ≤ s1 and s2 = x1, s2 ≤ 1.

We compute x1L = {s1}, x1U = {s2} and x2L = {s1}, x2U = {}.

From the previous rule we can see that selecting x1L is not a valid choice, since
then both x2L and x2U are subsets of x1L so we exclude this possibility. We now
consider selecting x1U , now x2L is valid, since s1 is not in x1U . We arrive at the
valid ordering x1U < x2L . Notice that we could also change the order to arrive at
x2L < x1U which would also be valid. Though this symmetry does not always hold.

Using this fixed ordering in our algorithm would lead to a satisfying solution,
because we would pivot s1 with x2 instead and arrive at a solution, since s2 would
still satisfy its bound. Additionally, future work should consider cases where xiL or
xiU is empty because in this case, we would not need to pivot with any constraint
and could instead just increase or decrease the value of xi until we find a solution.
The best case example for this is a system with many lower bounds on a large set of
variables but no upper bounds on any of them, in this case setting all variables to
large values will be satisfying.

3.5 Entering rule

When selecting which variable to become nonbasic, we have to consider the back-
tracking length defined earlier. We need to consider all possibilities for extending
the list first, before we backtrack to a previous original variable. We check each ba-
sic variable that violates its bound and compute the backtracking length for every
original dependency of this variable. We then return the variable with the shortest
backtracking length.



24 FMplex Simplex heuristic

Variable enteringRule ()
1 bestCandidate← None
2 shortestBacktrackingDistance← Infinity
3 for basicV ariable ∈ B
4 do lowerV iolated← α(basicV ariable) < lower(basicV ariable)
5 upperV iolated← α(basicV ariable) > upper(basicV ariable)
6 if ¬lowerV iolated ∧ ¬upperV iolated
7 then continue
8 for original,bound ∈ originalDependencies[basicV ariable]
9 do backtrackingDistance← list.getBacktrackingLength(original,basicV ariable,bound)

10 if backtrackingDistance < shortestBacktrackingDistance
11 then bestCandidate = basicV ariable
12 shortestBacktrackingDistance = backtrackingDistance
13 return bestCandidate
14

Algorithm 6: Entering rule

3.6 Exit rule

We begin by computing the set of original variables already used in the list and call it
XL. We then use our pre-computed list of original dependencies to gather all bounds
for the entering variable and violated bound and call it XE .

Now there are three possibilities.

XE ⊈ XL suitable In this case there exists an original variable x ∈ XE that is still
part of the basis x ∈ N and not yet used in the list. We can simply return x.

XE ⊆ XL backtracking For this case, all original dependencies in XE are already
in our list. However, there exists at least one original variable x ∈ XL with
the same bound as the violated leaving bound in XE . Starting backwards at
the end of the list, we return the currently selected variable for such an original
variable x.

XE ⊆ XL bound switching In this case, all original dependencies have the wrong
bound in the list. We encountered a dead end. In this case we again start at
the end of the list and backtrack until we find an original variable that is in XE .
We then switch the bound to the correct one.

This step is problematic in practice and a performance hit, so future work will
focus on eliminating this issue.

3.7 Soundness

To show that our adapted algorithm is still sound and complete, we have to proof
termination as well as correctness.



Soundness 25

3.7.1 Proof of termination
For our heuristic to be non-terminating there would need to exist a cycle, where
we keep pivoting with the same variables over and over again without making any
progress.

We show that for every list there exist only finitely many valid continuations.
Thus, we show that the algorithm will not enter a cycle and hence terminates. Since
we have a finite tableau, there are finitely many constraints. Each of these constraints
will at most be a bound for n original variables. We call a container full when it
already contains each of the constraints in its tested set, that is an original bound
for this original variable and bound. When we backtrack to position i, the tested set
for the container i will increase by one. We also delete the trail starting at container
i + 1. It now follows that we can backtrack to i at most n times until container i is
full.

An induction will now show, that only finitely many continuations of the list exist.
For a given list there exist only finitely many continuations when backtracking up to
length i. Consider i = 0. When we do not backtrack at all, only the values in the last
container can change. At most n variables can be selected until the tested set is full.
Therefore, at most n continuations exist.

