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Abstract

Hybrid systems are systems that exhibit continuous and discrete behaviour.
Cyber-physical systems for instance, in which digital controllers interact with
a continuous environment are a common example of a hybrid system. Since
such systems are often safety critical, a proper verification of their correctness is
needed. Hybrid automata, as an abstraction of a hybrid system, are used as a
model for formal verification via reachability analysis.

There are various tools that implement reachability analysis algorithms for
hybrid automata. In industry tools such as Matlab are used for prototyping
and development. The tool Cora, which is implemented in Matlab, has shown
in various industrial applications that this is a sensible criterion for industrial
developers. In the context of this thesis a Matlab-wrapper of HyPro was
developed. Our evaluation shows that the increased cost of wrapping HyPro
can be mitigated by the increased speed of the underlying C++ implementation
of HyPro.
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Chapter 1

Introduction

Systems of sensors and controllers are called embedded control systems (ECS). Their
main area of application are so called cyber-physical systems (CPSs) where multiple
embedded computers communicate via a network to control and monitor a physical
environment. Examples of such systems are modern transportation systems, or medical
and factory equipment. A set of sensors can monitor a number of different physical
quantities, such as temperature, pressure, density, velocity, etc. This information can
be used to recognize dangerous situations, such as overheating of a liquid, leak in a
tank, or a collision. In order to counter react in case of such situation, actuators can be
used to change the physical environment and so avoid an accident, or at leas minimize
the damage. Therefore, CPSs can improve our safety, minimize the number of system
failures, and decrease the repair costs if an accident cannot be avoided. Moreover,
they can increase the efficiency, as the number of interrupts caused by failures can be
decreased, and a number of tasks originally executed by humans can be automated
and therefore often accelerated. This improvements, however, come with the price of
high expectations on CPSs. It is expected that the systems work reliably in every
situation even though it is expected that the tasks executed by them get more and
more complex [CPPAV06, LS16].

In order to meet this expectations, the number of sensors and controllers in CPSs
increases constantly. The effects of the increased intelligence of such systems can be
observed on the example of vehicles. According to World Health Organization (WHO)
1.25 Million people die every year in a traffic accident and about 50 Million get injured.
Although this numbers may appear huge, in Germany, as well as in other Western
nations, the number of deaths has fallen by 66 percent since 1993, whereat the distance
traveled has increased by 23 percent. The reason for this tendency are cars which are
provided with intelligent driving assistance systems, which aim to minimize human
failures [dAe15, Flo93].

Since sensors forward the information to a computer that can process the in-
formation and send further information to an actuator that can properly react to
changes in an environment, the digital (discrete) world directly interacts with the
physical (continuous) world. Such systems are called hybrid systems, as they exhibit
continuous and discrete behaviour. The modelling and verification of hybrid systems
is challenging, as both behaviours have to be considered jointly in order to capture all
possible behaviours of the system. However, in context of CPS, discrete and continuous
behaviours have different properties. On the one hand, discrete systems are usually
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Figure 1.1: Hybrid systems combine discrete and continuous dynamics. This illustration
is taken from [Ábr12].

predictable and deterministic as they proceed according to a sequence of clearly defined
instructions. On the other hand, continuous behaviour is far less predictable as the
physical environment is influenced by a number of external factors which can cause
unpredictable behaviour of the system [dAe15].

Since CPSs contain an enormous number of details, a direct analysis of their
behaviour is infeasible. Therefore, an abstract model of the system is needed that can
disregard unnecessary details. Subsequently formal methods can be used to analyze
the properties of interest of the model [Alu11, DLV11].

Another important point is the fact that the time a CPS needs to solve a certain
task is not a question of performance but, in most cases, a question of correctness.
Therefore, if a CPS needs too long time to react to a certain circumstance, this
behaviour is rated as a system failure [dAe15].

Last important point about CPSs, is the fact that physical processes usually are a
sum of multiple different sub-processes. Therefore, CPSs are usually compositional,
i.e., they consist of a network of embedded computers where each is responsible for a
different sub-process. This additionally increase the complexity as the information
captured by one sub-process may also be important for another sub-process, thus, the
components need to communicate in order to exchange the information. Moreover,
the delivery times of the information may also be time-critical [DLV11].

All the challenges that CPSs have to overcome, induced the need of efficient and
reliable verification methods in order to proof the correct functionality. One possible
way to proof the correctness of such systems is via formal verification of the hybrid
automaton that models the system. Mathematically, discrete systems can be modeled
by transition systems, while continuous behavior can be described using ordinary
differential equations (ODE). Hybrid automata combine the two modelling paradigms
[Alu11]. A hybrid automaton is an extended finite state transition system where
each location corresponds to a different discrete state of the system. Moreover, each
location is augmented with dynamic behaviour for that state, given as an ODE. Figure
1.1 illustrates the idea. A formal definition of hybrid automata will be presented in
the next chapter.

Usually, for each CPS there exists a set of specifications that must be fulfilled.
These specifications define a set of bad states, i.e., states the hybrid automaton should
not reach. Hence, executions of an automaton that models a correctly working system,
never reaches any bad state [Alu11].

The idea of safety specifications and bad states can be illustrated on the example of
an airbag system. A correctly working airbag system will always open the airbags on
time, disregarding how fast the driver was accelerated against the steering wheel. An
exemplary bad state is the state where the driver hits the steering wheel and the airbag
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is closed. Another bad state is the situation when the airbag was opened although
the car did not crash. In order to prove that these two situations never happen, one
can prove that the hybrid automaton, modelling the airbags system, never reaches the
two bad states. Verification of such specifications can be done via reachability analysis
and will be explained detailed in the next chapter.
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Chapter 2

Preliminaries

The aim of this chapter is the introduction of preliminary information needed for the
rest of this thesis. The chapter consists of three sections. In the first part of this
chapter, the syntax and semantics of hybrid automata will be introduced. The second
section deals with the reachability analysis of hybrid systems. In the last part of this
chapter the most prominent state set representations as well as the most important
set operations will be introduced.

2.1 Modelling Hybrid Systems

Hybrid automata are used to model the behaviour of hybrid systems. They extend
transition systems [BK08] by continuous transitions. The following definition specifies
the syntax of hybrid automata

Definition 2.1.1 (Syntax of Hybrid Automata ([ACH+95])). A hybrid automaton
(H) is a tuple H = (Loc,Var ,Lab,Trans,Flow , Inv , Init) consisting of seven compo-
nents that are defined as follows.

• Loc is a finite set of locations.

• Var is a finite set of real-valued variables. A valuation ν is a function that
assigns a real-value ν(x) ∈ R to each variable x ∈ Var . The set of all valuations
is denoted by V .

A state is a pair (l,ν) consisting of a location l ∈ Loc and a valuation ν ∈ V . The
set of all states is denoted by Σ.

• Lab is a finite set of synchronization labels that contains the stutter label
τ ∈ Lab.

• Trans is a finite set of edges called transitions. Each transition t = (l, α, µ, l′)
consists of a source location l ∈ Loc, a target location l′ ∈ Loc, a synchronization
label α ∈ Lab, and a power-set µ ⊆ V 2 that defines resets and guards. A transition
is enabled if for the current valuation of variables ν there exists a µ ∈ V 2 such
that µ = (ν, ν′). The current valuation ν is then reset to ν′ after taking the
transition. Moreover, it is required that for each location l ∈ Loc, there is a
stutter transition of the form (l, τ, Id , l) where Id = {(ν, ν) ∣ ν ∈ V }.
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• Flow is a labeling function that assigns a set of flows to each location l ∈ Loc.
Each flow is a function from the non-negative reals R≥0 to V. It is required
that the flows of each location are time-invariant, i.e., for all location l ∈ Loc,
flows f ∈ Flow(l), and non-negative reals t ∈ R≥0, also (f + t) ∈ Flow(l), where
(f + t)(t′) = f(t + t′) for all t′ ∈ R≥0.

• Inv is a labeling function that assigns an invariant Inv(l) ⊆ V to each location
l ∈ Loc.

• Init⊆ Σ is the set of initial states.

An execution step, denoted by →, is either a discrete or a continuous step, since
hybrid automata can exhibit discrete and continuous behaviour. The two types of
steps are defined by the semantics of a hybrid automaton.

Definition 2.1.2 (Semantics of Hybrid Automata ([ACH+95])). The semantics
of a hybrid automaton H = (Loc,Var ,Lab,Trans,Flow , Inv , Init) is given by an oper-
ational semantic consisting of two rules, one for the discrete instantaneous steps and
one for the continuous time steps.

1. Discrete step semantics

(l,α,µ,l′) ∈ Trans (ν,ν′) ∈ µ ν ∈ Inv(l) ν′ ∈ Inv(l′)

(l,ν)
αÐ→ (l′, ν′)

Rulediscrete (2.1)

2. Time step semantics

f ∈ Flow(l) f(0) = ν f(t) = ν′ t ≥ 0 f([0,t]) ⊆ Inv(l)

(l,ν)
tÐ→ (l,ν′)

Ruletime (2.2)

A discrete step, denoted by
αÐ→, corresponds to taking a discrete transition ε =

(l,α,µ,l′) ∈ Trans, so the control location and the variables valuation are updated
as defined by µ. A time step, denoted by

τÐ→, changes the valuation of the variables
according to the flow of the current location. A discrete step can only be taken if the
current values of the variables can satisfy the guard of the desired transition. A time
step can only be accomplished if the invariant of the current location is satisfied by
the current variables valuation, the valuation after taking the time step and all the
time between the two points in time [ACH+95].

A run π of a hybrid automaton H is a sequence of states σ0 → σ1 → σ2 → . . . where
σi = (li, νi), li ∈ Loc, νi ∈ V for i ≥ 1 and σ0 = (l0, ν0), l0 ∈ Init , ν0 ∈ Inv(l0). A state σ
is reachable in H if and only if there exists a run of H starting in an initial state of H
and leading to σ [ACH+95].

A run π is time divergent if the run is infinite and the sum over all time steps
∑i≥0 ti is also infinite. Moreover, a hybrid automaton H is called non-Zeno if there is
no time divergent run containing infinitely many discrete steps [ACH+95].

Figure 2.2 illustrates an example of a hybrid automaton modelling a simple car.

Example 2.1.1 (Hybrid Automaton). Consider the situation illustrated in Figure
2.1. The left car should be modelled by a hybrid automaton. For this purpose it is
assumed the the car driving ahead (the right one) drives with a constant velocity vc
and the distance d between the two cars is larger then a critical distance dc. Figure 2.2
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Figure 2.1: Situation modelled by the hybrid automaton illustrated in Figure 2.2.

v = 0 ∧
d > dc

acc

v̇ = a1
ḋ = vc − v

d ≥ dc

idle

v̇ = 0
ḋ = vc − v

d ≥ dc

brake

v̇ = −a2
ḋ = vc − v

v ≥ 0

d ≥ dc

d > dc

Figure 2.2: Hybrid automaton modeling a simplified version of a car.

shows the corresponding hybrid automaton. The left car can either accelerate, brake
or do nothing. Therefore, the hybrid automaton has the three locations acc, brake,
and idle respectively. The quantities of interest are the velocity v of the car and the
distance d between the car and the car driving ahead.

Initially the car is accelerating. This is depicted by an arrow pointing to the location
acc that has no predecessor location. The initial value of the velocity is zero and the
distance to the next car is greater than the critical distance dc. During the acceleration
the car changes its velocity according to some constant acceleration a1. The distance
change corresponds to the difference between the velocity of the left and right car.
Therefore, ḋ is set to vc − v. The car can accelerate only as long as the distance is
greater than dc. Thus, the invariant d ≥ dc is needed. Once the invariant is violated
the car has to brake. Since braking should be allowed any time, the transition from
acc to brake has no guard. While braking the velocity decreases with the deceleration
a2. The distance change remains the same as in acc. The control is allowed to stay
in the location brake as long as the velocity is greater than zero. The location has
two outgoing transitions, one with the target location acc and the other with the target
location idle. On the one hand, after braking it is again allowed to accelerate but if
and only if the distance d is greater than dc. On the other hand, if the car neither
brakes nor accelerates it switches to the idle state. In this location only the distance
changes. In the real world, the velocity would of course change due to, e.g., fraction,
but here it is neglected. The control is allowed to stay in idle as long as the distance
d is greater than dc. The same is required by the guard of the outgoing transition with
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Figure 2.3: Example of parallel composition of two hybrid automata.

the target location acc.

Due to the fact that many systems are compositional, the parallel composition of
hybrid automata is introduced now.

Definition 2.1.3. Parallel Composition of Hybrid Automata ([Hen00]) Consider
two hybrid automata H1 = (Loc1,Var ,Lab1,Trans1,Flow1, Inv1, Init1) and H2 =
(Loc2,Var ,Lab2,Trans2,Flow2, Inv2, Init2). Their parallel composition H1∥H2 is
a hybrid automaton H = (Loc,Var ,Lab,Trans,Flow , Inv , Init) with

• Loc = Loc1 × Loc2,

• Lab = Lab1 ∪ Lab2,

• ((l1,l2),α,µ,(l′1,l′2)) ∈ Trans iff

– (l1,α1, µ1,l
′
1) ∈ Trans1 and (l2,α2, µ2,l

′
2) ∈ Trans2, and

– either α1 = α2 = α or α1 = α ∉ Trans2 and α2 = τ , or α1 = τ and α2 = α ∉
Lab1, where τ is the stutter label, and

– µ = µ1 ∩ µ2

• Flow(l1,l2) = Flow1(l1) ∩ Flow2(l2) for all (l1,l2) ∈ Loc,

• Inv(l1,l2) = Inv1(l1) ∩ Inv2(l2) for all (l1,l2) ∈ Loc,

• Init = {((l1,l2),ν) ∣ (l1,ν) ∈ Init1, (l2,ν) ∈ Init2}

An example of parallel composition of two hybrid automata is depicted in Figure
2.3.

