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Symbol Meaning Unit
Ahe Surface area of the heat exchanger m2

Aw Surface area of the walls m2

Che Heat capacity of the heat exchanger J
◦C

Cp Constant pressure specific heat of air J
kg·◦C

Cw Heat capacity of the side walls J
◦C

fmix Mixed air Volumetric flow rate m3

s

fo Fresh air Volumetric flow rate m3

s

Hfg Enthalpy of water vapor J
kg

hc Natural convective heat transfer coefficient W
m2·◦C

hvV
2
3 Forced convective heat transfer coefficient W

m2·◦C
ho Outdoor heat transfer coefficient W

m2·◦C
hw Heat transfer coefficient in the side walls W

m2·◦C
h′he Heat transfer coefficient on the surface of the heat exchanger
` Lewis relation

ρ Air density kg
m3

p(T ) Saturated vapor pressure at temperature T Pa
pa Vapor pressure of water in thermal space Pa
ps Vapor pressure near heat exchanger Pa
pmix Vapor pressure of water in mixed air Pa
po Outdoor vapor pressure of water Pa
Qhe Thermal power from the heat exchanger W
Qin Heat input provided by the air conditioning system W
Qload Cooling load in the room W
Qw Thermal power from the wall W

r System-to-fresh-air volumetric flow-rate ratio fmix

fo

RHa Relative air humidity in thermal space W
RHo Relative air humidity outdoor W
Ta Temperature in thermal space ◦C
The Temperature in the heat exchanger surface ◦C
Tmix Mix Air temperature ◦C
Tmrt Radiant air temperature indoor ◦C
To Outdoor ambient temperature ◦C
Ts Supply air from the heat exchanger ◦C
Tw Indoor wall temperature ◦C
Vair Relative air velocity indoor m

s

V ′air Relative air velocity in the heat exchanger m
s

Vhe Effective heat exchanger volume m3

Vs Effective thermal space volume m3

Wa Humidity mass ratio in thermal space
Wmix Humidity mass ratio of mixed air
Wo Outdoor humidity mass ratio
Ws Humidity mass ratio of the supply air
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1 Introduction

According to the International Energy Agency (IEA), buildings and their construction
account for 36% of global final energy use and 39% of energy-related carbon-dioxide.
30 and 28 percentage points of these fractions can be attributed purely to building
operation, respectively. In order to meet the climate goals determined in the Paris
Agreement, the average energy intensity per square meter of the global buildings sec-
tor requires a decrease of 30% by 2030 (compared to 2015) [7]. This discrepancy is
illustrated in Figure 1. Our drastic need for reducing buildings’ energy consumption
becomes particularly obvious when taking into account that the Earth is expected to
reach a population of 8.5 billion by then [14].

A major contributor to the overall energy consumption is summarized by the term
HVAC - heating, ventilation and air conditioning. In a typical office building, HVAC
alone accounts for roughly 40% of the total building energy consumption [11]. Although
“smart” solutions to heating in residential homes are rising in popularity, an automated
approach to finding optimal HVAC regulation parameters seems most promising in
large-scale commercial buildings. Fortunately, HVAC devices in newer buildings can
make use of advancements in information and communication technology and thus
realize more complex behavior [3]. By considering factors such as outdoor weather,
occupancy and building materials, the objective is therefore to reduce the total energy
consumption or - perhaps even more importantly - the cost of operation, whilst still
providing thermal comfort and acceptable air quality to all occupants. As energy usage
in buildings is often charged with varying prices based on the time of use, the thermal
flywheel effect allows operators to pre-heat/pre-cool the building to shift the energy
demand in favor of lower costs [20].
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Figure 1: Global final energy use per square meter. Historical data is displayed in solid
black, whereas the dotted line shows a trajectory under the Reference Tech-
nology Scenario, which already takes into account existing energy-related
commitments and recent trends. As can be seen, the RTS diverges from the
trajectory needed to reach a decrease of 30%, represented by the blue line.
[7]

1.1 Related Work

Although on/off and PID controls are still frequently used to control HVAC systems
due to their simplicity, many more advanced methods have been developed in recent
years [1]. Most of these approaches are based on mathematical models as to move
away from corrective control and allow for anticipatory control, handling of constraints
and uncertainties and use of advanced optimization algorithms [1]. Researchers have
demonstrated that the energy costs associated with HVAC can be greatly reduced by
implementing Model Predictive Control (MPC) strategies [8].

Thermodynamic models The ultimate goal in optimal HVAC control is to ensure
the thermal comfort of a building’s occupants, while minimizing the costs of resources
(such as electricity) necessary to achieve this. In order for the controller to predict
how a certain HVAC state will affect the building’s temperature, a thermodynamic
model may be used. Apart from the HVAC system, this model takes into account
information such as the weather forecast, building occupation and characteristics of
the building. Obviously, the choice of a model is crucial to the accuracy of the resulting
predictive control. Heat dynamic models are usually composed of sub models for the
mechanisms behind heat transfer [19]. Generally speaking, heat can be transferred
through conduction through the walls, through convective air exchange among rooms,
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ventilation (e.g. heated air through an open window) and radiation between objects
that are in optical contact (e.g. sun exposure) [19, 6, 10]. Often, thermal dynamical
models are obtained by modeling the building in question as an RC network [15], which
is based on analogies to electrical circuits. Heat transfer and storage are described
via circuits of resistances (R) and capacitances (C) [17]. There are many extensive
descriptions of such Resistive-Capacitative Models in literature. In [13], a nonlinear
model of the overall cooling system (including chillers and storage tanks) has been
developed. However, the authors recognize that their model has feasibility issues in
real-time implementation.

