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Abstract

This work focuses on safety verification of hybrid systems via flowpipe-
construction-based methods, with specialization on linear hybrid automata (Hs).
To this regard we introduce eigenvalue decomposition (EVD) in flowpipe-
construction-based reachability analysis.

Eigenvalue Decomposition, as bijective mapping between continuous spaces
of the continuous parts of the H , simplifies the computation to linear indepen-
dent one-dimensional first order ordinary differential equations.

Our contributions on applying EVD are manifold: (i) wrapping effects do
not affect our over-approximation of the flow,(ii) for the over-approximation we
can compute its dimension-wise error, (iii) discussing possible error classes we
give a synopsis of error classification for this method and (iv) an outline of steps
to decide general usefulness. Most importantly we show that (v) it performs on
implementation, being a simple (with options to optimize) method.

In outlook to general applicability we see 1.estimation of error by the EVD,
2.possible adaptions for the system’s external input, 3.complex number compu-
tations for oscillating system behavior.

As potential for further optimizations and developments we give the following
ideas: For the use of pre-processing, i.e. disabling components we can use
1. state space fragmentation of the behavior for the input x(t = 0) (before
running the reachability analysis), 2. over-approximate finite convex sets with
eigenvector orientations to synthesize timing information during the analysis.

On use of external input possible time bounds may be derived which is shown
for linear external components. To this regard system reformulations are used
and the idea is sketched.
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Chapter 1

Introduction

The term safety-critical system may be used to describe a system in which a single or
combined failure of behavior in the system could lead to death, injury or environmental
damage [SS16]. Failure hereby is specification dependent of the according context and
a combined failure thus is a sequence of different failures. One method to lower the
probability of failure by formalizing such events is formal verification: the system
along with the undesired (probably catastrophic) behavior is modeled and verified.
The goal is to prove that the undesired behavior never occurs during system execution.
To be able to make use of formal methods it is crucial to choose the most appropriate
model for the description of the underlying parts, such that the system model reflects
the relevant system’s behavior and further it is possible to prove the result and to
verify its correctness properties.

In this work we are dealing with the formal verification of hybrid systems: Having
continuous and discrete parts interact, like in a controller of a moving device such
as an aircraft, these systems are termed hybrid systems [Hen00]. An example for a
hybrid system is given in Figure 1.1a. In the Figure discrete changes are portrayed
as edges in red whereas continuous behavior is depicted inside nodes in blue.

Describing the problematic behavior of the system as a state we can use the
following definition:

Definition 1.0.1 (Reachability problem(as in [Hen00])). The reachability problem
for hybrid systems asks for a given hybrid system S , if there is a trajectory in S from
the set of initial states that visits a certain state.

In Figure 1.1b the problem is sketched. For verification of the absence of unde-
sirable behavior it needs to be shown, that a set of bad states (shown in red) as the
formalization of the undesired behavior, is never reached during the execution. In the
figure the initial set in black is limited to only one point and only one trajectory in
black of the variable evaluation over time of the system state is shown. Further an
over-approximation depicted in blue is used to check if the system state over any time
reached the bad state. Reasoning to this over-approximation is that the reachability
problem for hybrid systems (Definition 1.0.1) is in general undecidable [HKPV98].
Further round-off errors need to be considered. Thus any more complex system is
undecidable as well. In this work we focus on hybrid linear time invariant systems
described by first order ordinary differential equations for the continuous behavior.
A not necessary complete list of tools still under development using different ap-
proaches for reachability analysis is: Ariadne, C2E2, Flow∗, HyCreate, HyEQ, HyPro,
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Figure 1.1: Reachability Analysis in Hybrid Systems.

HSolver, HyTech, KeYmaera, PHAVer, PowerDEVS, SpaceEx, S-TaLiRo. We classify
approaches into 3 groups: 1.SMT-based/bounded model checking, 2.theorem proving,
3.flowpipe-construction-based methods.

It is therefore reasonable to decide first in what form the problem can be formu-
lated and what behavior needs to be satisfied in detail due to the different strengths
and weaknesses of the approaches.

The implementation in the tool used for this work called HyPro uses flowpipe-
construction. Flowpipe-construction utilizes over-approximation of the sets of reach-
able states by geometrical objects. Therefore different set representations are sup-
ported in HyPro. These include boxes, convex polytopes, zonotopes, support func-
tions and Taylor models [HyP16].

The current implementation of flowpipe-construction uses the matrix exponential.
This method utilizes floating point arithmetic inducing according errors. Eigenvalue
decomposition (EVD) might allow to control these errors in a better way, since the
variables are modified to be linear independent. To this regard we plan to study EVD
properties for possible use cases.



Chapter 2

Preliminaries

The goal of this chapter is to give an overview of hybrid systems and eigenvalue
decomposition (EVD) for the application of the latter one to hybrid systems in the
next chapter. Hereby hybrid automata (Hs) as a model are used, but underlying
methods can be, depending on the use case, applied to other models for hybrid systems
as well.

2.1 Hybrid systems
Hybrid systems describe interaction of components with continuous and discrete be-
havior. One popular model for hybrid systems is the H . In this section we describe the
general reachability algorithm for hybrid systems before explaining our model, the H ,
to present the functionality of the tool used illustrating an example. Afterwards we
discuss each component of the underlying model separately.

Algorithm 1 General reachability algorithm [Gla14].

1: procedure Reachability(X0, B, stop-condition) . Initial set X0, bad states B
2: Queue := {X0}
3: R := {X0}
4: while (!Queue.empty() and !stop-condition) do
5: P := Queue.removeElement()
6: R ∪ Reach(P )
7: Queue ∪ Reach(P )
8: end while

9: return

{
"safe" ,(∪P∈R ∩B = ∅)
"unsafe" ,else

10: end procedure

Starting with the initial set X0, the bad states B and a stop-condition the gen-
eral algorithm uses two buffers where R is the set of reachable states and Queue the
temporary storage for the work queue. Looping until either Queue saving new states
becomes empty or the stop-condition is satisfied (for example a time horizon) we do
the following: P as set is taken out of Queue and all induced trajectories are com-
puted. Induced trajectories are all induced results for continuous variable changes
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which need to consider possible discrete variable changes from the edges. These dis-
crete variable changes may however induce again new trajectories to include. The
resulting set of those sets computation is united with R and Queue.

After the loop procedure stops due to the stop-condition or Queue is empty as no
new sets were found, the result is computed. On an intersection with the bad states,
the hybrid system is marked as unsafe whereas on no intersection it is safe.

The algorithm may run forever as hinted in the undecidability [HKPV98] of the
underlying problem and as such often the stop-condition is a time-bound.

The tool used for this work called HyPro utilizes geometrical representation of
sets including P ,R,Queue using flowpipe-construction. Flowpipe-construction means
a safe over-approximation of the set valuation Reach(P ) over time to prove safety of
the system.

2.2 Hybrid automata

We define Hs as an abstract model for hybrid systems and explain it with adap-
tions in lila to use concrete operations specifying a class of linear hybrid automata.
We continue with a formulation of reachability analysis for linear hybrid automata.
Subsequently reachability analysis for the adaption in lila is illustrated.

Definition 2.2.1 (Hybrid automata [Hen00][SÁC+15]).
A hybrid automaton is a multi-digraph with nodes and edges defined as a tuple
H = (Loc,Var ,Flow ,Inv ,Edge,Init) consisting of:

1. A finite set Loc of locations or control modes as nodes.
2. A finite ordered set Var = {x1, . . . , xn} of real-valued variables for which we

use the vector notation x = (x1, . . . ,xn). The number n is called the dimension
of the hybrid automaton H . By ˙Var we denote the set {ẋ1, . . . ,ẋn} of dotted
variables (which represent first derivatives during continuous change), and by
Var ′ the set {x′1, . . . , x′n} of primed variables (which represent values directly
after a discrete change). Furthermore PredX is the set of all predicates with
free variables from X.

3. Flow : Loc → PredVar∪ ˙Var specifies for each location its flow or dynamics
and PredVar∪ ˙Var is of the form ẋ = Ax+ b, A ∈ Rn×n, b ∈ Rn.

4. Inv : Loc → PredVar assigns to each location an invariant
for which PredVar is of form Ax ≤ b, A ∈ Rm×n, b ∈ Rn,m ∈ N.

5. Edge ⊆ Loc × PredVar × PredVar∪Var ′ is a finite set of discrete transitions
or jumps as edges. For a jump (l1, g, r, l2) ∈ Edge, l1 ∈ Loc is its source
location, l2 ∈ Loc is its target location, g ∈ PredVar specifies the guard, and
r ∈ PredVar ′∪Var its reset function, where primed variables represent the state
after the step. We require g to be of form Ax ≤ b, A ∈ Rm×n, b ∈ Rn,m ∈ N
and r to be of form x′ = Ax+ b, A ∈ Rn×n, b ∈ Rn.

6. Init : Loc → PredVar assigns to each location an initial predicate.

Hybrid systems described as Hs are defined as a finite multi-digraph: Each edge
connects two not necessary different nodes and there can be arbitrary many connec-
tions between any two nodes. The nodes describe continuous behavior whereas the
edges describe discrete behavior. Each node describing continuous behavior is as-
signed to a flow function and arbitrary many invariant conditions. The flow function
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defines continuous behavior of a location and is described as first order ordinary differ-
ential equation and in our case a linear time invariant system with external constant
input ẋ = Ax+b. Invariant conditions have to be full-filled during any time when the
control is in the location and in our case these are specified by half-spaces Ax ≤ b.

Every edge is assigned to one source location, one guard condition, one reset
function and one target location. For edges it must hold: If in the source location the
guard condition is satisfied, the reset function can be applied on the satisfying set.
After applying the reset function the control switches to the target location. If the
control switches to the target location the set must satisfy the according invariants.
For linear hybrid automata the guard is defined as an intersection of a finite set of
half-spaces Ax ≤ b and the reset function is of the form x′ = Ax+b as affine function.