2.1.1 Linear Hybrid Automata
There exist a number of different types of hybrid automata, that differ in the type of
dynamics and the type of the expressions defining guards and resets. The simplest
type of hybrid automata are timed automata [HKPV98]. Their flows are defined by
clocks which are real-valued variables evolving with the constant slope of one and
its values can only be reset to zero. A more expressive class of hybrid automata are
rectangular automata [HKPV98] whose flows are defined by intervals. The focus of
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this thesis lies on the super-class of rectangular automata - the linear hybrid automata
(LHA) whose dynamics is defined by linear ordinary differential equations. Sometimes,
one distinguishes between LHA I and LHA II. The dynamics of LHA I is defined
by constants while the dynamics of LHA II are defined by linear ODEs. This thesis
focuses on LHA II and for simplification they will be abbreviated with LHA [HKPV98].

Depending on how the flow of the linear hybrid automaton is specified, one can
distinguish between autonomous and non-autonomous hybrid system. The flow of an
autonomous LHA system is characterized by a system of linear ODEs of the following
form

ẋ(t) = A ⋅ x(t), where A ∈ Rn×n. (2.3)

The flow of a non-autonomous system additionally considers external input, i.e.
disturbance caused by the environment. For this purpose the Equation 2.3 is extended
by a time-dependent function u(t), the dynamics can be specified by the following
system

ẋ = A ⋅ x +B ⋅ u(t), where A ∈ Rn×n and B ∈ Rn×m. (2.4)

In order to compute the flowpipe, which is the topic of next section, the solution
of the Equation 2.3 is needed, i.e. a vector x(t) is sought which satisfies the initial
condition

x(0) = x0. (2.5)

The combination of Equations 2.3 and 2.5 is called initial value problem (IVP) and its
solution is given by the following equation [ASB07]:

x(t) = etA ⋅ x0. (2.6)

The expression et⋅A is called matrix exponential and can be approximated by the
following power series [ASB07]:

etA =
∞
∑
k=0

(tA)k
k!

= (tA)0
0!

´¹¹¹¹¹¹¸¹¹¹¹¹¶
=Id

+(tA)1
1!

+ (tA)2
2!

+⋯. (2.7)

2.2 Reachability Analysis of Hybrid Systems
In order to verify if certain properties are satisfied by a hybrid automaton, one has
to explore the reachable states of the hybrid automaton. This approach is called
reachability analysis and is discussed in this section in detail.

2.2.1 The Reachability Problem
In practice systems are often accompanied with specifications of properties that the
systems must fulfill. The question if a system actually fulfills the specification, is
analog to the reachability problem that concerns the question if a system can reach a
certain state, or a set of states, starting at a defined initial state.

Usually, two types of properties are considered: safety and liveness properties.
Informally speaking, safety properties are properties stating that "nothing bad will
happen". In terms of the car example, the property that the distance between two
successive cars is always greater than some critical distance, is an example of a safety
property. On the other hand liveness properties describe that "always something good
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will happen". An example is the property stating that whenever a car drives, it will
always stop at some point in time [BK08].

One possible way to verify if a system under consideration fulfills given properties,
is to perform the reachability analysis of the hybrid automaton that models the system.
The basic idea of this approach is the computation of reachable sets of states and the
examination if the sets of states intersect with bad sates, the states that do not fulfill
the properties of interest [Ábr12].

Unfortunately, the reachability problem is not decidable for all types of hybrid
systems. In [HKPV98] the authors show that reachability problem is only decidable
for few types of hybrid automata. Prominent examples are timed automata and
initialized rectangular automata [Ábr12]. Any relaxations concerning the initialization
of the automaton, result in undecidability of the system. Regrettably, the classes
of hybrid automata for which the reachability problem is decidable, are usually not
expressive enough. The reachability problem for linear hybrid automata is undecidable.
Fortunately, the bounded reachability, i.e., reachability within a predefined number
of steps and amount of time, is still decidable when the sets of states are over-
approximated [Ábr12].

2.2.2 Reachability Analysis of LHA

Over the past years, many different tools computing the reachable states of a hy-
brid automata have been developed. Some popular examples are Uppaal [LPY97],
SpaceEx [FLGD+11], Cora [AKA18], and Flow* [CÁS13]. All the tools compute
the reachable states based on the flowpipe construction. A single flowpipe corresponds
to the states that are reachable within a single location within an amount of time. Note
that the number of reachable states is infinite, as the states variables are continuous.
Therefore, the reachability analysis algorithm is based on the successive computation
of finite sets of states.

In order to guarantee the termination of the reachability analysis algorithm, one
can limit the time that should be spent on computing the reachable states (called time
horizon) as well as the number of discrete jumps (called jump depth). Since LHA have
non-linear behaviour, usually one computes an over-approximation of the reachable
states, in order to capture the overall dynamics. Note that the over-approximation has
an impact on the safety verification. If the over-approximated set of reachable states
does not violate the safety specification, then it can be safely assumed that the precisely
computed reachable states neither violate them. However, if the over-approximation
violates the specifications, one cannot guarantee that the precise flowpipe also violates
them [Ábr12].

This thesis focuses on the forward reachability analysis which basic idea is depicted
by Algorithm 1.

The set R collects all reachable sets of states while the set Rnew collects new sets of
reachable states within the next computation step. Initially, both sets are equal to the
set of initial states. The while-loop is only entered, if there are still some new states
to process and the termination condition termination_cond is not satisfied. The
termination condition is needed in order to guarantee the termination of the algorithm.
The condition can test if the jump depth or time horizon was already reached but
also detect if the current new states were already explored (i.e., if a fixed-point was
reached) [Ábr12].

In the while-loop each of the new state sets is processed individually. Once one
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Algorithm 1 Flowpipe Construction Based Forward Reachability Analysis.

Input: Hybrid automaton H
Output: Set of reachable states R

R ∶= InitH
Rnew ∶= R {the termination_condition is needed to guarantee the termination}
while Rnew ≠ ∅ ∧ ¬termination_cond do
let stateset ∈ Rnew
Rnew ∶= Rnew ∖ {stateset}
R′ ∶= computeFlowPipe(stateset)
R′′ ∶= computeJumpSuccessors(R′)
Rnew = Rnew ∪ (R′′ ∖Rnew)
R = R ∪R′ ∪R′′

end while
return R

state is non-deterministically selected, the flowpipe for the state can be computed, i.e.
all reachable states within the time horizon. Those states are stored in the set R′.
Next, the jump successors are computed by the function computeJumpSuccessors.
This function tests if the reachable states contained in the flowpipe intersect any
guards, and if so then the discrete jump successor states are added to the sets Rnew
and R.

A closer look at the flowpipe construction needs to be taken, as its computation is
not trivial. As already mentioned a flowpipe is a set Ω0, . . . ,Ωn of state sets that are
reachable within a defined amount of time. Each of the state sets Ωi represents the
set of reachable states within a time interval of size δ, called time step. There exist a
number of different state set representations, some of them will be discussed in the
next section. For autonomous systems (see Equation 2.3) the set of states reachable
from a state Ωi at time δ can be computed as follows

Ωi+1 = eδA ⋅Ωi (2.8)

where eδA is the matrix exponential defined in Section 2.1.1. Since the systems
considered here exhibit non-linear behaviour, one needs to over-approximate the sets
in order to cover the overall dynamics of the system. This over-approximation is called
bloating. Bloating means that the convex hull of the states is widened by a factor. For
autonomous systems it is sufficient to bloat only the initial sets by some factor α. In
case of non-autonomous systems, an additional bloating by factor β has to be added
in order to capture the influence of external input. Therefore, the set of states reached
during the first time interval can be computed by

Ω0 = conv(X0 ∪ eδAX0)⊕ Bα+β (2.9)

where X0 is the initial state and B is the bloating. Figure 2.4 illustrates the method
[FLGD+11].

Figure 2.5 illustrates an exemplary reachability analysis. The figure presents the
reachable states of two locations l1 and l2. The red quadrangles depict bad states, the
white ones are invariants, and the gray ones are the guards. The dark blue square,
is the bloated initial state. For the first flowpipe, the actually reachable sets are
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X0

eδ A ⋅X0

Figure 2.4: Example of bloating the first time interval.

illustrated by the two smooth lines and the small square on the blue initial state. The
jumps are depicted by arrows.

2.3 State Set Representations and Set Operations

In order to implement the reachability analysis algorithm (Algorithm 1), first one
needs to implement the representations for the states reachable by a hybrid automaton
as well as a set of operations that have to be performed during the analysis. Since the
precision and performance of the reachability analysis strongly depends on the state
set representation, usually a set of different state set representations are implemented.
Therefore, subsequently several state set representations are introduced as well as the
operations that are needed for the analysis.

2.3.1 State Set Representation

The state space of hybrid automata is infinite since they deal with continuous variables
[Hen00]. Therefore, a simple enumeration of reachable states is not feasible. Instead,
the set of reachable states is computed with finite symbolic representations of the
infinite regions [Hen00]. For example the set x of all real numbers between 0 and 1 is
infinite, the finite symbolic representation of this set is the logical formula 0 ≤ x∧x ≤ 1
which is basically an interval. Established symbolic representations for state set of
hybrid systems are support functions or Taylor models [Hen00].

Another possibility to represent sets of states are geometric representations. For
this purpose usually convex sets are used. The most famous representations are boxes,
polyhedra, zonotopes, ellipsoids, etc. Some of the representations will be discussed
later in this section. Note that the sets considered here are convex as it is easier to
guarantee the conditions required by the semantics of hybrid automata (see Definition
2.1.2). The crucial point is that the invariant does not only need to be satisfied at the
beginning and the end of the computation but also in between the two points in time.
When representing sets by convex sets, one can guarantee that the invariant is satisfied
at any point in time if it is satisfied at the beginning and end of the computation.
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invariant l1

over-approximation

initial set
reachable set

guard l1
invariant l2

guard l2

bad state

bad state

jump

jump

Figure 2.5: Sketch of a reachability analysis.

Figure 2.6: Difference between convex (left) and not convex set (right).

This however, does not hold for non-convex sets and would make the computations
more complex. This phenomenon is illustrated in Figure 2.6.
Formally, convex sets are defined as follows:

Definition 2.3.1. Convex Set [Zie14] A set S is called convex, if

∀x, y ∈ S.∀λ ∈ [0,1] ⊆ R.λ ⋅ x + (1 − λ) ⋅ y ∈ S.

There exists a large number of various geometric representations for state set of
hybrid systems, as each of the representations has different advantages and disadvan-
tages. Choosing a representation is always a struggle between computational effort,
precision of the resulting representation and the amount of storage needed to save
the representation. Usually, it holds that the more precise the representation, the
more computational effort is needed. Depending on which operations (intersection,
union, Minkowski sum, linear and affine transformations, etc.) should be performed
on the sets, the efficiency of the computation varies for the different representations
[Ábr12, Hen00]. This will be discussed later on but now some representations will be
introduced.

Boxes. A box can be represented by a sequence of intervals (I0, . . . , Id) or by its
maximal and minimal points. Both representations are depicted in Figure 2.7a.



22 Chapter 2. Preliminaries

Definition 2.3.2. Boxes [MKC09] A set B ⊆ Rd is a box if there exist intervals
I0, . . . , Id ∈ I such that

B = I0 × ⋅ ⋅ ⋅ × Id.

Polytopes and Polyhedra. Another representation are convex polytopes and poly-
hedra. In order to define them, first the definition of closed halfspace is needed.

Definition 2.3.3. Closed Halfspace [Zie14] A d-dimensional closed halfspace is a
set H = {x ∈ Rd ∣ c ⋅ x ≤ z} for some c ∈ Rd, called the normal of the halfspace, and a
offset z ∈ R.

Convex polyhedra are defined as an intersection of a finite set of halfspaces. A halfspace
can be defined by a normal vector and an offset as stated in the Definition 2.3.3.

Definition 2.3.4. Convex Polyhedron [Zie14] A set P ⊆ Rd is a convex polyhedron
if there are n ∈ N and ci ∈ Rn, di ∈ R, i = 1, . . . , n such that

P =
n

⋂
i=1
hi, where hi = {x ∈ Rd ∣ ci ⋅ x ≤ di} .

If the resulting polyhedron is closed, then it is called a polytope. A polytope can
alternatively be defined by a set of vertices. In order to obtain a polytope from a set
of vertices, one has to compute the convex hull which is defined as follows:

Definition 2.3.5. Convex Hull [Zie14] Given a set V ⊆ Rd, the convex hull conv(V)
of V is the smallest convex set that contains V. For a finite set V = {v1, . . . , vn}, n ∈ N
the convex hull can be computed by

conv(V ) = {x ∈ Rd ∣ ∃λ1, . . . , λn ∈ [0,1] ⊆ Rd.
n

∑
i=1
λi = 1 ∧

n

∑
i=1
λi ⋅ vi = x}

A polytope defined by the intersection of a finite set of halfspaces is called H-
representation, while the representation as a set of vertices is called V-representation.

Definition 2.3.6. H-Polytope, H-Polyhedron [Zie14] A d-dimensional H-polyhedron
P = ⋂ni=1Hi is the intersection of finitely many closed halfspaces. A bounded H-
polyhedron is called an H-polytope.

An example is shown in Figure 2.7b.

Support Functions. Support functions belong to the class of symbolic state repre-
sentations. They are an important representation, as most operations can be computed
quite efficient on them.

Definition 2.3.7. Support Function [LGG09] A support function is a function
σ ∶ Rd → R defining a set

S = {x ∈ Rd ∣ r ⋅ x ≤ σ(r)∀r ∈ Rd} ,

where σ(r) ∈ R is called the support value for the given direction r ∈ Rd.

An example is illustrated in Figure 2.7c.
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x

(a) Example of a set represented by a
box.

P

x

y

(b) Example of of a set represented by
a polytope.

x

y

(c) Example of a set represented by a
support function.

g1

g2g3

x

y

(d) Example of a set represented by a
zonotope with three generators.

Figure 2.7: Examples of three different state sets representations.
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Zonotopes. Zonotopes are point-symmetric sets that can be defined very compactly
by a center point and a set of line segments, called generators. The set is then
computed by the Minkowski sum of the generators shifted to the center. The formal
definition is as follows.

Definition 2.3.8. Zonotope [Gir05] A set Z ⊆ R is a zonotope if there is a center
c ∈ Rd and a finite set G = {g1, . . . , gn} of generators gi ∈ Rd such that

Z = {x ∣ x = c +
n

∑
i=1
λi ⋅ gi,−1 ≤ λi ≤ 1} .