Zhang et al. [22] present a framework that learns a thermal model for each zone of
a building without any manual configuration, given readings from Internet-of-Things-
based smart thermostats.

Building performance simulation Building performance simulation (BPS) is a computer-
based methodology that aims to replicate certain characteristics and aspects of building
performance on the basis of fundamental physical principles. While the complexity of
such models may vary, acquiring data and modelling building stocks is generally time-
consuming and error-prone [17]. In 2016, Remmen et al. [17] from the E.ON Energy
Research Center published a paper on their open framework that covers functionali-
ties for common tasks such as data enrichment and overall facilitates the process of
getting building models up and running. In this context, data enrichment means be-
ing able to create fully parameterized building models despite sparse data input. The
fact that this framework utilizes RC-combinations to model building and wall elements
showcases how closely related thermodynamic models and BPS are.

Optimal Control A variety of different predictive control methods for HVAC have
been proposed, albeit many of them focus on specific building layouts or subproblems
(e.g. only cooling).

Shi et al. [18] have developed an RC-network-based analytical model for multi-
zone HVAC precooling to achieve the minimization of total energy costs and peak load
demand. Since this model admits a convex approximation, the associated optimization
problem can be solved with an efficient distributed algorithm. Their simulation studies
indicate an energy cost reduction of up to 60 %. Contrary to many previous controllers
assuming deterministic forecasts, Parisio et al. [16] published one of several stochastics-
based MPC (SMPC) schemes to take into account uncertainties in weather conditions
and occupancy. Based on an RC-network model for the thermal dynamics and a CO2

concentration model, the strategy dynamically learns the statistics of the building
occupancy and weather conditions in order to build probabilistic constraints on the
indoor temperature and CO2 concentration. In a novel approach by Beltran and Cerpa
[2], the occupancy of each zone in the building is instead predicted using a Blended
Markov Chain (BMC).

According to Wei et al. [20], developing a building dynamics model that is both
accurate and efficient enough for effective runtime HVAC control is often intractable.
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Hence, they are among many others to propose a data-driven approach. In their case,
the HVAC operation is formulated as a Markov decision process. Through deep rein-
forcement learning (DRL), their framework learns an effective control strategy during
building operation, but is then given detailed building dynamics for offline training and
validation. Recently, Ostadijafar and Dubey [15] presented an approximate linearized
model that leads to an efficient linear model predictive controller (LMPC). Employing
a linearization technique for the typically nonlinear thermodynamic model is one possi-
bility of retrieving a computationally feasible controller applicable in real-time control
for a building’s HVAC system.

The latter essentially describes the idea this thesis builds on. The main point here
is to find a reduced model that allows for efficient calculations of globally ideal HVAC
control, but still accurately depicts the effects taking place in the building. In partic-
ular, we are interested in making the problem solvable by a linear solver.

1.2 Outline

This thesis proceeds as follows: In Section 2, a model for a building’s thermal load,
i.e. demand for heat energy, is formulated. Based on approximations of this thermal
model, the global optimization problem for the HVAC system is then constructed as
a linear program in Section 3. Section 4 quickly deals with software employed to
compute a solution to this problem. In Section 5, we will then evaluate how well our
technique fares with regards to energy and computational efficiency when applied to
actual buildings with existing data. The last section concludes our results and provides
a short outlook.

2 Model for thermal load in buildings

Since we are taking a physics-based approach, we first need to identify a model that
lets us predict how changes in the building’s HVAC control will affect its climate
under the given conditions. In particular, we would like for the model to take into
consideration at least some specific building data (e.g. available heating equiment,
construction materials used) and occupancy per thermal zone, as well as a prediction
of outdoor weather. Figure 2 illustrates the operating principle of such a thermal
model. Note that not every specific model considers all of the listed input parameters,
as sometimes accurate predictions on the future indoor climate may be possible without
their consideration.

2.1 Thermodynamic Zone Model

Liang and Du [12] provide a thermal space model that is suitable for comfort control
and indoor air quality control in a Variable-Air-Volume (VAV) HVAC system. The
structure of said model can be seen in Figure 3. The modelled system consists of
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Future
weather data

Measured
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Construction
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Figure 2: Principle of a thermodynamic zone model - the input consists of future
weather data, measured indoor data, construction material data, internal
loads, and HVAC data. The output is the resulting future indoor data,
which can then be used for the optimization task. Figure slightly altered
from [21].

a variable-frequency compressor, a heat exchanger, a variable speed fan, connecting
ductwork damper and mix air components.

The following assumptions are made:

1. The wall temperature is equal to the mean radiant temperature: Tw = Tmrt

2. The indoor air relative velocity is proportional to the supply air flow rate:
Vair = k · fmix

3. The humidity mass ratio Wa is proportional to the vapor pressure: Wa = Kwv · p

4. The heat transfer coefficients h are the sum of a natural convective heat transfer
coefficient and a forced convective heat transfer coefficient:
h = hc + hvV

2
3

5. Time delay is negligible.

The mathematical model is then derived from the energy conservation and mass
balance in different system components under consideration of both sensible and latent
heat exchange. Due to their complexity, the following equations and their derivation
may be only partially explained. All symbols used are explained in the nomenclature.

