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1. Introduction

Conventional energy production is based on the burning of fossil resources such as
coal, natural gas or oil. This form of energy production has several problems. Firstly,
fossil resources are finite on earth, which means that conventional energy production
is not renewable and cannot function in the long run. On the other hand, burning the
carbon-rich fossil fuel always emits CO2, resulting in the energy production industry
being responsible for the majority of global greenhouse gas emissions [3]. Because of
the devastating consequences of greenhouse gas emissions and the associated climate
change, renewable energy production is an important component in meeting the goals
of the Paris Agreement [4].
The production of renewable energy is based on renewable resources such as sunlight
or wind and has become increasingly popular in recent decades. With the growth
of renewable energy production, the levelized cost of energy (LCOE) for all renew-
able energy technologies is steadily decreasing. Moreover, the LCOE of renewable
energy technologies is expected to continue to decrease in the future. This will en-
able renewable energy production technologies to compete even more successfully with
conventional energy production from fossil fuels [8].
Concentrated solar power (CSP) is a promising renewable energy technology best suited
for regions with high solar radiation. CSP is becoming more and more popular as its
global capacity has reached 6.275 GW in 2019, an increase of almost 500% over 2010 [7].
The energy production of CSP plants is based on the accumulation of solar radiation in
a receiver mounted on a tower. The tower is surrounded by a large number of mirrors,
called heliostats, mounted on tracking systems. Each heliostat aligns its mirrors with
the position of the sun so that solar radiation is reflected into the receiver. Inside the
receiver, a heat transferring fluid is heated by solar radiation, which is then used to
evaporate water that drives a turbine, producing electrical energy.
Heliostats are influenced by multiple position dependant effects that lessen the solar
radiation reflected onto the receiver and thus their efficiency. Therefore, he goal of
heliostat layout optimization is to maximize the heliostat efficiencies, which maximizes
the performance of the CSP plant.

1.1. Related work

CSP plants have been optimized since the 1980s. For the optimization of heliostat
layouts, a distinction can be made between the class of pattern-based and pattern-free
optimization algorithms. The prevalent methods are the pattern-based optimization al-
gorithms, which place heliostats on geometric patterns to reduce the complexity of the
optimization problem. The most common pattern, which can be found in many com-
mercial CSP plants, is the radial staggered pattern. It was originally proposed along
with the staggered cornfield pattern by the University of Houston for their RCELL code
[25, 24]. Other optimization tools such as DELSOL [23], MUEEN [33] and Campo [14]
are also based on the radial staggered pattern. Other patterns include the more recent
spiral pattern [28] or the hexagon pattern [29] as well as hybrid patterns, which com-
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bine multiple patterns, for example the spiral with the radial staggered pattern [36].
A detailed comparison of these state-of-the-art heliostat layout algorithms was done
by Barberena et al. [10].
The pattern-free optimization algorithms do not use patterns for heliostat positions,
since patterns drastically limit the search space and optima are unlikely to be found.
Among these are methods which fill the heliostat field step-by-step such as the heliostat
growth method [32] or the expansion-contraction algorithm [13], which can also optimize
for multiple heliostat sizes. Other pattern-free methods start from an existing or
random initial heliostat layout and redesign it until an optimal layout is found. There
are gradient-based methods such as the free variable method presented by Lutchman
et al. [26] or the physics-based gradient method of Yang et al. [35]. Another class
of pattern-free optimization algorithms are local search algorithms, which relocate
heliostats individually. These include the nonrestricted refinement method of Buck [12],
as well as the local search methods of Reinholz et al. [30] and Kim et al. [22].
While the advantage of pattern-based optimization algorithms is the reduced search
space of the optimization problem, their disadvantage is that the optimized heliostat
layout generated from a pattern is unlikely to be an optimum. Therefore, this work
increases the search space for the pattern-based heliostat layouts by introducing two
new parameters, which scale the pattern along an arbitrary axis. Furthermore, the
optimized heliostat pattern layout is refined by a local search to find local optima, which
can not be found inside the reduced search space of the pattern optimization. Overall,
this work presents a novel multi-step layout optimization pipeline, which combines a
pattern-based optimization algorithm with a pattern-free local search algorithm. Multi-
step optimizations combining global and local optimization have, to our knowledge,
already been applied to offshore wind farms [16], but not yet to heliostat layouts.