An example is depicted in Figure 2.7d. An important property of a zonotope is
the zonotope order. The order of a d -dimensional zonotope described by n generators
is defined as ord(Z) = n

d
.

2.3.2 Operations on State Sets
In order to compute the set of reachable states several set operations are needed. These
include the convex hull of union, intersection, Minkowski sum, affine transformation,
and the tests for emptiness and membership. Let D be a domain, and A,B,S ⊆D.

• ⋅⋃ ⋅ (union): The union of two state set representations is defined as

A⋃B = conv {x ∣ x ∈ A or x ∈ B} .

The operation conv is the convex hull operation, which is needed here, since
convex state set representations are not closed under the operation union (the
resulting set might be non-convex). This operation is needed for the computation
of the first segment of a flowpipe and whenever aggregation is used.

• ⋅⋂ ⋅ (intersection): The intersection operation is defined as

A⋂B = {x ∣ x ∈ A and x ∈ B} .

The intersection operation is a frequently used operation during the flowpipe
construction, as it is needed for testing the satisfiability of invariants, intersection
with guards and bad states, and the detection of fixed-point.

• ⋅ ⊕ ⋅ (Minkowski sum): The Minkowski sum is defined as

A⊕B = {a + b ∣ a ∈ A and b ∈ B} .

This operations is needed whenever bloating should be performed.

• A(⋅) (affine transformation): The operation is defined as

A(S) = {x ∣ x = A ⋅ y + b, y ∈ S,A ∈ Rd×d, b ∈ Rn} .

The affine transformation is another frequently used operation needed whenever
the next flowpipe segment from the current one should be computed.

• Test for emptiness is a predicate which is satisfied if S = ∅ holds.

• Test for membership is a predicate that is satisfied if x ∈ S for x ∈D.
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The performance of the operations depends on the chosen set representations.
Table 2.1 summarizes the complexities of the operations for the different state set
representations. A plus means that the operation can be performed in polynomial time,
while a minus means that the operation needs exponential time. According to this
table, the support functions and V-polytopes can perform good on three out of four
operations. However, one has to keep in mind that during the reachability analysis
the operations are used in different frequencies. For example for autonomous systems
Minkowski sum and union are only used once to compute the first segment. For
non-autonomous systems Minkowski sum and union are frequently used operations.

Set Repr. ⋅⋃ ⋅ ⋅⋂ ⋅ ⋅ ⊕ ⋅ A(⋅)
Box +
H-Polytope - + - -
V-Polytope + - + +
Support Function + - + +
Zonotope + +

Table 2.1: Complexities of the operations for different state set representations. This
table is taken from [Ábr12].
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Chapter 3

Comparison of Cora and
HyPro

In this chapter two tools, Cora and HyPro, for reachability analysis of hybrid
systems are compared with each other. Since Cora is a toolbox for Matlab, first the
usability of hybrid systems in Matlab will be motivated. Subsequently, the two tools
will be introduced. Finally, the wrapper for HyPro, MHyPro, will be presented.

3.1 Matlab and Hybrid Systems

Matlab (MATrix LABoratory) is a widely used tool among scientists and engineers
for the development and analysis of systems. Matlab was originally developed for
matrix computations, therefore, the programming language is matrix-based. Today
Matlab includes far more functionalities than matrix manipulation functions. It
provides a huge number of algorithms and toolboxes for various areas of applications
such as machine learning, signal processing, image processing, computer vision, etc.
It has a build-in plotting engine so it is easy to visualize data and results. Moreover,
Matlab offers interfaces to other programming languages such as, C/C++, Java,
Python, and Fortan [Mat].

Since Matlab provides toolboxes like Simulink and Stateflow, it is used for the
development of CPSs, as model-based design is an essential step in the development
processes of CPSs. Due to the fact that CPSs are mostly safety-critical and require
validation tests, hybrid systems theories were developed in order to support the process
of validation [Lee10]. This circumstances motivate the integration of verification
methods for hybrid systems in Matlab [DLV11].

There is already one toolbox for simulation of hybrid systems for Matlab called
Hybrid Equations (HyEQ) Toolbox [SCN13]. However, simulations cannot explore all
reachable states, therefore, a toolbox for reachability analysis is needed. A prominent
toolbox that implements reachability algorithm for hybrid systems is Cora [AKA18]
which will be introduced in the next section.
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3.2 Cora

The Continuous Reachability Analyzer (Cora) is a prominent tool implemented in
Matlab providing reachability algorithms for systems with continuous, discrete, and
hybrid dynamics. The idea of Cora is the possibility of implementing customized
reachability algorithms in relatively short time. This is especially possible because
Cora is an object-oriented toolbox that uses modularity, operator overloading, inheri-
tance, and information hiding, hence, the user can easily replace a module by a more
tailored one [AKA18].

3.2.1 Modelling Systems in Cora

The basis of all reachability analysis tools are the state set representations. As men-
tioned in Section 2.3.2, for reachability analysis the choice of state set representation is
crucial, as the efficiency of the operations differs for each representation. Besides pop-
ular set representations, like intervals, zonotopes, Taylor models and vertices, Cora
introduces some more special representations. Examples are the zonotope bundles,
that will be shortly discussed later on, and polynomial, probabilistic, and constraint
zonotopes. Polynomial zonotopes have been introduced in [Alt13] and are needed, as
zonotopes are not closed under nonlinear maps. In order to enable stochastic verifica-
tion, probabilistic zonotopes are implemented that have been introduced in [ASB09].
The constrained zonotopes [SRMB16], are zonotopes with additional constraints on
the generators that define the corresponding zonotope [AKA18].

Cora implements reachability and simulation algorithms for a number of different
classes of continuous dynamics which can also be used to describe the dynamics of
hybrid systems. Linear dynamics is the most basic supported dynamics. Additionally,
one can add uncertain, fixed or varying parameters to the system. Moreover, Cora
supports linear probabilistic systems, where the dynamics is defined by a set of linear
stochastic differential equations [Gar85]. Besides linear dynamics, Cora also supports
non-linear systems, discrete-time non-linear systems, non-linear systems with uncertain
fixed parameters, and non-linear differential-algebraic systems [AKA18].

The palette of supported dynamics makes Cora attractive for many areas of
applications. There is a number of systems that for example require the support of
differential-algebraic systems. They provide so called algebraic variables that are not
state variables and can be introduced as an invariant that expresses physical laws like
for example Newton’s laws. This type of variables is not supported by many tools,
SpaceEx is an exception [DF13].

There are three ways to model systems in Cora. The first option is the direct
implementation using Matlab language. The second option is the usage of SpaceEx
syntax, as Cora provides a converter that can convert SpaceEx models to Cora
models. Since SpaceEx provides a simple GUI for the development of hybrid automata,
it is an important step towards user-friendly usability. The last alternative is Simulink.
Cora offers a converter that can convert Simulink models into SpaceEx which can
be subsequently converted to Cora [AKA18].

Since many systems are too complex to model them by a single hybrid automaton,
it is common to model each subsystem by a separate hybrid automaton. Subsequently
the parallel composition of the automata is computed. The problem about the parallel
composition of hybrid automata, is the fact that the number of locations of the
resulting hybrid automaton increases exponentially. However, not all of the computed
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locations are reachable. Therefore, besides the classical hybrid automaton, Cora also
provides a parallel hybrid automaton, that is a data structure for parallel composition
of several hybrid automata. The system is then described by a list of several hybrid
automata and the reachable sets are computed on-demand, i.e., only if the control
reaches the corresponding sets.

3.2.2 Parameters
As every reachability analysis tool, Cora requires a set of options that need to be
determined by the user. The correct choice of the parameters is crucial for the analysis
results.

Besides standard parameters as initial set, initial and final location, time-step size,
and time horizon, Cora requires some more specific options. Depending on the chosen
dynamics the parameters which have to be determined vary. Since in this thesis only
linear hybrid systems are considered, only the parameters needed for this class of
systems will be considered and shortly explained.

• Time horizon - Since for linear hybrid systems only bounded reachability is
decidable, Cora requires that a maximal time amount for the overall analysis
is determined. The larger the time horizon, the more reachable states can be
explored, and therefore also the time needed for the computations gets higher.

• Time-step size - Each flowpipe consists of segments. The size of a segment
is defined as the time-step size. The larger the time-step size, the bigger the
segments and the more imprecise the flowpipe. However, the lower the time-step
size, the more computations have to be performed and therefore the more time
is needed for the computation of the flowpipe.

• Reduction technique for the zonotope order - The performance of the set op-
erations on zonotopes depends on the order of the zonotope. The higher the
zonotope order, the more time is needed to perform the required set opera-
tions. Hence, Cora implements several methods for the order reduction of
zonotopes that have been introduced in [KSA17]. The methods yield different
over-approximations and perform differently. The default technique is girard
which has been introduced in [GH04].

• Taylor terms - The matrix exponential needed for the computation of flowpipes,
can be over-approximated by the Taylor series. This parameter determines how
many Taylor terms of the series will be considered for the computation. The more
Taylor terms are considered, the tighter the resulting over-approximation of the
remainder term of the Taylor series [Alt10]. Thus, the precision of the flowpipe
increases with the increasing number of considered Taylor terms. However, the
computation time also increases.

• Zonotope order - This parameter defines the maximum order of the zonotopes. A
high zonotope order, means a high number of generators. The more generators are
used for the definition of a zonotope, the more precise the set can be represented.
However, the computation time increases with growing zonotope order, since
the performance of the operations sinks with the growing number of generators.

• Guard intersection method - Cora offers two approximation methods for the
intersection with potential guard sets - the polytope and the zonoGirard
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methods. Both methods yield a set of enclosed zonotopes for the intersection
with potential guard sets. The enclosure method is determined by the parameter
that will be introduced next. The choice of the method also determines the
representation of the guards sets. When polytope is the chosen method, then
the guards have to be represented by polytopes, that can be defined by a set of
halfspaces. Otherwise, when using the zonoGirard method, the guards have
to be represented by a single halfspace.

• Enclosure method - Cora provides five different enclosure methods for polytopes.
The result is an over-approximating zonotope that encloses the polytopes. Each
method uses a different zonotope for the over-approximation.

• External input - Cora provides reachability algorithms that consider external
input. The external input may be constant or uncertain and can be individually
set for each location.

These parameters are only a subset of all parameters that can be set in Cora.
On the one hand, the high number of parameters makes it possible for the user to
customize the models very precisely. On the other hand, the correct choice of the
parameters is not easy and is crucial for the results of the reachability analysis. Wrong
choice of the parameters can result in very imprecise computations or even make the
reachability analysis impossible. Due to the fact that most of the parameters require
expert knowledge, the access to the tool for non-experts is difficult. The developers of
Cora are aware of this problem and plan to introduce self-tuning of the parameters
in the future.

3.2.3 Reachability Analysis

Although Cora provides a palette of state set representations, the reachability anal-
ysis is performed on zonotopes. Zonotopes perform good for linear transformation
and Minkowski sum [AK11]. Hence, this is a reasonable choice especially for non-
autonomous systems where the Minkowski sum needs to be performed when ever a
successor segment should be computed. This advantage, however, comes with a high
price as zonotopes suffer from the fact that they are not closed under intersection.
Since the intersection operation is a constantly used operation during the reachability
analysis of hybrid systems, Cora introduces the zonotope bundles mentioned earlier
[AK11]. The idea of zonotope bundles is that the zonotopes that should be tested for
intersection with a set, are stored in a list. The exact intersection is not computed,
instead every zonotope in the bundle is over-approximated by a polytope and the
intersection with guards and invariants is performed for each polytope separately. The
computational costs is the cost of the operation for a single zonotope times the number
of zonotopes in the bundle [AK11].

Other operations can also be performed on the bundles. Consider the Minkowski
sum of a zonotope bundle with a single zonotope

Definition 3.2.1 (Minkowski Sum for Zonotope Bundles [AK11]). The Minkowski
addition of a zonotope bundle Z∩ and a zonotope Zadd is over-approximated by

Z∩ ⊕Zadd ⊆ {Z1 ⊕Zadd, . . . ,Zn ⊕Zadd}
∩
.
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The overall process of the computation of reachable state sets is as showed in
Algorithm 1. The termination condition only concerns the time horizon, the jump
depth is ignored. However, it would be easy for a user to customize the algorithm such
that it considers the jump depth. This is reasonable, as the jump depth is only useful
in theoretical context and does not have any meaning in the real world. However, it
would be easy for a user to customize the algorithm such that it considers the jump
depth. This is especially possible because the parameters are stored as a struct, so
new options can be added straight forward and it does not require any changes in the
implementation.

3.3 HyPro

HyPro is an open-source C++ library which provides implementations of the most
popular state set representations. The basic idea of HyPro is the introduction of
various state set representations in order to offer assistance for the implementation of
customized algorithms [SÁMK17].

3.3.1 Modelling Systems in HyPro

There are two possible ways to model systems in HyPro. First possibility is to
implement the models directly using C++ which is a pretty involving process. A more
intuitive and easier way to model systems is the usage of Flow* syntax, as HyPro
provides a parser for the syntax [SÁMK17].

HyPro supports systems exhibiting linear behaviour which is a restriction. How-
ever, a lot of non-linear systems can be linearized. Similarly as Cora, HyPro also
provides a number of set representations. Those include boxes, polytopes, halfspaces,
zonotopes, support functions, orthogonal polyhedra, and Taylor models. For each
of the representation, except for orthogonal polyhedra and Taylor models, HyPro
offers a set of functions that are needed to perform reachability analysis, for exam-
ple union, intersection, Minkowski sum, etc. Moreover, unlike in Cora, in HyPro
each of the set representations can be used as set representation for the reachability
analysis. Thus, the user has to decide if for example boxes, that usually produce big
over-approximations, are suitable for a system, or if it is better to use for example
support functions that usually produce tighter over-approximations than boxes but
need more computation time. Another feature for the state set representations is the
fact that every representation is templated in number, hence, HyPro can make use of
the boost library for exact arithmetic computations [SÁMK17].

As already mentioned in the last section, parallel composition is a useful method
to model complex system more easily. Unfortunately, HyPro does not provide the
possibility of modelling systems as parallel composition of multiple hybrid automata.
However, the developers currently work on the implementation of this functionality.

