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1 Introduction

The growing importance of renewable energy is not only a German phenomenon, it is
apparent worldwide. In 2013, energy from renewable sources provided for 19.1% of the
global final energy consumption and in 2014 comprised 58.5% of additions to the global
power capacity. With the increasing electrification of transportation and heating in
addition to advances in energy storage technologies, renewable energy provided enough
energy to supply approximately 22.8% of the global electricity need [23].

According to estimations by the Renewable Energy Policy Network for the 21st
Century (REN21), solar power accounted for 181.4 GW of the 657 GW renewable
power capacity in 2014 (not including hydro). The solar power capacity consisted of
177 GW in solar photovoltaic capacity and 4.4 GW in concentrating solar thermal
power.

With the aim of a reduction of CO2 emissions and since higher costs of fossil fuels
are to be expected in the future due to the depletion and scarcity of natural resources,
research in the fields of renewable energy in general and of concentrating solar power in
particular intensified. The low investment cost per energy is one major positive aspect
of concentrating solar power plants and renders them a target for closer considerations.

The PS10 (spanish: Planta Solar 10) in Spain, for example, is Europe’s first com-
mercial solar tower power plant, producing 11 MWe gross power of electricity and 23
GWh of electricity per year with an investment cost below 3500 e per kW [21].

During the planning process of such a solar tower power plant, one needs to assess
the feasibility of locations in question. One major aspect is analyzing the climate
and running test simulations. The requirement for weather data is often met using
a so called Typical Meteorological Year (TMY), a set of mean weather data (includ-
ing hourly values of solar radiation) yielding an artificial reference year for a specific
location.

Since weather data is not always provided for more than just a few years, outliers
and missing data have an inherently high impact on the creation of TMYs and the
calculation of averages.

1.1 Task of this thesis

In this thesis, we propose a means of filtering the weather data and constructing a
more flexible and reliable model for the simulation of solar tower power plants. We
construct a model for the energy production of the Helio100 solar tower power plant
in Stellenbosch, Western Cape Province in South Africa. For this site, the South-
ern African Universities Radiometric Network (SAURAN) provides measurements of
weather data, beginning in the year 2010, on their website1. Since there only exists
data of approximately six years, we cannot infer a reliable TMY. Instead, one might
argue that a meteorological model alone offers a suitable solution. This approach does
not consider given weather data, however, so we want to investigate whether we can

1http://www.sauran.net/ShowStation.aspx?station=4
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construct a model based on given data.
Our model should incorporate the following key features:

• fitted to one specific solar thermal power plant,

• based on simulated energy production of real weather data,

• working well even for few data points, i.e. few years,

• readable by a Discrete Time Markov Chain (DTMC) model checker, and

• output energy values via checking for reward properties.

To this end, we need to prepare the provided measurements by means of identi-
fying and handling (invalid) outliers. For identification purposes, we utilize the well
established Meteorological Radiation Model (MRM).

The resulting set of weather data points is then used as the basis of the solar tower
power plant simulation. We run a simulation of the Helio100 and all remaining weather
data points using our own simulation model [10] and finally construct and analyze a
probabilistic model based on the simulation values, which we may then use to calculate
annual average amounts of energy received at the solar tower, as well as check for more
involved properties using a model checker.

The layout of the heliostat field of Helio100 can be seen in Figure 1.

-50

-40

-30

-20

-10

0

-20 -10 0 10 20

Heliostat positions

Figure 1: Solar tower field used for the simulation of the filtered weather data. The
receiver is located at (0,0).

Later, we use the simulated energy production of this real weather data for verifica-
tion of our model.

1.2 Related work

Of course, weather data is not only useful during the planning phase of power plants but
is also valuable due to agricultural interests [25, 11], which renders accurate weather
predictions an even more important field. Markov chains are already being used for
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precipitation predictions [26, 24, 7]. Research concerning the optimum order (“memory
length”) of such models is undertaken [12] but usually focusses on stationary models,
i.e., models without seasonal variation. In 1986, Amato et al. showed for four different
time series of 20 years that solar irradiation sequences are in fact non-stationary [3].

To the best of our knowledge, there are no attempts at simulating either the solar
radiation or the energy at the receiver of a solar tower power plant via the use of
Markov chains based on real measurements.

Projects that come closest to this work are [24] and [2].Note though that in [24],
Richardson proposes a stochastic simulation of the weather, including precipitation
and radiation, but that only the precipitation prediction is done using Markov models.
Conversely, in their work of 1988, Aguiar et al. utilize multiple Markovian transition
matrices to simulation the global irradiation. However, they propose one solution for
virtually any location on Earth which users can fit to their needs given they can pro-
duce the average monthly radiation for that location (or the average monthly number
of sunshine hours), while we construct one or possibly multiple models for one specific
location (and power plant configuration) and based on real solar radiation measure-
ments.

1.3 Outline

In Section 2 we introduce the three main components which build the foundation to
this work, (1) solar tower power plants, (2) computation of solar irradiation, and (3)
probabilistic models. Section 3 describes the process of data preparation. This includes
the sighting of all available weather data, reasoning behind the construction of a filter,
and finally the resulting, filtered weather data. Section 4 comprises the main part of
this work, explaining our approach to building the aforementioned probabilistic models
as well as presenting first characteristics of the models themselves. The implementation
part in Section 5 covers the most important aspects of the general program structure
and the decisions that went into the design of our software solution. In the subsequent
section, we evaluate our work and give a final conclusion in Section 7.
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2 Preliminaries

In this section, we present preliminary concepts for our project. Section 2.1 explains
the functionality of solar tower power plants and its main components. The following
section presents the MRM we used for solar irradiation computation and ultimately
for filtering a given set of weather data. Section 2.4 introduces core concepts of prob-
abilistic models, DTMCs in particular.

2.1 Solar tower power plants

As opposed to Photovoltaic (PV) technology, the principle of solar tower power plants
falls into the category of Concentrating Solar Power (CSP). The core concept of CSP
is to localize the energy conversion in one single component instead of, e.g., converting
directly inside each PV module. CSPs are further subdivided into line-focusing sys-
tems, such as linear fresnel collectors (Figure 2a) and parabolic troughs (Figure 2b),
and point-focusing systems, such as solar dishes (Figure 3a) and solar tower power
plants (Figure 3b). While line-focusing systems track the sun in one dimension only,
point-focusing systems have to track the sun position in two dimensions.

(a) Linear Fresnel collector in 1.4 MW
plant PE1 in Murcia, Spain [8].

(b) Parabolic-trough solar collector at
Plataforma Solar de Almeŕıa, Spain [9].

Figure 2: Line-focusing systems.

In the following we explain what a solar tower power plant consists of and how it
produces energy.

It should be noted, however, that the approach presented in this thesis is applicable
not only to solar tower power plants but also to the other CSP systems as well as
offshore wind parks, given a simulation model which can output the energy production
for a given time interval and weather condition.

2.1.1 Energy production

Solar tower power plants consist of a solar receiver, a heliostat field, a turbine, and a
generator. Further components may differ depending on the distinct plant. Figure 4
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(a) Dish-Sterling-System at Plataforma So-
lar de Almeŕıa, Spain.

(b) Solar tower power plant PS10, 11 MW
in Andalusia, Spain.

Figure 3: Point-focusing systems. Sources: flickr, DLR.

depicts the general structure of a solar tower power plant.

SolarPACES2006 A4-S3 

Copyright © by SolarPACES 
 

4

Recovery) developed by ARCO in Kern County (California, US) in 1983 [4], and the 2 MW 
receiver tested in 1989 in Israel by Weizmann Institute [5]. In Spain, the most important 
reference was related to CESA-1 project at PSA-Almería, when the solar superheater was 
removed from its steam receiver, and it was converted so into a saturated steam receiver with 
a diesel boiler superheater. Good references and reports can be found on the operation and 
efficiencies of this system [6]. 

Therefore Solúcar found reliable the option of a saturated steam receiver working with a 
saturated steam power block and turbine for PS10. 

3. PS10 Solar Thermal Power Plant Description 

PS10 is solar concentration solar thermal (CST) tower plant working with direct saturated 
steam generation (DSG) concept, at considerably low values of temperature and pressure 
(250ºC @ 40bar). 

Some other design criteria taken into consideration for PS10 solar plant basic configuration 
has been related to solar multiple value and heat storage capacity for plant operation during 
no solar periods. 

Spanish regulations don’t allow hybridisation of CST plants out of the limits of 15% of 
annual generated electricity from fossil fuels. In this sense one of the key factors for a CST 
plant design is related to the decision of considering dailies shut-downs and start-ups of the 
steam turbine, or in the other hand, to consider huge storage capacity to cover at least in 
several months in the year (summer time) night periods in operation running the turbine from 
storage, reducing so the number of stoppages and cools of the turbine. 

Keeping the general idea for not considering additional risky subsystems in its first 
commercial plant Solúcar decided to propose a small storage concept for PS10, assuming that 
starting and stopping the saturated steam turbine under controlled temperature conditions is a 
feasible operational procedure. Is for that than PS10 has been designed under an small solar 
multiple value, (1,3). This design allows the plant to dispose of the availability of a small 

stored energy capacity 
to deal with some 
short cloudy transient 
periods in order to 
protect the turbine and 
associated systems 
from overcame lacks 
of solar power that 
could damage 
equipments.  
 

 

               Figure 1. Basic concept considered for PS10 

Generator      
11.0MWe

Heliostat  Field

Solar Receiver

Steam Storage System

Steam
40 bar, 250ºC

Condensator
0,06 bar, 50ºC

≈
Steam 
Drum

Turbine Generator      
11.0MWe

Heliostat  Field

Solar Receiver

Steam Storage System

Steam
40 bar, 250ºC

Condensator
0,06 bar, 50ºC

≈
Steam 
Drum

Turbine

Figure 4: Concept of a solar tower power plant. This image is taken from [21].

The heliostat field consists of mounted mirrors which track the sun in two dimensions
in order to reflect the direct incident sun beams onto the receiver near the top of the
name giving solar tower. The direct sunlight is measured as radiant flux or power
received by a surface per area in W/m2, which is also known as irradiance. At the
receiver, the concentrated sun beams heat up steam, air, or a fluid such as water, molten
salt, or oil, which in turn exchanges heat with steam powering a turbine connected to
a generator.

Finding an optimal layout for a solar thermal power plant is no trivial task as the
heliostat field may vary greatly in terms of size, i.e., the number of mirrors in the
hundreds or thousands, and the type of mirrors and focal lengths. Additionally the
terrain may prove to be difficult and the heliostats can influence each other by shading

5



other heliostats or by blocking reflected sun rays depending on the sun’s position, the
heliostats, and the receiver location.