Airflow Mixer The return air and the fresh air are mixed perfectly:

Tmix =
1

r
To +

r − 1

r
Ta (1)
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Figure 3: HVAC and Thermal Space Model by Liang and Du [12]

where To is the outdoor ambient temperature, Ta is the temperature in the thermal
space and r is the system-to-fresh-air volumetric flow-rate ratio.

Wmix =
1

r
Wo +

r − 1

r
Wa ⇒ pmix =

1

r
po +

r − 1

r
pa (2)

where Wmix is the humidity mass ratio of mixed air, Wo is the outdoor humidity mass
ratio, Wa is the humidity mass ratio in the thermal space, pmix is the vapor pressure
of water in mixed air, po is the outdoor vapor pressure of water and pa is the vapor
pressure of water in the thermal space.

Heat exchanger for supply air The equations in the heat exchanger are given as
balance law:

ρCpVheṪs = fmixρCp(Tmix−Ts)+fmixρHfgKwv(pmix−ps)+Qhe+`h′he min
[
p(The)−ps, 0

]
(3)

Kwvṗs =
`h′he
HfgVhe

min
[
p(The)− ps, 0

]
+Kwv

fmix

Vhe
(pmix − ps) (4)

where ρ is the air density, Cp is the constant pressure specific heat of air, Vhe is the
effective heat exchanger volume, Ts is the supply air from the heat exchanger, fmix is
the mixed air volumetric flow rate, Ts is the supply air from the heat exchanger, Hfg

is the enthalpy of water vapor, ps is the vapor pressure near the heat exchanger, Qhe

is the thermal power from the heat exchanger, ` is the Lewis relation, h′he is the heat
transfer coefficient on the surface of the heat exchanger and `, h′he and Qhe are derived
as follows:
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` =
HfgKwv

Cp

(5)

h′he = hheV
′ 2
3

airAhe (6)

Qhe = hheV
′ 2
3

airAhe(The − Ts) (7)

The heat exchanger’s governing equation is derived as:

Che
˙The = −hheV ′

2
3

airAhe(The − Ts)− `h′he min
[
p(The)− ps, 0

]
+Qin (8)

Thermal Space The governing equations in the thermal space are given as:

Ẇa =
fmix

Va
(Ws −Wa)⇒ ṗa =

fmix

Va
(ps − pa) (9)

ṗa =
fmix

Va
(ps − pa) (10)

ρCpVaṪa = fmixρCp(Ts − Ta) + ρfmixHfgKwv(ps − pa) +Qload +Qw (11)

where Qw includes the thermal power from all walls, windows, the floor, the ceiling
and is derived as:

Qw = hwAw(Tw − Ta) (12)

hw = hc + hvV
′ 2
3

air (13)

Lastly, the heat transfer process in the side walls can be derived as:

CwṪw = −hwAw(Tw − Ta)− hoAw(Tw − To) (14)

Taking all the above equations into consideration, the following state-space model for
the HVAC and thermal space can be derived:

Ṫa =
fmix

Va
(Ts − Ta) +

fmixHfgKwv

CpVa
(ps − pa) +

Qload + (hc + hvV
′ 2
3

air )[Aw(Tw − Ta)]
ρCpVa

Ṫs =
fmix

Vhe
[(

1

r
To +

r − 1

r
Ta)− Ts] +

fmixHfgKwv

CpVhe
[(

1

r
po +

r − 1

r
pa)− ps]

+
hheV

′ 2
3

airAhe[(The − Ts) + `min
[
p(The)− ps, 0

]
]

ρCpVhe

˙The =
−hheV ′

2
3

airAhe

Che

(The − Ts)−
`hheV

′ 2
3

airAhe

Che

min
[
p(The)− ps, 0

]
+
Qin

Che
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Ṫw =
−(hc + hvV

2
3
air)Aw

Cw

(Tw − Ta)−
hoAw

Cw

(Tw − To)

ṗa =
fmix

Va
(ps − pa)

ṗs =
`hheV

′ 2
3

airAhe

HfgVheKwv

min
[
p(The)− ps, 0

]
+
fmix

Vhe
[(

1

r
po +

r − 1

r
pa)− ps]

The variation of indoor cooling / heating load Qload, the ambient temperature To and
the humidityRHo(po) are taken into consideration in the system design as disturbances.
In the given HVAC setup, the three controllable inputs provided to the system are:

• Qin: heating/cooling capacity, controlled by the variable-frequency compressor

• fmix: indoor air flow rate, adjusted by the variable-speed fan

• r: system-to-fresh-air volumetric flow-rate ratio, controlled by return air damper

When the system works in heating mode, there will be no water vapor condensation
in the heat exchanger. This means we can assume the corresponding term

min
[
p(The)− ps, 0

]
to always be zero. Moreover, if the control parameters fmix and r are adjusted only at
certain discrete points in time, they can be treated as constant within each running
interval. These two observations lead to the following simplified and linearized model:

Ṫa =(
fmix

Va
) · Ts + (−fmix

Va
− (hc + hvV

2
3
air)Aw

ρCpVa
) · Ta + (

(hc + hvV
2
3
air)Aw

ρCpVa
) · Tw (15a)

+ (
fmixHfgKwv

CpVa
) · Ps + (−fmixHfgKwv

CpVa
) · Pa + (

1

ρCpVa
) ·Qload

Ṫs =(−fmix

Vhe
− hheV

′ 2
3

airAhe

ρCpVhe
) · Ts + (

(r − 1)fmix

rVhe
) · Ta + (

hheV
′ 2
3

airAhe

ρCpVhe
) · The (15b)