3.3.2 Parameters

Similarly as Cora, HyPro also requires the determination of parameters. Both tools
have one common parameter - the time-step size. The remaining parameters required
by HyPro are shortly explained now.
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• Time horizon - This parameter determines how long the computation of a single
flowpipe should be. Thus, the time horizon in HyPro is related to a single
flowpipe. In Cora the time horizon is related to the overall analysis.

• Jump depth - The jump depth defines how many times the control may take
a discrete transition. Thus, the jump depth limits the number of computed
flowpipes.

• Clustering - Whenever a flowpipe intersects with a guard set, the successor
flowpipes need to be computed. Each of the flowpipes segments that are inside
the guard set are potential initial sets for a successor flowpipe. Since the number
of segments might be big, the computation might get very slow. In order to
accelerate the process, one can cluster several segments into a single segment
that subsequently will be used as the initial set for the next flowpipe. Indirectly,
the parameter determines the maximal number of successor flowpipes after an
intersection with a guard set. If the parameter value is set to zero then the
algorithm uses aggregation, i.e., all segments intersecting with a guard set are
over-approximated by a single segment.

• Bloating type - In order to capture all trajectories, the initial set needs to be
over-approximated, this is called bloating. One can choose between uniform and
non-uniform bloating. If the parameter is not set then the non-uniform bloating
is used.

• Set representation - This parameter determines which state set representation is
used for the reachability analysis.

3.4 MHyPro

Due to the fact that a number of CPSs and other systems are developed in Simulink
and Matlab, it is sensible to implement the verification tools directly in Matlab.
Therefore, a Matlab-wrapper for HyPro- MHyPro- was developed in context of
this thesis.

MHyPro consists of a collection of Matlab classes which are wrappers for the
corresponding classes in HyPro. It offers three different state set representations
- boxes, support functions, and zonotopes. Moreover, it wraps the most important
data structures for hybrid automata, i.e., locations, transitions, conditions (needed for
the formulation of invariants and guards), flows, labels, and hybrid automata. For
the reachability analysis, it also wraps the classes Reach and State. Figure 3.2
illustrates the general structure of MHyPro.

The implementation of the wrapper is based on the Matlab C MEX API [Mat]
that introduces methods needed for usage of C/C++ code in Matlab. The most
important function of the API is the so called MEX function that serves here as the
gateway between Matlab and HyPro. Thus, every time MHyPro calls a function,
first it calls the MEX function that can process the passed arguments and call the
correct function contained in the C++ component of MHyPro which then can call
the desired function in HyPro. The class handler is needed to guarantee correct
communication between Matlab and HyPro. Its purpose is the correct conversion
of pointers from Matlab to HyPro and vice verse. The object handler is needed for
the conversion of the data structures. For example the handler can convert HyPro
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HyProMHyPro
Matlab

MHyPro
C++

create MBox

MHyPro(box,newBox) Box::process(newBox)

Box::newBox()

hypro::Box()

pointer

newPtr

newPtr

newPtr
newPtr

ClassHandle::reinterpret_ptr(pointer)

Figure 3.1: Sequence diagram showing the process of creating a new box in MHyPro.

matrices into Matlab matrices and vice verse. Since Matlab provides plotters for
various geometric objects, two plotters, a 2D and a 3D plotter for the flowpipes were
implemented.

Figure 3.1 illustrates a sequence diagram that shows the process of creating a new
box in MHyPro. In order to create a new box the MEX function MHyPro has to
be called with the parameters ’box’ and ’newBox’. The MEX function calls then the
process function of the class Box, which can call the newBox function. Finally, the
newBox function calls the HyPro constructor for boxes. The constructor returns
a pointer to the new box. The box constructor in MHyPro calls then the class
handler in order to cast the pointer so Matlab can use it. The class handler returns
a new pointer which is than forwarded back to Matlab. In Matlab the new box
object stores the pointer as its parameter so it can identify itself when calling another
functions. The over head caused by the wrapper will be measured in the next chapter.

In the next chapter the wrapper will be used for the comparison of the performance
and the precision with Cora.
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Chapter 4

Experimental Results

In this chapter the efficiency and precision of MHyPro and Cora is compared. In
the first part of this chapter, the flowpipe construction of both tools is compared.
In the second part, a set of safety specifications is defined and the performance of
the reachability analysis algorithms is compared. Subsequently, the performance of
operations on two state set representations is compared. Finally in the last part, the
overhead caused by Matlab for MHyPro is determined.

4.1 Comparing Flowpipe Construction Algorithms
In order to compare the performance of the Matlab-wrapper for HyPro and Cora,
nine different benchmarks were selected. The nine benchmarks are commonly known.
The most basic benchmark is the bouncing ball (bb) benchmark modelling a ball that
was drooped from a predefined height that bounces off the ground several times.

A real world benchmark is the filtered oscillator (foX ) benchmark that models a two-
dimensional switched oscillator and a fourth order filter that smooths a signal. Here,
three instances of the benchmark are considered that differ in the number of variables.
The X behind the name indicates how many variables the oscillator considers. Since
the running time depends on the number of dimensions, this benchmark is suitable to
determine how well the tools scale.

An another real world benchmark is the rod reactor (rr) benchmark that models a
reactor tank that contains a liquid, and two rods that can be used to cool down the
temperature of the liquid. The rods have different cooling dynamics and only one of
the rods can be used for cooling simultaneously. The rods can be exchanged, as soon
as a defined amount of time has passed.

The spacecraft rendezvous (sr) benchmark was taken from [CM17] and models the
motion of a spacecraft in orbit with the dynamics derived from Kepler’s law. The fact
that this benchmark was used in the Applied Verification for Continuous and Hybrid
Systems (ARCH) competition in 2018, makes the benchmark relevant.

The switching system (sw) is an artificial benchmark consisting of five locations
where each location is labelled with different dynamics. Although it is a purely
academic benchmark, it is still relevant as it requires precise computations and is
therefore challenging.

The two tanks (tt) benchmark is a classic benchmark. It models two connected
tanks whose inflows are controlled by valves. As soon as the fill level in one of the
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tanks is too low, the tank is refilled.
The vehicle platoon (vp) is an another real world benchmark that models a platoon

of three vehicles guided by a leader vehicle.
The hybrid automata modelling the particular benchmarks can be found in the

appendix (A.1). The abbreviations written in braces behind the names of the bench-
marks will be used in all tables from now on. All computations were performed on
an Intel Core i5 (2.6 GHz) processor with 8 GB RAM. The timeout was set either to
105 s or to 195 s depending on the difficulty of the specifications, however, Matlab
needs to be started every time which takes about 15 seconds thus for each benchmark
the tools had about 90 s (180 s) to solve the particular benchmark.

4.1.1 Comparing Flowpipe Computations with Initial Settings

First, the reachability analysis algorithms of MHyPro and Cora will be compared
without safety specifications. The benchmarks were run with initial settings that are
listed in Table 4.1 and 4.2.

Benchmark Set Repr. Time Step
Size [s]

Time
Horizon [s] Jumps

bb box 1 × 10−2 4 2
fo4 box 5 × 10−2 4 5
fo8 box 5 × 10−2 4 5
fo16 box 5 × 10−2 4 5
sr box 1 × 10−2 20 10
sw sf 1 × 10−3 1 5
rr box 1 × 10−2 15 5
tt box 1 × 10−2 2 2
vp sf 2 × 10−2 12 20

Table 4.1: Initial strategies used for the reachability analysis with MHyPro. The
abbreviation sf signifies support functions. All strategies use aggregation and non-
uniform bloating.

Benchmark Time Step
Size [s]

Time
Horizon [s]

Zonotope
Order

Taylor
Terms

bb 1 × 10−2 4 1 1
fo4 5 × 10−2 4 2 2
fo8 5 × 10−2 4 2 2
fo16 5 × 10−2 4 200 100
sr 1 × 10−2 20 1 1
sw 1 × 10−3 1 4 1
rr 1 × 10−2 15 1 1
tt 1 × 10−2 2 2 1
vp 2 × 10−2 12 5 1

Table 4.2: Initial strategies used for the reachability analysis with Cora.
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In order to make the results for both tools as comparable as possible, the initial
settings for both tools have to be comparable. Therefore, the time-step size, the initial
set and the time horizon for each of the benchmarks is equal for both tools. Moreover,
one has to pay attention to two important facts. First, one has to attend that the
time horizon in MHyPro is local and not global like in Cora. To add global time
horizon in MHyPro, each model has an additional variable (clock) that measures
the global time. The local time is equal to the global time in order to guarantee
that MHyPro computes the same number of reachable states as Cora. Since an
additional variable increases the dimension of every benchmark in MHyPro by one,
the running times are slightly slower than when running the benchmarks without the
global clock. Second, Cora does not consider the jump depth. Therefore, in order to
guarantee that the number of flowpipes computed by MHyPro and Cora is equal,
the jump depth for the MHyPro models was adjusted appropriately.

Besides the time-step size and the time horizon, for MHyPro one has to deter-
mine the state set representation and the jump depth. The choice of the state set
representation depends on the precision of the reachability analysis that is required
by a benchmark. In context of this comparison, only boxes and support functions
were considered for MHyPro as state set representation. Since support functions are
computationally more expensive than boxes, they are only chosen if the benchmark
requires precise computations. The switching system and the vehicle platoon bench-
marks are examples of such benchmarks. All remaining benchmarks use boxes as the
initial state set representation.

For Cora one has to determine the zonotope order and the number of considered
Taylor terms. Usually, for each benchmark there exists a minimal value for the param-
eters. Further decrease of one of the parameters make the result of the reachability
analysis not reasonable. For example if the zonotope order for the switching system
is less than four, then the computed flowpipe is very imprecise as Figure 4.1 shows.
However, the determination of the two parameters is not always that easy as the
filtered oscillator 16 benchmark has shown. Many values have been tested but no of
the tested values achieved reasonable results. Therefore, the parameter values were
set to values that, by experience, are good default values.

Benchmark Run Time [s]
MHyPro

Run Time [s]
Cora

bb 0.0214 0.6915
fo4 0.0063 2.0818
fo8 0.0046 10.7650
fo16 0.0071 memout
sr 0.0577 1.1910
sw 25.6838 1.2875
rr 0.1265 15.4047
tt 0.0091 0.6280
vp 9.1345 4.8854

Table 4.3: Results achieved by MHyPro and Cora using the initial settings.

The timeout for this computations was set to 105 s. The results obtained by the
two tools are shown in Table 4.3.

MHyPro could compute all reachable sets within the 105 s, while Cora was not
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(a) Flowpipe computed by Cora with initial
settings.

(b) Flowpipe computed by Cora with modi-
fied initial settings. Here, the zonotope order
was set to three instead of four.

Figure 4.1: Flowpipes computed by Cora with different zonotope orders for the
switching system benchmark.

able to compute the flowpipes for the filtered oscillator 16 benchmark. Except for
the switching system and the vehicle platoon benchmarks, MHyPro is clearly faster
than Cora. One reason for MHyPro’s fast computations is the fact that MHyPro
directly calls HyPro which is implemented in C++ that is faster than Matlab. Now
each of the benchmarks is discussed in more detail.

First the bouncing ball benchmark is considered. MHyPro was about thirty times
faster than Cora, although the computed flowpipes are nearly exactly the same as
Figure 4.2 illustrates. The left figure illustrates the flowpipe computed by MHyPro
and the right one the flowpipe computed by Cora. When one overlaps the flowpipes,
then nearly only one flowpipe is visible.

As already mentioned, the benchmark models a ball that was dropped from a
predefined height. When the distance to the ground (x ) is exactly zero, the ball
bounces. An invariant that guarantees that x is always greater or equal zero, and a
guard, that enables bouncing (i.e. taking a discrete transition) only if x is equal zero,
were introduced to guarantee this behaviour. When the flowpipes depicted in Figure
4.2b are considered more closely, one can see that the flowpipes computed by Cora
violate the invariant. This phenomenon is discussed now in detail.

In order to compute a single flowpipe, Cora iteratively computes single segments
as long as the current reachable set is within the invariant, and the time horizon was
not exceeded. Hence, in each iteration Cora have to check if the invariant is still
satisfied. For this purpose Cora first projects the current segment on the dimensions
that the invariant concern. The result of this projection is a set of intervals. A segment
is within the invariant, as long as all minima of the obtained intervals are smaller
than the upper bound of the invariant. This guarantees that all flows are captured.
However, this causes the computation of a segment that lies completely outside the
invariant.

The dynamics of this benchmark is defined as follows

x′(t) = v(t)
v′(t) = −9.81

(4.1)
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(a) Flowpipes computed by MHyPro for
the bouncing ball benchmark with initial set-
tings.
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(b) Flowpipes computed by Cora for the
bouncing ball benchmark with initial set-
tings.

Figure 4.2: Reachability analysis of the bouncing ball benchmark computed by Cora
(blue) and MHyPro (green).

In order to find when the ball should bounce, the following equation has to be
solved

0 = 1

2
⋅ −9.81 ⋅ t2 + v0 ⋅ t + x0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=x(t)

(4.2)

where v0 and x0 are the initial values for the variables v and x. The initial value of
x is the interval [10,10.2], hence, the solution for Equation 4.2 is the time interval
t = [1.427, 1.442]. This means that within this time interval the ball should bounce for
the first time. Now the segments lying near this time interval are considered. Figure
4.3 shows the corresponding segments. Note that the x-axis is now t and not v as in the
previous figures. Therefore, one can also see the first segments of the second flowpipe.
The red dots depict the infima of the segments and are labeled with their coordinates.
The red line is the simulation of the benchmark starting with the initial set t = 0 and
x = 10.1. The black point is the point where the ball bounces off the ground (this
coordinates are marked with yellow background). The last segment that completely
lies within the invariant is the one starting at t = 1.41. Although the suprema of the
next two segments are already negative, and the segment at t = [1.43,1.44] already
contains the point where the ball bounces, Cora has to compute the next segment
since the infima of the segment is still positive. Otherwise, if the algorithm would
already stop the computation, the algorithm would disregard the reachable area in
the time interval t = [1.43,1.44], that still fulfills the invariant. This would make the
algorithm faulty. The infimum of the next segment is still greater than zero (0.03),
hence the next segment is computed. The infimum of the nest segment if finally
negative (-0.11) and Cora stops computing further segments, however, although the
last segment lies completely outside the invariant, Cora keeps it in the set of reachable
sets of states.