2.2 Simulation of a solar tower power plant

In this work, we simulate the solar thermal power plant Helio100 using the simulation
model which is under development at the MathCCES [10]. The implemented ray-
tracing methods follow a hierarchical approach [20, 6] which allows the detection of
blocking and shading effects due to heliostats and the tower. The simulation model
was verified using the Monte-Carlo tool SolTrace [27] and shows very good agreement.

2.3 Meteorological Radiation Model

In our work, particularly during the data preparation, we need to estimate solar ra-
diation values. More precisely, we are interested in the solar irradiance per unit area
which is incident on a plane perpendicular to the respective sun beam. This measure
is called the Direct Normal Irradiation (DNI).

It is not a trivial task to assert the validity of weather station readings, since the
DNI values vary not only during the day but also between seasons and years. Figure 5
shows simulated, hourly DNI values and solar positions throughout one year. One
day is represented as an arc spanning from left to right representing the course of the
sun during a day, i.e., it increases the solar azimuth and increases the solar altitude
angle until noon and decreases this altitude angle from noon till the evening. The solar
position at full hours of the corresponding day is marked and encodes the DNI via its
color. A darker red signifies a higher DNI value. Multiple of these arcs with different
widths comprise the entire year. A thinner arc has a lower maximum altitude and
represents a day in the winter whereas a day represented by a wider arc corresponds
to a day closer to or in summer. As can be seen in the graphic, the computed solar
position changes, as expected, for the same hour of the day during one year (see the
“eights” this creates in the plot).

Before entering the Earth’s atmosphere, sun rays have a mean solar irradiance of
1366.1 W/m2 [4]. This value is called the Solar Constant and is not exactly a physical
constant as it gets occasionally updated depending on ongoing measurements. While
traversing the atmosphere, the DNI decreases due to different transmittances of the
atmospheric gases. The global radiation gets divided into a diffuse and a direct part.
With a changing solar position, the distance the sunlight travels through the atmo-
sphere to a fixed point changes and therewith the DNI varies.

The MRM [18, 19, 15, 13, 22, 14, 4] provides a means to calculate the solar radiation
under clear-sky conditions. Without interference by clouds we can thereby compute
hourly high-valued estimates for the DNI which constitute the basis of the filter for
the weather measurements later on.
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Figure 5: MRM data of one year. Hour points are highlighted.
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Figure 6: Solar angles.

2.3.1 Computation of the DNI

In the remainder of this subsection, we present the parts of the MRM which are
necessary to compute the DNI as described in [4]. We deem this information useful as
the mentioned reference on the one hand explains each aspect of the model, but on the
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other hand does not explain the model as a whole for the latest version2 of the MRM.
Instead, it describes the initial model and then patches information for the updated
versions. Additionally, we make notes whenever we find that the implementation, which
was kindly provided by Dr. Kambezidis [14], deviates from the collated formulae.

The calculation of the DNI, IDNI, depends on the extraterrestial irradiation Iex, the
solar elevation angle h and the optical transmittances Ti due to aerosol and Raeyleigh
(molecular) scattering, ozone, water vapour, and mixed gases, respectively. Referring
to Figure 6 and with θsolar is the solar zenith in radian, the solar elevation angle is
computed as h = π/2− θsolar.

IDNI = Iex · sin(h) · Ta · Tr · To · Tw · Tmg (1)

Its unit is W/m2. The extraterrestrial irradiance Iex [W/m2] is computed as

Iex = Isc · δse (2)

where Isc is the Solar Constant with a value of 1366.1 W/m2 and δse approximates the
distance between the sun and the earth depending on the day angle αd:

δse = Isc ·
[

1.0
0.033

]T [
1

cos(αd)

]
. (3)

Notice, that the literature computes δse more precisely as

δse = Isc ·


1.00011
0.034221
0.00128
0.000719
0.000077


T 

1
cos(αd)
sin(αd)

cos(2αd)
sin(2αd)

 . (4)

The day angle depends on the Julian day number d and is given in radian:

αd = 2π · d− 1

365
. (5)

Let m′ denote the relative air mass,

m′ =
1

sin(h) + 0.50572(h · (180/π) + 6.07995)−1.6364
, (6)

and P be the air pressure at station height and P0 = 1013.25 hPa the air pressure at
sea level. Then the absolute air mass is computed as

m = m′ · P
P0

. (7)

2the latest MRM version as of March 2016 is MRMv5
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Gas A B C D li

H2O 3.0140 119.300 0.6440 5.8140 lw
O3 0.2554 6107.260 0.2040 0.4710 lo
CO2 0.7210 377.890 0.5855 3.1709 350
CO 0.0062 243.670 0.4246 1.7222 0.075
N2O 0.0326 107.413 0.5501 0.9093 0.28
CH4 0.0192 166.095 0.4221 0.7186 1.6
O2 0.0003 476.934 0.4892 0.1261 2.095·105

Table 1: Coefficients for the optical air masses mj.

For the gases listed in Table 1, the transmittances compute as

Ti = 1− A ·m · li
(1 +B ·m · li)C +D ·m · li

. (8)

Using these, the transmittance due to mixed gases is computed as

Tmg = TCO2TCOTN2OTCH4TO2 . (9)

In order to compute Tw = TH2O and To = TO3 , we need to find the values for lw and
lo, respectively. While the literature states lw as

lw = 0.00493 · es ·
RH

Temp
, (10)

the code utilizes

lw = 0.00493 · es ·
RH

Temp
·
(
P

P0

)0.75

·
√

273.15

Temp
(11)

which depends on the saturation water vapour pressure [hPa] for the relative humidity
RH [%] and the air temperature Temp [K] at the station’s height and computes as
follows:

es = exp




22.329699
−49.140396
−10.921853
−0.39015156


T 

1
(Temp/100) −1

(Temp/100) −2

(Temp/100)


 . (12)

Note though, that in the code, the last entry in the right-hand side vector has an
exponent of −3 instead of 1. Furthermore, the code uses a different equation than (8),
namely, it replaces all occurences of m with m′ for the calculation of To and Tw.

The transmittance To concerning the ozone in the atmosphere is estimated using lo
which is calculated differently for each hemisphere if no measurements are available.
Using the coefficients listed in Table 2, we can compute lo in two steps:

l′o = o0 + o2 sin(o3 · (d+ o4)) + o5 sin(o6(longitude + o8)) (13)
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Hemisphere o0 o1 o2 o3 o4 o5 o6 o7 o8

Northern H. 150 1.28 40 0.9865 -30 20 3π
180

235 20π
180

if long. <0,
0 otherwise

Southern H. 100 1.5 30 0.9865 152.625 20 2π
180

235 0

Table 2: Coefficients for the calculation of lo in Equations (13) and (14).

lo = o7 + l′o · sin2(o1 · latitude). (14)

Regarding the initial problem (1), it only remains to compute the transmittance due
to Rayleigh scattering,

Tr = exp
(
−0.1128 ·m0.8346

(
0.9341−m0.9868 + 0.9391 ·m

))
, (15)

and the transmittance due to aerosol scattering,

Ta = exp
(
−mβ

(
0.6777 + 0.1464mβ − 0.00626 · (mβ)2

)−1.3)
. (16)

For the latter, we need the value of the Ångström’s turbidity parameter, β, which is
in the range of 0.05 to 0.4, where a lower β corresponds to a higher visibility range
[km]. For instance, β = 0.05 corresponds to a visibility range of approximately 340
km, while β = 0.4 corresponds to a reduced visibility range of less than 5 km.

Again, if this value is not known, the MRM implements a means to estimate a β:

β = β′ + ∆β, (17)

β′ = 0.625 + 0.1 cos(latitude) exp

(−0.7 · (station ′s altitude[m])

1000

)
, (18)

∆β = ±(0.02 ∼ 0.06). (19)

2.4 Probabilistic models

In model-checking, probabilistic models can be used to model systems which are subject
to influences of stochastic nature, such as message loss or – in the context of this thesis
– weather conditions.

A probabilistic automaton is a transition system which may define probability distri-
butions for outgoing transitions from one state to all other states. Hence, the probabil-
ity of taking a certain transition is given by the combination of the source and target
state and the chosen probability distribution. In this section, we use the necessary
definitions as introduced in [28].

Definition 1. A sub-distribution over a countable set S is a function µ : S → [0, 1]
such that

∑
s∈S µ(s) ≤ 1; µ is a (probability) distribution if

∑
s∈S µ(s) = 1. The set

of all sub-distributions over S is denoted by SDistr(S), the set of probability distri-
butions by Distr(S). By supp(µ) = {s ∈ S | µ(s) > 0} we denote the support of a
(sub-)distribution µ.

10



Different types of models can be distinguished by their time model (discrete or con-
tinuous) and by whether they exhibit non-determinism or not. Table 3 lists typical
modeling approaches by this categorization. Efficient model checking algorithms exist
for these probabilistic model classes and are implemented in (model checking) soft-
ware such as Prism[17], MRMC [16], and Storm[1]. The application field of such
probabilistic model checking algorithms ranges from computer systems and security
protocols to biological systems and quantum computing [28]. One reason is that the
following problems cannot be modeled without a probability aspect [5]:

• randomized algorithms,

• modeling unreliable and unpredictable system behavior, and

• model-based performance evaluation.

Combining reachability analysis and model checking techniques with numerical math-
ematics, probabilistic model checking offers a means to automatically check for more
intricate properties such as “the probability to reach a set of bad states is at most 1%”
or “starting from a state s, the long-run average energy is at least 600 Wh/a” in addition
to non-probabilistic model checking for qualitative correctness properties such as “is
there any execution path which leads to a critical state”.

Time Nondeterminism Probabilistic models

discrete
no discrete-time Markov chains (DTMCs)

yes
Markov decision processes (MPDs),
probabilistic automata (PAs)

continuous
no continuous-time Markov chains (CTMCs)

yes
probabilistic times automata (PTAs),
priced probabilistic timed automata (PPTAs)

Table 3: The types of probabilistic models currently supported by Prism, classified by
modeling of time and the presence of nondeterminism. Source: [17].

Regarding the differentiation between the model classifications, let Figure 7 be an
excerpt of a transition system representing a probabilistic model. In this example,
the state si,j has three potential successor states, si+1,j+1 through si+1,j−1, where a
transition with probability p0 leads to si+1,j+1, another transition with probability p1
leads to si+1,j and so forth. Only if the probabilistic model behaves deterministically,
the probabilities are known and sum up to 1. If the model features a discrete time
model, a transition can only be taken after a fixed, discrete time interval, while a
continuous time model generally allows transitions to be taken at any real time.

In this thesis we want to construct models with an hourly time discretization and
based on measured weather data. In other words, we want to construct time discrete,

11



si,j

si+1,j+1

si+1,j

si+1,j−1

p0

p1

p2

Figure 7: Excerpt of a transition system representing a probabilistic model.

stochastic (deterministic) models. Referring back at Table 3, we can see that a DTMC
fits this description.