+ (−fmixHfgKwv

CpVhe
) · Ps + (

(r − 1)fmixHfgKwv

rCpVhe
) · Pa + (

fmix

rVhe
) · To + (

fmixHfgKwv

rCpVhe
) · Po

˙The =(
hheV

′ 2
3

airAhe

Che

) · Ts + (−hheV
′ 2
3

airAhe

Che

) · The + (
1

Che

) ·Qin (15c)

Ṫw =(
(hc + hvV

2
3
air)Aw

Cw

) · Ta + (−(hc + hvV
2
3
air)Aw

Cw

− hoAw

Cw

) · Tw + (
hoAw

Cw

) · To (15d)

ṗa =(
fmix

Va
) · Ps + (−fmix

Va
) · Pa (15e)
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ṗs =(−fmix

Vhe
) · Ps + (

(r − 1)fmix

rVhe
) · Pa + (

fmix

rVhe
) · Po (15f)

(15g)

2.2 Economic Energy Model

Since electricity prices depend on the consumer demand for energy, rates can heavily
vary from day to day and even by hour. Naturally, we have to take these fluctuations
into consideration when modeling an optimal control problem in regards to minimal
running cost. For every vector of future control parameters in our HVAC system that
leads to an indoor temperature in accordance with the boundaries of the respective
timeslot, an economic model estimates the total cost needed to realize this behavior.
Figure 4 shows how this model is constructed. The calculations are based on an energy
profile that we assume to be known beforehand. The actual optimization routine then
uses this information to pick a heating configuration with minimal cost.

Economic
Energy Model

Future
energy profile

Future
control parameters

Predicted costs•
•

•

Figure 4: The energy model uses the given energy profile to calculate the predicted
total costs of any viable configuration of the control parameters.

3 Formulation of optimal control problem

The thermodynamic model makes it possible to estimate the effect of a specific heating
configuration on the system’s climate - most importantly the temperature in the ther-
mal space. This estimate can now be used to check whether or not future HVAC control
data would lead to an indoor temperature in compliance with the desired boundaries.
Since there will usually be many such control inputs, an optimizer is necessary to cal-
culate the most cost-efficient configuration based on the economic energy model. The
optimizer will, however, only be taking a finite time horizon into consideration.

3.1 Optimization process

The indoor temperature requirements for the next 48 hours are specified by a so-called
climate profile. This way, building administration can set time-specific upper and lower
boundaries. Based on the building schedule, this very precise regulation allows them
to e.g. lower the minimum temperature outside of business hours or during periods in
which areas of the building are known to be vacant. As the climate profile in Figure 5
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illustrates, the temperature may be kept significantly above the lower boundary if this
results in lower overall cost.

0 10 20 30 40
0

10

20

30

40

Time t in hours

T
em

p
er
at
u
re

in
◦ C

Upper temp. boundary
Lower temp. boundary
Actual temperature Ta

Figure 5: An exemplary climate profile shows how the indoor temperature must always
be within the specified bounds, but can otherwise fluctuate freely.

In order to limit the number of adjustments that have to be made to the HVAC
system throughout the day, time is divided into ntime equal periods of ∆t = 15 minutes.
During one period, the HVAC control parameters cannot be changed. After measuring
the input data for the thermal model and computing an optimal solution in regards to
the current climate profile, the HVAC system runs on the control data specified by the
solution only for the first period. Once 15 minutes are over, the climate profile is then
extended by one period, the new thermal data is measured and fed into the optimizer
again. This process loops continuously, leading to a total of 192 optimizations in 48
hours.

However, when it comes to smart buildings, the limitations of computation resources
have to be kept in mind. For practical reasons, single buildings generally are not
equipped to carry out their own calculations, but instead rely on a remote computation
center which calculates solutions for many buildings at a time and simply sends HVAC
instructions to each building. Therefore, a computationally efficient solution to the
building’s climate control problem is desirable. In this thesis, linear programming is
chosen as an optimization routine to get an approximate solution to the optimal control
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problem. Linear programs are well-studied and can be solved efficiently. However, since
building thermodynamics are known to be highly non-linear (cf. (15)), this modeling
choice potentially comes with heavy drawbacks in terms of modeling power.

Linear programming Linear programming is a technique for the optimization of a
linear objective function (“cost function”) under linear equality and inequality con-
straints. For variables x1, . . . , xn, a linear program (LP) is said to be in standard form
if it is of the following form:

maximize c1x1 + · · ·+ cnxn

subject to

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm
x1 ≥ 0, . . . , xn ≥ 0

Minimization problems with a linear objective function, problems with linear in-
equality constraints and problems with unbounded or negative variables can easily be
transformed into the standard form. Generally, linear programs are solved using basis
exchange algorithms (such as the popular simplex algorithm) or using interior-point
methods. The simplex algorithm has been proven to solve “random” problems in a
cubic number of steps if certain precautions against cycling are taken [4]. Although
both solution methods are considered to be similarly efficient for routine applications,
one type of solver may be better suited for specific types of LP problems [9].