Bad states, as not being part of Hs, define undesired behavior. The underlying
goal for the analysis is to show that bad states are not reachable.

Definition 2.2.2 (Bad states). Bad states bad ∈ Bad are defined accordingly and
are of form

Ax ≤ b, A ∈ Rm×n, b ∈ Rn,m ∈ N

Often bad states are expressed in the same way as guards although resulting in
a termination of the reachability analysis with conforming output as result. As the
reachability problem for linear hybrid automata is undecidable we compute an over-
approximation of the set of reachable states for bounded time and a limited number
of jumps. The time bound is given as T . For the flow given as ẋ = Ax we discretize T
and obtain the reachable set R[0;T ] as the over-approximation by the union of finite
number N of sets of the chosen set representation class. The set representation class
is hereby a convex object. Each of these sets is an approximation of R[iδ;(i+1)δ], where
i ∈ [0,N − 1], i ∈ N and δ = T

N is the time step. We further define [iδ; (i+ 1)δ] as i-th
time interval of the computation.

For the purpose of computing these sets we use the property of R[t0,t1] and R[t′0;t
′
1]

behaving isomorphic to the addition of intervals [LG09, p.40]

R[t0;t1](R[t′0;t
′
1]

(Y)) = R[t0+t′0;t1+t
′
1]

(Y),Y as an arbitrary set

and thus

Rδ(R[iδ;(i+1)δ](Y)) = R[(i+1)δ;(i+2)δ](Y) (2.1)

Using X0 as initial set of the reachability analysis we denote Ωi as i-th interval
approximation. Evaluating the initial approximation Ω0 with time length δ we obtain
Ω0 = R[0;δ](X0).

Using the isomorphic property (2.1) we obtain

Ωi+1 = Rδ(Ωi) (2.2)

as a recurrence equation for which
⋃
i

Ωi is the result of the reachability analysis.

Solutions for systems of linear ODEs are of form x(t) = etAx0 using the ma-
trix exponential of δA for an arbitrary point. The matrix exponential is discussed
in Section 2.2.2. Thus we obtain for the recurrence equation

Ωi+1 = eδAΩi
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and it remains to show how to approximate Ω0.
Since Ω0 needs to contain R0(X0) and Rδ(X0), the convex hull (CH) of R0(X0)∪

Rδ(X0) is our first approximation. This approximation does not yet account for the
nonlinearity of the systems’s trajectories, ie. the actual set of reachable states.

One method to compute the over-approximation for Ω0 is to find an upper-bound
for the Hausdorff distance (pair-wise distance between two sets) aδ between R0 and
Rδ. Using this disctance we obtain [LG09]

R[0;δ](X0) ⊆ CH (R0(X0) ∪Rδ(X0))⊕ B(aδ) = Ω0 (2.3)

where B(aδ) is a ball of radius aδ and ⊕ denotes the Minkowski sum.
Concluding these method we

1. discretize time for time intervals of length δ
2. use isomorphic behavior under addition of time intervals to obtain a recur-

rence Equation (2.1)
3. bloat with convex object to adapt to trajectory behavior of first segment Ω0 (2.3)
4. evaluate the recurrence Equation (2.2) until T

As such we do not have information about the exact behavior of the flow between the
segments, but we can make assumptions for the safe over-approximation. In Figure 2.1
we illustrate the behavior. On x-axes we see the component x2, on the y-axes x1.
Beginning with the initial set described as a convex set the geometrical representation
is seen in Figure 6.1b. After solving the ordinary differential equation ẋ = Ax+ b the
flow is evaluated for a predetermined length as shown in Figure 6.1c. Intersecting the
flow of that location with an invariant described as a half-space shown in Figure 2.1c,
we check for bad states as demonstrated in Figure 2.1d. Then guards are checked
as shown in Figure 2.1e. If the reset has to be applied, the reset is applied with
the guard-satisfying set in Figure 2.1f. The whole process is repeated for every time
step and any reachable location with states to compute inside. Note, that for any
set representation it has to be ensured that the required set operations are over-
approximating to be able to prove safety of a system.

In the next subsections the properties of the components will be formalized.

2.2.1 State representation
The requirements for states has a close relation to the over-approximation of the flow
or derivative. For now let us only assume they are presented by a convex set. Later we
will discuss why the use of operations that preserve convexity eases the computation
of the sets.

Definition 2.2.3 (Convex set[Ste04]). A set C ⊆ Rn is convex iff the line segment
between any two points in C lies in C, that is if for any x1,x2 ∈ C and any θ with
0 ≤ θ ≤ 1,θ ∈ R:

θx1 + (1− θ)x2 ∈ C (2.4)

where x1,x2 ∈ Rn.

An example of a convex set can be seen in Figure 2.2a. When we find two points,
for which not all points on the straight line between them reside within the set, the
set is not convex. An example for an non-convex set can be seen in Figure 2.2b.
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(a) Convex set. (b) Non convex set.

Figure 2.2: Set properties.

Convex sets have several properties, from which we will discuss set operations that
preserve convexity. These include intersection and mapping with affine functions and
the combination of both.

Definition 2.2.4 (Intersection [Ste04]). If S1 and S2 are convex, then S1 ∩ S2 is
convex.

Definition 2.2.5 (Affine function [Ste04]). Affine functions f : Rm → Rm have the
form

f(x) = Ax+ b

where A ∈ Rm×n, x ∈ Rm, b ∈ Rm.

An affine function can be seen as a affine mapping from one convex set to another
convex set and therefore preserves convexity. These include scaling and translation
of the set.

2.2.2 Flow

The flow has in general the form of a system of linear time invariant first order
ordinary differential equations with constant external input for which we will show
the properties. Starting with a general definition we obtain:

Definition 2.2.6 (System of n first order differential equation [TP12],p.394).

∂x1
∂t

= f1(x1,x2, . . . ,xn,t)

... =
...

∂xn
∂t

= fn(x1,x2, . . . ,xn,t)

where f1, . . . ,fn are each functions of x1,x2, . . . ,xn,t define a common set S which is
called a system of n first order equations.

It needs to be noted that any higher order functions can be reduced to first order
differential equations not necessary easing the solution of that system [TP12]. We
can refine Definition 2.2.6 adding the property of the system to be linear and time
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invariant to denote the differential equation as

ẋ =


∂x1

∂t
...

∂xn

∂t

 =

ẋ1...
ẋn

 and

ẋ1...
ẋn

 =

f1 = a11x1 + . . .+ a1nxn
...

fn = an1x1 + . . .+ annxn

 (2.5)

Annotating the property of the system to be linear and time invariant we obtain

Definition 2.2.7 ((Autonomous) linear time invariant(LTI) system of n first order
ordinary differential equation(ODE) [TP12],p.394).

ẋ = Ax (2.6)

where ẋ are the derivatives of x with size n and A is of size n× n, n ∈ N.

whereas time invariant means that the system behavior is invariant in time, i.e.
the behavior from some initial point is invariant to the initial time. Ordinary means
continuously derivable and a system consequently means a set of multiple equations.
By requiring our system be real-valued and permitting the system of ODEs to have
constant external input we obtain:

Definition 2.2.8 (Linear time invariant(LTI) system of first order ODEs with con-
stant external input).

ẋ = Ax+ b, A ∈ Rn×n, b ∈ Rn (2.7)

When we refer to systems of ODEs, we will use Equation (2.7). Later for applying
eigenvalue decomposition (EVD) further requirements will be made and as such this
method works only for a subclass of Hs. One general approach for solving these
system is to adjust A to compute the matrix exponential which we will discuss in the
next section.

Matrix exponential

Let our system be given with a ordinary differential equation as in Equation (2.7).
Then we can rewrite the system introducing a new dimension for constants. As such
the matrix describing the system A is of quadratic size:

Definition 2.2.9 (System of ODEs reformulated).

ẋ =


a11 . . . a1n b1
...

. . .
...

...

an1
... ann bn

0 0 0 0

x,A ∈ R(n+1)×(n+1), (2.8)

and it must hold xn+1(t = 0) = xn+1(t) = 1

As this is a linear, constant coefficient differential equation with the solution need-
ing to satisfy the initial condition

x(t = 0) = x(0)

the solution is given by x(t) = etAx(0) where we can define etA by the convergent
power series [MVL78]
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Definition 2.2.10 (Matrix exponential).

etA =

∞∑
i=0

tiAi

i!
= I +

tA

1
+
t2A2

2!
+ . . . (2.9)

For the computation of the matrix exponential one should take into consideration
the generality, reliability, stability accuracy, efficiency, storage requirements, ease of
use and simplicity of a possible implementation. Generality hereby means that the
method is applicable to a wide range of matrices, reliability the recognizability of
the error amount, stability the absence for perturbation of the inherent underlying
problem, accuracy as error introduced by truncating infinity series of terminating
iterations, efficiency as computational effort used for a problem instance in an order
of magnitude. An optimal algorithm taking all these properties into account is not
known [MVL78].

One general method for computing the matrix exponential is scaling and squaring
using Padé approximation. It requires multiple matrix multiplications depending
on the accuracy and computational effort conditions [Hig05]. The influence of the
squaring operation is described as potentially dangerous. This means that the result of
squaring can be unexpected although sanity checks can be used [Hig05]. Nevertheless
scaling and squaring using Padé approximation is a popular method to compute the
matrix exponential due to the generality and simplicity.

Scaling and squaring exploits that eA = (e
A
σ )σ for A ∈ Cn×n, σ ∈ C and the fact

that eA can be well approximated for small ||A|| by a Padé approximation. Choosing

σ = 2s for Aσ being norm of order 1, approximating e
A
2s ≈ rkm( A2s ), rkm being the Padé

approximant to the exponential, we take eA ≈ rkm( A2s )2
s

, where the approximation is
formed by s repeated squaring [Hig05].

Here rkm = pkm
qkm

defines polynomials of at most k and m degree which we get by

pkm(x) =

k∑
j=0

(k +m− j)!k!