Definition 2. A discrete-time Markov chain (DTMC ) over atomic propositions AP
is a tuple D = (S, sinit , P, L) with S being a countable set of states, sinit ∈ S the initial
state, P : S → SDistr(S) the transition probability function, and L a labeling function
with L : S → 2AP .

In order to fully utilize DTMCs in this thesis, we need to equip them with rewards
representing the energy reception at the solar tower. In general, these rewards can be
equipped to both the transitions and the states of the models. Using state rewards
(ρ : S → R), we can then formulate (reward) properties which a model checker such
as Prism or Storm can check for.

One such property is the average or expected reward over all paths σ from a state s
of at most length k through the model D, i.e.,

ExpRew≤ks =
∑

σ∈Path≤k
s (D)

P (σ) · ρ(σ)

where ρ(σ) =
k∑
i=0

ρ(si) is the reward and P (σ) =
k−1∏
i=0

P (si)(si+1) is the probability of a

path σ = s0 . . . sn, k ≤ n. We later use this property to compute the average annual
energy received at the solar tower. Additionally, we write pij instead of P (i)(j) for the
probability of taking the transition from state i to state j.

Using these definitions, we do not have to concern ourselves with the memorylessness
of the DTMCs and can focus on the construction of the same. For the evaluation of our
models, we considered the three model checkers Prism, MRMC, and Storm, which
should compute the annual average energy as stated above. We discuss the reasoning
behind choosing Storm in Section 5.5.1.
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3 Data preparation

The first step after acquiring raw weather data is to identify and remove erroneous data,
too high valued outliers in particular. Section 3.1 presents the original weather data
and stresses its problematic aspects, thereby motivating the chosen means of filtering.
The subsequent sections explain the concepts of the implemented filter, discuss the
difficulties of finding fitting parameters, and finally show the resulting filter used in
this thesis.

3.1 Available data

The SAURAN station at Stellenbosch University (SUN) (Figure 8) provides infor-
mation about multiple solar irradiance measures: global horizontal irradiance, direct
normal irradiance, and diffuse horizontal irradiance. Additionally, there are measure-
ments of ultraviolet A (UVA), ultraviolet B (UVB), the air temperature, barometric
pressure, relative humidity, and of the wind speed and direction.

Figure 8: Weather station on the roof of the SUN Engineering building. This image is
taken from http://www.sauran.net/ShowStation.aspx?station=4.

At the URL stated in Figure 8, minute-, hour-, and day-averaged data can be down-
loaded for a given time period. Although minute-averaged data is generally available
from the day of installation on May 24, 2010 till the day of submitting this work in
March, 2016, there is no complete data for any given year, i.e., there are empty-valued
or missing minutes, days or even weeks. As stated in the station details document3 of
SAURAN, this can be due to sensor failures and maintenance work.

Figure 9 shows all available data from 2010 to 2015. Knowing that the theoretical
maximum DNI value at the outer atmosphere is at 1366.1 W/m2, multiple measurements
are blatantly erroneous: the recordings during the (South African) winter of 2012 peak
at 35994.2 W/m2, more than 26 times the value of the Solar Constant. Except for 2011
and 2015, one can at first glance identify values exceeding this threshold for each of the
data in the available years. Hence, we cannot simply ignore the entire year 2012 and
use the remaining data, but we have to evaluate the feasibility of each measurement
for the construction of the model individually.

3http://www.sauran.net/Docs/Sta_4/SUN%20Station%20Details.pdf, last visited: 2016-02-06
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Figure 9: DNI values of all available weather data at the Helio100 site, depicted as DNI
[W/m2] over time of the year.
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It would be possible to simply trim all values at the Solar Constant. However, there
are also false measurements with a magnitude within the mentioned boundaries but
at the wrong time. As can be seen in Figure 10, there are measurements at night
indicating a DNI at the level of late morning/evening.
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Figure 10: Erroneous nightly DNI measurements in 2014.

One way to cope with this problem is to simply calculate the sun angle and delete
all positive records during the night and to cut off all values at 1366.1 W/m2. But this
solution would not solve all problems and it would even introduce new ones. A simple
DNI cut-off at the Solar Constant produces fake data, while what we need to do is
to delete the affected measurements. we have to delete the affected measurements
instead. Having dealt with false night values and values exceeding the theoretical
maximum extraterrestrial DNI, there may still be seasonal errors, e.g., measurements
in the winter with too high DNI values for that time of the year.

In our endeavor to compute appropriate DNI bounds for a given time of the year,
we utilize the MRM described in Section 2.3.

3.2 Filter

In order to perform plausibility checks on the measured DNI values, we compute upper
boundaries for the given data points using the latest MRM according to the Clear Sky
Model with a relative humidity of zero and low air pressure of 850 hPa as opposed
to readings of up to approximately 1000 hPa, to achieve higher boundary values and
thereby be less restrictive.

However, these settings alone do not suffice to compute feasible upper bounds. As
can be seen in Figure 12a, the variance in daily DNI averages is too large (compare
the winter months to the summer months). In order to reduce this variance, the origin
location of the MRM can be moved closer to the equator, while it could not be moved
farther, since it is apparent in all data sets that the winter months are around July.

We set the location of the MRM to 0 ◦ N latitude and 18.8654 ◦ E longitude, i.e., the
same longitude as the radiometric station but on the equator (see Figure 11), to enable
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the computation of greater values for the upper boundaries. Now each day has an upper
boundary in the maximum of the corresponding MRM values (see Figure 12b).

MRM location

Helio100

equator

la
ti
tu
d
e

Figure 11: Map of Africa depicting the location of the solar tower power plant Helio100
and the location assumed for the MRM for the computation of an upper
bound. Graphic created using http://www.darrinward.com/lat-long/.

The MRM does not compute DNI values for each minute but only an average for each
hour. To prevent our filter from discarding valid data points, we apply a relaxation to
it: we allow the maximum MRM DNI of the previous and next k hours of the same
day. We use DNI x to denote the DNI value of data point x and MDR(x, k) to denote
the “MRM DNI Range” from point x and an integer k, sucht that, in other words, after
applying our filter function f on the set of all weather data points WD , it holds that

x ∈ f(WD , k)⇔ DNI x ≤ max{DNI y∈MDR(x,k)} ∧ (θsolar,x < 90 ◦ ∨ DNI x = 0) . (20)

Let Tx be the time of day of x in hours with decimal minutes, starting at zero, Ty the
hour of MRM data point y, also starting at zero, and Dx the day of year of x, starting
at one, and Dy analogously the day of year of data point y. Now we can define MDR
as follows:

y ∈ MDR(x, k)⇔ ∃j ∈ {−k, .., k}.bTxc+ j = Ty ∧ Dx = Dy. (21)

Figure 13 illustrates the difference between a strict filter and the relaxed filter.
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(a) MRM origin at location of Helio100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Time

0

200

400

600

800

1000

1200

D
N

I

2013 MRM Strict
2013

(b) MRM origin on equator

Figure 12: Comparison of the influence different MRM origin locations have. Plot a
shows the results of the site latitude and longitude, while b has the latitude
set to zero.

15-Jan 04:00 15-Jan 09:00 15-Jan 14:00 15-Jan 19:00 16-Jan 00:00

Time

0

200

400

600

800

1000

1200

D
N

I

2010
2011
2012
2013
2014
2015
Strict MRM
Relaxed MRM

Figure 13: Relaxed and strict filter, without zenith oriented cut-off, illustrates the effect
of MDR with k = 3. This graphic depicts the data belonging to a single
day of the year.

The condition θsolar,x < 90 ◦ ∨DNI x = 0 in Equation 20 reads as “the sun’s position
must be above the horizon or the DNI must be zero” and ensures that we delete nightly
values even for large ks.

After the application of the filter, we expect the following positive effects:

1. There are no more outliers with extremely high values (some even surpassing the
Solar Constant),

2. positive DNI values at night are discarded and

3. we allow higher values in the summer than in the winter.

Note, that especially the latter cannot be achieved by simple thresholding with a
constant.
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3.3 Filter variants

As can be seen in Figure 13, the MRM filter needs to be relaxed by some hour-period
k or it would delete high-valued data in the morning and evening, especially in the
summer months. The maximum height of the filter is sufficient for each day, thus we
advice against simple up-scaling of all boundary values.

Increasing the size of the MDR results in a plateau of the boundary at its daily
maximum which approximates the appearance of the (near complete) energy curves
of those days. Considering these plateaus and steep flanks, k = 3 seems to be a good
choice. But in the evenings of summer days we still lose too many values we would
like to keep (see Figure 13).

Increasing k’s value further, and respecting the solar zenith, we get closer to a step
function which is zero at night and has a single value greater than zero for the rest
of each day. This daily value varies from day to day, and more importantly with the
seasons, in such a way that it still allows the summer to maintain higher valued DNI
entries than the winter days. Figure 14 illustrates these effects.
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days of the year.

Figure 14: Filter with k = 12.

Using k = 12, the filtered weather file contains 2651550 entries instead of 2557118
for k = 3. In other words, we can keep 94432 more minute-averaged DNI values, which
make up 3.56% of all data points we deem correct. This shows that the filter using
k = 3 really is too restrictive, which we already suspected in Figure 13.

The original weather data file contained 2767269 entries, partially complete with
DNI values. Hence, the final filter with k = 12 gets rid of 115719 faulty data points,
4.18% of the input data.
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4 Model construction

In the previous section, we have shown how our filter is constructed and that we can
now assume a clean set of filtered DNI measurements. However, since our probabilistic
model should not model the DNI [W/m2] but the received energy [Wh] at the solar tower
of the power plant Helio100, we have to compute this energy value for each minute
based on the available (and valid) weather measurements. We achieve this by running
the solar tower power plant simulation [10], which is under development at the institute
MathCCES, for each weather data point remaining after the application of our filter.
This results in a data set containing, among others, minute-wise energy values with
the corresponding timestamps.

The DTMC models consist of states, rewards, and transitions. This section describes
how each of these components is derived from the set of energy values.

The states and associated rewards are explained in Section 4.1 while Section 4.2
presents the construction of transitions and transition probabilities and therewith ex-
plains our models’ approach to compensating for only few years’ data being available.

4.1 States and rewards

To keep the models intuitive, their general layout is closely related to the available
weather data. The index of a model state encodes approximations of the time of year
as well as the received energy of a set of data points. This yields a two dimensional
structure in which we represent a state as a tuple (t, e) for time t and energy e.