3.2 Linearization

As input for the LP, we receive measured values for variables T 0
s , T

0
a , T

0
he, T

0
w, P

0
s , P

0
a

at time 0. If the building does not allow for measurement of all of these values,
further assumptions may be made. From the climate profile, boundaries li and ui
for i ∈ {1, . . . , ntime} can be derived and the economic energy model returns the cost
costi(fmix, Qin, r) for a HVAC configuration at time i .

In our thermodynamic zone model (2.1), Ta stands for the temperature of the thermal
space. This variable is exactly what needs to be controlled according to the climate
profile. Precisely, for all 192 points i in time considered, the approximation of Ta is
constrained to be greater than or equal to the lower bound li and less than or equal to
the upper bound ui of the specific point:

li ≤ T i
a ≤ ui ∀i ∈ {1, . . . , ntime} (16)

Since T i
a depends on the temperature of the previous point T i−1

a , these constraints will
actually be of the form

li ≤ T i−1
a + ∆T i

a ≤ ui ∀i ∈ {1, . . . , ntime} (17)
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Here, ∆T i
a is a linear term for the total change of Ta from time i− 1 to i. In order to

estimate ∆T i
a, the derivative of Ta at point i− 1 will be multiplied by the time of one

period.

li ≤ T i−1
a + ∆t · Ṫ i−1

a ≤ ui ∀i ∈ {1, . . . , ntime} (18)

Based on the equation for Ṫa specified in the thermal model, we would get the following
constraints for T i

a, i ∈ {1, . . . , ntime}:
li ≤T i

a ≤ ui (19)

T i
a =T i−1

a + ∆t ·
[
(
f i
mix

Va
) · T i−1

s + (−f
i
mix

Va
− (hc + hvV

2
3
air)Aw

ρCpVa
) · T i−1

a

+ (
(hc + hvV

2
3
air)Aw

ρCpVa
) · T i−1

w + (
f i
mixHfgKwv

CpVa
) · P i−1

s + (−f
i
mixHfgKwv

CpVa
) · P i−1

a

+ (
1

ρCpVa
) ·Qload

]
(20)

This is problematic, since f i
mix is part of the controllable parameters (i.e. should be

available as a decision variable for each timeslot), but is being multiplied by system
variables such as T i−1

s and P i−1
s , which also depend on the choice of control parameters,

meaning they have to be modeled as variables in the LP as well. Consequently, the
choice of fmix and the current values Ts, Ta, Ps, Pa cannot both be modeled as LP
variables, as this product would lead to non-linear terms. The respective constraints
of all other system variables that need to be kept track of (such as Ts, Tw, The etc.)
have the same problem. Therefore, we reduce the decision variables for HVAC control
to only

Qi
in for i ∈ {1, . . . , ntime}

This means that nothing but the heat input for the heating system is changed at each
timestep, while fmix and r are kept constant, or at least set according to an arbitrary
profile known beforehand. In this setting, we assume constant values f̂mix and r̂,
which effectively makes the system a Constant-Air-Volume (CAV) system. Modeling
the controlled input as Qin, rather than fmix, seems reasonable, because the energy
cost associated with the former is generally much higher than the electric cost that
depends on fmix and r.

Furthermore, testing has shown that estimating a period of 15 minutes (900 seconds)
by simply multiplying the derivative at one point by 900 is way too much of an oversim-
plification to have any practical use. As such, we introduce a new factor s that controls
at how many points of a 15-minute period we calculate the new derivatives for all sys-
tem variables X ∈ {Ta, Ts, The, Tw, Pa, Ps} based on their current values. Thus, we end
up with ntime · s variables in the linear program for every X ∈ {Ta, Ts, The, Tw, Pa, Ps}.
They still follow the same principle though, and are now connected by the equations

X i = X i−1 +
∆t

s
˙X i−1
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Qin is ultimately our decision variable for each period, so we only have to make sure
that the value of Qin is the same for all s steps within one period. Since the variables

are in the range of Q0
in, . . . , Q

ntime−1
in , this is simply done by accessing Q

b i−1
s c

in instead of
Qi−1

in . The same goes for the outdoor temperature, outdoor humidity and temperature
boundaries (because we have exactly ntime values for all of these, but need to stretch
them over s · ntime steps). This approximation leads to six linear equations, that can
then be used as constraints in a linear program:

T i
a =T i−1

a + ∆t ·
[
(
f̂mix

Va
) · T i−1

s + (− f̂mix

Va
− (hc + hvV

2
3
air)Aw

ρCpVa
) · T i−1

a (21a)

+ (
(hc + hvV

2
3
air)Aw

ρCpVa
) · T i−1

w + (
f̂mixHfgKwv

CpVa
) · P i−1

s + (− f̂mixHfgKwv

CpVa
) · P i−1

a

+ (
1

ρCpVa
) ·Qb

i−1
s c

load

]
T i
s =T i−1

s + ∆t ·
[
(− f̂mix

Vhe
− hheV

′ 2
3

airAhe

ρCpVhe
) · T i−1

s + (
(r̂ − 1)f̂mix

r̂Vhe
) · T i−1

a (21b)

+ (
hheV

′ 2
3

airAhe

ρCpVhe
) · T i−1

he + (− f̂mixHfgKwv

CpVhe
) · P i−1

s + (
(r̂ − 1)f̂mixHfgKwv

r̂CpVhe
) · P i−1

a

+ (
f̂mix

r̂Vhe
) · T b

i−1
s c

o + (
f̂mixHfgKwv

r̂CpVhe
) · P b

i−1
s c

o

]
T i
he =T i−1

he + ∆t ·
[
(
hheV

′ 2
3

airAhe

Che

) · T i−1
s + (−hheV

′ 2
3

airAhe

Che

) · T i−1
he + (

1

Che

) ·Qb
i−1
s c

in

]
(21c)