We now consider that the hypotheses holds for a given i. When we now backtrack
up to length n, the container n− (i+ 1) will again only accept up to n values in its
tested set. For each of these values, we know that the trail of backtracking length i
is finite. Therefore, we know, that for backtracking length i + 1, only finitely many
continuations exist.

Since each step of the algorithm corresponds to exactly one of these lists, we know
that the algorithm terminates.

3.7.2 Proof of correctness
We use the terminating property of the algorithm to show that it is also correct.

Due to our construction in each step, our selected variables η := (S0, . . . ,Sk) are
a subset of the nonbasic variables N .

Additionally, since we prevent already tested variables to be selected again, it
holds that at each step we encounter a new set η′. The only times where we return
SAT is if η is a satisfying basis for the input.

On the other hand, we only return UNSAT when η contains a conflict.
Lets consider xi is violating. Assume that at some point a variable xj is suitable

for pivot and will at some point lead to a solution (otherwise the problem is UNSAT),
but our list prevents it from being selected. This happens when we have either already
tested this variable [1] or when another variable xk has a shorter backtracking length
[2].

The first case is a contradiction, since we would have already found this solution
when we selected xj previously.

The second case might be an issue at first, however, if pivoting with xk does
not lead to a solution, then at some point we will have to select xj when all other
backtracking lengths are larger.

Therefore, at each step, at some point the "correct" variable that will be part of
a SAT basis will finally have a chance to be selected. Additionally, we will show that
the algorithm will never explore all possibilities and exit without returning SAT or
UNSAT.



26 FMplex Simplex heuristic

Figure 3.3: Visualization of Example 3.7.1

Since each step corresponds to a unique basis, when the algorithm would have
checked all of the basis, we tried each possibility. However, since the tableau that we
receive can be partitioned into SAT and UNSAT, we are sure to reach at either a SAT
or UNSAT basis before terminating.

Example 3.7.1 (Example run of our heuristic). Assume three constraints S1 = x,
S2 = −0.5x + y, S3 = −x + y with their bounds S1 ≤ 2, 0.5 ≤ S2, 1 ≤ S3 visualized
in Figure 3.3.
For our first step we need to determine for each constraint original variables it bounds.
We obtain: XL = {}, XU = {S1,S2,S3}, YL = {S2,S3}, YU = {}
Starting with the assignment x = 0,y = 0, we notice that S1 violates its bound. Only
x is suitable for pivoting. We check for our leaving rule and receive x, since the list
is currently empty see Figure 3.4a.
We now pivot with x and insert (S1,x,upper) into our list Figure 3.4b.
Now at x = 2,y = 0 S2 violates its lower bound and y is suitable for pivoting.
Our bounds on S2 are upper on x and lower on y.
We again check our leaving rule and receive y since it is not currently represented in
the list.
We insert (S2,y,lower) into our list and pivoting with y Figure 3.4c.
At x = 2,y = 1.5 S3 violates its lower bound. S1 and S2 are suitable for pivoting.
We again collect its original dependencies and obtain an upper bound on x and a lower
bound on y.
In our leaving rule we now consider S1 and S2. We notice that y has a shorter back-
tracking distance in our list, so we return S2 Figure 3.4d.
We update the last container and pivoting with S2.
Finally no variable is violated, so we can return SAT.



Observation of required pivoting steps 27

(a) Empty list

Selected: S1

Tested: {S1}
Original: x
Bound: U

(b) Inserted S1 as an upper bound on x

Selected: S1

Tested: {S1}
Original: x
Bound: U

Selected: S2

Tested: {S2}
Original: y
Bound: L

(c) Inserted S2 as a lower bound on y

Selected: S1

Tested: {S1}
Original: x
Bound: U

Selected: S3

Tested: {S2,S3}
Original: y
Bound: L

(d) Updated the lower bound on y to be S3

3.8 Observation of required pivoting steps

From the induction we can also derive at an upper bound to the amount of pivoting
steps.

When we consider an actual case, each original variable xi will have xiL many
lower bounds and xiU upper bounds.

One can arrive at the conclusion that we can pivot at most
∏n

i=1 max(xiL , xiU ).
In the worst case, this will be nm. Where m is the number of constraints in the

system. However, in practice we can reduce this number by a large factor. The max
function in the product already gives a hint on how we can reduce this number. For
each of the original variables we should try to minimize the amount of constraints
with that bound. Since we can choose which bound (lower or upper) to select at this
point, we should aim to take constraints with the lower count.