Note, that the weather data contains information about the DNI but that this di-
mension is not equivalent to the received energy which we want to encode in the model.
Of course, the amount of received energy is not available for solar tower power plants
(or other suitable generators) which are still in the planning phase. Hence the need
for the solar tower simulation using the filtered weather data.

In order to compute the energy at the receiver of the Helio100 solar tower power
plant, the simulation described in Section 2.2 is utilized. We simulate each minute of
the filtered weather file individually.

Because there is no more than six years’ data available for the application site, we will
not represent each minute in the model, but discretize the time into hours and assign
the data points according to their time of the year. This decision already decreases
the influence of outliers because the energy encoded by a state4 is now dependent on
more data points as compared to having a state for each minute and energy class.

To further reduce the models’ state space, the energy is discretized as well.
Here is an extreme example of how we can undermine the influence of outliers by the

chosen time discretization: Assume that all data is valid and available for 59 minutes
of an hour of the year for all six years, but in the remaining minute, only one data point
is available, possibly an outlier with an energy value noticeably below the average of
the remaining data of that hour but still within the same energy discretization class.

4or rather its reward
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If we were to construct a state for each minute and energy class, the one outlier would
dictate the (average) energy of that state. With a discretization to an hourly level, we
use the average of 59 · 6 + 1 = 355 times the number of data points.

Now we can amend that (t, e) represents the state corresponding to time discretiza-
tion class t (of 8784 hours, including leap years) and energy discretization class e (of
K). This means, that (t = 0, e = 1) is the state which represents the first hour (of
every year) and the second lowest energy discretization class (see Figure 15).
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Figure 15: Discretization of the filtered data points (the graphic does not show real
data points to keep the image clear and focus on the concept). Each data
point is marked as an x. Every state (grey circles) represents a time and
energy range. E.g., (t = 0, e = 0) represents all data points in the first hour
of each year and the lowest of K energy discretization class.

The general layout of the model can be seen in Figure 16. The time class index
t increases from left to right, the energy class index e from the bottom up. The
transitions will be explained in Section 4.2. For now, it suffices to know that there
will be no transitions from right to left, no purely vertical transitions, no transition
increasing t by more than one at a time, and no loops except for a self-loop in the
final state. All paths through the model traverse the model states in a manner which
increases t and may vary the value of e.

Let S denote the set of all states and Suc(i ∈ S) ⊂ S the set of all potential direct
successor states of i in paths through the model, i.e., Suc(i) is the set of all states
j = (t′, e′) with t′ = t+ 1 for a state i = (t, e).

A possible year is then represented as a path from the initial to the final state,
during which the sum of state rewards on that path is received at the power plant’s
solar tower.
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Figure 16: General layout of a model with three energy classes.

Rewards. It remains to decide how to define rewards for the models. As stated in
the preliminaries, rewards can be associated with both the states and the transitions.
We believe that the more intuitive way is to associate them with states since they are
directly derived from the time and energy values and not from the tuples of states
and the probabilities of reaching one another. For better readability, we simply write
reward(s) instead of ρ(s) in this section.

A state’s reward could simply be defined as the energy at the center of the corre-
sponding energy discretization class e, i.e., the reward for a state could be set to

reward(s = (t, e)) = e · max energy [W/m2]

K
. (22)

However, with this approach all states sharing the same e are assigned the same reward.
This is problematic when the minute-averaged energy values in state (t, e) are near the
upper boundary of e while the energy values in another state (t′, e) are closer to the
bottom boundary. The reward would be the same even though it is apparent that the
reward of (t, e) should be higher than that of (t′, e). Of course, one could increase the
number of energy discretization classes to reduce this discrepancy, but the underlying
problem remains the same.

A more accurate solution is to choose, for each single state, the average energy of
all data points belonging to that state. Let SDs denote the set of all simulation data
points associated with state s, i.e.,

x ∈ SDs=(t,e) ⇔ btime of year in xc = t ∧ received energy in x

energy discretization step size
= e. (23)

This leads us to the following equation:

reward (s) =

∑
x∈SDs

received energy in x

| SDs |
. (24)

But even that is not sufficient. As mentioned earlier, we simulate every minute
separately and got energy values in the unit Wh/min. The time discretization however
changed the time resolution to one hour, hence the need for a multiplication of the
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state rewards with 60. Thus, instead of Equation (22) or Equation (24), we will use
Equation (25):

reward (s) =

{
60 ·

∑
x∈SDs

received energy in x

|SDs| if |SDs| 6= 0

60 · (es + 0.5) · energy step size otherwise
. (25)

4.2 Transitions

This section presents how the transitions, and more precisely the transition probabili-
ties, are derived from both the measured and the simulated data.

We denote the probability of taking the transition from state i to state j as

Pij = ξ1 · p(1)ij + ξ2 · p(2)ij + ξ3 · p(3)ij (26)

with
3∑
i=1

ξi = 1.

We only allow transitions from left to right and only to a state j which represents
an energy class e′ in the hour t′, which follows directly after hour t in state i. This
means that for all transition probabilities, the following formula has to hold:

pij =

{
0 ≤ (p ∈ R) ≤ 1 if ∃e, t, e′, t′ s.t. i = (e, t) ∧ j = (e′, t′) ∧ t′ = t+ 1

0 otherwise

with ∀i ∈ S :
∑

j∈Suc(i)
pij = 1 and

∑
j 6∈Suc(i)

pij = 0.

4.2.1 Hourly expectancy

The first probability measure is derived from computing the average or expectancy
of the given data. The probability of transitioning to a state representing many data
points should intuitively be higher than that of a state representing fewer data points.

Hence, we define the hourly expectancy probability of the transition from state
i = (t, e) to j = (t+ 1, e′) as

p
(1)
ij =

# data points at (t+ 1, e′)

# data points at time (t+ 1)
. (27)

Figure 17 illustrates this approach for a small number of data points and states.
Note that the probabilities of all outgoing transitions from state (t, e) are independent
of e.

If the number of data points at time t+ 1 is zero, we simply hold the current energy
value under the assumption that the chance of multiple subsequent time columns being
without any data points is very low. Hence, for this case we say p

(1)
(t,e),(t+1,e) = 1 and

p
(1)
(t,e),(t+1,e′) = 0 for e′ 6= e.
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Figure 17: Conceptual probability computation according to hourly expectancies. x
and o represent data points of two different years while the colors indicate
which enumerator is influenced.

4.2.2 Time frame probability

There may be time frames in which only very few or even no data points can be found,
which can occur due to, e.g., sensor failures or maintenance operations. In these cases
the model cannot reliably model the respective time frame.

For example, if there is only a single data point for an entire hour, then the hourly
expectancy-method as described above would set the probabilities of all in-going tran-
sitions of the corresponding state s = (t, e) to 1 (and all transitions to s′ = (t, e′) to 0
for all energy classes e′ 6= e). The same effect may of course take place for entire days.

In order to reduce the impact of such outliers and to also provide sensible probabil-
ities, we propose to also regard the time frame data.

The intuition behind this approach is that the energy curves of neighbouring days
are similar so that we may to some extent compensate a possible lack of real data.
This approach can be thought of as a smoothing operation.

The time frame data is the set of all data points x in a time frame of size k, e.g., 7
days to either side of a day of the year D .

TF k(D) = {x ∈ SD | D − k ≤ Dx ≤ D + k} (28)

where, again, Dx∈SD denotes the day of year for data point x.
With Dt = bt/24c being the day of the year to which t belongs, we can then define

the time frame data of one hour t of the year as

TF k(t) = {x ∈ TF k(Dt) | tx = t}. (29)
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Figure 18: Concept visualization of time frame data. The data points in (a) show five
days’ data points, two days to either side of a day D0. The course of the daily
energy gets smoothed as more data is available for average computations,
which can be seen in (b).

Figure 18 illustrates the approach for a time frame of five days, i.e. k = 2. In order
to better understand the weighted time frames later on in this section, it is important
to see that we do not change any timestamps: we do not move any data points but
instead only make note of their existence and time and energy values. They belong to
(multiple) time frames but remain unchanged.

Let TF k(j ∈ S) ⊆ TF k(tj) be the set of all data points in the time frame around tj
which have an energy value in class ej. Similar to p

(1)
ij , we can then calculate the time

frame probability as

p
(2)
ij =

|TF k(j)|
|TF k(tj)|

. (30)

And again, as for the hourly expectancy, we hold the current energy value if there is
no data point in the next time class, or, in other words, if |TF k(tj)| = 0.

Similar to Equation (25), the rewards for the time frame approach are computed as

reward (s) =

{
60 ·

∑
x∈TFk(s) received energy in x

|TFk(s)|
if |TF k(s)| 6= 0

60 · (es + 0.5) · energy step size otherwise
. (31)

Note that the probabilities computed by this method do not have to be the final
probabilities used in the models, but only have a weighted influence on it such that we
can reduce or increase the smoothing effect as desired.
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Weighted time frame. Since the differences in energy curves increase with a growing
distance from the day D0 in the center of the time frame, we want those days closer to
the border to influence the time frame data less than the days in the center.

Our proposed solution is a weight function with a maximum in D0. Data points closer
to D0 will be associated with greater weights and will thus have a greater influence on
the probability p

(2)
ij . In this work, the weighted time frame data TFW k,w(D) is noted

as a pair over the un-weighted time frame data TF k(D) and a weight function wk,D :

TFW k(D) = 〈TF k(D), wk,D〉 . (32)

We use k and kTF interchangeably in this section to increase the readability in formulae.
The foundation of the weight function is a triangular (or tent) function

tri

(
x− x0
l

)
:= max

{
1−

∣∣∣∣x− x0l

∣∣∣∣ , 0} (33)

with a base length of 2 · l (later: twice the number of days) and the single global
maximum at (x0, 1). Note that only in this equation x does not stand for a data point
but for just an arbitrary element of the general triangular function’s domain.

The height of the triangle at a given day of the year equals the weight of the data
points of that day and can, in case of an integer weight, be thought of as the multiplicity
of those data points. Since we want to include the days D = D0 ± k and the weight
at the base of the triangle is zero, l must be equal to k + 1. If we want the weights to
represent data point multiplicities, they must be non-negative integers. We can achieve
this by multiplying with the only denominator in the equation, l = k + 1.

(k + 1) · tri
(

D − D0

k + 1

)
= max {k + 1− |D − D0| , 0} (34)

-4 -kTF -2 -1 +0 +1 +2 +kTF +4
0
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time difference to 0

w
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t

Figure 19: Time frame weight function for kTF = 3.

Using the set of time frame data points TF k(D), the weight function wk,D : TF k(D)→
R≥0 can be defined as follows:

wk,D0 (x ∈ TF k(D0)) = (k + 1− |Dx − D0|) (35)

Figure 19 depicts the resulting weight function for kTF = 3. Using such a weight
function, we can calculate the influence a day’s data points have on the probability
calculation for the states within the day in the center of a time frame, D0.
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Figure 20: Weighted time frame concept for kTF = 2.