(k +m)!(k − j)!
xj

j!
, qkm(x) =

m∑
j=0

(k +m− j)!m!

(k +m)!(m− j)!
(−x)j

j!
(2.10)

for which pkm(x) = qkm(−x) is reflecting the property 1
ex = e−x of the exponential

function [Hig05].
Note: In [Hig05] the author assumes that the smaller the number of squaring is,

the more accurate the result becomes.
Errors are taking into account by a safe over-approximation as in the following

scheme [LG09]:
Solution for Definition 2.2.7 have the form

x(t) = etAx(t = 0)

Such as that we can use the recurrence equation [LG09]

Ωi+1 = eδAΩi (2.11)

And we can use the method explained in Section 2.2.2 for the computation.
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2.2.3 Invariants, guards and bad states

Invariants, guards and bad states are defined as polytopes. These are defined using
convex half-spaces. As such we get

Definition 2.2.11 (Polytope [LG09]). A polytope P is the bounded intersection of a
finite set H of half-spaces:

P =
⋂
h∈H

h (2.12)

An half-space is a set defined by a non-null normal vector n and a real value γ:

h = {x : x · n ≤ γ} (2.13)

Equivalently a bounded polytope P is the convex hull of finite set V of vertices:

P =

{∑
v∈V

avv : ∀v ∈ V, av ≥ 0 and
∑
v∈V

av = 1

}
(2.14)

The elements of V ∈ Rn are called the vertices of P.

Using Equation (2.14) we call the polytope V-polytope since the polytope is rep-
resented by its vertices. For Equation (2.13) we use the term H-polytope. Defining
the polytopes represented by a set of half-spaces, each half-space is represented by its
normal vector n and value γ. Normal vectors and corresponding values are therefore
collected in a matrix A and a vector b and we obtain P = {x : Ax ≤ b}, where ≤
must be interpreted component-wise[LG09]. Polytopes define convex sets and the in-
tersection of convex sets preserves convexity (Definition 2.2.4). Note, that, on having
information about the flow x(t), we could use x1(t), . . . , xn(t) to tackle a solution of
Ax(t) ≤ b of the condition as shown in Section 6.1.1. On using eigenvalue decompo-
sition (EVD) we have such information about x1(t), . . . , xn(t).

2.2.4 Resets

Resets are denoted in a different way as primed variables, since resets need to be
evaluated afterwards, but do not belong to the location of the flow anymore.

Let now an over-approximation Ωi of the flow R[i·δ;(i+1)·δ] for the ith discrete time
interval be convex. The invariant and the guard are defined as half-spaces and thus
define convex sets. As such the intersection of both with R[i·δ;(i+1)·δ] results in a
convex set.

For this convex set we can apply the reset defined as affine function (Defini-
tion 2.2.5) which is again convex.

Thus the initial set for the next flow computation is convex. We conclude that
the same methods can be used in the next flow.

2.3 Eigenvalue decomposition

The method explained in the this section will ease the computation (Section 3.2,Sec-
tion 3.3), error estimation (Section 3.5), refinement (Section 3.6), allows static and
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non-static, behavior analysis for input and allows deactivation of not needed compo-
nents (Chapter 6). Due to being approximative it is unclear, but wishful, if axioma-
tization in floating-point logics can be used.

Many applications in applied science and engineering require numerical solution
of the non-symmetric matrix eigenvalue problem [GvdV00]. These include power
system stability studies like electromagnetic oscillations as a common phenomenon in
power systems, optimal waveguides design in optical and optical integrated devices
and Navier-Stokes solvers [GvdV00].

The main problem we want to solve is the unknown influence on the propagation
of errors during time during the flow computation. For the matrix exponential the
error estimation per component x1, . . . xn for ongoing time t can be estimated. How-
ever we can not compute what component has which effect during ongoing flowpipe-
construction. As such the dimension wise error behavior or expectation can not be
given.

Therefore we will describe needed definitions and an example followed by our
implementation before applying the method.

Eigenvalue decomposition (EVD) is based on the eigenvalue problem which we
discuss in the following.

Definition 2.3.1 (Eigenvalue problem [GvdV00]). Let A ∈ Rn×n, n ∈ N, then the
determination of nontrivial solutions of

Av = λv

is called the eigenvalue problem.

A hereby is the input matrix, λ the eigenvalue and v the eigenvector. Rewriting
as characteristic Equation yields [MRS08]

det(A− λI)v = 0 (2.15)

Calculating the determinant of the system the result forms an n-order polynomial
equation in λ and can have at most n roots which are the eigenvalues of A.

Note, that the eigenvalues and eigenvectors can be complex. For simplicity and
technical reasons we let them be real-valued.

The fundamental theorem of Abel-Ruffini [Åżo00] states that finding a method
for the computation of the exact roots of a general polynomial of degree greater than
4 for a matrix of general structure is not possible and thus any general method is
necessary iterative. Iterative means hereby that an exact result can not be obtained.

Since the Eigenvalue problem can be reduced to this theorem one has to identify
fast converging iterative algorithms with accurate results [GvdV00]. It is further
important to bear in mind the structure of the matrix for choosing the appropriate
method for computing the eigenvalues and eigenvectors [GvdV00].

The general procedure is to reduce the inputs to simpler forms yielding eigenvalues
and eigenvectors directly, for example a diagonal form. Hereby the idea is is to use
orthogonal operators as often as possible to reduce perturbation effects [GvdV00]. For
a more deep understanding literature is recommended, since describing perturbation
theory and other underlying methods is out of scope for this work [ABB+99, GvdV00,
MRS08].
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Theorem 2.3.1 (Matrix decomposition/diagonalization theorem [MRS08]). Let A ∈
Rn×n with n linear independent eigenvectors. Then there exists an EVD

A = V ·D · V −1, D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . 0

0 0 0 λn



where the columns of V are the eigenvectors of A and D is a diagonal matrix whose
entries are the eigenvalues of A. If the eigenvalues are distinct, then this decomposi-
tion is unique and the eigenvalues are sorted.

We use the term diagonalizable for matrices satisfying Theorem 2.3.1. Note that
we have V ·V −1 = I, (V −1)−1 = V where I is the identity matrix, since V is invertible.

Using Theorem 2.3.1 we can simplify the matrix exponential [MVL78, Method
14.Eigenvectors,p. 21] as

eA·t = V · eD·t · V −1 = V · diag(eλi·t) · V −1 (2.16)

where diag are the diagonal entries of D. This results from writing the n equations
of Avj = λjvj , j ∈ {1, . . . ,n} as AV = V D and using the non-singularity of V .

Hereby it is essential to take round-off errors into account. This holds especially for
eigenvalues: Eigenvalues being close together could mean either multiple eigenvalues
or very close, but different, eigenvalues. We expect for this computation method,
depending on the problem instance, to be more exact. The reasoning behind this will
be the more accurate power series ex,x ∈ R for which x is scalar.

Example

Let [HS74, p. 6]

ẋ = Ax =

(
5 3
−6 −4

)(
x1
x2

)
Then A can be decomposed as

A = V ·D · V −1 =

(
1 −1
−1 2

)(
2 0
0 −1

)(
2 1
1 1

)
By Equation (2.16) using the initial value x(t = 0) we obtain(

x1(t)
x2(t)

)
=

(
1 −1
−1 2

)(
e2t 0
0 e−t

)(
2 1
1 1

)(
x1(0)
x2(0)

)
(2.17)

Note that the scaling of V might be different as we will see in the following. For
example using scipy-framework of python used for plotting of Figure 2.3 yields the
result

A = V ·D·V −1 =

(
0.70710678 −0.4472136
−0.70710678 0.89442719

)(
2 0
0 −1

)(
2.82842712 1.41421356
2.23606798 2.23606798

)
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Figure 2.3: Meaning of Eigenvalue Decomposition.
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Figure 2.4: Overview of traces reflecting behavior.
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Illustrating the behavior of Equation (2.17) in Figure 2.3 we can see in Figure 2.3a
the vector field as the derivative of each component ẋ(t) for a small time step t = 0.01
showing us the result of the system behavior if we start on any point x1,x2 on the
arrow lines. Without the transformation matrices V,V −1 the derivative of the flow is
defined for t = 0.01 on each point as

x(t) =

(
x1(t = 0)
x2(t = 0)

)
·
(

2
−1

)
·
(
e2·0.01

e0.01

)
thus showing the system behavior for a small time step(the derivative for t = 0 would
be 2 and −1 and thus linear). Using transformations Equation (2.16) we obtain the
equation given in the Figure description.

If we plot the scaled eigenvectors v1,v2 in Figure 2.3b we see that they separate
the state space of the vector field which reflects the result behavior. We further see
that no line arrow of the vector field crosses the eigenvectors.

Choosing traces which reflect this behavior are plotted as

x(t) = V −1
(
e2t

e−t

)
V x(t = 0)

also do not cross the eigenvectors in Figure 2.3c. We see that on transformation
with V in Figure 2.3d the transformation is a bijective mapping of different spaces
either spanned by the Euclidean space as in Figure 2.3c or as space spanned by v1,v2
as in Figure 2.3d. The space spanned by the eigenvectors (in here v1,v2) we call
eigenspace.

For a complete overview in Figure 2.4 we show the comparison where all traces
are plotted in Figure 2.4a and see for this case that v1 rotates and scales our system
clockwise whereas v2 does the same anticlockwise for which the origin is the reference
point of both systems.

In Figure 2.4b we restrict time t > 0 since we can not go back in time and
the hybrid automaton H is discussed for forward reachability analysis in here only.
The traces next to v2 change considerably and our traces start now at exactly the
starting points x(t = 0) = (±10,± 30). One can imagine that the linear combination
needed to compute the green line is linear independent as can be seen already in the
computation and as we show later in Section 3.1 and Section 3.2.