In this work we simply chose the first bound that we encounter and stick to this
selection. This is, however, inefficient in practice since when we have many lower
bounds, we are more likely to encounter a lower bound, and therefore, might have to
check all of them, instead of just considering the fewer upper bounds. Selecting the
right ordering to pivot can lead to drastically reduced pivoting steps.

3.9 Results

To analyze the runtime of our heuristic, we ran the QF_LRA benchmarks [SMT] with
a timeout of 5 minutes and a memory limit of 4Gigabyte. As a reference, we used
our implementation using Bland’s Rule [Bla]. The results are presented in Table 3.2
we additionally computed the virtual best (VB) when taking the best runs of each
algorithm. Our algorithm never exceeds the memory limit, compared to the reference,
that reaches a memout 60 times. This is, however, not an advantage as one can see
in the VB, since only 2 of the 60 memouts could actually be solved by the FMplex
heuristic. Which means, that these memouts are timeouts in our implementation. In
Figure 3.5b one can see that the run-times of both heuristics are very similar. In



28 FMplex Simplex heuristic

FMplex Bland VB
SAT 514 524 534

UNSAT 377 385 392
TIMEOUT 757 679 664
MEMOUT 0 60 58
SOLVED 891 909 926

Table 3.2: Results from the QF_LRA benchmark [SMT]

Figure 3.5a the run-times of each problem is plotted. It is clear that both heuristics
have their advantages and disadvantages. Our heuristic solves 18 problems less in
total. Interesting to note is the cluster of problems that our heuristic timed out on,
that could be solved by Bland’s Rule almost immediately. This might be because of
a bug in one of the modules, since our heuristic gets interrupted by a very long run
of the underlying SAT module. While this could be explained by different infeasible
subsets and therefore different runs in the SAT module, it is unlikely that this is the
whole explanation. In total 16 problems timed out, where Bland’s Rule could solve
the problem in less than a minute. On the other hand only 4 problems timed out
in Bland’s Rule, that were solved by our heuristic in less than a minute. Making it
unlikely that the different paths of the algorithm are the complete explanation for
this.

Finally, we can compare our runtime to that of the previous FMplex iteration,
using a static variable ordering as seen in Figure 3.5c. The runtime of our imple-
mentation is an improvement to that of the Min. Sign heuristic that was previously
proposed.

In conclusion, we note that extra bookkeeping effort in our heuristic seems to
be worth the effort, since the run-times are very similar. It seems feasible that im-
provements to the bookkeeping effort could lead to a better performance than Bland’s
Rule.



Results 29

(a) Scatter plot of the run-times of our heuris-
tic and our reference implementation using
Bland’s Rule

(b) Runtime analysis between our
heuristic, Bland’s Rule and the vir-
tual best (VB)

(c) Reference runtimes from the previous FM-
plex paper [Kob]



30 FMplex Simplex heuristic



Chapter 4

Conclusion

4.1 Summary

We introduced the FMplex simplex heuristic and showed that it is a sound heuristic.
By restricting pivoting to certain directions, we can effectively reduce the computa-
tional effort required to solve the system. Additionally, we discovered a problem that
is not preset in the FM variation of the heuristic and introduced the bound switching
technique to solve it. While this decreases performance by a large factor, the other
proposed solution would have exceeded the limitations of this paper. Future work will,
however, inspect the possibility of precomputed variable orderings. The sourcecode
generated for this work was provided to SMT-RAT [CKJ+].

4.2 Discussion

While the results of the algorithm are comparable to a regular Simplex algorithm
using Bland’s Rule, we still believe that this is an idea worth investigating. The
current implementation should be considered an investigative prototype and multiple
improvements can be made. Including but not limited to

1. Introducing a heuristic for which original variable to choose, when multiple
are an original bound for the constraint and not already present in the list.
Currently we choose the first one, that we encounter.

2. Using a hashmap to reduce the lookup process when updating a container or
computing the backtracking length

3. Caching the results of our entry rule and update them with our new list when
needed.

4. Restructuring the tableau datastructure. The current implementation uses a
quadruple chained list. This results in iteration over the whole list when we
already know, which candidate we want to pivot with. One could store the
columns of the tableau in our list to reduce the lookup to a constant time.