Figure 20 illustrates these effects: the current D0 has the highest weight (kTF + 1),
the neighbouring days’ data points have gradually less weight until neighbour days
D0 ± kTF are reached, which have no influence at all. The energy values of the data
points is untouched however.

It still remains to calculate probabilities using the weighted time frame data. Because
we do not want to change energy values, as they are utilized for the reward computation,
the probabilities will only rely on the weights and existence of data points. Using the
weight function in Equation (35), one can imagine that we multiply a data point by
its weight according to the current weighted time frame. With this image in mind, the
following formulae are analogue to those for the hourly expectancy computation.

For easier notation later on, we define the weighted time frame data of one hour t
to be a subset of TFW k(Dt) by listing TF k(t) instead of TF k(Dt) as the first element
of the pair:

TFW k(t) = 〈TF k(t), wk,Dt〉 . (36)

The weight of “column” t in the weighted time frame is then calculated as follows:

|TFW k(t)| = |〈TF k(t), wk,Dt〉| :=
∑

s′∈TFk(t)

wk,Dt(s
′). (37)

In order to get the time frame value for a single state s = (t, e) instead of the time
frame value for an entire time unit t, we specify a weight function based on s, and of
course kTF . This function uses the weight of Equation (35) if the energy class of s′ is
e, the same energy class as that of s.

wk,s∈S(s′ ∈ TF k(Dt)) =

{
wk,Dt(s

′) if es = es′

0 otherwise
(38)

Similar to Equation (37), the weight of a state s = (t, e) is then calculated as

|TFW k(s ∈ S)| = |〈TF k(s), wk,s〉| =
∑

s′∈TFk(Ds)

wk,Ds(s
′). (39)
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Using this, the previous time frame probabilities in (30) may now be equipped with
weights. A transition’s probability is computed similarly to the hourly average prob-
abilities, but takes all points of the weighted time frame into account. Hence, the
probability of a transition from state i to j is the weighted number of data points in
the time frame at time tj and energy class ej divided by the total weight of data points
at time tj:

p
(2)
ij =

|TFW k(j)|
|TFW k(tj)|

. (40)

The reward computation for the (weighted) time frame approach remains unchanged
(Equation (31)).

4.2.3 MRM gradient

Because the data represents only a few years, there is a need for an orientation based
on ideal weather and energy curves. Hence, the probability we represent in this section
only takes the MRM into account. Although the problem does not model the DNI per
hour but the produced energy per hour, one can see that the trends of both irradiation
and energy output are related and alike.

The general idea is, that it is reasonable to observe an increase in energy values
from dawn to midday, and a decrease toward dusk. The MRM is used to approximate
artificial energy curves of each day.

The probabilities are derived from the MRM gradient: assume that from hour t to
t+1 the MRM DNI value raises 40 W/m2. We then translate this increase to an increase
in the index of energy discretization classes.

∇MRM(t) =
+40 W/m2

irradiation step size
=

+40 W/m2

max DNIW/m2

K

= K · +40

max DNI
(41)

According to this form of MRM gradient probabilities, every path through (t, e) should
also contain (t+ 1, e+∇MRM(t)) for every hour of the year t, 0 ≤ t ≤ 8784.

Since we apply this to all energy classes, an imminent problem is, of course, that
e + ∇MRM(t) might be smaller than emin or greater than emax. For convenience, let
e′ = e +∇MRM(t). If (t + 1, e′) does not exist because e′ > emax, then set e′ := emax.
Analogously, set e′ := emin if it were otherwise smaller than emin.

Figure 21 visualizes this approach. The red lines correspond to the course of the
MRM through the respective discretization classes while the black lines represent the
model transitions with a probability of one. For example, in the first time step, the
MRM gradient is +1. Thus all outgoing transitions of the states at the first hour are
equal to one, if and only if the transition leads to a state in the next highest energy
discretization class (if possible, note the highest state and its successor with the same
energy discretization class).

More formally, p
(3)
ij can be defined as follows:
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Figure 21: Concept of the basic MRM gradient probabilities.

p
(3)
ij =



1 if ∃t, e, e′ : i = (t, e) ∧ j = (t+ 1, e′) ∧ e+∇MRM(t) = e′

∧emin ≤ e′ ≤ emax

1 if ∃t, e : i = (t, e) ∧ j = (t+ 1, emax) ∧ e+∇MRM(t) > emax

1 if ∃t, e : i = (t, e) ∧ j = (t+ 1, emin) ∧ e+∇MRM(t) < emin

0 otherwise

(42)

Contrary to utilizing only a combination of the hourly expectancy and time frame
probability, the MRM gradient makes use of the underlying DTMC, since without the
latter, the probabilities of outgoing transitions of a state s = (t, e) are independent of
e.

Diffuse MRM gradient. The definition in Equation (42) only allows one outgoing
transition for each state, which seemed too strict. We prefer a “diffuse” set of outgoing
transitions, i.e., still associate a high probability with the transitions which had a
probability of 1 due to Equation (42), but also have transitions to neighboring energy
classes at the same hour, though less probable the further these energy classes deviate
from the original transition target.

This“diffuse MRM gradient” is achieved by applying a generalization to the previous
approach. A new parameter kMRM defines over how many potential new transitions
the transition probability should be split. For convenience, let us ignore the fact that
there is a maximum and a minimum energy class. This problem is handled later on.
Let the original transition (according to Equation (42)) lead from (t, e) to (t′, e′). We
then distribute the transition’s probability over all transitions leading from (t, e) to all
states (t′, e′ + δ) with δ ∈ {−kMRM , .., kMRM}:

e+∇MRM (t)+kMRM∑
e′=e+∇MRM (t)−kMRM

p
(3)
(t,e),(t+1,e′) = 1 (43)

As to the claim from before, this is indeed a generalization since the strict version
of the MRM gradient is achievable by just setting kMRM = 0.
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We still need to define how this probability distribution exactly works. Similar to
the weighted time frame probabilities, we assign weights according to a distance from
a “center”, which in this cases equates the distance of the transition’s target to the
transition target we obtain using the strict MRM gradient approach.

For simplicity, we use the same weight function as before, i.e., the transition from
(t, e) to (t+ 1, e+∇MRM(t) + δ) has weight kMRM + 1− |δ|.

It remains to treat the cases in which a transition’s target state does not exist
because it exceeds one of the energy class boundaries emin or emax. As for the strict
MRM gradient probabilities, we “bend” these transitions to the nearest state with the
same t′ and emax or emin respectively. Because there already exists a transition leading
to this state, we have to assign the sum of both transitions to it (see Figure 22).

(t, e)

(t′, e′)

δ = −k

δ = −2

δ = −1

δ = 0

δ = +1

(t′, e+∇MRM,t − k)

(t′, e+∇MRM,t − 2)

(t′, e+∇MRM,t − 1)

(t′, e+∇MRM,t)

(t′, e+∇MRM,t + 1) = (t′, emax)

Figure 22: Diffuse MRM gradient for k = 3. A thicker edge represents a higher proba-
bility of taking the corresponding transition. In this example, (t′, e′) is the
successor of (t, e) according to the MRM gradient. Since e′ + 1 = emax and
k = 3, the probability of (t, e)→ (t′, emax) is greater than the probability of
(t, e)→ (t′, e′−1), indicated by the redirected edges which would otherwise
target non-existing states (t′, emax + 1) and (t′, emax + 2).

The transition from i to j is assigned the weight p
(3)′

ij . Using the notation from
Figure 22 this results in a weight calculation as described in Equation (44).

p
(3)′

(t,e),(t′,e′) =


(k + 1− |δ|) if emin < e′ < emax ∧ t′ = t+ 1∑k

l=δ (k + 1− |l|) if e′ = emax ∧ t′ = t+ 1∑−k
l=δ (k + 1− |l|) if e′ = emin ∧ t′ = t+ 1

0 otherwise

(44)

One can see that δ equals the distance from target state energy class e +∇MRM(t)

(according to MRM gradient) to e′. Hence, we can rewrite p
(3)′

ij as in Equation (45).
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p
(3)′

(t,e),(t′,e′) =



k + 1− |e′ − (e+∇MRM(t))| if emin < e′ < emax

∧t′ = t+ 1∑k
l=e′−(e+∇MRM (t)) (k + 1− |l|) if e′ = emax

∧t′ = t+ 1∑−k
l=e′−(e+∇MRM (t)) (k + 1− |l|) if e′ = emin

∧t′ = t+ 1

0 otherwise

(45)

At this point, the weight calculation is defined but the probability cannot be equal
to the raw weights since this hurts the condition mentioned earlier in Equation (43).
To achieve a total sum of 1 for all outgoing transition probabilities of each state, we
can divide the weight of each outgoing transition of state (t, e) by the total sum of
weights assigned to all outgoing transitions of that state:

p
(3)
ij =

p
(3)′

ij

total weight outgoing from i
=

p
(3)′

ij

(k + 1) + 2 ·∑k
i=1 i

=
p
(3)′

ij

(k + 1)2
. (46)

4.3 Resulting models

We model years with 0 ≤ t ≤ 8784 = 366 · 24, a single initial state s0 = (t = 0, e = 0)
and a single final state sf = (t = 8784, e = 0). Thus a model can consist of up to

|S|max = 1︸︷︷︸
s0

+ 8783 ·K + 1︸︷︷︸
sf

(47)

many states, which yields a maximum number of transitions equal to

|T |max = K︸︷︷︸
outgoing from s0

+ 8782 · K2︸︷︷︸
from K to K energy classes

+ K︸︷︷︸
from left to sf

+ 1︸︷︷︸
self-loop in sf

. (48)

Of course, these limits assume that all states are reachable considering only transitions
with a probability greater than zero when representing probabilities with a precision
of, e.g., four digits after the decimal points. Remember that this precision boundary
was introduced to reduce the model size and uses the assumption that all transitions
removed by it are negligible. For example, for K = 100 we already have |S|max =
878302 and |T |max = 87820201. In the evaluation section (Section 6) we examine the
actual model size, which includes only reachable states and only transitions satisfying
the precision boundary, depending on different model parameters.

With all parameters described in the previous section, we may construct a great
variety of models. The parameters we can tune after the filtering and simulation
process are listed in Table 4.