T i
w =T i−1

w + ∆t ·
[
(
(hc + hvV

2
3
air)Aw

Cw

) · T i−1
a + (−(hc + hvV

2
3
air)Aw

Cw

− hoAw

Cw

) · T i−1
w

(21d)

+ (
hoAw

Cw

) · T b
i−1
s c

o

]
P i
a =P i−1

a + ∆t ·
[
(
f̂mix

Va
) · P i−1

s + (− f̂mix

Va
) · P i−1

a

]
(21e)

P i
s =P i−1

s + ∆t ·
[
(− f̂mix

Vhe
) · P i−1

s + (
(r̂ − 1)f̂mix

r̂Vhe
) · P i−1

a + (
f̂mix

r̂Vhe
) · P b

i−1
s c

o

]
(21f)

(21g)

It is worth noting that Qin, the only choice of controlling the HVAC system, only
appears in the equation of The. This means that in this particular model, a chosen Qi

in

can at the earliest show an effect on on the thermal space temperature 3 steps later, as
it has to first affect The in one time-step, which contributes to Ts in the next time-step.
Finally, Ts is used in the computation of Ta (21a). However, as long as s ≥ 3 holds,
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this does not change the fact that the temperature Ta is expected to be in the required
range after one period, i.e. 15 minutes.

Finally, the variables Qi
in need to be limited to the maximum HVAC capacity of

the system at all times. We also need to limit the temperature in the heat exchanger
The to some maximum operating temperature Tmax

he , which is usually given by the
manufacturer.

3.3 Linear Program

In conclusion, the full linear program then has the following form:

minimize

ntime−1∑
i=0

costi(f̂mix, r̂, Q
i
in)

s.t. ∀i ∈ {1, . . . ,ntime · s− 1}
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∀i ∈ {0, . . . ,ntime − 1}
0 ≤Qi

in ≤ Qmax
in

∀i ∈ {s, . . . ,ntime − 1}
li ≤T i

a ≤ ui

Since f̂mix and r̂ are no longer variables, the cost function in the objective really only
depends on Qi

in, i ∈ {0, . . . , ntime − 1} .

4 Solver software

4.1 Solver

There are a variety of commercial and non-commercial solvers for linear programs
available. Since we have no limitation of any variables (e.g. to integers), the solver
does not have to be capable of solving mixed-integer programs for this application.
The most common solvers appear to include:

• Gurobi. As Gurobi is commercial software known for short execution times, it
is expected to outperform the alternatives. An academic license makes it usable
for this thesis.

• GLPK. The GNU Linear Programming Kit is an open-source C library available
under the GNU General Public License callable to solve both linear and mixed-
integer programming problems.

• LP solve. LP solve is also written in C and available for download under the
LGPL 2 license. Besides linear programming and mixed-integer programming
problems, LP solve can also be used for semi-continuous and special ordered sets
(SOS) problems

Once an LP model has been created using either of these solutions, it can be stored
into an MPS-file and then easily solved using another solver. Our problem is originally
modeled using Gurobi 8.1.1 for Python 3.8.5, as a commercial software like Gurobi
is expected to outperform the other ones.

4.2 Python implementation

The structure of the implementation is quite simple, as it consists of just four Python
files. The most important components are lp_mpc.py and simulations.py, while the
other two provide minor functionality.

lp_mpc.py Provides the LP class and a solve method for solving the LP established
in Subsection 3.3 based on the necessary input parameters. These include a Settings

object and an object carrying PhysicalConstants.
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simulations.py Executes the main code for simulating the behavior in an MPC set-
ting. Begins by reading in static data for the settings and constants, as well as dynamic
data for the lower/upper boundaries and temperature forecasts from CSV-files. The
method run_n_lps solves an individual LP for each time-point i = 1, . . . , n runs with
a time-horizon of n time datapoints. The results for each LP are then written into a
new CSV file.

The packages used (e.g. pandas, numpy) are all part of the Anaconda Python distri-
bution.

5 Case Study

In the following, simulations are conducted on real-world data to verify the effective-
ness of our approach. The data has been provided by MeteoViva. The Jülich-based
company works on smart data solutions for commercial real estate and is a leader in
intelligent building management.

5.1 Data

The data of one test case is stored as a comma-separated values (CSV) file, where each
row describes all the input values at one time-step. Time-steps are 15 minutes apart.
For the purposes of this thesis, most of the given values (such as a forecast of the
outdoor wind-speed, outdoor radiation) can be disregarded, because the model chosen
in 2.1 primarily considers outdoor temperature and humidity ratio as outside factors
in its calculations of temperature changes. Additionally, upper and lower temperature
limits for each point in time are given.

The graph in Figure 6 allows us to gain a better understanding of the data provided,
as it visualizes the relation between upper limit, lower limit and outdoor temperature.
Note how the upper limit stays at a constant 34◦C, while the lower limit oscillates
between 18 and 22◦C based on the night-day-cycle. Additionally, the course of the
indoor temperature under a given HVAC optimization strategy is displayed in green.
Note how it permanently stays above the higher lower limit, 22◦C.
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Figure 6: Data visualization for 3 days in April. There is a duration of 15 minutes
between two data points.