Application

Computation of the EVD is obtained by using the EigenSolver of the Eigenvalues
module from eigen3 [GJ+10]. It is noted that the reference implementation was
adapted from JAMA which is based on EISPACK and is similar to the method pre-
sented in the Handbook on Linear Algebra by Wilkinson and Reinsch. Computing
the condition by singular value decomposition we do checks for a condition-limit and
quick feasibility checks for ±Nan and ±∞. For the computation of the exponential
function ex,x ∈ R we use the C++ implementation of the exponential function which
is compiler, runtime and processor dependent.
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Chapter 3

Eigenvalue Decomposition in
Hybrid Systems Reachability
Analysis

In this chapter we describe the application of eigenvalue decomposition (EVD) on the
flows of the locations of a given hybrid automaton. Afterwards we show methods for a
transformation of the hybrid automaton H to reduce computational effort. Thereafter
we discuss the result of the transformation with the computation of x1(t), . . . , xn(t)
as the dimensions being linear independent in the eigenspace. Subsequently we apply
the result on the forward reachability analysis method. Hereby we start with one
dimension and construct the over-approximation of discrete time steps. Consequently
we combine the dimensions using the convex hull of a n-dimensional box the and the
previous variable valuations(in each dimension) as point. We give estimations for the
error of the over-approximation and a possible refinement method. Concluding this
chapter we indicate the differences to the described reachability analysis algorithm.

3.1 Transformation

We know how to compute the flow of form ẋ = Ax of each location. On us-
ing EVD(Equation (2.16)) we obtain

eA·t = V · eD·t · V −1 = V · diag(eλi·t) · V −1 (3.1)

for diag being the diagonal entries of a diagonal matrix D.
The idea is to utilize the underlying idea of decomposing A = V DV −1. Thereby

we use the already shown transformation from the Euclidean space to the eigenspace
as shown in Figures 2.3c and 2.3d for which xeig = V −1x was called x in eigenspace
(of the flow). This transformation can done by applying V or V −1.

To this regard we extend the flow to be more accurate and of form ẋ = Ax+b, A ∈
Rn×n, b ∈ Rn and apply the transformations for the other components of the H
analogical.

The underlying goals are
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1. ease the flow computation to exponential functions (with addition and multi-
plication): x(t) = V · diag(eλi·t) · xeig, xeig := V −1x or some related form

2. compute everything in the eigenspace(no transformation into the Euclidean
space of the other components): (eλi·t) · xeig, xeig := V −1x

This will also ease abstraction and error control for which the latter was our original
intention.

Flow transformation

ẋ = Ax+ b Flow

ẋ = V DV −1x+ b EV D (3.2)

V −1ẋ = V −1V︸ ︷︷ ︸
I

DV −1x+ V −1b lin. Trafo with V −1 (3.3)

V −1ẋ = DV −1x+ V −1b set xeig := V −1x (3.4)

ẋeig = Dxeig + beig (3.5)

Let A be diagonalizable(Theorem 2.3.1). Then we decompose A (3.2). Afterwards
we do a linear transformation (3.3), which is a bijective mapping, with V −1. Due
to the same space of ẋ,x we can fix xeig = V −1x (3.4) and call xeig as x in the
eigenspace (3.5) (of the correlative flow).

Condition transformation

Ax ≤ b Condition

AV V −1x ≤ b use V −1, V

AV xeig ≤ b set xeig := V −1x, beiganalogical (3.6)

Conditions describe guards, bad states and invariants. For a condition transfor-
mation we use the fact that V · V −1 = I as identity matrix and set V −1x equally to
xeig.

Reset transformation

x′l2 = Axl1 + b Reset

= AVl1V
−1
l1
xl1 + b use V −1, V

= AVl1x
eig
l1

+ b set xeig := V −1x (3.7)

V −1l2
x′ = V −1l2

AVl1x
eig
l1

+ V −1l2
b lin. Trafo with V −1l2

(3.8)

xeig′
l2

= V −1l2
AVl1x

eig
l1

+ V −1l2
b set xeig′

l2
:= V −1l2

x′l2 (3.9)

l1: ẋ
eig
l1

l2: ẋ
eig
l2

V −1l2
AVl1x

eig
l1

+ V −1l2
b

Figure 3.1: Edge:
l1 source location: ẋeig

l1
= Dxeig

l1
+beig

l2 target location: ẋeig
l2

= Dxeig
l2

+beig

For the reset transformation we remind that the reset is assigned to a edge con-
taining the source location l1 and the target location l2. In Figure 3.1 the behavior
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with relevant components is sketched. For each location we can get the EVD compo-
nents V,D,V −1. As notation we write x′l2 and xeig

l1
to make clear to which locations

these variables are assigned and use the same principle for V,V −1 Using Vl1V
−1
l1

= I
where I is the identity matrix and Vl1 denotes V in the source location l1 we can
set x to the eigenspace as xeig (3.7). Since on computation of the reset x′ is set to
x(t = 0), we can directly use the transformation into the eigenspace of the target
locations flow (3.8). As result we obtain xeig′

l2
resulting in (Equation (3.9)) which is

also depicted in the Figure.
Consequently we can, aside from the initial set and components transformation,

do all computations in the eigenspace and only require the transformation into the
original space for obtaining results for example for plotting.

Consequently we define the H in the eigenspace (of the flows):

Definition 3.1.1 (Hybrid automaton H with respect to the eigenspace of the flow).
Let the flow matrix A of each location in the H be diagonalizable (Theorem 2.3.1) as

A = V ·D · V −1, V,D,V −1 ∈ Rn×n

and the H be defined as Definition 2.2.1 aside from the following:

1. Flow: Loc → PredVar∪ ˙Var specifies for each location its flow or dynamics
and is of form ẋ = Dx+ b,D ∈ Rn×n, b ∈ Rn.

2. Inv: Loc → PredVar assigns to each location an invariant
which is of form AV x ≤ b, A ∈ Rm×n, b ∈ Rn,m ∈ N.

3. Edge ⊆ Loc × PredVar × PredVar∪Var′ is a finite set of discrete transitions or
jumps. For a jump (l1, g, r, l2) ∈ Edge, l1 is its source location, l2 is its target
location, g specifies the jumps’s guard, and r its reset function, where primed
variables represent the state after the step. We require g to be of form AV x ≤
b, A ∈ Rm×n, b ∈ Rn,m ∈ N and r to be of form x′ = V −1l2

AVl1 + V −1l2
b, A ∈

Rn×n, b ∈ Rn.
4. Init: Loc → PredVar assigns to each location an initial predicate

whereas the initialization is form PredVar = V −1p, p ∈ Rn for any input

where V,D,V −1 is assigned to that location of the flow. Then we call this H in the
eigenspace of the flow (H in the eigenspace).

Note In general the EVD may result in complex valued terms V,D,V −1 ∈ Cn×n,
but for this work we do not take oscillating behavior into account. Thus we obtain
real-valued V,D,V −1.

For bad states we will use

(AV )x ≤ b (3.10)

where (AV ) mean that we compute the matrix multiplication on transformation of
the H . We call Equation (3.10) as bad state in the eigenspace of the flow. On
space limitations, since we may need to save for each node a different (AV ) matrix
combination,

A · V · x ≤ b
may also be used although needing a transformation x := V · x in every check.

In Algorithm 2 we can see how the transformation is implemented. Data struc-
tures and operations are simplified and we refer to l1 as source and l2 as target
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Algorithm 2 Transformation of hybrid automaton H .

1: function Transformation(H ,V,D,V −1) . Given H , bad states B
2: for all loc ∈ Loc do . Each loc ∈ Loc has its own V,D,V −1
3: for λi ∈ D.asVector() do . Exponential function information gathering
4: calculate exp-type . see next section
5: calculate xinhom . see next section
6: end for
7: for all inv ∈ Inv do . Invariant transformation
8: invnew := inv.A · V . inv : Ax ≤ b⇒ invnew : AV xeig ≤ b
9: end for

10: for all guard ∈ Guard do . Guard transformation
11: guardnew := guard.A · V . guard : Ax ≤ b⇒ guardnew : AV xeig ≤ b
12: end for
13: for all bad ∈ Bad do . Bad states transformation
14: badnew := bad.A · V . bad : Ax ≤ b⇒ badnew : AV xeig ≤ b
15: end for
16: for all reset ∈ Reset do . Reset transformation
17: resetnew.A := V −1l2

· reset.A · Vl1 . inv : x′ = Ax+ b

18: resetnew.b := V −1l2
· reset.b . invnew : x′ = V −1l2

AVl1x
eig + V −1b

19: end for
20: important-values := {V,D,V −1,exp-type,xinhom}
21: end for
22: Hnew = (Locnew,Flownew,Invnew,Edgenew,Guardnew,Resetnew)
23: return Hnew, important-values,Badnew
24: end function

location. The idea is to use V,D,V −1 from the EVD to modify the H . Before the
transformation of the H the diagonal matrix D is evaluated and the inhomogeneous
component of the flow computed which we will explain in the next section. Thus
we are transforming invariants, guards, bad states and resets returning the new H
satisfying Definition 3.1.1.

3.2 System behavior

Let us now look at the flow computation given in Equation (3.5):

ẋi
eig = λi · xeig

i + beigi , i ∈ {1, . . . ,n}

For this equation the solution is

xeig
i (t) =


beigi · t+ xeig

i (t = 0) ,λi = 0

eλi·t · (xeig
i (t = 0) +

beigi
λi

)︸ ︷︷ ︸
xhom

− beigi
λi︸︷︷︸

xinhom

,λi 6= 0

whereas we call xhom the homogeneous part of the solution and xinhom the inhomo-
geneous part of the solution.
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Letting x be in the eigenspace and describing the behavior in Figure 3.2 we can
see 4 different cases of behavior which we call constant, linear, diverging and
converging. In every Figure we have on the x-axes time and on the y-axes x1(t) the
variable valuation over time.

On constant behavior shown in Figure 3.2a the variable defining valuation does
never change over time, since λ1 = 0, b1 = 0. Thus x1(t) = x1(t = 0). In comparison
to this for linear behavior in Figure 3.2b x1(t) has as gradient b1 from the initial
value x1(t = 0) where λ1 = 0.