The remainder of this section presents three models (Figure 23) to offer a more
intuitive understanding of the probability computation methods. We construct small
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Parameter Description Range

R all state rewards are rounded to multiples of R N0

K number of energy (discretization) classes N>0

prec maximum number of positions after decimal point for probabilities N0

ξ
(1)
p weight for probabilities p(1) according to hourly expectancy 0..1

ξ
(2)
p weight for probabilities p(2) according to weighted time frame 0..1

ξ
(3)
p weight for probabilities p(3) according to diffuse MRM gradient 0..1

Ξp weight vector for probabilities,
(
ξ
(1)
p , ξ

(2)
p , ξ

(3)
p

)
ξ
(1)
r weight for rewards according to hourly expectancy 0..1

ξ
(2)
r weight for rewards according to weighted time frame 0..1

ξ
(3)
r weight for rewards according to diffuse MRM gradient 0..1

Ξr weight vector for rewards,
(
ξ
(1)
r , ξ

(2)
r , ξ

(3)
r

)
kTF time frame size N0

kMRMG k for diffuse MRM gradient N0

Table 4: Model parameters.

models with only 20 energy discretization classes to stress the differences. The figure
shows two views on each model per row, depicting (1) three days and (2) a single day
respectively. The left hand side figures (Figures a, c, and e) all show the same three
days of the year and the right hand side figures (Figures b, d, and f) show the transitions
corresponding to the same day of the year. All lines are representing a transition in
the model where a darker line means a higher probability. This also means that white
reflects a transition with the probability zero or thereby the absence of a transition.
When there are no ingoing transitions to a state, this state is not reachable and thus
removed before model checking.

As intended, using only the probabilities according to the hourly expectancies yields
the model with the fewest states and transitions. In Figure 23b, we can also observe
that if only a few data points lie below the typical daily curve, the corresponding states
with small e values have a lower probability of being reached than the states with the
same t but a higher e.

However, this does obviously not work as well if there are not enough data points
with such a t and a reasonably high energy value, e.g., due to general lack of data for a
given day and year. This is the reason why we introduced the time frame probabilities.
Compared to the hourly expectancy probabilities in Figure 23a, Figure 23c presents
decidedly more transitions. In this example, the time frame size was set to 7, i.e., the
transitions in Figure 23d are based on the depicted day (or rather the underlying data
of the depicted transitions) itself as well as the data of the previous and following seven
days.

As a result, almost every state under the “arc” described in Figure 23b appears to be
reachable while only few days above said arc get included. Although these low energy
states can be reached, the ingoing transition probabilities are mostly low-valued (many
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are hard to identify by eye). Furthermore, the targets of the most probable outgoing
transitions lie on the course of a smoothed version of the mentioned arc, which is why
we see the use of time frame probabilities as smoothing.

The remaining figures show the probabilities according to the MRM gradient, here
with kMRMG = 10. Morning and evening are especially apparent in Figure 23e: during
the morning hours the probabilities of transitions leading to states with high e values
are more probable (darker) than those of transitions leading to states with low e values,
conversely so during the evening.

The most obvious difference to the previous two probability measures is the reach-
ability of all states with transitions in the depicted t and e range. As can be seen
in Figure 32b later in the evaluation section, this amounts to rendering 99.92% of all
states reachable when using only the diffuse MRM approach for 500 energy classes,
while the hourly expectancy approach and weighted time frame approach render only
about 10% and 33% reachable. This could be changed, of course, but the primary aim
of the MRM gradient is to strengthen the probabilities derived from p(1) or p(2) which
correspond to a “typical day”, while this “typical day” is not derived from measured
data but from the ideal DNI values. With a sufficiently small ξ

(3)
p and probability

precision as well as a higher value for K, we should be able to reduce the number of
unnecessary states during the nights. This effect can be seen in Figure 32a as compared
to Figure 30a.

Section 6 will present resulting model dimensions after Section 5 presents the imple-
mentation of our ideas.
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(a) Ξp = (1, 0, 0), three days.
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(b) Ξp = (1, 0, 0), one day.
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(c) Ξp = (0, 1, 0), three days.

1350 1352 1354 1356 1358 1360 1362 1364

t

0

2

4

6

8

10

12

14

16

18

e

(d) Ξp = (0, 1, 0), one day.
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(e) Ξp = (0, 0, 1), three days.
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(f) Ξp = (0, 0, 1), one day.

Figure 23: Resulting model transitions for the different probability computation meth-
ods for K = 20. Lines represent transitions, a darker line means a higher
associated probability.
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5 Implementation

This section covers the implementation of the data preparation and model construction.
Section 5.1 presents the layout of the underlying software chain, briefly discussing the
role of each component involved. After this overview, Section 5.2 explains details of
the filtering algorithm and Section 5.3 presents the settings which are necessary in
order to utilize the simulation with the results of the filter for the weather data. In
Section 5.4, details of the Model Builder are explained.

5.1 Software chain

The main concept of our implementation is closely related to the strategy pattern. Ev-
ery core concept of the process from MRM computation to the construction of a model
is encapsulated in a dedicated class with its own input and output files (see Figure 24).
Although we eventually reduced the number of concrete strategies per abstract strat-
egy to exactly one, we still benefit from this approach as, e.g., for experiments, the
model builder can be invoked multiple times without us having to re-run the MRM
computations, weather filtering, sundata file generation, and solar tower simulation
every single time.

MRMCalculator

Filter

Sundata File Generation

SolarTower Simulation

CSVCombinator

ModelBuilder

Simulation JSON

Meteorological JSON

Weather File

Weather MRM

Weather Filtered

Sundata File

Simulation Results

Combined Data

Model

Figure 24: Software chain and important (intermediate) files.

The caveat is obviously that a single run takes longer due to the need for serial
reading and writing, but we realized that the filtering process and consequently also
the sundata file creation should ideally only be performed once. Afterwards, a solar
tower can be simulated and examined using multiple models. This reasoning and the
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weatherHEADLESS.csv

Date
GHI W/m2

DNI W/m2

DHI W/m2

DHI shadowband W/m2

UVA W/m2

UVB W/m2

Air temperature ◦C
Barometric pressure hPa
Relative humidity %
Wind speed m/s
Wind direction deg
Standard deviation of
wind direction

deg

weatherMRM.csv

Date
GHI W/m2

DNI W/m2

DHI W/m2

Azimuth deg
Zenith deg
MRM W/m2

weatherFiltered.csv

Date
DNI W/m2

Azimuth deg
Zenith deg
MRM boundary W/m2

MRM W/m2

simulationEnergy.csv

Date*
Energy Wh/a

combinedData.csv

Date
DNI W/m2

Azimuth deg
Zenith deg
Energy Wh/a
MRM W/m2

Table 5: CSV files. The date is always given in the format YYYY-MM-DD HH:mm. For
(*) see Section 5.3.

fact that a detailed simulation takes much longer than the model construction leads to
the proposed ordering of the steps as opposed to modeling weather data and simulating
each weather model.

The extra space needed for the intermediate files is negligible considering that the
weather file with MRM data (weatherMRM.csv) is our largest CSV and is only 226
MB in size as compared to the 1.1 GB sundata file or the model files which can grow
to a virtually infinite size: for the evaluation we created model files with more than 20
GB of content for just the transitions, one transition (two numerals) per line in a pure
text file.

The names and structures of the CSV files are listed in Table 5.
Before we can start the execution of our program, the weather file downloaded from

the SAURAN page must be prepared as it contains unreadable content after the last
entry which makes up approximately 40% to 50%5 of the file size. During this step we
also remove the two header lines and save the result as weatherHEADLESS.csv.

In a first step, our program calculates the MRM values for each hour and the solar
position in azimuth and zenith for each minute in the weather file and saves the results
in a new weatherMRM.csv file. Minute data in between full hours gets an MRM value of
-1 to indicate that no MRM was calculated for that time. This facilitates the boundary
computations later on, during which we iterate over the MRM values.

Using the weatherMRM.csv, the Filter can compute the MRM boundaries for the
weather data and finally remove invalid entries. The resulting weatherFiltered.csv

contains the date strings, DNI values, solar positions, MRM boundaries, and MRM
values. Note that we only keep the MRM boundaries in the filtered weather file to

513 MB of a 32 MB file and 62 MB of a 128 MB file
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enable us to plot and verify the results.
With the solar positions and DNI values we can create a sundata file for use in the

solar tower simulation which creates the simulationEnergy.csv. The CSVCombinator
can then append the simulation energy values to the filtered weather data, which yields
the combinedData.csv, the basis of the Model Builder.

Main

ModelBuilder

+wHourlyExpectancy: double

+wTimeFrame: double

+wMRMGradient: double

+wrHourlyExpectancy: double

+wrTimeFrame: double

+wrMRMGradient: double

+diffuseGradientK: int

+timeFrameSize: int

+K: int

+R: int

+writeModel(writePrism:bool=false,writePrismExplicit:bool=false,

            writeStorm:bool=true,writeMat:bool=false): void

MRMCalculator

+longitude: double

+latitude: double

+timezone: int MRM

Filter

+MRMRelaxedRange: int

Functions Sunposition

Simulation

GetMeteorolocialData

CSVCombinator

Figure 25: Simplified UML diagram.

Figure 25 shows a UML diagram of the most important components of the imple-
mentation. Note, that MRM is a modification of the MRM source code provided by
Dr. Kambezidis [14], and Sunposition, GetMeteorologicalData, and Simulation

are part of the solar tower simulation.
All paths, file names, and settings can be modified within the Main (before the actual

execution code) or via command line parameters (see ./Simulation -h).

5.2 Filtering the weather data

As described in Section 3.2, we need to compute the MRM for the construction of
upper boundaries for the filter. Mr. Kambezidis kindly provided the Fortran source
code of the latest MRM version. Our own attempt of implementing this radiation
model using only the literature failed, most likely due to the differences between the
literature values and the those used in the code6.

6for details on this see Section 2.3.
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The code was then translated into C++ and needed the following changes to better
fit our approach:

• remove need for external configuration file,

• embed in OO approach, use as function instead of individual main executable,

• remove main loop and need for input file, pass everything via function parameters,
and

• remove output of result file, return value instead.

Originally, the MRM code reads a configuration file containing the location as longi-
tude, latitude, standard latitude, timezone, height above normal zero, etc., as well as
a list of dates with a time of day, corresponding relative humidity, air pressure, etc.
What we need, however, is a component which simply tells us for a given date and
location, what the MRM value is. We do not want to rewrite the given weather data
file or have extra configuration files.

Hence, we wrote a class MRMCalculator which iterates over the original weather data
and calls the MRM calculation for each entry, returning the calculated value directly
instead of first having to write and read an additional output file.

5.3 Solar tower simulation

In order to simulate the individual minutes remaining in the filtered weather data file,
we utilize the solar tower simulation with its executable in $SIMPATH.

Unfortunately, the solar tower simulation does no longer support weather data files
in CSV format, so we first need to convert them into so called sundata files. The
conversion is done by the executable GetMeteorologicalData in $SIMPATH/bin after
invoking make GetMeteorologicalData in $SIMPATH/src/service.