The segments that lie partially outside the invariant and intersect a guard, can
be removed when the parameter intersectInvariant is set. The segments that
partially lie outside the invariant are then over-approximated by polytopes and sub-
sequently intersected with the invariant. For the bouncing ball benchmark only the
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t=1.41, x=0.45
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t=1.45, x=-0.11
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Figure 4.3: Last segments of the first flowpipe of the bouncing ball benchmark
computed by Cora with the initial settings. The magenta colored line depicts the
invariant that guarantees that x is greater than zero. One can clearly see that Cora
computes one segment that lies completely outside the invariant.

segments lying in the time interval t = [1.42,1.44] intersect the guard (x = 0). The
last segment is not considered. Therefore, the resulting flowpipes look as depicted in
Figure 4.4. The segment that does not intersect the guard was not removed. Note
that if the segments that partially intersect the invariant do not intersect any guard
set, the procedure does not change any of the segments.

Since Cora provides various possibilities to represent invariants, for example by
intervals, zonotopes, halfspaces, and Taylor models, for all of the representations it
was tested if they can solve the problem. Unfortunately, the results obtained using
the different representations of invariants, are the same as for invariants defined by
polytopes.

Next the filtered oscillator benchmarks are considered. According to Table 4.3,
MHyPro again could compute the flowpipes faster than Cora, and could solve the
filtered oscillator 16 benchmark while Cora was only able to compute the set of
states reachable within the first 1.05 seconds. The reason why Cora cannot solve the
filtered oscillator 16 benchmark is the involving computation of the intersection of
the reachable sets with the set of guards. In order to accelerate the process Cora
first checks if there are any potential segments intersecting a guard set. If so, then
the segments are over-approximated by polytopes and intersected with the guards.
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Figure 4.4: Flowpipe of the bouncing ball benchmark computed by Cora with initial
setting and the set parameter invariantIntersect.

For this benchmark Cora needs to calculate the guard intersection seven times. For
the filtered oscillator 4, on average, Cora needs about 6.5 ms to estimate which
segments intersect the guard and about 0.2441 s to calculate the intersection. For
the filtered oscillator 8, on average the estimation of the intersecting segments takes
about 8.6367 ms and the calculation of the intersection takes about 0.7575 s, which is
about three times longer than for the filtered oscillator 4 benchmark. For the filtered
oscillator 16, the computation of the first intersection takes already about 10 s and
the computation of the second intersection causes an out-of-memory error after about
18 minutes. Therefore, it is difficult for Cora to verify this benchmark. The flowpipe
computed by MHyPro for the filtered oscillator 16 benchmark can be found in the
appendix (Figure A.8a).

The flowpipes computed for the filtered oscillator 4 benchmark are considered
now in detail. The flowpipes are illustrated in Figure 4.5a. The green flowpipes were
computed by MHyPro, the blue flowpipes were computed by Cora. The green
flowpipes are less precise than those computed by Cora. One can clearly see the
particular segments represented by boxes. The flowpipes computed by Cora are
much smoother, however, this comes with the price of higher running time that is
about 330 times higher than for MHyPro. A bit different result was obtained for
the filtered oscillator 8 benchmark (see Figure 4.5b). The flowpipes computed by
MHyPro are still not that smooth as those computed by Cora, but at some points
the flowpipes computed by MHyPro are tighter than Cora’s. Moreover, for both
benchmarks the flowpipes computed by Cora again violate the invariants. Figure 4.6
illustrates the flowpipes computed by MHyPro (left) and Cora (right) starting from
the initial location without taking any discrete transitions while the time horizon was
set 2 s. The magenta line marks the invariant. All states that are above this line satisfy
the invariant. The flowpipe computed by Cora clearly violates the invariant. The
flowpipe computed by MHyPro also violates the invariant, however, this is caused
by the over-approximation of the boxes, whereas Cora computes a segment that lies
completely outside the invariant.

Spacecraft rendezvous is the next considered benchmark. The flowpipes computed
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(a) Reachability analysis of the filtered os-
cillator 4 benchmark performed by Cora
(blue) and MHyPro (green) with the initial
settings.
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(b) Reachability analysis of the filtered os-
cillator 4 benchmark performed by Cora
(blue) and MHyPro (green) with the initial
settings.

Figure 4.5: Reachability analysis results for the filtered oscillator 4 and 8 computed
with initial settings.
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Figure 4.6: Reachability analysis of the filtered oscillator 8 benchmark computed by
MHyPro (left) and Cora (right) with initial settings and time horizon of 2 s. The
green line depicts the guard of the initial location. All states that are above this line
satisfy the invariant.
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(a) Projection on the x − y-dimensions. (b) Projection on the x − vx-dimensions.

(c) Projection on the y − vy-dimensions. (d) Projection on the vx − vy-dimensions.

Figure 4.7: Reachability analysis of the spacecraft rendezvous benchmark with the
initial settings. The four figures show the flowpipes projected on different dimensions.
Since first the flowpipes computed by MHyPro were plotted (green) and then those
computed by Cora, the flowpipes are mostly blue. However, the plotting order does
not matter for this benchmark. For both plotting orders the flowpipes are nearly
equal.

by MHyPro and Cora are nearly equal. Figure 4.7 illustrates the overlapped
flowpipes computed by MHyPro and Cora. Due to the fact that first the flowpipes
computed by MHyPro were plotted (green) and then those computed by Cora (blue),
the flowpipes are mostly blue. However, the plotting order does not matter for this
benchmark (only the color changes). The upper left Figure shows the projection of the
flowpipes on the x− y-dimensions, the upper right on the x− vx-dimensions, the lower
left on the y − vy-dimensions, and finally the lower right on the vx − vy-dimensions.
Since nearly no green color is visible in any of the projections, the flowpipes are nearly
equal in every dimension.

The switching system benchmark is considered next. For MHyPro it is one of
two benchmarks using support functions as state set representation. The reason for
this choice is the fact that the over-approximation caused by boxes is enormous as
Figure 4.8 shows. In both figures one can see the flowpipe computed by Cora with
the initial settings (blue), and the one computed by MHyPro in green. The settings
for MHyPro used to compute the flowpipe illustrated in the left figure, are the
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(a) Flowpipe computed by MHyPro (green)
and Cora (blue). MHyPro was run with
modified initial settings. Instead of support
functions boxes were used as state set rep-
resentation. The time horizon was set to
0.5 s.

(b) Flowpipe computed by MHyPro (green)
and Cora (blue) with initial setting.

Figure 4.8: Reachability analysis results for the switching system benchmark.

same as the initial settings except for the fact that boxes were used as the state set
representation. Moreover, the time horizon was set to 0.5 s instead of 1 s because a
larger time horizon causes out-of-memory errors. The flowpipes depicted in the right
figure were both computed using the original initial settings. The flowpipes computed
by MHyPro are still coarse in comparison to those computed by Cora, however, the
result is better than the obtained for boxes, since here the time horizon was set to 1 s.

Similar problem can be observed for the vehicle platoon benchmark and therefore
also for this benchmark the initial settings use support functions as state set rep-
resentation. Figure 4.9a shows the flowpipe computed by MHyPro with the same
settings as the initial but with boxes as state set representation and the time horizon
reduced to 1 s (originally it is set to 12 s). The flowpipes depicted on the right (Figure
4.9b), illustrates the flowpipes computed by MHyPro with the original initial settings.
However, for this benchmarks also Cora has problems computing precise flowpipes.
Figure 4.9c depicts the flowpipes computed by MHyPro (green) and Cora (blue).
First the flowpipes computed by Cora were plotted and then those computed by
MHyPro.

Now the rod reactor benchmark is shortly considered. The flowpipes computed
by Cora clearly violate the invariant x ≤ 550, however, the remaining flowpipes are
exactly the same for both tools as Figure 4.10a shows.

Finally the two tanks benchmark is considered. The results achieved by both tools
are very different as Figure 4.10b shows. The flowpipes computed by MHyPro are
very wide in comparison to the flowpipes computed by Cora. Similarly as for other
benchmarks, Cora again violates the invariant (x ≥ −1), while MHyPro precisely
stops its computations as soon as x is equal -1.
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(a) Flowpipe computed by MHyPro with
modified initial settings. Instead of support
functions here boxes were used as state set
representation. The time horizon was set
here to 1 s.

(b) Flowpipe computed by MHyPro with
the original initial settings.

(c) Flowpipes of the vehicle platoon benchmark computed by Cora (blue) and MHyPro
(green).

Figure 4.9: Reachability analysis results for the vehicle platoon benchmark.
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(a) Reachability analysis of the rod reactor
benchmark computed by Cora (blue) and
MHyPro (green) computed with the initial
settings.
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(b) Reachability analysis of the two tanks
benchmark computed by Cora (blue) and
MHyPro (green) computed with the initial
settings.

Figure 4.10: Reachability analysis results for the rod reactor (left) and two tanks
(right) benchmarks performed by Cora (blue) and MHyPro (green).

4.1.2 Comparing Safety Verification

The results obtained for the initial strategies have indicated that both tools have
strength and weaknesses. For the most benchmarks, MHyPro was faster than Cora,
but most of the computed flowpipes were less precises than those computed by Cora.
However, one has to recall that the settings used for the computations were initial. The
choice of the parameters has great impact on the results of the reachability analysis.
Therefore, before the results for the safety verification will be presented, first the
influence of the particular parameters will be explained.

4.1.3 Influence of the Parameters on the Reachability Analysis

A parameter that has a lot of impact on the reachability analysis result is the time-step
size. A large time-step size causes great over-approximations but the time needed
for the computations decreases. The impact of this parameter is illustrated on the
example of the switching system benchmark. Figure 4.11 shows flowpipes computed
by Cora using different time-step sizes while the remaining parameters are as defined
by the initial settings. For the computation of the left flowpipe the initial settings were
used with the time-step size of 0.001 s. For the computation Cora needed 1.2875 s.
For the computation of the right flowpipe the time-step size was increased to 0.01 s.
For this computation, Cora needed 0.561 61 s, i.e., about 2.3 times less time than with
the initial settings. However, one can clearly see that the flowpipe is less precise than
the left one. The flowpipe is thicker and the particular segments are clearly visible.

Cora requires the determination of the maximal zonotope order. The higher
the zonotope order, the higher number of generators was used for the definition of
the zonotope. Often operations like the Minkowski sum, can increase the order of
a zonotope. Unfortunately, the higher the zonotope order, the more time is needed
to perform operations on the zonotope. Therefore, if the order than the maximal
zonotope order, the corresponding zonotope is over-approximated, as tight as possible,
by zonotopes of smaller order [KSA17]. This over-approximation decreases the running
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(a) Flowpipe computed by Cora for the
switching system benchmark using the initial
strategy with time-step size set to 0.001 s.
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(b) Flowpipe computed by Cora for the
switching system benchmark using the initial
strategy with modified time-step size. Here,
the time-step size was set to 0.01 s

.

Figure 4.11: Impact of the time-step size on the reachability analysis results shown on
the example of the switching system benchmark.

time, but also decreases the precision of the resulting flowpipe. The impact of this
parameter can be shown on the example of the bouncing ball benchmark (see Figure
4.12). With the initial settings (zonotope order is equal one) Cora needs about
0.679 23 s to compute the flowpipes. When the zonotope order is set to 20, Cora
needs 1.4655 s, i.e., about two times longer than with the initial settings. However,
the resulting flowpipes are clearly narrower.

Another parameter required by Cora is the one concerning the number of con-
sidered Taylor terms. Consider the vehicle platoon benchmark illustrated in Figure
4.13. The blue flowpipe was computed with the initial settings, the green one with
modified number of Taylor terms. Originally for initial settings, the parameter is set
to 1, here, the parameter was set to 100. The resulting flowpipe is narrower than
the blue one. For the computation of the flowpipe with the modified initial settings
Cora needed about 1.3 times longer than with the initial settings (4.8854 s with the
modified settings and 6.3718 s with the original settings).

For MHyPro, a great impact on the results of the reachability result has the
clustering parameter. All initial strategies use aggregation, since clustering increases
the running time exponentially. However, when clustering is used, the computed
flowpipes are tighter. Figure 4.14 shows the effect of clustering on the example of the
switching system benchmark. The flowpipe on the left side was computed with the
initial setting, the one on the right side with modified initial settings were clustering
was set to three. One can see that the flowpipe on the right side is smoother than
the one on the left. For the computations with the initial settings, MHyPro needed
25.6838 s while for the computations with the modified settings 26.7813 s were needed.
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(a) Flowpipe computed by Cora for the
bouncing ball benchmark using the initial
settings with zonotope order set to one.
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(b) Flowpipe computed by Cora for the
bouncing ball benchmark using the initial
settings with modified zonotope order. Here,
the zonotope order was set to 20

.

Figure 4.12: Impact of the zonotope order for the bouncing ball benchmark.

Figure 4.13: Impact of the number of considered Taylor terms tested on the vehicle
platoon benchmark. The blue flowpipe was computed with the initial settings. The
green one with modified number of considered Taylor terms. Here the parameter was
set to 100.
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(a) Flowpipe computed by MHyPro for the
switching system benchmark using the initial
settings with aggregation.

(b) Flowpipe computed by MHyPro for the
switching system benchmark using the ini-
tial settings with clustering (maximal three
segments)

.

Figure 4.14: Impact of clustering on the reachability analysis shown on the switching
system benchmark.

4.1.4 Verifying Easy Safety Specifications

The parameters have great impact on the results of the reachability analysis as the
examples presented in the previous section have shown. In this and the next subsections,
two sets of safety specifications will be considered that should be verified by the both
tools. The sets differ in the difficulty of the specifications. The specifications are
constraints of the form ∑i ai ⋅ xi ≤ ci where ai, ci ∈ R and xi are the state variables.
The first type of specifications (easy specifications) are those that were given in the
model files of the benchmarks. For the hard specification, the right hand side of the
constraints were changed such that Cora nearly could not verify the specification
when the zonotope order was set to 200 and the number of Taylor terms was set to
100 for every benchmark (the time-step size was defined as for the initial settings).
The obtained specifications are listed in Table 4.4.