Apart from that diverging and converging behavior have an influence from λi
not being zero and are described by λi as exponential function evaluation eλ·t with
the inhomogeneous component − b1

λ1
and the scaling factor. This scaling factor is

described as difference between the initial value x(t = 0) and the inhomogeneous
component x1(t = 0) + b1

λ1
. Hereby in Figure 3.2c we have diverging behavior for

λ1 = 1 for which on x(t = 0) = b1
λ1

= 2 we would have constant behavior as shown by
the red line. Above this line we see the trace for x1(t = 0) = 3 resulting in divergence
to +∞ in monotonic continuous manner, whereas below the red line on x1(t = 0) = 1
we see divergence to −∞. Thus we can generalize that from any value x(t = 0) for
which x(t = 0) < − b1

λ1
any reachable value v has to be v ≤ x(t = 0). Accordingly we

have on x(t = 0) > − b1
λ1

any reachable value v as to be v ≥ x(t = 0). Further we note
that the starting point is here elementary for the behavior and reachable set due to
infinite man successor values on divergence.

Figure 3.2d shows converging behavior for which we have λ1 = −1. We can
generalize that from any value over time the convergence point is reached and all
values are within interval spanned by the starting point and the convergence point.
The convergence point is fixed as the inhomogeneous component shown before in
red. This has implications for the system design: Any control system needs negative
eigenvalues to be stable. Thus we have 4 cases to distinguish. Let us use the following
conventions for the adaption of the type to choose the computation method (linear
or exponential) as shown in the transformation in Line 4-Line 5 of Algorithm 2.

exp-typei :=


convergent λi < 0

divergent λi > 0

constant xinhomi = 0,λi = 0

linear xinhomi 6= 0,λi = 0

(3.11)

Note that the conversion of D could be used once on transformation and saved in a
different manner since D does not change.

3.3 Flow computation

Using the information presented in the previous sections we are now able to compute
a safe over-approximation of the set of reachable states for a given H as follows:

From the EVD we obtain for each dimension an exponential function which is,
in the eigenspace, independent from the other dimensions. Thus it is sufficient to
compute dimension-wise before combining the results.

In the following the over-approximation for one time step δ is illustrated. We call
the starting time i · δ and the ending time (i + 1) · δ for an interval. This results in
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Figure 3.2: Possible component behavior.
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describing a closed time interval [i·δ, (i+1)·δ] for any of the i ∈ {0, . . . , N} time steps.
Hereby (N · δ),N ∈ N is our bounded time for the reachability analysis. Further let
[i ·δ, (i+1) ·δ] define our i-th time step. We let x1(t), . . . , xn(t) depict the exponential
functions in the eigenspace.

For each of the ith time step we do the following operations to compute the over-
approximation assigned to that time step:

1. Compute ∂
∂tx1(i) as derivative of the exponential function of x1

2. Compute the linear function ∂
∂tx1(i)︸ ︷︷ ︸

linear increase

· δ︸︷︷︸
time step

+ x1(i)︸ ︷︷ ︸
starting value

for a linear map-

ping with starting point x1(i) and call the result xlinear(i+ 1)
3. Decide if behavior of x1 is linear or nonlinear
4. On being nonlinear : compute x(i + 1) = (x(i = 0) + b

λ ) · eλ·((i+1)·δ − b
λ as the

solution of the exponential function
5. On being linear : compute x(i+ 1) = b · (i+ 1) · δ + x(i = 0)
6. Construct an interval for x(i+ 1) and xlinear(i+ 1) remembering which element

was x(i + 1)(combining intervals, due to linear independence of components,
results in a n-dimensional box)

7. Compute the convex hull of x(i) and the interval(analogical to a flowpipe seg-
ment)

An illustration of this method for one dimension is given in Figure 3.3. On x-axes we
show the time t and on y-axes x(t) as variable valuation during time. The complete
method is depicted in Figure 3.3a. Starting on time t = 0 · δ the linear map with
linear increase ∂

∂tx(0) = 0 and time length δ from starting value x(t = 0) is computed
and the result is the red point shown in the Figure. Since the flow is nonlinear with
λ = 1 the exponential function is computed with x(1) ≈ 3.72. The one-dimensional
box(interval) can be here seen as the blue line at t = δ = 1. As for the complete over-
approximation depicted in red we create the convex hull of the box and the previous
state of the time interval beginning x(t = 0). The whole method is repeated for 3
time steps with length δ = 1 and the result is shown in Figure 3.3b. That figure also
depicts that only the vertices which describe the edges by the solid lines are saved for
further processing.

In Figure 3.3a one step of the abstraction is given. In red the point constructed
by the linear function evaluation of δ is highlighted which is the lower point for the
box. For the upper point of the box the exponential function evaluation of that time
step is used which lies around (1,5).

From this flat box blue line the convex hull to the initial point of that time interval
given as x(t = 0) is constructed to obtain the abstraction for this time interval and
is shown by the red set.

This process is repeated on every time step as shown in Figure 3.3b resulting in
convex sets.

For the derivative computation we use x(t) as the exponential function for which
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Figure 3.3: Abstraction.

we can compute the linear function g(t):

x(t) = xhom · eλ·t − xinhom (3.12)
∂x(t)

∂t
= xhom · λ · eλ·t (3.13)

g(t) = a · t+ b, a =
∂x(t)

∂t
, b = xhom · eλ·t − xinhom (3.14)

g(t) = xhom · λ · eλ·t · t+ xhom · eλ·t − xinhom

g(t) = xhom · eλ·t · (1 + λ · t)− xinhom (3.15)

xhom is the homogeneous component of x(t) and xinhom the inhomogeneous compo-
nent of x(t) in one dimension as shown in (3.12). Obtaining the derivative of the
exponential function (3.13), we can insert the derivative (3.14) to compute the linear
function g(t) (3.15). Hereby we could also save the exponential term eλ·t for the use
in the next segment to speed up the computation. In the current implementation it is
evaluated twice in every time step i (once fore xi and once for xlinear). Note, that we
could use the same idea as the recurrence equation (Equation (2.2)) at cost of lower
accuracy.

Combining every dimension of the n-dimensional H with a possible exponential
trace, we obtain in Figure 3.3b n-dimensional boxes. We can justify the geometry
by the eigenspace of line segments constructing the boxes. In the eigenspace each
dimension is linear independent which means that the axes are orthogonal to another
as depicted in Figure 2.3d. Since x1(i · δ), . . . xn(i · δ) is constant valued in that
dimension for the abstraction as depicted in Figure 3.3b we can construct boxes in
the eigenspace.

3.4 Flowpipe
Since we know the flow computation induced by each point of the initial set, we want
to apply this method on flowpipe-construction. To this regard we use the convexity
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of the initial state. Due to this property and the fact that the systems’ dynamics we
analyze are defined as systems of linear time invariant ordinary differential equations,
it is sufficient to compute the flow of the vertices and to construct the convex hull of
the reachable states. For this purpose we can use the vertices of the convex initial set
as xm(t = 0) for which m is the count of vertices. We remember from what vertices
xj(t = 0), j ∈ {1, . . .m} the current state xj(t = i · δ) for a discrete time was induced.

Thus we repeat the following steps for every of the j vertices of the initial convex
set for the resulting convex set R[i·δ;(i+1)·δ].

1. Use xj(i · δ) and xj(t = 0) to compute the convex hull of the box and xj(i · δ),
the box, xj((i+ 1)δ) as in Section 3.3

2. store mapping of xj(i+ 1) to xj(t = 0)
3. construct the convex hull

This process is repeated until the time horizon is reached or other stop-conditions
are satisfied. For the purpose of plotting we need to transform the convex set of ith
time step R[i·δ;(i+1)·δ] from the eigenspace to the Euclidean space for which we can
use its vertices.

3.5 Errors

Having presented how to compute the over-approximation of the underlying flow and
its behavior we are giving an overview of error sources. Afterwards we discuss the
error estimation of the flow. In the next section we present an adaption method.
Errors of using flow-pipe construction as geometrical representation for this method
can be classified into [LG09, SÁC+15]:

1. errors from the eigenvalue decomposition (EVD)
2. numerical errors
3. exponential function evaluation
4. approximation errors
5. reduction errors

The error from the eigenvalue decomposition (EVD) is induced due to the EVD
being approximative. Numerical errors describe any computational errors induced
by inexact number representation. The exponential function as approximative power
series method also causes errors. For the approximation error generated by the convex
hull construction we will present calculation methods hereafter. Reduction errors can
be classified as simplification for the state representation, i.e. over-approximation to
reduce complexity.

Wrapping effects can be classified as another error source. These errors are intro-
duced by accumulated over-approximation during flowpipe-construction via the recur-
rence equation (see Equation (2.11)). Hereby the errors are generated by accumulated
and propagated the process of over-approximation for the recurrence equation. This
method, due to having exact information about the state valuation x(t), should not
be affected by wrapping effects.

Let us now shortly give an overview for the possible error from the EVD.
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3.5.1 Error from the eigenvalue decomposition

To this regard the LAPACK user guide gives an example [ABB+99, p.106,error bounds
for the nonsymmetric eigenproblem] for eps = 2−24 ≈ 5.96e−8 as float(32bit) and

A =

 58 9 2
186 383 96
−912 −1551 −388


Hereby the approximative error estimation of the eigenvalues is around 3.1 · 10−1

whereas the estimation for the eigenvectors is around 2 · 10−4. The true errors are
different with an approximate factor of 3 for eigenvalues and eigenvectors.

double as 64-bit has 2−53 ≈ 1.11e−16 accuracy and thus a margin of around 10−2

and 2 · 10−5 may be expected, although this should be verified and proper analysis is
needed.

3.5.2 Approximation error

We present the error induced by the over-approximation of the flow and how to
compute it for each segment. Therefore we can do the error estimation component-
wise in the eigenspace.
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Figure 3.4: Error of flow abstraction.