There is one particular issue that arises from the current simplex variation. If there
are only a few upper bounds, it would be ideal to consider them first. However,



32 Conclusion

initially, when we assign each variable to be 0, these bounds are likely to be satisfied.
Therefore, preventing them from being inserted into our list in the first place. This is
a large decrease in performance on problems that might not have many upper bounds.
One solution to this might be to begin by pivoting with some constraints that are
not violated, but where we only have a few competing constraints for that specific
original variable and bound. This would force the heuristic to keep searching in this
direction.

Additionally, the problems that we encountered in the algorithm lead to an exciting
new idea where we consider the precomputed bounds to form the variable ordering
instead of computing it dynamically.

4.3 Future work
While the sourcecode implemented in SMT-RAT [CKJ+] does support incrementality,
the proofs and ideas in this paper are based on a non-incremental version. Future
work should investigate if our current implementation can be improved upon, when
considering incrementality in more detail.

The dead end problem discovered in this paper is the main area where further
research is needed. This problem was not present in the FMplex version that this
work is based on. We proposed the naive bound switching technique - while easy
to compute, it has proven to be ineffective in reducing the number of pivot steps
required.

The backtracking approach introduced might solve this problem - by backtracking
the conflicting selection up the list to free up a container for our basic variable, we
might be able to eliminate the dead ends. This might resolve the problem; however
we currently do not obtain a proof of correctness for this resolution.

Finally, future work will investigate the pre-computation of the list. This has sev-
eral advantages that might speed up the heuristic drastically. First of all, it would
eliminate the dead end problem that we encountered, since dead ends would be elim-
inated in pre-computation. Secondly, it would, in a best case scenario, reduce our
constraints that we consider to a minimum, or at least close to a minimum. Addi-
tionally, it would allow pivoting with variables that are currently not violated but
that we are sure are connected to a solution or where we can prove that no solution
can exist. This would greatly reduce the complexity of the problem when there are
only a few bounds for one direction. Finally, it might be possible to resolve conflicts
in the Simplex tableau with an edge sliding technique. Instead of performing costly
pivots, we might be able to change assignments to slide along one constraint when we
are sure that a solution will have to exist alongside this edge. It might be possible to
adapt the Sum of Infeasiblities introduced in [KBD] to find these solutions.



Bibliography

[Bla] R. Bland. New finite pivoting rules for the simplex method.

[CKJ+] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: An open source C++ toolbox for strategic and
parallel SMT solving.

[Coo] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing, STOC
’71, pages 151–158. Association for Computing Machinery. event-place: New
York, NY, USA.

[Dan] George B. Dantzig. Origins of the simplex method. In A history of scientific
computing, pages 141–151. Association for Computing Machinery.

[Fou] Joseph Fourier. Analyse des travaux de l’académie royale des sciences pendant
l’année 1824, partie mathématique, 1827. engl. transl. (partially) in: D.A.
Kohler, translation of a report by Fourier on his work on linear inequalities,
opsearch10 (1973) 38–42.

[KBD] Tim King, Clark Barrett, and Bruno Dutertre. Simplex with sum of infeasi-
bilities for SMT. In 2013 Formal Methods in Computer-Aided Design, pages
189–196.

[Kob] Thesis Kobialka. Connecting Simplex and Fourier-Motzkin into a novel quan-
tifier elimination method for linear algebra.

[SMT] LIB SMT. SMT-LIB the satisfiability modulo theories library
https://smtlib.cs.uiowa.edu/benchmarks.shtml.


	Introduction
	Motivation
	Related work
	Own contribution

	Preliminaries
	Boolean satisfiability problem SAT
	Satisfiability modulo theories SMT
	Linear real arithmetic LRA
	Fourier Motzkin (FM) variable elimination
	FMplex
	Simplex

	FMplex Simplex heuristic
	Considering only one direction for each original variable
	Required steps for the algorithm
	Construction
	Preventing dead ends
	Entering rule
	Exit rule
	Soundness
	Observation of required pivoting steps
	Results

	Conclusion
	Summary
	Discussion
	Future work

	Bibliography