Since Cora does not provide a verification algorithm, it was implemented by
us in Matlab. The verification algorithm for MHyPro was also implemented in
Matlab and has the same concept as the one for Cora. Thus, the performance of
both algorithms is comparable.

For the verification of the specifications, 42 different strategies for MHyPro and
36 different strategies for Cora were run to test the different settings. The time
horizon and the initial sets are for both tools the same. The jump depth for MHyPro
is the same as for the initial settings. The remaining parameters vary. All strategies
for both tools are listed in Tables A.1 and A.2 that can be found in the appendix.

The Tables 4.7 and 4.8 contain the results achieved by MHyPro and Cora
with the fastest strategies. The corresponding settings can be found in Tables 4.5
and 4.6. Overall one can see that the strategies used for the verification of the easy
specifications required more time than for the initial strategies. There are two reasons
for the increased running times. First, the verification algorithm had to be run in
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Benchmark Easy
Specification

Hard
Specification

bb v ≤ 10.700 v ≤ 10.614
fo4 y ≤ 0.500 y ≤ 0.464
fo8 y ≤ 0.500 y ≤ 0.469
fo16 y ≤ 0.500 y ≤ 0.464
sr vx ≤ 18 ∧ vy ≤ 10 vx ≤ 17.868 ∧ vy ≤ 9.442
sw x3 ≤ 1.5 x3 ≤ 1.488
rr c2 ≤ 41.1 c2 ≤ 40.860
tt x2 ≥ −0.7 x2 ≥ −0.507
vp e1 ≤ 1.7 e1 ≤ 1.636

Table 4.4: Easy and hard safety specifications used for the efficiency tests.

order to verify the specifications. Second, most of the specifications required tighter
flowpipes in order to satisfy the specifications, therefore, most of the strategies used
here use smaller time-step size which increases the running time.

Benchmark Set Repr. Time-Step
Size [s] Clust.

bb box 5 × 10−3 0
fo4 box 2 × 10−2 0
fo8 box 2 × 10−2 0
fo16 box 2 × 10−2 0
sr box 2 × 10−2 0
sw sf 5 × 10−3 3
rr box 1 × 10−1 3

Table 4.5: Fastest strategies for the verification of the easy specification for MHyPro.
Since no of the strategies could verify the two tanks and the vehicle platoon benchmarks,
they are not listed in the table.

The results obtained by MHyPro show that on average the verification algorithm
needed 81.6132 % of the running time. This high percentage can be explained by
the fact that the algorithm is implemented in Matlab. MHyPro could not verify
the vehicle platoon and the two tanks benchmarks within 105 s. Even an increase of
the timeout to five minutes was not enough for MHyPro to solve these benchmarks.
However, except for the switching system benchmark, MHyPro was clearly faster
than Cora, on average about 12 times.

Cora could not verify the filtered oscillator 16 benchmark, but this is not that
surprising since already the search for initial settings for this benchmark was not
successful. Note that the percentage of the time spent on the verification is far lower
than that of MHyPro. On average the verification algorithm needed 12.8281 % of
the running time. This acknowledges, that the overhead caused by Matlab cannot
be neglected.

Now the flowpipes of the benchmarks will be shortly discussed. Since easy specifi-
cations do not require that precise flowpipes and here only the fastest strategies are
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Benchmark Time-Step
Size [s] Taylor Terms Zonotope Order

bb 2 × 10−1 100 200
fo4 5 × 10−2 2 2
fo8 1 × 10−2 100 1
sr 2 × 10−1 100 200
sw 1 × 10−2 10 20
rr 5 × 10−1 10 20
tt 5 × 10−2 100 200
vp 1 × 10−1 10 20

Table 4.6: Fastest strategies for easy specification for Cora. Since no of the strategies
could verify the benchmark filtered oscillator 16, it is not listed in the table.

Benchmark Reach.
Time [s]

Verif.
Time [s]

Running
Time [s]

bb 0.0294 0.0985 0.1280
fo4 0.0194 0.1294 0.1488
fo8 0.0331 0.3366 0.3697
fo16 0.0230 64.8776 64.9006
sr 0.0310 0.1503 0.1812
sw 3.2736 9.5118 12.7854
rr 0.1202 0.1731 0.2932

Table 4.7: Running times achieved by MHyPro for easy specifications with the fastest
strategies. The second column contains the times needed for the reachability analysis.
The third column contains the times needed for the verification of the specifications.
The last column contains the total times.

considered, the results for some benchmarks are more imprecise in comparison to those
achieved with the initial settings. A good example for this circumstance is the bouncing
ball benchmark. Figure 4.15 illustrates the overlapped flowpipes computed by Cora
(blue) and MHyPro (green). The red rectangle symbolizes the bad states. Neither of
the flowpipes intersects with the red rectangle, however, the flowpipe computed by
Cora is coarser than the one computed with the initial settings. The reason for this
result is the fact that the time-step size defined by the used strategy was twice as
big as defined by the initial settings (2 × 10−2 s instead of 1 × 10−2 s). Therefore, the
segments of the flowpipes are bigger causing greater over-approximations than for the
initial settings. Even though the strategy MHyPro used time-step size of S5 × 10−3 s,
MHyPro was ten times faster than Cora.

Similar results were achieved for the rod reactor and the spacecraft rendezvous
benchmarks. The flowpipes are more imprecise than those computed with the initial
settings, as the time-step size for both strategies was increased. The corresponding
flowpipes can be found in the appendix (Figure A.9).

The results for the reachability analysis of the filtered oscillator 4 benchmark are
illustrated in Figure 4.16a. The figure shows the flowpipes computed by Cora (blue)
and MHyPro (green). The flowpipes computed by Cora for the filtered oscillator
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Benchmark Reach.
Time [s]

Verif.
Time [s]

Running
Time [s]

bb 1.0093 0.2008 1.2101
fo4 3.0175 0.1767 3.1942
fo8 8.4786 0.8722 9.3508
fo16 - - -
sr 0.4397 0.1757 0.6154
sw 1.2161 0.1308 1.3469
rr 1.2198 0.0686 1.2884
tt 1.0754 0.0322 1.1076
vp 4.8126 0.2496 5.0622

Table 4.8: Running times achieved by Cora for easy specifications with the fastest
strategies. The second column contains the times needed for the reachability analysis.
The third column contains the times needed for the verification of the specifications.
The last column contains the total times.

Figure 4.15: Reachability analysis of the bouncing ball benchmark computed by Cora
(blue) and MHyPro (green) for the easy specification with the fastest strategy.

4 benchmark are exactly the same as those computed with initial settings, since
it turned out that the initial strategy was the feasts one for this benchmark. The
flowpipe computed by MHyPro for this benchmark is only slightly tighter than the
one computed with initial settings, since only the time-step size was slightly changed
(initially 5 × 10−1 s, now 2 × 10−2 s).

The improvement for the filtered oscillator 8 benchmark is more visible as Figure
4.16b illustrates. Both flowpipes are clearly tighter than those computed with the
initial settings. Again, the reduced time-step size is responsible for this improvement.

Since among the 36 strategies in the set for Cora, there was no strategy that
could verify the filtered oscillator 16 benchmark within the 105 s, only the flowpipe
computed by MHyPro was plotted and can be found in the appendix (Figure A.8b).

An improvement was also achieved for the switching system benchmark by MHyPro.
The flowpipes computed by MHyPro (green) and Cora (blue) are illustrated in
Figure 4.17. The flowpipes computed by MHyPro are smoother than those computed
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(a) Reachability analysis of the filtered os-
cillator 4 performed by Cora (blue) and
MHyPro (green) with strategy for the easy
specifications.

(b) Reachability analysis of the filtered os-
cillator 8 performed by Cora (blue) and
MHyPro (green) with strategy for the easy
specifications.

Figure 4.16: Reachability analysis results computed with the strategies for the easy
specifications for the filtered oscillator benchmarks.

with the initial settings. The strategy used by MHyPro for this computations used
greater time-step size (initially 1 × 10−3 s, here 5 × 10−3 s), but instead of aggregation,
clustering was used. The maximal number of segments for the clustering was set to
three.

Figure 4.17: Reachability analysis of the linear switching systems benchmark computed
by Cora (blue) and MHyPro (green) for easy specification.

Due to the fact that MHyPro could not verify the two tanks and the vehicle
platoon benchmarks only the flowpipes computed by Cora were plotted which can be
found in the appendix (Figure A.10).
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4.1.5 Verifying Hard Safety Specifications

Since hard specifications require more precise computations, the timeout was increased
to 195 s. Tables 4.11 and 4.12 contain the running times achieved by MHyPro and
Cora respectively, using the fastest strategies from the corresponding sets of strategies.
The strategies used for the computations are listed in Tables 4.9 (MHyPro) and 4.10
(Cora). Due to the fact that the most strategies used smaller time-step sizes than
for easy specification, Matlab’s plotter had problems plotting the high number of
segments. Therefore, here only the strategies will be compared.

Benchmark Set Repr. Time-Step
Size [s] Clust.

bb box 5 × 10−5 0
fo4 box 1 × 10−2 0
fo8 box 2 × 10−2 0
fo16 box 1 × 10−2 0
sr sf 1 × 10−2 5
sw sf 5 × 10−3 5
rr box 5 × 10−2 0

Table 4.9: Fastest strategies for hard specification for MHyPro. Since no of the
strategies could verify the two tanks and the vehicle platoon benchmarks, they are
not listed in the table.

Benchmark Time-Step
Size [s] Taylor Terms Zonotope Order

bb 5 × 10−2 2 2
fo4 1 × 10−3 1 4
fo8 1 × 10−2 1 200
sr 2 × 10−2 100 200
sw 5 × 10−3 100 200
rr 5 × 10−2 2 2
tt 1 × 10−2 40 10
vp 5 × 10−2 100 200

Table 4.10: Fastest strategies for hard specification for Cora. Since no of the strategies
could verify the benchmark filtered oscillator 16, it is not listed in the table.

For most of the benchmarks both tools needed more time than for easy specifications.
Not surprising is the fact that MHyPro could not verify the two tanks and the
vehicle platoon benchmarks and that Cora could not verify the filtered oscillator 16
benchmark. Both tools had already problems verifying this benchmarks with easy
specifications.

First the results achieved by MHyPro are discussed. Except for the rod reactor
benchmark, MHyPro needed clearly more time for the verification of these benchmarks
in comparison to the times needed for the verification of the benchmarks with easy
specifications. In most cases, the reason for the increased running times, is the fact
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that the time-step size was decreased. An example is the bouncing ball benchmark.
The strategy used for the verification of hard specifications used a one hundred times
smaller time-step size than for the verification of the easy specifications. Therefore, it
is not surprising the the reachability analysis algorithm needed about 75 times longer
than for the reachability analysis with the strategy for the easy specifications. For
the filtered oscillator 4 and 16, MHyPro needed about twice as long because in both
cases the time-step size was decreased by half. The time-step size for the rod reactor
benchmark was also decreased by half, however, the strategy needed nearly the same
amount of time as for easy specifications. The reason for this computation time is the
fact that for easy specification clustering was used but here, aggregation was used
instead.

A clearly larger computation time was achieved for the spacecraft rendezvous
benchmark. The strategy used for the verification of easy specifications needed 0.1812 s
but the strategy used here needed 2.2985 s, i.e., about 13 times longer. The strategy is
far more preciser then the one used for the verification of the easy specifications. First,
instead of boxes the strategy used support functions as state set representation. Second,
the time-step size was decreased by half, and third, the strategy used clustering instead
of aggregation. All the changes explain the higher running time for this benchmark.

For the verification of the filtered oscillator 8 benchmark the strategy remained the
same. However, the computation time is nearly twice as long as for the verification of
easy specifications. The increased computation time is caused by the increased time
for the verification. The verification algorithm needed about twice as long as for the
easy specifications, however, the reachability analysis needed about the same amount
of time.

For the switching system benchmark only the clustering was increased to 5. There-
fore, the computation time is nearly the same as for the verification of the easy
specifications.

Now the results obtained for Cora are discussed in detail. Similarly as for
MHyPro, for most of the benchmarks, Cora needed more time for the verification.
One exception is the bouncing ball benchmark. Here Cora needed nearly the same
amount of time as for the verification of the easy specifications, although the strategies
used for the computations differ in all parameters. The time-step size was decreased
to one fourth of the time-step size used by the strategy for the easy specifications.
The number of Taylor terms was decreased from 100 to 2 and the zonotope order was
also decreased from 200 to 2. Still, Cora needed here only 1.055 longer. On the one
hand the time-step size was decreased which increases the computation time but on
the other hand the zonotope order as well as number of Taylor terms was decreased
which decreases the computation time. Therefore, the computation times for both
strategies are comparable.

For the filtered oscillator 4 and 8 benchmarks, Cora needed clearly more time. For
the filtered oscillator 4 Cora needed about 16 times longer than for the verification
of the easy specifications, and for the filtered oscillator 8 benchmark it needed about
three times longer. The reason for the increased computation time for the filtered
oscillator 4 benchmark is the fact that the time-step size was decreased by factor 50,
while the number of Taylor terms and the zonotope order remained nearly the same.
For the filtered oscillator 8 benchmark the reason for the increased computation time
is the increased zonotope order (from 1 to 200). The decreased number of Taylor
terms did not have that much impact on the computation time (from 100 to 1).

Not surprising is the result obtained for the spacecraft rendezvous benchmark.
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Cora needed for the verification of the hard specifications about five times longer than
for the verification of the easy specifications since the time-step size was decreased by
factor 10. The result achieved for the rod reactor benchmark is similar.

For the switching system benchmark Cora needed about 1.3 times longer than for
the verification of the easy specifications. The result is surprising since the time-step
size was decreased by half and the number of Taylor terms and the zonotope order were
increased by factor 10. This shows that increased zonotope order, or increased number
of Taylor terms does not always imply increased computation time. This is especially
true for the zonotope order since the parameter determines the maximal zonotope
order, i.e., the zonotopes might have lower orders. The second fastest strategy for
this benchmark used zonotope order of 400 and needed 1.1972 s for the reachability
analysis. The strategy for easy specifications needed 1.2161 s for the reachability
analysis whereby it used the same time-step size as the second fastest strategy for the
hard specifications but the zonotope order was only 20.