1.2. Outline

This work uses an existing model for CSP plants, which is implemented in the SunFlower
project, written in C++. With SunFlower it is possible to quickly simulate a CSP plant
to calculate the annual energy production for a given heliostat layout, while taking
weather data into account. The multi-step optimization pipeline introduced in this
work was implemented for the SunFlower project.
The underlying model is described and validated in Section 2. The multi-step op-
timization algorithm is introduced in Section 3 and consists of a heliostat pattern
optimization and a local search algorithm. Section 4 presents and discusses a case
study for the developed optimization algorithm. Finally, Section 5 concludes on the
presented multi-step optimization pipeline and provides limitations as well as an out-
look for future research.
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2. Concentrated solar power plant model

To properly optimize a CSP plant, a fast and accurate model must be developed, which
is used to simulate a CSP plant and evaluate the performance of the heliostat field.
Using the simulation, it is then possible to make changes to the heliostat layout to
further improve its performance.
This section presents a CSP model which is capable of calculating both economic values
as well as the energy production over a year. An overview of this model can be seen
in Figure 1. It is divided into five sub-models, which are described individually in the
following sections.

Optical Model
Thermal

Model

Storage

Model
Thermal-hydraulic Model

Economic

Model

Figure 1: An overview of the complete CSP model, which consists of an optical model,
a thermal model and storage model, as well as a thermal-hydraulic and eco-
nomic model [17].

2.1. Optical model

The optical model is adopted from the models of Richter [31] and Franke [17]. At a
given time, it considers the set of heliostats, the sun position and the weather for the
computation of the accumulated optical radiation on the receiver. Various effects that
attenuate the radiation or even block it completely are also taken into account.

Site The power plant site is given as a rectangle with four geographic coordinates for
the corners and one geographic coordinate for the tower position. Every geographic
coordinate is a pair of latitude and longitude values. Although the site is defined by
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geographic coordinates, the local coordinate system uses cartesian coordinates with
the tower position as its origin. The x-axis points towards east, while the y-axis points
towards north and the z-axis points vertically upwards. The z-position for any position
(x, y) is fixed, as the terrain for any power plant site implies the elevation for (x, y).
Furthermore, there may be restricted areas, which must not contain any heliostat.
Each restricted area is given as a polygon.

Sun The position of the sun is given by its azimuth γsolar and altitude θsolar angles.
These angles are used to compute the solar vector

τsolar =

sin(−γsolar) · (− cos(θsolar))
cos(−γsolar) · cos(θsolar)

sin(θsolar)

 . (1)

With the solar vector τsolar, illustrated in Figure 2, and the parameter for direct normal
irradiation IDNI in [Wm−2], the direction and intensity of the radiated sunlight can be
computed.

W

E
x

S

N
y

z

τsolar

.

γsolar

θsolar

Figure 2: Illustration of the solar vector τsolar for a given solar altitude θsolar and solar
azimuth γsolar, which is measured clockwise starting from north [17].

Heliostats A solar field is given by Nhel heliostats, such that for i ∈ {1, ..., Nhel},
Hi denotes the i-th heliostat. Each heliostat consists of a pillar on which a frame is
mounted that holds a layout of several mirrors called facets. The central position of
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the facets is called pi and the sum of the facet areas is denoted by Ai. A heliostat has
width wi, length `i and a minimum bounding sphere with diameter di =

√
`2
i + w2

i .
For a heliostat Hi to be valid, its bounding sphere must be completely inside the site
polygon and must not intersect with a restricted area or collide with another heliostats
bounding sphere Hj, while considering an additional safety and maintenance distance.
For practical reasons each heliostat Hi has its own local coordinate system, shown in
Figure 3, which uses its center position pi as the origin. There exists a translation from
points on the local coordinate system to the global coordinate system that uses the
alignment of the heliostat. Each heliostat is aligned to reflect the sun rays to a target
point paim,i on the receiver. As illustrated in Figure 4, the solar entrance vector τsolar

is reflected along the surface normal to the reflection vector ri, which aims at paim,i.
The normalized reflection vector and the resulting surface normal of the heliostat can
be computed as

ri =
paim,i − pi
|paim,i − pi|

, (2)

ni =
ri + τsolar

|ri + τsolar|
. (3)

In addition to the heliostat alignment, each individual facet can also be aligned, which
is called canting. While the alignment of the heliostat changes depending on the
position of the sun, the alignment of each facet is static. Besides no aligning, where
all facets remain flat, there are two methods of aligning the facets.
The first one is called on-axis canting. It considers the case where the sun, receiver
and heliostat are all on the same axis. The facets are then adjusted in a paraboloid
centered in the center point pi, such that each facet’s focus point is on the receiver.
The second one, called off-axis canting, works the same as on-axis canting but considers
the sun not to be on a common axis, resulting in an off-centered parabolic shape of
the facets.
Additionally, the optical model considers flat and curved facets. Curved facets have a
parabolic shape, and their focal length is either fixed to a certain value from a range of
focal lengths, or it is set to a focal length that comes closest to the ideal focal length
fi = |paim,i − pi|.