Figure 3.4 shows both possible error cases to distinguish for our model. Non-
convex side The error on the non-convex side εnon-convex can be computed in the
following scheme:

εnon-convex = |g(i · δ)− x(i · δ)| (3.16)

for which g(i · δ) and x(i · δ) are given as the box of the abstraction explained in Sec-
tion 3.3. This behavior is illustrated in Figure 3.4a for which in red the maximal error
for the segment is shown. Hereby x(i · δ) refers to x(t = 2) as the exact state from
the flow and g(t = 2) refers to the linear function at t = 2.
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Convex side For the convex side of the function the error can be computed in
the following way:

1.

use g(t) = a · t+ b as linear function (3.17)

use a =
x(s · δ)− x((s− 1) · δ)

δ
(3.18)

b = g(t)− a · t = x(s · δ)− a · δ (3.19)

2. solve ∂x(t)
∂t = a

a =
∂x(t)

∂t
(3.20)

a = λ · xhom · et·λ (3.21)

et·λ =
a

λ · xhom (3.22)

t · λ = log(
a

λ · xhom ) (3.23)

t =
log( a

λ·xhom )

λ
(3.24)

3. εconvex = |g(t)− x(t)|

The underlying idea is to compute the tangent of the exponential function x(t) for
the maximum distance to the linear function g(t).

We use the starting and end point of the time interval to construct a linear function
g(t) (3.17). The derivative is obtained by the gradient triangle of both values and
the constant time interval δ (3.18). The constant b can be computed by inserting one
point (3.19).

Next we can compute t for the maximal error as depicted in Figure 3.4a in red as
shown in Equation (3.20) with solution in Equation (3.24).

The maximal error then can be computed by the difference of the exponential and
linear function for that time t as shown in Figure 3.4a.

So the dimension wise error computation is feasible and we may be able to use V
to obtain the dimension wise error in the original system with an additional factor.

3.6 Error refinement

Now we discuss a principle of fast possible error refinement. Useful cases are adaption
for resets or when bad states are reachable by the current over-approximation. The
underlying idea is to use already computed sets. To this regard we extend the inner
bound of the i + 1 segment going through the same point as the ith set to intersect
the tangent from the ith segment for reducing the error. For every computed time
interval [i · δ, (i+ 2) · δ], i ∈ {0, . . . N − 2} with N as bounded number of time steps,
we can safely refine the convex set R[i·δ;(i+1)·δ] computed by the i-th time step.

As shown in Figure 3.5a the over-approximation of states is given as dashed
thick lines. We can construct linear functions from the vertices of the convex set
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Figure 3.5: State refinement.

we computed in Section 3.3. The principle for this was explained in Equation (3.17)-
Equation (3.19). Thus we can obtain linear functions shown as red lines in Figure 3.5a.
Solving the equations depicted in the Figure in

g1(t) = g2(t) (3.25)
a1 · t+ b1 = a2 · t+ b2 (3.26)

b1 − b2 =
a2
a1
· t (3.27)

t =
a2
a1

(b1 − b2) (3.28)

we get the result t in Equation (3.28). Using g1(t) we can use that component to
refine the state as shown in Figure 3.5b.

3.7 Modification of forward reachability analysis
The complete algorithm is too long to explain in detail. Thus we give an overview
stating out essential modifications. Bear in mind that the given algorithm is executed
with an initial state and the location depending where the control mode of the state
is. Transformation of the initial states into the eigenspace and the transformation of
the H are assumed on calling Algorithm 3.

We start with initial checkups, i.e. enabled transitions (with possible jump execu-
tion) or invariant intersections, prepare data structures and compute the first segment
plotting it. After checking the bad states we enter the loop.

The loop is executed for bounded time T with time step δ and terminates, if no
new set to evaluate can be found. On each time step i we do the following operations:

1. check for transitions
2. compute the segment in the eigenspace
3. intersect the segment with the invariants
4. plot the according segment in the original space by using the linear transforma-

tion with V
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5. check the bad states for the segment

So for our implementation only data structures, the plotting routine and the com-
putation routine were changed in comparison to the implemented forward reachability
algorithm.

Algorithm 3 Forward reachability algorithm.
1: function computeForwardReachability
2: initialCheckups()
3: computeFirstSegment()
4: intersectInvariant()
5: plotFirstSegment()
6: checkBadStates()
7: while !noFlow and currentLocalTime <= timeBound do
8: checkupsforTransitions()
9: computeEigenSegment ()

10: intersectInvariant()
11: plotsegment := V ·segment
12: plot ( plotSegment )
13: if checkBadStates( segment ) = true then
14: output Error and quit computation
15: end if
16: end while
17: end function
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Chapter 4

Results

In this section we show results obtained by applying our presented method on a
set of typical benchmarks for hybrid systems reachability analysis. In the following
models and results from our attempts to utilize eigenvalue decomposition (EVD) for
reachability analysis are depicted.

4.1 Bouncing ball
The bouncing ball models a falling ball with energy loss during collision with the
ground. The flow is defined as change of height ẋ1 and depends on the acceleration
ẋ2 in a constant way with factor 1. The acceleration ẋ2 hereby is subject to the
earth’s gravity b2 = −9.81. For the ball should hold that its height does not go below
0 as invariant Inv . Further as Jump it is encoded that: if it reaches position x1 = 0
and speed x2 ≤ 0 the guard is satisfied. Thus the reset can be applied. For the reset
Reset its position stays at x1 = 0 and the speed is set to 3

4 of the original speed
in the opposite direction. Thus the ball jumps. It is to show that the bad state at
x1 = 2, x2 ∈ [7,10] is not reached.

The flow of the model of a bouncing ball can be described as system of ODEs

ẋ =

(
0 1
0 0

)
︸ ︷︷ ︸

A

+

(
0

−9.81

)
︸ ︷︷ ︸

b

(4.1)

which is not diagonalizable per se.
Analyzing A we see that the system is Hamiltonian. meaning that whatever energy

is inside, it does not get increased or decreased (can also be oscillating) as can be seen
on the zero entries a11,a21,a22. Let us now use xi for elements dependent of x1, yi
for elements dependent of x2. Thus we have ẋ1 = 0, ẋ2 = y, ẏ1 = 0, ẏ2 = 0 as slightly
misuse of notation (x-values as first row ordered, y-values as second row ordered).
More formally a Hamiltonian system is a system of the form [HS74]

ẋi =
∂H

∂yi

ẏi = −∂H
∂xi

, i ∈ {1, . . . ,n}
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Thus it must hold ẏi+ ẋi = 0. Assuming the statement holds, we can insert the other
component to compute the derivative:

∂

∂x︸︷︷︸
to compute

(
∂xi
∂y

)︸ ︷︷ ︸
ẋi

∂

∂y︸︷︷︸
to compute

(
∂yi
∂x

)︸ ︷︷ ︸
ẏi

∂xi
∂x

=
∂0

∂x
+
∂y

∂x
= 0

∂yi
∂y

=
∂0

∂x
+
∂0

∂x
= 0

And thus the system is Hamiltonian. Such systems are in general not diagonalizable.

Further note, that since we can write ẋ2 = −9.81, x2 is independent from x1. We
can use x2(t) as external input and thus would have a zero-matrix left. x2(t) = −9.81·t
and thus ẋ1(t) = x2(t)⇒ x1(t) = − 1

2 · 9.81 · t2.

For the model of an adapted bouncing ball, which is diagonalizable, we add small
perturbations to A. Small perturbations, which should not change the overall sys-
tem behavior, can be seen physically as friction or measurement inaccuracies. The
obtained system needs to be adapted with care to not include inconsistent behavior.
As such we can describe the model as Figure 4.1.

l
ẋ = v

v̇ = −9.81

e

Figure 4.1: Model of bouncing ball.
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Flow(l) : ẋ =

(
0.001 1
0.001 −0.002

)
︸ ︷︷ ︸

A

+

(
0

−9.81

)
︸ ︷︷ ︸

b

(4.2)

Inv(l) :
(
−1 0

)︸ ︷︷ ︸
A

x ≤ 0 (4.3)

Guarde :
(
1 1

)︸ ︷︷ ︸
A

x ≤ 0.001 (4.4)

Resete : x′ =
(
1 −0.75

)︸ ︷︷ ︸
A

x+
(
0
)︸︷︷︸
b

(4.5)

Unsafe


−1 0
1 0
0 1
0 −1


︸ ︷︷ ︸

A

x ≤


2
2
10
−7


︸ ︷︷ ︸

b

(4.6)

Init x =

(
10
0

)
,

(
10.2

0

)
︸ ︷︷ ︸

convex hull

(4.7)

for which we let the input set to be x1 ∈ [10,10.2],x2 ∈ 0.
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Figure 4.2: Bouncing ball.

In Figure 4.2 we can see the result for which the computation stops as expected
due to bad states being reached. Numerical issues(maybe related to the flow/missing
tests/behavior specification) on resets required the use of rational number types to
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increase precision.

4.2 Rod reactor

The model called rod reactor has flows of form

Flow ẋ =

0.1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

A

+

−56
1
1


︸ ︷︷ ︸

b

(4.8)

Flow ẋ =

0.1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

A

+

−60
1
1


︸ ︷︷ ︸

b

(4.9)

Flow ẋ =

0.1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

A

+

−50
1
1


︸ ︷︷ ︸

b

(4.10)

(4.11)

and thus we can ignore the zero-rows since x2,x3 has no influence on x1. Consequently
we obtain D = 0.1 = λ as only eigenvalue with V = 1 = V −1. Due to time horizon
the adaptions in the tool could not be properly tested and thus we did not obtain
a result. Nevertheless we give the needed underlying equation to solve for linear
terms in Section 6.2. Adaption for linear terms in A for use of the EVD are partly
implemented and also presented later on.

4.3 5D-switch

The model called 5D-switch is an artificial system created by Matlab with a dense
matrix A for the flows. On a first attempt to compute the EVD we cared about
real-valued entries for V and D and got an overflow for V −1 and further on analysis
that V ∈ Rn×n is not diagonalizable (Appendix A.1.1).