Finally the results for the two tanks and the vehicle platoon are considered. The
results obtained for the benchmarks are similar. For the vehicle platoon the same
strategy was used as for the verification of the easy specifications. Therefore, the
computation time is nearly the same. For the verification of the two tanks benchmark,
the time-step size was decreased by factor 5 in comparison to the strategy used for
the verification of the easy specifications. However, the decreased number of Taylor
terms and the decreased zonotope order, avoided higher increase of the running time
for this benchmark.

Benchmark Reach.
Time [s]

Verif.
Time [s]

Running
Time [s]

bb 2.2135 0.9050 3.1185
fo4 0.0346 0.2317 0.2663
fo8 0.0478 0.6115 0.6593
fo16 0.0433 126.4638 126.5071
sr 0.2827 2.0159 2.2985
sw 3.3512 9.5756 12.9268
rr 0.0671 0.2367 0.3039

Table 4.11: Running times obtained by MHyPro for the hard specifications. The
second column contains the times needed for the reachability analysis. The third
column contains the times needed for the verification of the specifications. The last
column contains the total times.
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Benchmark Reach.
Time [s]

Verif.
Time [s]

Running
Time [s]

bb 1.2031 0.0736 1.2767
fo4 46.0048 3.9093 49.9141
fo8 23.7307 0.7284 24.4591
sr 1.7281 1.3629 3.0910
sw 1.5043 0.2961 1.8004
rr 3.6880 0.2851 3.9731
tt 1.5150 0.1110 1.6260
vp 4.5227 0.4179 4.9306

Table 4.12: Running times obtained by Cora for hard specifications. The second
column contains the times needed for the reachability analysis. The third column
contains the times needed for the verification of the specifications. The last column
contains the total times.

4.2 Comparing Operations on Set Representations

Since HyPro and Cora offer set representations not only for the reachability analysis,
some of the remaining operations offered for the sets are considered now. Here only
operations on zonotopes and boxes were compared since those are the only common
set representations for MHyPro and Cora. First the operations on zonotopes are
considered.

Cora as well as HyPro and MHyPro, offer a number of various functions for
zonotopes. In order to compare the performance of the operations twelve common
functions were selected and tested in both tools. Those are:

• center (center) - returns the center of a zonotope.

• generators (generators)- returns the generators of a zonotope.

• Minkowski sum (plus) - returns the Minkowski sum of two zonotopes.

• unite (unite)- computes the union of two zonotopes.

• contains point (containsPt)- checks if a zonotope contains a given point.

• contains zonotope (containsZono)- checks if a zonotope contains an another
zonotope.

• satisfies halfspaces (satHalfspaces) - checks if a zonotope satisfies a set of
halfspaces of the form C ⋅ x ≤ d,C ∈ Rm×n, d ∈ Rm.

• unite equal vectors (deleteAligned) - removes generators that are aligned.

• remove empty generators (deleteZeros) - removes generators whose entries
are all zero.

• emptiness test (empty)- checks if a zonotope is empty.

• vertices (vertices) - returns vertices of a zonotope.
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• reduce order (reduceOrder)- reduces the order of a zonotope.

The input for the functions were randomly generated zonotopes. For the Minkowski
sum, union, vertices and the emptiness test, the zonotopes were defined by a randomly
generated centers with 100 entries, where each entry had the value between 1000
and -1000. The generators were defined by randomly generated 100 × 10 matrices
which entries also had the values in the range [−1000,1000]. Note that the columns
of the matrices represent the generators, not the rows. Therefore, for each generator
g holds g ∈ R100. For the functions center and generators, the input was the
zonotope obtained from the Minkowski sum. The zonotopes that were used for the
contains functions, were generated by 3 × 3 matrices and 3 × 1 centers. For the
function deleteAligned the generators were defined by a 4 × 3 matrix and a 4 × 1
center. For the order reduction function the generators were defined by a 4×10 matrix
and a 4 × 1 center. In Table 4.13 the results are presented. The first two columns
shows the running times for MHyPro and Cora, the third column contains results
for HyPro. While the results for MHyPro and Cora are, in most cases, comparable,
HyPro is clearly faster. Only for the function contains point, MHyPro is clearly
faster than Cora.

Since here only single functions on set representations are considered, the overhead
for MHyPro caused by Matlab has a greater impact on the run time than for
example for the reachability analysis, where the most part of the computations are
performed in C++.

Function computation time [ms]
MHyPro

Run Time [ms]
Cora

Run Time [ms]
HyPro

center 0.4030 0.3390 1.0000 × 10−3

generators 0.2910 0.3860 1.0000 × 10−3

plus 1.9190 5.6480 7.7000 × 10−2

unite 2.7820 6.3960 6.7000 × 10−2

containsPt 2.8230 575.8100 <1.0000 × 10−3

containsZono 2.2410 24.3990 3.0000 × 10−3

satHalfspaces 124.9800 145.9100 2.2000 × 10−3

deleteAligned 0.5310 15.3570 1.0000 × 10−3

deleteZeros 0.4230 1.4710 <1.0000 × 10−3

empty 0.8500 1.7390 <1.0000 × 10−3

vertices 1.2250 440.3600 1.4630 × 10−2

reduceOrder 0.6600 24.0780 4.0000 × 10−3

Table 4.13: Performance comparison of HyPro, MHyPro and Cora on common
zonotope functions.

The set representation interval in Cora is partially comparable with boxes offered
by HyPro. Both representations have common functions but Cora offers some more
functions that are more comparable with those offered by CArL for intervals, for
example trigonometric functions, root function, power function, etc. The functions plus,
union, and vertices compared in Table 4.14 are the same as for zonotopes. Additionally,
the following functions were considered:

• affine transformation (affineTrans) - computes the affine transformation of
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a box, i.e., a box is multiplied by a transformation matrix and shifted by a
translation vector.

• scale (scale) - scales a box by a given factor.

• supremum (sup) - computes the supremum of a box.

• intersect (intersect) - computes the intersection of two boxes.

The results achieved by the tools are shown in Table 4.14. Again HyPro is clearly
faster than Cora and MHyPro. A surprising result was achieved for the function
computing vertices, as Cora needed about 1000 times longer than MHyPro. The
same holds for the affine transformation. For Minkowski sum, however, MHyPro
needed four times longer than Cora.

Function Run Time [ms]
MHyPro

Run Time [ms]
Cora

Run Time [ms]
HyPro

affineTrans 3.4480 25.9870 2.4600 × 10−1

intersect 2.9650 4.3980 5.0000 × 10−3

plus 17.7670 4.3440 1.1000 × 10−2

scale 1.8970 1.9130 6.0000 × 10−3

sup 1.0570 2.6590 7.0000 × 10−2

union 7.2130 3.5750 7.0000 × 10−3

vertices 1.0430 1112.7000 4.4000 × 10−2

Table 4.14: Performance comparison of HyPro, MHyPro and Cora on common
box functions.

As already mentioned, Cora provides some functions for intervals that are more
comparable with those provided by CArL intervals. In order to compare the precision
of CArL intervals that are used in HyPro, with intervals provided by Cora, a set
of functions was considered. The functions are taken from [ZZZ10] and are shown in
Table 4.15 together with the input values and exact solutions. The same functions were
used by the Cora developers to compare the efficiency of Taylor terms implemented
in Cora with those implemented in Flow* [AGK18]. The first four functions are
uniform cubic B-splines that are commonly used for image warping applications
[JLR03]. The remaining functions are multivariate polynomial functions.

Since all functions contain linear and non-linear operators (division and power
operator) combined with different coefficients (positive, negative, large, small) and
have different number of terms they are suitable for the observation of floating-point
rounding errors. In order to see how precise the both tools are the error is computed
as follows

δ = [−
x − xref
xref − xref

,
x − xref
xref − xref

] ⋅ 100%

where x (x) is the lower (upper) bound of the computed interval and xref (xref ) is the
lower (upper) bound of the exact interval. If δ is equal zero then the calculated value
is identical with the reference value. Large values of δ means large over-approximation.
Analogous, very small values of δ means a great under-approximation [AGK18].

Table 4.16 contains the results achieved by Cora and HyPro. The results show
that HyPro is clearly faster and slightly preciser than Cora. However, one has to
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keep in mind that Cora currently does not pay attention to floating-point rounding
errors like CArL, as Cora’s focus lies on the development of reachability algorithms
[AGK18]. HyPro could compute the upper bounds for the functions image rejection,
Mitchell, and three hump more precisely than Cora. While the discrepancy for the
image rejection function is not that big, for the other two functions the precision of
Cora is clearly worse in comparison to HyPro. For function three hump also the
calculation of the lower bound was more precise for HyPro than Cora.
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4.3 Reachability Analysis in HyPro and MHyPro

In the previous section set operations for HyPro and MHyPro were compared. In this
section, the overhead for the reachability analysis for MHyPro is shortly considered.
In order to estimate the overhead caused by Matlab for MHyPro, the benchmarks
used previously for the comparison with Cora, were used here. Additionally, the
results were compared with those achieved by HyDra, which is a tool that uses the
data types offered by HyPro to implement various reachability analysis algorithms
for hybrid systems.

Table 4.17 contains the results obtained for the three tools. For each benchmark,
the tools used the same strategy. For the benchmarks which names contain the
abbreviation ’init’ the initial settings were used. For the benchmarks which names
contain the abbreviation ’easy’ (’hard’) the strategies for the verification of the easy
(hard) specifications were used.

For all benchmarks with safety specifications, HyPro was always the fastest tool.
MHyPro is faster than HyDra on 5 out of 13 benchmarks with safety specifications.
On average ,for this class of benchmarks, MHyPro needed about 400 times longer
than HyPro and 30 times longer than HyDra. The reason for the overhead is the
verification algorithm that is implemented in Matlab. This can be acknowledged
when only the benchmarks without safety specifications are considered. For three out
of nine benchmarks MHyPro is faster than HyPro and for six benchmarks faster
than HyDra. On average, for this class of benchmarks, HyPro is only 1.17 times
faster than MHyPro and HyDra is about 2.58 times slower than MHyPro.
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Benchmark Time [s]
MHyPro

computation time [s]
HyDra

computation time [s]
HyPro

bb_init 0.0214 0.207 894 8.655 × 10−3

bb_easy 0.1280 0.340 912 9.379 × 10−3

bb_hard 3.1185 23.4108 5.639 × 10−3

fo4_init 0.0063 0.153 583 8.999 × 10−3

fo4_easy 0.1488 0.215 151 79 9.608 × 10−3

fo4_hard 0.2663 0.117 016 7.913 × 10−3

fo8_init 0.0046 0.161 662 1.2807 × 10−2

fo8_easy 0.3697 0.235 144 1.3899 × 10−2

fo8_hard 0.6593 0.355 57 9.67 × 10−3

fo16_init 0.0071 0.190 213 2.2501e-2
fo16_easy 64.9006 0.297 212 2.1891e-2

rr_init 0.1265 1.355 66 6.9417 × 10−2

rr_easy 0.2932 0.101 323 -
rr_hard 0.3039 4.542 74 7.4183 × 10−2

sr_init 0.0577 0.833 885 3.8066 × 10−2

sr_easy 0.1812 0.519 526 4.1803 × 10−2

sr_hard 2.2985 1.491 02 -

sw_init 25.6838 0.588 405 20.1933
sw_easy 12.7854 0.174 179 -
sw_hard 12.9268 0.171 552 -

tt_init 0.0091 0.106 43 8.355 × 10−3

vp_init 9.1345 0.492 808 8.4431

Table 4.17: Comparison of the running times obtained by HyPro, HyDra, and
HyPro. For each benchmark the initial strategy and the strategies for easy and hard
specifications were considered. The benchmark names with ending ’_init’ signify
usage of the initial strategy. The ending ’_easy’ (’_hard’ ) indicates that the strategy
for easy (hard) specification was considered.



Chapter 5

Conclusion

This thesis proposes a Matlab-wrapper for the C++ tool HyPro offering various
state set representations and algorithms for analysis of hybrid systems. First a short
introduction to hybrid systems and the verification methods was provided. Especially
the reachability algorithm and state set representations were explained. The core
of this thesis is the comparison of HyPro with the well known tool Cora whereby
the wrapper for HyPro, called MHyPro, was used. The efficiency and precision of
MHyPro, HyPro, and Cora was evaluated using a set of nine well know benchmarks
with two different sets of safety specifications. Besides the efficiency of the reachability
algorithms, the efficiency of single state set operations for zonotopes and boxes was
compared. Since Cora intervals offer functions that are more comparable with those
offered by CArL intervals, that are used by HyPro, the precision of some interval
functions was also evaluated. Finally, the overhead caused by Matlab for MHyPro
was analysed.

The comparison of HyPro and Cora showed that both tools have advantages and
disadvantages. Cora offers reachability analysis algorithms for continuous, discrete,
and hybrid dynamics. It supports linear and nonlinear systems. The high number of
parameters, makes it possible for the user to customize the models more precisely than
with HyPro. However, the impact of the particular parameters on the analysis results
is not well documented and often difficult to understand. Even though in scope of this
thesis only few parameters were considered and analyzed, it took time to understand
what impact the parameters have on the results, and what default values can be taken
as initial setting. However, as the vehicle platoon benchmark has shown, it is sill not
always clear how the parameters have to be set.

HyPro is less complex than Cora, however, it does not provide that much model-
ing possibilities in comparison to Cora. Important features like parallel composition
and support of algebraic variables need to be in integrated in order to make the
tool more attractive for the industry since those are features that are constantly
needed in the practice. The development of the Matlab wrapper makes HyPro more
interesting for engineers using Matlab. The fact that the performance of MHyPro
is comparable with the performance of HyPro could make the wrapper competitive
when further features of HyPro, that are still missing, are integrated.
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5.1 Future Work
There are various possibilities to continue this work. The possibilities concern the
implementation of the wrapper and HyPro, as well as the comparison with Cora.
First further possibilities for the comparison will be shortly discussed. The comparison
made in scope of this thesis concerned only nine benchmarks. However, it would be
interesting how well MHyPro (and HyPro) performs on some other benchmark from
the ARCH competition, since many of the benchmarks come from the real world and
are challenging.