5.2 Simulation settings

There are a variety of very specific physical values used in the model 15 that serve as
the basis of our approach; however, the authors only explicitly state the values for some
major simulation parameters [12]. Therefore, the missing constants had to be ”filled
in” through research and an attempt to recover values from the computed matrices
that Liang and Du provide in the paper. For lack of suitable data, energy prices are
assumed to be constant here.

Our simulation deals with the heating of a single zone, namely a room of dimensions
5 by 5 meters and a height of 3 meters. The constant values fmix and r have been
chosen to ensure an adequate amount of air-flow in the thermal space. Certain values
like the enthalpy of water vapor, which is normally a function of temperature, have
been assumed as constant in the given heating setting. The wall heat capacity of
1614688.91 J

◦C
is the product of the specific heat capacity of the wall material and

the wall’s total mass. As for the heat exchanger, it has an effective volume of 1 cubic
meter, a surface area of 1 square meter and a maximum operational temperature of
90 degrees Celsius. All important parameters are listed in Table 1 below. Note that a
few values (such as the natural and forced convective heat transfer coefficient) could
not be separated based on the information given; however, they only appear in the
computations in conjunction. The maximum HVAC capacity is 12 kWh.
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Symbol Meaning Unit Value

fmix Mixed air volumetric flow-rate m3

s
0.272

r System-to-fresh-air volumetric flow-rate ratio fmix

fo
4

Vhe Effective heat exchanger volume m3 1
Va Volume of thermal space m3 75

ρ Air density kg
m3 1.19592

Cp Constant pressure specific heat of air J
kg·◦C 1000

Che Heat capacity of the heat exchanger J
◦C

30000
Ahe Surface area of the heat exchanger m2 1

hhe · V ′
2
3

air Heat exchanger transfer coefficient W
m2·◦C 408.6459

hc + hvV
2
3
air Natural and forced convective heat transfer coefficient W

m2·◦C 3.3625533
Aw Surface area of the walls, windows etc. m2 110
Cw Heat capacity of the side walls J

◦C
1624065.26

Kwv ·Hfg Enthalpy of water vapor multiplied by factor of Kwv = Wa

p
J
kg

15165.44

Qload Indoor heat load W 1600

Table 1: Simulation settings for the (pre-)computation of the state-space model

Figure 7: Once all the values have been inserted into the model’s equations, the state-
space model in matrix form looks like this [12].

When running the optimization LP, we generally initialize Ts, Ta, The, Tw to the out-
door temperature at that given time. However, our data does not include values for any
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water vapor pressure, which are necessary for both the initialization of Ps, Pa and the
consideration of outdoor humidity by means of Po (the water vapor pressure outside).
Knowing that the simulation in Du and Liang’s paper appears to start at 6◦C and the
initial thermal space humidity and supply air humidity are given as roughly 56% and
43%, we can calculate the respective amounts of water vapor pressure assumed.

The Arden Buck equation [5] for positive temperatures can be applied to calculate
the saturation vapor pressure of moist air at the initial temperature.

P (t) = 611, 21 · exp((18.678− t/234.5) · (t/(257.14 + t)))

For a temperature of t = 6◦C, the formula returns a saturation pressure of 935.2 Pascal.
Therefore, we will initialize P 0

a as 0.56 · 935.2 = 523.71 and P 0
s as 0.43 · 935.2 = 402.14.

When it comes to the outdoor vapor pressure Po, the original settings of 4 − 12◦C
and relative humidity of 45 to 65 percent mean that 520 Pascal can be considered a
suitable value.

5.3 Testing

Frequency of model evaluations (controlled by s) In a first set of tests, the goal
was to establish a suitable value for s, meaning the number of discrete evaluation points
of the thermal model within each period of 15 minutes. Since s is directly proportional
to the number of linear variables that have to be solved, trying to follow the model’s
continuous progress too closely may easily make the runtime impractically large.
The following diagrams show a comparison of the time needed to find an optimal
solution by Gurobi against the total energy spent in that solution. A time horizon of
96 points, i.e. 24 hours, was considered. As can be seen in Figure 8, the performance
of a solution does not seem to be affected by s, as rounding the results to 2 digits leads
to the same energy consumption. A number of executions using different conditions
have confirmed this result.
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Figure 8: Comparison of results using different values of s and a time horizon of ntime =
96, i.e. 24 hours

Clearly, s is exponentially related to the solution time. While the runtimes may be
acceptable for higher values of s with a time horizon of 24 hours, further tests have
shown that this growth becomes even more drastic when considering a time horizon of
48 hours. Therefore, s was set to 300 from this point on, as s had been shown to not
affect the quality of the solution significantly.

For values below 290 (e.g. 280), which correspond to timeslots of 3.1 seconds or
more, the LP was usually unable to find valid solutions. This is an interesting finding,
as the invariance of the total heat input in all optimal solutions could have led one to
believe that even smaller values for s would be ”accurate enough” to depict the changes
of the system. Unfortunately, the run for s = 290 did not hint towards any obvious
conditions for an LP to be infeasible. The results for s = 290 can be seen in Figure 9.
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Figure 9: Heating response for s = 290, time horizon of 24 hours; Data from January
2, 2019
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Time horizon settings One of the main goals of this approach at controlling heating
intelligently was to make use of knowledge about the future; namely, the future outdoor
temperature and indoor temperature boundaries. Coupled with a thermodynamic
model, one idea was that the heating system could possibly save energy by heating
more than necessary to reach the lower temperature boundary, and then stop heating
to let the energy stored in walls and heat exchanger fuel the indoor temperature for
some time. In practice, future data and the ability to plan more ”long-term” turned
out to not play a significant role.