If we used complex numbers, we got results (Appendix A.1.2). HyPro does not
yet support complex numbers and an implementation would be too much effort for
this work. Both eigenvalue problem algorithms return ordered eigenvalues in D as
expected. Due to Theorem 2.3.1 it must hold that iff the eigenvalues are distinct the
decomposition is unique.

eigen3 :


−0.833031 + 13.8562i
−0.833031− 13.8562i
−0.775644 + 2.3416i
−0.775644− 2.3416i
−0.34315 + 0i

 Matlab:


0.0475 + 0.1571i
0.0475− 0.1571i
0.1098 + 0.0000i
−0.0000 + 0.0000i
0.0000 + 0.0000i


It remains unclear why eigen3 computes as eigenvalues and thus no different de-

composition (aside from different scaled eigenvectors) should exist, but Matlab com-
putes as corresponding eigenvalues and thus allows multiple possible decompositions.
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4.4 Filtered oscillator
The filtered oscillator is an oscillating system and as such the eigenvalue decompo-
sition is expected to have complex eigenvalues. Comparing only the eigenvalues of
Matlab and eigen3, they look very similar. As such on using the matrix decompo-
sition theorem Theorem 2.3.1 it must hold that iff the eigenvalues are distinct the
decomposition is unique. So for the same eigenvalues it now has to hold that the
eigenvectors are scaled or the same. For the first eigenvector of both decompositions
we get (Appendix A.2)

eigen3 :


−0.622926− 0.105451
0.160441− 0.471523
−0.220308 + 0.140846
0.0945424 + 0.495532
−0.169779 + 0.0328653

 Matlab:


−0.6318 + 0.0000i
0.0795− 0.4917i
−0.1937 + 0.1756i
0.1759 + 0.4728i
−0.1619 + 0.0607i


The eigenvectors are with a factor of 2 and discrepancy of around 0.05 the same.

Further analysis is needed for a conclusive judgement. We can however outline that
the implementations differ considerably.
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Chapter 5

Conclusion

In this work we presented forward reachability analysis for hybrid automata using
flowpipe-construction in combination with eigenvalue decomposition (EVD). To this
regard we transformed the components of the hybrid automaton H to simplify the
flow computation as independent first order ordinary differential equations. Verifying
the transformed hybrid automaton did not add much to the algorithm. Further we
avoided retransformations and did every computation in the eigenspace. Possible
sources of errors were listed. A routine to compute the approximation error, which
is not affected by the wrapping effect, is shown. To this regard an simple adaption
method for the error is presented. In the benchmarks the matrix property for the
system of being Hamiltonian as strong hypothesis for non diagonalizability was made.
On adaption results were obtained. For linear terms the correct adaption to use EVD
was out of time due to this work, but partially implemented and the theoretical
approach is given. Comparing Matlab and eigen3 [GJ+10] yielded unexpected results
to study.

We identify three main obstacles to approach to make strong reasoning about the
general applicability:

1. error computation/estimation of the EVD (Section 3.5)
2. linear terms adaption for the external input which is yet fixed to be con-

stant (Section 4.2)
3. complex number computation and adaption of reachability algorithm for oscil-

lating behavior (Section 4.4)

For the case of non-diagonalizability of matrices: Adaption methods for systems to
be able to apply EVD i.e. adding intentional small errors may be another approach,
but less accurate and possibly not desirable.

Taking error into account for a safe over-approximation is essential, since eλ·t
increases exponentially and small pertubations of λ can have big effects for large t.
Further v1, . . . , vn spanning the eigenspace is erroneous, so each transformation adds
certain error for which an estimation is needed to take these into account.

Our algorithm only works for linear time-invariant systems with constant exter-
nal input. So far recognition of linear components x as 0-rows of A with b 6= 0 and
adjustment for the EVD was implemented. Nevertheless the computation algorithms
for linear terms needs to be adapted in theory and implementation of our method.
This adaption for linear input will be discussed in Section 6.2. For possible retrans-
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formations bijective mappings between the eigenspace and the Euclidean space might
be needed to the use of the computations in the eigenspace.

It is interesting to note that matrix exponential may over-approximate possible os-
cillating behavior for which an analysis between a use of matrix exponential and EVD
would be of interest. Oscillating behavior of systems as common phenomenon like in
two benchmarks can not yet be analyzed precisely.

Decoupling of system parts is not yet implemented besides the use of the EVD.
EVD adjusts the components x1, . . . xn to be linear independent solvable. Using the
same idea we can say, that x1 can be decoupled from x2 if there exists no circular
dependency of components such that x1 has an influence on x2 and x2 has an influence
on x1. This means that the matrix has according zero-entries. The simple case of
only zero entries has been shown in Section 4.2.

Set representations. Different representations could be combined with the
half-spaces orientation in the eigenspace. By this we aim at constructing over-
approximations of the set representation with facets orthogonal to the half-spaces
for a possible easier intersection computation. Half-spaces are used for the represen-
tation of guards, invariants and bad states.

Optimizations Currently the exponential term eλ·t is evaluated twice. Further
there exist algorithms for computing the exponential function ex,x ∈ Q on rationals.
We do not know of implemented algorithms for computing the EVD for rationals.
However this is done only on the construction of the hybrid automaton, so we expect
minor effects of this improvement.

Discussion In the following we shortly discuss what caught our attention when
writing this work.

Tool comparison Implemented mathematical methods in terminology and/or
reference are not well presented depending from tool to tool. Thus a quick estimation
of use cases for other fields might not be feasible without experts knowledge.

Computational methods for system types Different methods and possible
adaption methods for different classes of matrices and systems may be considered,
since they can simplify the solution for a system of known form in a lot of ways.
Hereby a better categorization of linear systems can be of use.
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Future work

In this chapter possible future work is presented. We distinguish hereby between
methods applicable due to eigenvalue decomposition (EVD) and matrix adaptions for
the EVD.

6.1 Methods based on eigenvalue decomposition
The hereby noted methods use

1. the linear independence of the component x(t) in the eigenspace,
2. the solution form of the exponential function for systems of one dimension for

constant external input
3. and the transformation property as bijective mapping between two continuous

spaces.

Let x(t),y(t) solution functions for the flow of an arbitrary location of an hybrid automatonH
in the eigenspace Definition 3.1.1. The approximations for discrete time i · δ,i ∈
{0, . . . ,N} construct boxes which lie next to each other as explained in Section 3.3
and Section 3.4. Then we can sketch Figure 6.1a for the underlying behavior of the
system and choose t freely to construct boxes not necessary being close together.
In Figure 6.1a the boxes are depicted in black dashed lines and we will refer to it on
explaining different methods. Remind, that x,y are orthogonal in the eigenspace as
shown in this Figure.

6.1.1 Pre-processing

By pre-processing we mean on changing of the control mode from one location to
another. Possibilities for pre-processing are for example approximation techniques
(to speed up computation) or disabling not needed computations.

Disabling not needed components Conditions describe guards, bad states,
invariants and form half-spaces:

Ax ≤ b,A ∈ Rm×n,b ∈ Rn

for which n is the dimension of the H and m the number of half-spaces. Describing
the computation more intuitively we can distinct two cases:
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1. The first depicts in Figure 6.1a the orange set for which we can over-approximate
the set as red box being orthogonal to the axis. For this box we can solve the
time as over-approximation to obtain a time interval t ∈ [tearly,tlate] for which
the flow valuation (dashed black boxes) intersects with the set.

2. On the second case we have the case of the blue straight line characterizing an
infinite set. Trying to solve the condition leaves us with equations of form

x1 + x2 + . . . = c, c ∈ R (6.1)

xt=0e
λx·t + yt=0e

λy·t . . . = c (6.2)

as sum of exponential function to approximate for the system equations be
denoted as x,y, . . . for homogeneous systems and x1,x2, . . . the components of
one half-space. The only efficient method for a very broad over-approximation
from our perspective is to use the fact, that the eigenvectors spanning the space
of the components x,y, depicted in Figure 6.1a and shown in red and blue
in Figure 6.1b ,are never crossed as sketched for one dimension in Figure 6.1c.

Behavior analysis The underlying method is to divide the state space in the eigenspace
by b

λ .
b
λ depicts the different traces not crossing the eigenvectors, which is sketched

for one dimension in Figure 6.1c. b is the system shift from the origin scaled by the
eigenvalue.

Example

V −1x =

(
2x1 x2
x1 x2

)
,
b1
λ1

= 1,
b2
λ2

= 0

⇒2x1 + x2 < 1
x1 + x2 < 0

⇒x2 < −x1
⇒2x1 − x1 < 1

⇒x1 < 1

⇒x2 < −1

Since the transformation is bijective, we may be able to use the bounds for the Eu-

clidean space by V ·
(

1
−1

)
. However the issue here may be to identify the correct

relation for x1,x2.
Note, that we can fix the derivation by solving xt=0− b

λ , thereby fixing our deriva-
tion for the system and do approximation of time t for different runs. Using convexity
properties (on the abstractions of that runs) may yield interesting results.

6.1.2 Convergence and divergence method

In the following we discuss the idea for determining convergence for the input x(t = 0).
This can be done by solving the exponential functions and transform the result back
from the eigenspace to the Euclidean space. Therefore solve

xeig
i (t = 0) R − bi

λi
, R ∈ {< , ≤ , = , ≥ , >}, i ∈ {1, . . . ,n}



50 Chapter 6. Future work

since the factor is inside the exponential function given as

x(t) = (xi(t = 0) +
bi
λi

)eλi·t − bi
λi

The result is is a mixed equation system for which we can obtain x as x := V · xeig

with V ·xeig R V · − b
λ . This holds, since V,V

−1 is a bijective mapping. By using the
λ one should be able acquire more insights about the system in an automatized way.

Explaining this more graphically we solve the

6.2 Taking linear terms into account
The EVD is approximative and thus in general erroneous. For linear behavior in A
which we can identify by 0rows, we would like to adjust A beforehand.