Listing 1: Generation of a sundata file from the filtered weather data

. / bin / GetMeteoro log ica lData −s csv
−c weathe rF i l t e r ed . csv
−j m e t e o r o l o g i c a l . j son
−o s r c / s e r v i c e / s u n f i l e . sun

Afterwards, the solar tower simulation can be run by invoking its executable with
command line parameters as follows:

Listing 2: Running the solar tower simulation

. / S imulat ion −s
− i s i m u l a t i o n m a s t e r t h e s i s . j son
−c . . / s o l a r \ tower / data / he l i o 10 0 / p o s i t i o n s . csv

This tells the Simulation to simulate a heliostat field layout or configuration as given
in positions.csv and configures the simulation (selection of simulation type (solar
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tower or offshore wind), location of sundata file, receiver settings, etc.) according to
the simulation_master_thesis.json.

In this settings file we also select to use our previously calculated zenith and az-
imuth values, since at this point we already know these values and can omit having
to synchronize the location and timezone values between the MRM settings and the
simulation settings.

For this thesis, we used the simulation as of Subversion (SVN) revision 542, as this
is the latest version we tested which produced sensible results. Among other changes,
the simulation now reorders the sundata entries which we believe may be the cause of
unsatisfactory results: energy curves of a single day are stretched to multiple days and
depending on the year of the weather data the curves are shifted to the left or right.
The issue is under investigation and since revision 542 works, we could eventually
continue.

The simulation’s output can be found in $SIMPATH/momentenergy, which used to
contain a date string followed by the energy received during the given minute. We now
need to merge the energy file and the weather file, so that we can use both real energy
and the MRM values for probability computation. The initial approach was to search
both files for matching dates. This way, one could simulate a single year and relate
it to the weather file and if a simulation value should be erroneous or missing, e.g.,
-nan, we could still use all other values. However, the simulation no longer outputs
the date string, so we now have to copy the date column from the weather data file
weatherFiltered.csv to the energy file simulationEnergy.csv before combining
them.

5.4 Model construction

The class ModelBuilder is responsible for the construction of the DTMC models. It
reads the combinedData.csv written by the CSVCombinator which contains all dates,
simulation energy, and MRM values. While reading it computes the maximum energy
and MRM values so it can set the respective discretization classes accordingly. When
the entire file is read, we can assign each entry to a state. To this end we introduce two
maps, one named cntMap which contains for a key (t, e) the number of entries within
the respective state, and a second map cntHPtsMap with the number of “hour points”
for a given t. Additionally, while we are traversing all entries, the hourly averages of
MRM and energy are being computed for each state.

In the next step the different probability measures are computed in parallel OpenMP
sections and afterwards added with the corresponding probability weights. Each prob-
ability measure is returned as a three dimensional matrix (vector of vectors of vectors
of type float) in the form p[t][j][k] = v which stands for “the probability of going
from state (t, j) to (t + 1, k) is v”. Note that this format can represent all transitions
except for the self-loop in the final state. During the computation of the probabilities,
we have to divide by the number of entries at a given t, i.e., by cntHPtsMap[t]. If this
is zero, we choose to “hold the energy value”, which means that we set the probability
of p[t][j][j] = 1. An alternative solution would be to set “pull missing data to
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zero”, p[t][j][0] = 1, but we think that it is more realistic to assume that missing
data for one hour means a (hopefully) short outage of the measuring systems and that
the modeled energy should be in the vicinity of the previous hour.

A second decision concerns the numeric precision of the probabilities. As mentioned
in Section 4, we want to restrict the representation of each probability to a given
number of digits after the decimal point. Hence, we trim all probabilities but still
have to assure that the sum of probabilities of all outgoing transitions of each state
equals 1. In an “optimistic” approach, the proposed solution adds the difference to 1 to
the probability of the transition which, after trimming, leads to the highest reachable
energy class.

During the computation of the time frame probabilities, we also calculate the time
frame rewards of each state as this requires the exact same loops and iterations. Thus,
if the user wants to create a model with ξ

(2)
r > 0, ξ

(2)
p has to be greater than zero

as well. The remaining rewards, hourly expectancy and MRM average, are already
computed during readData. So it only remains to compute the final state rewards as
the weighted sum of the mentioned partial rewards.

5.5 Exporting the model

The model can now be written in the input format of a DTMC model checker. We
initially wanted to utilize Prism to compute the average annual energy reception at
the receiver of the Helio100. To this end, we used the Prism language to write a single
.prism file which is easily readable (good for finding errors) and can be parsed, built,
and evaluated by Prism.

But this approach proved very slow. Even after modifying transitions [] t=1 &

e=3 -> 0.3:(t’=t+1) & (e’=0) ... to look like [] t=1 & e=3 -> 0.3:(t’=2) &

(e’=0) ... and using the explicit engine, a model with K = 100 took about 21 hours
to parse and build.

Hence, we decided to write the explicit representation directly. The explicit format
takes multiple files dedicated to either the transitions, states, labels, etc. instead of just
one file for all information. Additionally, states can no longer be identified by the values
of their variables but only by their IDs. In our case, the DTMC must be represented
by a state file model.sta, a transition file model.tra, a label file model.lab defining
the initial state, and a state reward file model.srew.

Due to the simple general layout of our models we can compute the set of reachable
states by looping over the hours of the year and energy classes. A state s′ = (t′, e′)
is reachable if and only if there is a transition probability greater than zero from a
reachable state s = (t′ − 1, e) to s′, for any e, or if s′ is the initial state. So for every
t, we memorize the indices t′ and e′ of the states which are reachable from any state
(t, e) and only regard those reachable states in the next iteration. During this loop we
also enumerate the states and therewith compute the unique state IDs.
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5.5.1 Choosing a model checker

Although we verified our own explicit files with the explicit files that can be exported
by Prism, using the explicit format resulted in different values than using the implicit
format, in particular, the average energy was always zero. It turns out that Prism
can use the implicit model and export the explicit model including state rewards, but
it does only import a partial model: states, transitions, and labels are imported while
state rewards are ignored.

Thus, if we were to use Prism, we could not skip the unnecessary7 building phase
of the models. So we needed to switch the model checker. The initial idea was to use
the Markov Reward Model Checker (MRMC), but using this model checker we cannot
simply inquire what the average yearly energy reception at the solar tower is, since for
our use-case, it can only answer the question whether the expected reward lies within
a given interval. We would thus have to implement a search algorithm which narrows
down this interval until it only contains a single number. However, Storm, a successor
to MRMC, fulfills all requirements presented so far: it can import an explicit model
format and output the average annual energy of our models.

In the following sections, we present the three implemented solutions and pitfalls we
encountered: (1) implicit and (2) explicit Prism models as well as (3) explicit Storm
models.

5.5.2 PRISM

If Prism is to be used, it is possible to run into the following error:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

On a machine with sufficiently large main memory this can be fixed by increasing
the heap size. To do so, check for the maximum heap size available to the Java virtual
machine (VM) via

java -XX:+PrintFlagsFinal -version | grep HeapSize

and set this to an appropriate value. During this thesis, a maximum heap size (flag
-Xmx<SIZE>) of 300 GB (!) sufficed for models with K = 100. Smaller values might
suffice but this requires lengthy testing and is not the solution we chose. To avoid the
need to write a wrapper in order to invoke java -Xmx300g wrapper, we had to set
the Java option for all sessions:

export _JAVA_OPTIONS="-Xmx300g".

Now the Java VM may allocate a larger heap, but Prism does not use this by
default. However, there are two options available: cuddmaxmem and javamaxmem.

This leads to the following call:

7from our perspective as we can already export the explicit model format
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Listing 3: Prism call: Build model

prism ${MODELNAME} . prism −expl ic it
−cuddmaxmem 4g −javamaxmem 300g
${PROPFILE}

Using the explicit Prism format, we have to specify the model type (dtmc) and can
invoke the model checker as follows:

Listing 4: Prism call: Import model and check for properties

prism −importmodel ${MODELNAME} . a l l
−dtmc
−exportresults l og
${PROPFILE}

for a file ${PROPFILE} containing the properties which the model is to be checked for.

5.5.3 Storm

The Storm file format is similar to the MRMC format, which Prism can also export
via the switch -exportmrmc. The transition files begin with the specification of the
model type, dtmc in our case, and follow with the list of transitions – one transition
per line – as sID1 sID2 prob, which stands for the probability of going from the state
with ID “sID1” to the state with ID “sID2” is prob, where state IDs start at 0.

Listing (5)Transitions

dtmc
0 1 1
1 2 1
. . .
29 30 0 .6541
29 31 0 .0125
. . .
58610 68610 1

Listing (6)Labels

#DECLARATION
i n i t
#END
0 i n i t

Listing (7)State rewards

30 1740
. . .
80 517440
81 886740
. . .

Figure 26: Storm model files.

Each state can be assigned a label in the .lab file. In this thesis, the file is close to
empty as only the initial state has to appear.

The state reward file lists for each state ID the corresponding state reward, one per
line. We omit the state rewards equal to zero.

5.6 Using the model

In order to utilize the model, we need to define the properties of interest, which can
be done in a property file. The property file used in this thesis can be seen in listing 8
and is named average.prop.
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Listing 8: Property for average reward

R=? [ C<=8784 ]

Checking for this reward property yields the cumulative reward which is achieved after
8784 time steps which, for our models, means the desired average annual energy when
regarding the initial state.

We can then invoke Storm via

Listing 9: Storm call

. / storm −−expl ic it ${MODELNAME} . t ra ${MODELNAME} . lab
−−s tate rew ${MODELNAME} . srew
−−prop ${PROPFILE}

to evaluate the models.
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6 Evaluation

In this section, we examine the resulting models based on model sizes, computation
duration, and of course the estimated average annual energy reception.

6.1 Preparations

All experiments were undertaken on blade21 of the Ultra High-Speed Mobile Infor-
mation and Communication (UMIC) cluster, blade21.informatik.rwth-aachen.de.
Time measurements were done using time for Storm and ctime for our own code.
We refer to those times as Storm time and building time, where the building time
includes the necessary steps from reading the combinedData.csv to writing the model
files, including both steps.

Listing 10 shows a script we used to build and evaluate various models. When the
script finishes one model, it copies the relevant log files into a single file, deletes the
model files (which required up to approximately 22 GB for the transition files) and
starts the process for the next model. Depending on the model sizes, multiple scripts
could be executed in parallel.