There is a number of possibilities to improve MHyPro. An important improvement
would be the implementation of a parser for Flow* or SpaceEx syntax since currently
the modelling process is complex and thus error-prone. Another possibility would be
the implementation of a graphical user interface. Matlab provides a tool called App
Designer that could be one possible way to do this. Moreover, the remaining state set
representations could be implemented, e.g., Taylor terms, and some data structures
could be wrapped that are still missing.

In general, a possible next step for HyPro would be the implementation of further
dynamics, since many problems are nonlinear. Moreover, the possibility of adding
external input should be enabled and the parallel composition should be implemented.
This improvements would make HyPro even more comparable with tools like Cora.
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Appendix

A.1 Benchmarks Models

x = [10,10.2] ∧
v = [0.0,0.0]

loc

ẋ = v
v̇ = −9.81
x ≥ 0

x = 0 ∧ v ≤ 0
v ∶= −0.75 ⋅ v

Figure A.1: Hybrid automaton modelling the bouncing ball benchmark.

x = [510,510] ∧
c1 = [20,20] ∧
c2 = [20,20]

rod 1

ẋ = 0.1 ⋅ x − 56
ċ1 = 1
ċ2 = 1

x ≥ 510

no rods

ẋ = 0.1 ⋅ x − 50
ċ1 = 1
ċ2 = 1

x ≤ 550

rod 2

ẋ = 0.1 ⋅ x − 60
ċ1 = 1
ċ2 = 1

x ≥ 510

shut down

x = 510
c1 ∶= 0

x = 550 ∧
c1 ≥ 20

x = 550 ∧
c2 ≥ 0

x = 510
c2 ∶= 0

x = 510 ∧
c1 < 20 ∧
c2 < 20

Figure A.2: Hybrid automaton modelling the rod reactor benchmark.
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x = [0.2,0.3] ∧
y = [−0.1,0.1] ∧
z = [0.0,0.0] ∧
x1 = [0.0,0.0] ∧
x2 = [0.0,0.0] ∧
x3 = [0.0,0.0]

loc3

ẋ = −2 ⋅ x + 1.4
ẏ = −y − 0.7

ẋ1 = 5 ⋅ x − 5 ⋅ x1
ẋ2 = 5 ⋅ x1 − 5 ⋅ x2
ẋ3 = 5 ⋅ x2 − 5 ⋅ x3
ż = 5 ⋅ x3 − 5 ⋅ z

x ≥ 0 ∧
y + 0.714286 ⋅ x ≥ 0

loc4

ẋ = −2 ⋅ x − 1.4
ẏ = −y + 0.7

ẋ1 = 5 ⋅ x − 5 ⋅ x1
ẋ2 = 5 ⋅ x1 − 5 ⋅ x2
ẋ3 = 5 ⋅ x2 − 5 ⋅ x3
ż = 5 ⋅ x3 − 5 ⋅ z

x ≥ 0 ∧
y + 0.714286 ⋅ x ≤ 0

loc1

ẋ = −2 ⋅ x + 1.4
ẏ = −y − 0.7

ẋ1 = 5 ⋅ x − 5 ⋅ x1
ẋ2 = 5 ⋅ x1 − 5x2
ẋ3 = 5 ⋅ x2 − 5 ⋅ x3
ż = 5 ⋅ x3 − 5 ⋅ z

x ≤ 0 ∧
y + 0.714286 ⋅ x ≥ 0

loc2

ẋ = −2 ⋅ x − 1.4
ẏ = −y + 0.7

ẋ1 = 5 ⋅ x − 5 ⋅ x1
ẋ2 = 5 ⋅ x1 − 5 ⋅ x2
ẋ3 = 5 ⋅ x2 − 5 ⋅ x3
ż = 5 ⋅ x3 − 5 ⋅ z

x ≤ 0 ∧
y + 0.714286 ⋅ x ≤ 0

y + 0.714286 ⋅ x = 0 ∧
x ≥ 0

y + 0.714286 ⋅ x ≤ 0 ∧
x = 0

y + 0.714286 ⋅ x = 0 ∧
x ≤ 0

y + 0.714286 ⋅ x ≥ 0 ∧
x = 0

Figure A.3: Hybrid automaton modelling the filtered oscillator benchmark.
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x = [−925, − 875] ∧
y = [−425, − 375] ∧
vx = [0,0] ∧
vy = [0,0] ∧
t = [0,0]

loc1

ẋ = vx
ẏ = vy

v̇x = −0.0576 ⋅ x + 0.0002 ⋅ y − 2.8999 ⋅ vx + 0.0087 ⋅ vy
v̇y = −0.0002 ⋅ x − 0.0665 ⋅ y − 0.0088 ⋅ vx − 2.9030 ⋅ vy

ṫ = 1

x ≤ −100

loc2

ẋ = vx
ẏ = vy

v̇x = −0.5760 ⋅ x + 0.0003 ⋅ y − 19.2300 ⋅ vx + 0.0088 ⋅ vy
v̇y = −0.0003 ⋅ x − 0.5760 ⋅ y − 0.0088 ⋅ vx − 19.2300 ⋅ vy

ṫ = 1

100 ≥ x ≥ −100 ∧
100 ≥ y ≥ −100 ∧

141.1 ≥ x + y ≥ −141.1 ∧
141.1 ≥ y − x ≥ −141.1

100 ≥ x ≥ −100 ∧
100 ≥ y ≥ −100 ∧
141.1 ≥ x + y ≥ −141.1 ∧
141.1 ≥ y − x ≥ −141.1

Figure A.4: Hybrid automaton modelling the spacecraft rendezvous benchmark.
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x1 = 3.1 ∧
x2 = 4 ∧
x3 = 0 ∧
x4 = 0 ∧
x5 = 0

loc1

ẋ = A1x

x1 ≥ 3

loc2

ẋ = A2x

x1 ≥ 2

loc3

ẋ = A3x

x1 ≥ 1

loc4

ẋ = A4x

x1 ≥ 0

loc5

ẋ = A5x

x1 ≤ 1

x1 = 3 x1 = 2

x1 = 1

x1 = 0

x1 = 1

Figure A.5: Hybrid automaton modelling the switching system benchmark.

A1 =

⎛
⎜⎜⎜⎜⎜
⎝

−0.8047 8.7420 −2.4591 −8.2714 −1.8640
−8.6329 −0.5860 −2.1006 3.6035 −1.84203
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
1.8302 1.9869 −2.4539 −1.7726 −0.7911

⎞
⎟⎟⎟⎟⎟
⎠

A2 =

⎛
⎜⎜⎜⎜⎜
⎝

−0.8316 8.7658 −2.4744 −8.2608 −1.9033
−0.8316 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
1.5964 2.1936 −2.5872 −1.6812 −1.1324

⎞
⎟⎟⎟⎟⎟
⎠

A3 =

⎛
⎜⎜⎜⎜⎜
⎝

−0.9275 8.8628 2.5428 −8.2329 −2.0324
−0.8316 −0.5860 2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
0.7635 3.0357 −3.1814 −1.4388 −2.2538

⎞
⎟⎟⎟⎟⎟
⎠

A4 =

⎛
⎜⎜⎜⎜⎜
⎝

−1.0145 8.9701 −2.6207 −8.2199 −2.1469
−0.8316 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
0.0076 3.9682 −3.8578 −1.3253 −3.2477

⎞
⎟⎟⎟⎟⎟
⎠

A5 =

⎛
⎜⎜⎜⎜⎜
⎝

−1.4021 10.1647 −3.3937 −8.5139 −2.9602
−0.8316 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
−3.3585 14.3426 −10.5703 −3.8785 −10.3111

⎞
⎟⎟⎟⎟⎟
⎠
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x = (x1 x2 x3 x4 x5)
T

x1 = [1.5,2.5] ∧
x2 = [1.0,1.0]

off_off

ẋ1 = −x1 − 2
ẋ2 = x1

x1 ≥ −1 ∧
x2 ≤ 1

on_off

ẋ1 = −x1 + 3
ẋ2 = x1

x2 ≤ 1

off_on

ẋ1 = −x1 − 2
ẋ2 = x1 − x2 − 5

x1 ≥ −1 ∧
x2 ≥ 0

on_on

ẋ1 = −x1 + 3
ẋ2 = x1 − x2 − 5

x1 ≤ 1 ∧
x2 ≥ 0

x1 = −1

x2 = 1x2 = 0 x2 = 1

x1 = −1

x1 = 1

x2 = 0

Figure A.6: Hybrid automaton modelling the two tanks benchmark.

x1 = [1.5,2.5] ∧
x2 = [1.0,1.0]

loc1

ẋ1 = Acx
ṫ = 1

t ≤ c1

loc2

ẋ1 = Anx
ṫ = 1

t ≤ c2

t ≥ c1
t ∶= 0

t ≥ c2
t ∶= 0

Figure A.7: Hybrid automaton modelling the vehicle platoon benchmark.

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0

1.6050 4.8680 −3.5754 −0.8198 0.4270 −0.0450 −0.1942 0.3626 −0.0946 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0

0.8718 3.8140 −0.0754 1.1936 3.6258 −3.2396 −0.5950 0.1294 −0.0796 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0

0.7132 3.5730 −0.0964 0.8473 3.2568 −0.0876 1.2726 3.0720 −3.1356 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0

1.6050 4.8689 −3.5754 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
0 0 0 1.1936 3.6258 −3.2396 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 −1 0

0.7132 3.5730 −0.0964 0.8472 3.2568 −0.0876 1.2726 3.0720 −3.1356 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

x = (e1 ė1 a1 e2 ė2 a2 e3 ė3 a3 t)T
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A.2 Strategies Used for the Evaluation

Strategy Nr. Time Step
Size [s]

Taylor
Terms

Zonotope
Order

1 1 × 10−1 100 200
2 1 × 10−2 100 200
3 1 × 10−3 100 200
4 1 × 10−3 50 100
5 1 × 10−1 50 100
6 1 × 10−1 10 20
7 2 × 10−2 1 5
8 1 × 10−2 1 1
9 5 × 10−3 100 200
10 1 × 10−2 10 20
11 5 × 10−1 10 20
12 1 × 10−2 25 50
13 1 × 10−1 25 50
14 1 × 10−2 1 200
15 1 × 10−2 100 1
16 2 × 10−2 100 200
17 2 × 10−1 100 200
18 1 × 10−2 10 40
19 1 × 10−2 40 10
20 2 × 10−4 100 200
21 2 × 10−4 5 200
22 5 × 10−5 100 200
23 5 × 10−5 10 400
24 1 × 10−3 5 400
25 1 × 10−1 5 400
26 1 × 10−2 5 400
27 2 × 10−2 100 200
28 2 × 10−2 200 300
29 1 × 10−2 200 300
30 1 × 10−3 200 300
31 1 × 10−1 200 300
32 5 × 10−2 100 200
33 1 × 10−3 1 4
34 5 × 10−2 2 2
35 1 × 10−2 1 2
36 5 × 10−3 100 200

Table A.1: Settings for Cora that were used for the evaluation of the benchmarks.
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Strategy Nr. Time-Step
Size [s]

State Set
Representation Clust.

1 1 × 10−2 box 5
2 1 × 10−2 box 3
3 1 × 10−2 box 0
4 1 × 10−1 box 5
5 1 × 10−1 box 3
6 1 × 10−1 box 0
7 5 × 10−2 box 5
8 5 × 10−2 box 3
9 5 × 10−2 box 0
10 2 × 10−2 box 5
11 2 × 10−2 box 3
12 2 × 10−2 box 0
13 5 × 10−5 box 5
14 5 × 10−5 box 3
15 5 × 10−5 box 0
16 1 × 10−3 box 5
17 1 × 10−3 box 3
18 1 × 10−3 box 0
19 5 × 10−3 box 5
20 5 × 10−3 box 3
21 5 × 10−3 box 0
22 1 × 10−2 sf 5
23 1 × 10−2 sf 3
24 1 × 10−2 sf 0
25 1 × 10−1 sf 5
26 1 × 10−1 sf 3
27 1 × 10−1 sf 0
28 5 × 10−2 sf 5
29 5 × 10−2 sf 3
30 5 × 10−2 sf 0
31 2 × 10−2 sf 5
32 2 × 10−2 sf 3
33 2 × 10−2 sf 0
34 5 × 10−5 sf 5
35 5 × 10−5 sf 3
36 5 × 10−5 sf 0
37 1 × 10−3 sf 5
38 1 × 10−3 sf 3
39 1 × 10−3 sf 0
40 5 × 10−3 sf 5
41 5 × 10−3 sf 3
42 5 × 10−3 sf 0

Table A.2: Settings for MHyPro that were used for the evaluation of the benchmarks.
The abbreviation Clust. stands for clustering. stands for aggregation. If the value for
clustering is set to 0 it means that clustering is not used and instead aggregation is
used.
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A.3 Flowpipes Computed for Some Benchmarks

(a) Reachability analysis of the filtered oscil-
lator 16 benchmark computed by MHyPro
with the initial settings.

(b) Reachability analysis of the filtered oscil-
lator 16 benchmark computed by MHyPro
with strategy for the easy specifications.

Figure A.8: Flowpipes computed by MHyPro for the filtered oscillator benchmark
16 with the initial settings (left) and strategy for the easy specifications (right).

(a) Reachability analysis of the rod reactor
benchmark performed by Cora (blue) and
MHyPro (green) with strategy for the easy
specification.

(b) Reachability analysis of the spacecraft
rendezvous benchmark performed by Cora
(blue) and MHyPro (green) with strategy
for the easy specification.

Figure A.9: Flowpipes computed by MHyPro (green) and Cora (blue) for the rod
reactor benchmark (left) and spacecraft rendezvous benchmark (right) with strategies
for the easy specifications. The red rectangles depict the bad states.
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(a) Reachability analysis of the two tanks
benchmark performed by Cora with the
strategy for the easy specifications.

(b) Reachability analysis of the vehicle pla-
toon benchmark performed with strategy for
the easy specification.

Figure A.10: Flowpipes computed by Cora for the two tanks benchmark (left) and
vehicle platoon benchmark (right) with strategies for easy specifications. The red
rectangles depict the bad states.
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