Constant terms Constant values xi = x(t = 0) = R only need to be evaluated
once in the reachability algorithm on location time t = 0. We can use constant terms
to modify b of the other components, if they depend on that term.

Example

A =

(
1 1
0 0

)
, b =

(
1
0

)
(6.3)

A =
(
1
)
, b =

(
1 + x2(t = 0)

)
(6.4)

⇒ x(t) =

(
et . . .

x2(t = 0)

)
(6.5)

Linear terms On taking into account b for linear components, we may find an
upper time-bound as shown in the following.

Example Let one condition be given as

Ax ≤ b ≡
(

1 0
0 1

)(
x1
x2

)
≤
(

1
2

)
and

ẋ =

(
1 0
0 0

)(
x1
x2

)
+

(
0
1

)
Then we get

x(t) =

(
x1(t = 0)e1·t

t · 1 + x2(t = 0)

)
and can modify the condition matrix by inserting the linear term:

x(t) =

(
x1(t = 0) 0

0 t+ x2(t = 0)

)
≤
(

0
1

)
Thus we get 0 + t + x2(t = 0) ≤ 1 ⇒ t ≤ 1 − x2(t = 0). This equation is solvable
for any given x2(t = 0). Thus we obtain a t for which it is admissible to use for the
according semantic of the condition(guard, invariant or bad state) on H execution.
Obviously this example was chosen to make the idea look good, but one can think of
identifying linear terms to solve those equations for finding time bounds.

Idea Adaptions for crossing out zero entries from the system matrix A work as fol-
lowing: The basic idea is to remember zero rows as being linear or constant removing



6.2. Taking linear terms into account 51

Algorithm 4 Adaption of transformation for linear terms.

1: function Transformation(test) T := I . T transformation matrix regarding
linear terms, I identity matrix

2: for all loc ∈ Loc do
3: countLinear,exp-type := countLinearAndRemember(loc.flow.A)
4: if A has only linear terms then
5: V,V −1 := I,I
6: D := 0 . . . 0
7: else if A has linear and nonlinear terms then
8: Anonlin,bnonlin := nonlinear components(A,b)
9: VEVD,DEVD,V

−1
EVD := EigenvalueDecomposition(AQ,condition-limit)

10: V,D,V −1,A,b := adjustComponents(Anonlin,bnonlin,VEVD,DEVD,V
−1
EVD)

11: else . A has only nonlinear terms
12: V,D,V −1 := EigenvalueDecomposition(AQ,condition-limit)
13: end if
14: b := V −1 · b
15: end for

16: for each component i ∈ n: xinhomi :=


b
λi

,convergent or divergent
b ,linear
0 ,constant

17: end function

them for the EVD reserving storage adapting V,D,V −1. V gets for the component
as entry 1, D 0, since the space of that component does not need to be changed(it
is independent from the other components due to the zero entries) and et·0 = 1. For
any 0-row i the solution is

xi(t) = bi · t+ x(t = 0)

Example Let now ẋ =

(
1 1
0 0

)
+

(
b1
b2

)
.

Then we can insert 1 · x2 in A12 to reduce to

ẋ1 = x1 + b2 · t+ (b1 + x2(t = 0)) (6.6)

for which the solution needs to be computed and where we could possibly still compute
the EVD.

Generalizing the idea we can insert any linear terms factored into the matrix
system, because the linear term as it only has zeroes in its row does not depend on
other terms.

So far the computation of the EVD without linear terms has been implemented,
but the flow computation needs to be adapted. In Algorithm 4 the according adaption
routine for the three cases of only linear, some linear or only nonlinear term in A is
shown. Hereby Algorithm 5 adapts the according matrix A,b adapting A,b,V,D,V −1
accordingly.
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Algorithm 5 Adapting matrices of EVD for linear terms.

1: function insertNonLinearAndClassify(A,b)
2: if exp-type of component i (as row or column) of A is linear write it to Anonlin
3: if exp-type of component i (as column) of b is linear write it to bnonlin
4: return Anonlin,bnonlin
5: end function
1: function adjustLinearAndEVDcomponents(VEVD,DEVD,V

−1
EVD,A.size,bnonlinear)

2: V,V −1 := I,I
3: D := 0 . . . 0
4: if exp-type of component i (as row or column) of A is nonlinear write it to A
5: if exp-type of component i (as column) of b is nonlinear write it to b

6: if exp-type of component i (as column) of A is linear
...

7: return V,D,V −1,b
8: end function



Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide (Third Ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1999.

[GJ+10] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[Gla14] Florian Glatki. A zonotope library for hybrid systems reachability analy-
sis. Bachelor’s thesis, RWTH Aachen, 2014.

[GvdV00] Gene H. Golub and Henk A. van der Vorst. Eigenvalue computation in
the 20th century. Journal of Computational and Applied Mathematics,
123(1):35 – 65, 2000. Numerical Analysis 2000. Vol. III: Linear Algebra.

[Hen00] Thomas A. Henzinger. The theory of hybrid automata. In M. Kemal
Inan and Robert P. Kurshan, editors, Verification of Digital and Hybrid
Systems, pages 265–292, Berlin, Heidelberg, 2000. Springer Berlin Heidel-
berg.

[Hig05] Nicholas J. Higham. The scaling and squaring method for the matrix
exponential revisited. SIAM Journal on Matrix Analysis and Applications,
26(4):1179–1193, 2005.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and
System Sciences, 57(1):94 – 124, 1998.

[HS74] Morris Hirsch and Stephen Smale. Differential equations, dynamical sys-
tems, and linear algebra / Morris W. Hirsch and Stephen Smale, volume 1.
Academic Press, 04 1974.

[HyP16] HyPro authors. HyPro User manual, 12 2016. https://ths.rwth-
aachen.de/research/projects/hypro/.

[LG09] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics. Theses, Université Joseph-Fourier - Grenoble I,
October 2009.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.



54 Bibliography

[MVL78] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute
the exponential of a matrix. SIAM Rev., 20(4):801–836, 1978.

[SÁC+15] Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Goran
Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski. Current chal-
lenges in the verification of hybrid systems. In Mohammad Reza Mousavi
and Christian Berger, editors, Cyber Physical Systems. Design, Modeling,
and Evaluation: 5th International Workshop, CyPhy 2015, Amsterdam,
The Netherlands, October 8, 2015, Proceedings, pages 8–24, Cham, 2015.
Springer International Publishing.

[SS16] David J Smith and Kenneth GL Simpson. Chapter 1 - the meaning and
context of safety integrity targets. In David J Smith and Kenneth GL
Simpson, editors, The Safety Critical Systems Handbook (Fourth Edition),
pages 3 – 23. Butterworth-Heinemann, fourth edition edition, 2016.

[Ste04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, March 2004.

[TP12] M. Tenenbaum and H. Pollard. Ordinary Differential Equations. Dover
Books on Mathematics Series. Dover Publications, Incorporated, 2012.

[Åżo00] Henryk ÅżoÅĆÄĚdek. The topological proof of abel-ruffini theorem.
Topol. Methods Nonlinear Anal., 16(2):253–265, 2000.



Appendix A

Results

A.1 5D-switch

A.1.1 Using real valued V,D,V −1

ẋ =


−0.8047 8.742 −2.4591 −8.2714 −1.864
−8.6329 −0.586 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
1.8302 1.9869 −2.4539 −1.7726 −0.7911


︸ ︷︷ ︸

A

·x+


0
0
0
0
0


︸ ︷︷ ︸
b

(A.1)

Computing the EVD we obtain with eigen3 for trying to use the real part of the
eigenvalue decomposition

A =


−0.622926 −0.622926 −0.195294 −0.195294 0.158023
0.160441 0.160441 0.0534487 0.0534487 0.705065
−0.220308 −0.220308 0.640774 0.640774 0.194979
0.0945424 0.0945424 −0.161656 −0.161656 0.635978
−0.169779 −0.169779 −0.153012 −0.153012 0.18822


︸ ︷︷ ︸

V


−0.833031
−0.833031
−0.775644
−0.775644
−0.34315


︸ ︷︷ ︸

D

(A.2)


−inf −inf inf inf inf
inf inf −inf −inf −inf

1.6425e+ 16 0 −3.76525e+ 15 1.15578e+ 16 −4.89421e+ 16
−1.6425e+ 16 −0 3.76525e+ 15 −1.15578e+ 16 4.89421e+ 16
−0.572693 0 0.536238 0.97385 1.9477


︸ ︷︷ ︸

V−1

(A.3)

A.1.2 Using complex valued V,D,V −1

Letting the numbers to be complex we obtain for V,D,V −1:
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Both eigenvalue problem algorithms return ordered eigenvalues in D as expected.
Due to Theorem 2.3.1 it must hold that iff the eigenvalues are distinct the decomposi-

tion is unique. It remains unclear why eigen3 computes as eigenvalues


(−0.833031,13.8562)

(−0.833031,− 13.8562)
(−0.775644,2.3416)

(−0.775644,− 2.3416)
(−0.34315,0)


︸ ︷︷ ︸

D

and thus no different decomposition (aside from different scaled eigenvectors) should

exist, but Matlab computes


0.0475 + 0.1571i
0.0475− 0.1571i
0.1098 + 0.0000i
−0.0000 + 0.0000i
0.0000 + 0.0000i


︸ ︷︷ ︸

D

as corresponding eigenvalues and thus allows multiple possible decompositions.

A.2 Filtered oscillator

The first flow matrix A of the filtered oscillator is given by

A =


−0.8047 8.742 −2.4591 −8.2714 −1.864
−8.6329 −0.586 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
1.8302 1.9869 −2.4539 −1.7726 −0.7911

 (A.8)

Comparing only the eigenvalues of eigen3:

D =


−0.833031 + 13.8562i
−0.833031− 13.8562i
−0.775644 + 2.3416i
−0.775644− 2.3416i

−0.34315 + 0i

 (A.9)

they look similar in Matlab. As such one would expect to get almost the same eigen-
vectors.
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