Listing 10: Storm script

#!/ bin / bash

declare −a arrk =(50 100 500)
declare −a arrwp=(”1 0 0 ” ”0 1 0 ” ”0 0 1 ” ”0 .6 0 .3 0 .1 ” )

wr=”1 0 0 ”

HOME=˜
PROPFILE=”${HOME}/ average . prop ”

for k in ”${ arrk [@]} ” ; do
for wp in ”${arrwp [@]} ” ; do

MODELNAME=”${wp// /}${wr// /}${k} ”
BUILDERLOG=”${MODELNAME} . b u i l d e r . l og ”
TIMELOG=”${MODELNAME} . time . l og ”
STORMLOG=”${MODELNAME} . l og ”

STORMCMD=”$HOME/storm −−e x p l i c i t ${MODELNAME} . t ra ${MODELNAME} .
↪→ lab −−s tate rew ${MODELNAME} . srew −−prop ${PROPFILE} ”

echo −wp $wp −K $k −wr $wr
( . / S imulat ion −wp $wp −K $k −wr $wr −mn ${MODELNAME}) >>

↪→ $BUILDERLOG 2>&1;

echo ” s t a r t i n g storm ”
{ time $STORMCMD > $STORMLOG; } 2> $TIMELOG

cat $TIMELOG >> $STORMLOG
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cat $BUILDERLOG >> $STORMLOG

rm $BUILDERLOG
rm $TIMELOG

rm ${MODELNAME} . t ra
rm ${MODELNAME} . lab
rm ${MODELNAME} . srew

done ;
done ;

For reference, we computed the maximum and average received energy per year,
18.45 MWh/a and 10.06 MWh/a, respectively. These values were calculated from the
combinedData.csv file by summing up the minute-wise maximum or average of the
simulated energy values. We consider values close to the average as realistic (read as
“good”) values.

6.2 Time frame size

Figures 27 and 28 depict the influence of the time frame size on models. To get a
clear insight, we chose to set ξ

(2)
p = 1, i.e., derive the transition probabilities only

from the time frame approach and use models of “medium size” with 100 energy dis-
cretization classes. Remember that kTF is the number of days to either side of the
current day which are to be considered for the probability construction of the transi-
tions representing that day. Thus, we inspected the difference between regarding three
(kTF = 1) and two weeks (kTF = 7), approximately two months (kTF = 30), and one
year (kTF = 366

2
= 183).

For the given weather files and samples, we can see that the function annual energy
over time frame size resembles an exponential decay until kTF=183 for Ξr = (0, 1, 0),
while both the model size and computation time for the model checker show a loga-
rithmic increase. The energy decrease is due to the fact that for the given location the
winter is longer than the summer. Hence a time frame which is closer to spanning the
entire year is under a greater influence of the low-valued winter days than high-valued
summer days. As can be seen in the plot, using a kTF value of 7 up to 30 yields good
results, i.e., energy values close to the computed average of the simulation energy file.

Regarding only kTF ∈ {1, · · · , 15}, we can see in Figure 28 the number of states
increases by approximately 23%, from 284870 to 351116, and the number of transitions
increases by 50%, from 18 million to 27 million. However, the time we spend for the
computation of those models only increases by 29% (169 seconds and 218 seconds,
respectively). Additionally, the models only take up 435380 kB (kTF = 15) of main
memory during the Storm computations. Consequently, the time frame size can be
chosen freely within the interval bounded by 1 and 15.

The only downside the largest of these values entails is that the time spent during
the Storm evaluation also increases by 50% which means an increase by 53 minutes.
But this issue will be discussed later.
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Figure 27: Influence of the time frame size on the average annual energy. Variable kTF ,
Ξp = (0, 1, 0), Ξr = (1, 0, 0), prec=4, K=100, R=1.

As a consequence of our findings, we advise to use kTF = 7 as this achieves good
results and still uses fewer states and transitions than a larger and possibly worse time
frame size. Furthermore, a time frame of effectively two weeks is intuitively more robust
than one of just three days when considering measurement outages. Contrariwise, the
seasonal weather deviations should be negligible for kTF = 7 as compared to time
frames spanning over one or even two months.

6.3 Reward weights

Figure 29 displays the differences between the three implemented reward structures
by presenting the average yearly energy output Storm computes when a given model
contains only state rewards in accordance with either of the reward structures or a
weighted mixture.

The MRM reward is lower than the other rewards by an order of magnitude, which
is to be expected since the MRM reward does not reflect energy but only DNI values.
Should the rewards computed by the remaining reward structures prove to be too
high, the MRM rewards can be utilized to decrease the overall reward. E.g., the
yearly average energy for Ξr = (0.6, 0.3, 0.1) is 1.03 · 1010 as opposed to 1.11 · 1010 for
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Figure 28: Influence of the time frame size on the model size and computation duration.
Variable kTF , Ξp = (0, 1, 0), Ξr = (1, 0, 0), prec=4, K=100, R=1.
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Figure 29: Influence of reward weights on a model with K = 100, 877807 states, and
43464337 transitions, derived with Ξp = (0.6, 0.3, 0.1), kTF = 7, kMRMG =
10.

Ξr = (0.6, 0.4, 0).

6.4 Number of energy discretization classes

Figures 30 through 32 show the available measures (number of states, number of tran-
sitions, model size during Storm computation, average annual energy production,
Storm time, and building time) for four different models per number of energy classes
K, where the latter is in {50, 100, 500}. For each K, the models are created with
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the same settings except for changing probability weights stressing the accumulated
differences between the approaches (and a weighted mixture).
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Figure 30: Results for K = 50, R = 1, Ξr = (1, 0, 0), prec=4, kTF=7, kMRMG=10.

We observe that with an increasing accuracy of the model, the average annual energy
decreases for all models with ξ

(1)
p < 1 but stays within the confines of “good” values for

Ξp = (0, 1, 0) until K = 100 and even until K = 500 for the chosen mixed probabilities,
Ξp = (0.6, 0.3, 0.1). Remember that the“good”value range is not purely objective since
it too relies on the measured weather data with noise and missing data points and we
can only consider the accumulated annual average in this thesis.
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Figure 31: Results for K = 100, R = 1, Ξr = (1, 0, 0), prec=4, kTF=7, kMRMG=10.

Focusing on the results shown in Figure 32, we can observe the importance of feasible
probability weights as they greatly influence not only the average energy but also
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the size of the resulting models. The intuition behind this could already be seen in
Figure 23, but we can now measure the actual scale: in our four models for K = 500,
the number of states varies between 0.47 million and 4.39 million, while the number of
transitions varies between 50.46 million and 668 million.

We can also see that the number of transitions is not a function of the number
of states, as the model according to the MRM gradient features 4.38 million states,
only 0.01 million less than the model with mixed probability measures, but consists of
only 82 million transitions, 586 million fewer transitions than the mixed model, and
interestingly 398 million fewer transitions than a model with only a third of its states
(Ξp = (0, 1, 0)).
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Figure 32: Results for K = 500, R = 1, Ξr = (1, 0, 0), prec=4, kTF=7, kMRMG=10.

The time spent during the computation of the models is well below two hours (86
minutes) even for the largest model for which we computed all proposed probability
measures. Notice that while the Storm evaluation took more than ten times the
evaluation time for K = 500 and Ξp = (0.6, 0.3, 0.1) compared to K = 500 and
Ξp = (1, 0, 0), the building time only increased by a factor smaller than four, due to
the implemented parallelization of the probability computations. Under the aspect
that the theoretical size of this model is defined by |S|max = 4 391 502 and |T |max =
2 195 501 001, and that the actual size is given by |S| = 4 388 111 and |T | = 668 095 969,
we consider this sufficiently fast. Note that the building time already includes the time
spent for writing the output files.

The problematic time aspect is the time spent for model checking. For a model
with this many transitions, Storm needed more than two days’ time (3760 minutes
≈ 2.6111 days).
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7 Conclusion

In this final section, we draw conclusions from the results and challenges of this thesis
and present possible augmentations in Section 7.1.

The initial task was the creation of a software chain which allows the creation of
probabilistic solar tower models from weather data files with partially erroneous entries.
The proposed solution is the software chain depicted in Figure 24, which allows future
users to exchange parts of it, such as the MRM calculation, the filter, or the solar
tower simulation without a big overhead.

Afterwards, the first problem is the creation of a filter for erroneous weather data,
which we solved with the help of the MRM model, finding fitting parameter values,
and applying relaxations and additional cut-offs to get daily upper boundaries and
eliminate false readings during night time. The quality of this filter is especially visible
in Figure 14, which also shows that our filtering approach reflects seasonal weather
fluctuations.

Using the proposed modeling tools, we can create a great variety of probabilistic
models of solar tower power plants. We have shown that these models are analyzable
by model checkers and yield realistic values for the average annual energy reception
even though we could only operate on less than six years of data. We have also seen
that the creation of those models is possible in agreeable time which renders the work
of this thesis a feasible approach for the investigation of possible solar tower power
plant configurations.

The use of probabilistic models in this context does not stop at the calculation of
an annual average energy but they allow for the formulation and analysis of far more
intricate properties. Using one of our models, it is possible to inquire how probable it
is to reach a critically high or low energy value during any given period of time, e.g.,
on weekends or New Year’s Eve, for which the energy demand is especially high or low.

7.1 Future work

The biggest flaws are memory limitations and the fact that existing model checkers, to
the best of our knowledge, do not detect the simple nature of our models and thus take
too long for the calculation of the average annual energy. We thus propose to write a
dedicated piece of software for checking properties on the utilized subset of DTMCs.
This simplified model checker could omit checking for loops, as there are none in our
models except for the self-loop in the final state. Additionally, we already assert that
the sum of all outgoing transitions of a state is 1 and we can also guarantee that there
are no deadlocks. In comparison with an implicit model checker we can also muster the
advantage that no guards need checking and that we enumerate the states in ascending
order in accordance with the time, so that from a state (t, e) at most K states must
be considered possible successor states.

For simpler property formulations, it is easily possible for the models to be fitted
with appropriate labels such as “day”, “summer”, or “holiday” based on the hour of the
year alone, or labels such as “critical” for states modeling an hour of the year with
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high energy demand but a low energy reception. Note that the proposed labels do not
have to be (although they can be) manually retrofitted to the state space, but that
this is possible computationally during a single loop over all reachable states (which
we already pre-compute) and a condition such as t ≡ 8 mod 24 ∧ e < b0.1×Kc.

Considering the filter for the weather data, we can imagine that, similar to finding
the upper boundaries, it could be useful to define lower boundaries to remove erroneous
DNI measurements at or close to 0 W/m2.

Regarding the computation of the transition probabilities in conjunction with pos-
sibly missing data, it could be investigated whether it might be better to interpolate
instead of holding the last known energy class/reward.

Furthermore, when we compute the diffuse MRM gradient, we need to sum up prob-
abilities of transitions whose original targets would exceed the minimum or maximum
energy class (see Figure 22). Instead, we could cut those transitions, i.e., set the
corresponding transition probabilities to zero, and scale-up the remaining transition
probabilities.
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