In a number of tests, the influence of the window size ntime on the total heat input
over a period of time has been investigated. For this purpose, our model is running in
”MPC-mode”: after solving the LP with a window size of ntime, the resulting system
variables (temperatures and vapor pressures) after the first heating period of 15 minutes
are stored. For the computation of the next LP, the stored temperatures and vapor
pressures are used as initial values. This leads to a simulation of our model’s behavior
in a real application, if we assume the thermodynamic model as perfectly predicting
the resulting system state.

Time horizon considered Total energy [W]
2 55786.72
4 55777.33
6 55776.37
8 55776.05
10 55776.05
20 55776.04
48 55776.04

Figure 10: Results in MPC mode over a time-span of 12 hours. Increasing the time
horizon led to almost no improvement in total energy spent.

The smallest possible window size is 2, which means future data is only available for
one time-step. This essentially makes the system greedily decide the bare minimum
it has to currently heat in order to meet the temperature requirements 15 minutes
later. In contrast to that, a larger window size like 48 should enable the system to
make more strategic decisions. For window sizes ranging from 2 to 48, a series of 48
consecutive linear programs was solved (simulating half a day of system behavior).
The system performance for a window size of 2 and 48 and their can be seen in Figure
11. Executions with a higher time horizon had only minimally better performance,
especially when putting the savings in relation to the absolute energy usage. Evidently,
even when able to plan the heating process for a longer period in advance, the optimal
solution was always to heat as little as currently possible. This leads to a smooth
heating process at somewhat lower input, as opposed to heating at full power for a
bit and then turning heating off. Testing under different circumstances (lower/higher
outside temperatures, lower temperature limit changing) changed nothing about the
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outcome.
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Figure 11: Comparison between heating solutions for time horizon 2 (left) and 48
(right) over a course of 12 hours. Differences are practically unnoticeable.
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Other observations Especially during the initial testing phase, the importance of the
vapor pressure values quickly became apparent. Notably the values for Po, which we
assumed as a constant of 520 Pascal, had a large impact on the behavior of the system.
When tested with a fixed heat input of 0, changing Po slightly could easily result in
unrealistically quick drops in temperature (below the outside temperature). Overall,
the importance of vapor pressure values in the thermodynamic zone model may be
considered a point of criticism, as these unrealistic cases suggest that the treatment of
these pressure values may have fallen victim to oversimplification.
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Figure 13: Total energy consumption in a 3-hour-window based on choice of constant
outdoor vapor pressure Po.

Figure 13 shows the total energy consumption for heating under different values for the
outdoor vapor pressure Po. Despite only considering a horizon of 12 points (3 hours)
and keeping everything else fixed, an enormous change in energy efficiency can be seen
with rising Po, with consumption dropping from 14634.54 to 7873.82 watt-hours. All
values for Po below 514 and above 540 Pascal created a control problem that was
unsolvable.

Generally, the energy used for heating turned out high in comparison to average
heating consumption in buildings. Part of the reason for this outcome probably lies
in the simulation design: Since the simulation deals with a single room that is only
separated from the outside world through one layer of walls, the thermal space is more
susceptible to being influenced by cold weather than an average room in a building.

6 Conclusion and Future Work

All in all, the ”predictive” power of this approach turned out to be somewhat limited,
as the considered time horizon has been shown to have nearly no impact on the chosen
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HVAC settings. Still, our model enables a user to enter precise temperature require-
ments for exact points in time that will automatically be satisfied under real-time
consideration of outdoor temperature and the current indoor state. In general, the ap-
proach of computing derivatives at a set number of points and thus approximating the
actual system progression is a very interesting idea to me. I was particularly surprised
by the fact that dropping s as low as 300 (i.e. 3 seconds per time-step) did not appear
to cause any major loss of precision.

Whilst the simulations in this thesis were limited to one thermodynamic zone, it can
potentially be adapted for entire large-scale buildings, where To instead refers to the
temperature in neighboring rooms. Implementing this would certainly require some
more considerations than dealt with in this thesis, but based on the rather simple
design of the state-space model, it appears well-scalable.

In the future, it would make sense to feed the heating configurations acquired by
means of linear programming into a more accurate (but usually slower) simulation
system, in order to verify the effectiveness of the chosen heat inputs. Since building
dynamics are often described as complex and highly non-linear, it is compelling to
see how well a simple control system operating through linear computations can really
fare. As for now, no such simulation software was easily obtainable. Perhaps, adapting
a model of a heating system more commonly found in Germany would have even made
that possible within the scope of this thesis. In the scope of a bigger project, a building
performance simulation tool such as TEASER [17] would probably allow me to test
exactly this behavior.

Nonetheless, if the already very detailed outside data-set were accompanied by at
least relative humidity ratio, which is usually publicly available in real-time, it would
give a lot more credibility to the results of our computations.

The fact that researchers such as Ostadijafari et al. [15] tackled the very same
problem of creating a linear model-predictive controller for HVAC just last year (2019),
shows that there is still a lot of on-going work and opportunity in this particular
research field. In future works, their more sophisticated approach of applying feedback
linearization techniques to deal with nonlinear thermal building dynamics could be
further pursued, as it has shown promising results.
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