Tower The tower is located at the origin of the global coordinate system and has
the shape of a cylinder with the radius rtower and the height htower. These dimensions
are relevant for the shadow cast on the heliostat layout. The diameter of the minimal
bounding circuit is given by dtower = 2 · rtower. Each heliostat’s bounding sphere must
not intersect with the bounding circuit of the tower.

Receiver The receiver is mounted on the tower and heats the heat transferring fluid
in its interior using the solar radiation reflected by the heliostats.
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Figure 3: Heliostat with four horizontal facets and seven vertical facets. The horizontal
axis xi, vertical axis yi, length `i, width wi and center point pi are indicated
[17].

There are several receiver concepts, the most common being the tilted flat receiver,
cylindric cavity receiver and cylindric external receiver as illustrated in Figure 5. Fur-
ther information about these receiver concepts can be found in [31, 17].
It is also possible to have a multi-receiver system where heliostats target a different
receiver depending on their position in the field. However, his type of receiver is not
considered in this work.
For each receiver concept the aiming points paim,i for the heliostats are calculated
differently. On a tilted flat receiver the target point paim,i is the center of the receiver
for all heliostats. For cylindrical cavity receivers, paim,i is the point on the receiver
which is furthest away from the heliostat Hi. In case of cylindrical external receivers
paim,i is calculated as the closest point in the center of the aperture to the heliostat Hi.
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τsolar
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Figure 4: Reflection of a solar ray τsolar on heliostat Hi with normal vector ni such
that the reflection ri aims at the aiming point paim,i on the receiver [17].
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(a) The aiming point paim,i for
every heliostat Hi is the
center, which is marked
with a black dot.

x
y

z

(b) The aiming point paim,i

for every heliostat Hi is
the point on the receiver
which is furthest away.

x
y

z

(c) The aiming point paim,i is
the closest point in the
center of the aperture to
the heliostat Hi.

Figure 5: Illustration of the three different types of receivers and towers: tilted flat
receiver (5a), cylindric cavity receiver (5b) and cylindric external receiver
(5c). Figures are derived from [31].
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Raytracer When tracking the rays from the sun via the heliostats to the receiver,
various effects and losses are considered which negatively influence the power trans-
mission. The model considers the following effects:

• The cosine effect ηcos accounts for the reduced mirror area due to the tilted
alignment of the heliostat as seen in Figure 4. The cosine effect depends on the
position of the sun, the position of the receiver and the position of the heliostat.
The effect increases with a more acute angle of incidence of the solar rays τsolar.
It is calculated as

ηcos,i = 〈τsolar,ni〉, (4)

where ni is the surface normal of heliostat Hi, calculated according to Equation
3.

• Shading and blocking effects ηsb occur when the solar rays are blocked by the
tower, adjacent heliostats or hilly terrain on their way from the sun via the
heliostat to the receiver. The raytracer needs to check every traced ray for such
collisions with the environment, so it uses optimized clipping methods to speed
up the computing time. However, since the raytracer processes a large number
of rays, this part of the simulation is the most time-consuming.

• Heliostat reflectivity ηref accounts for the radiation lost at the mirror surface
due to surface impurities and the energy absorbency of the surface material. The
model assumes ηref to be a constant value.

• Atmospheric attenuation efficiency ηaa considers the power loss of light traveling
through the atmosphere. This loss depends on the travel distance di = |pi−paim,i|
between center point pi of the heliostat Hi and the aiming point on the receiver
paim,i. The Mirval transmissivity model [21] is used, which calculates ηaa,i as

ηaa,i =

{
0.99321− 1.176 · 10−4 · di + 1.97 · 10−8d2

i di ≤ 1000m

exp(−1.106 · 10−4 · di) di > 1000m
. (5)

• Optical errors combine three effects which can be described by means of Gaussian
distributions with standard derivation of σ in [mrad]. First off is the sun error
σsun, which occurs because the sun is modeled as a plane and not a sphere. The
second error is called tracking error σtracking and is caused by the precision of the
motors that align the heliostat. The third error, called slope error σslope takes
into account the imperfection of the mirror surface, which leads to an imperfect
reflection. All three errors combined result in a beam error that can be computed
as

σbeam =
√
σ2

sun + σ2
tracking + σ2

slope. (6)
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Because of these errors, a solar ray does not hit the aiming point with perfect
accuracy, but rather with a Gaussian distributed error cone. The resulting losses
are considered in the interception efficiency, also called spillage losses ηsp.

Optical power The optical model calculates the received power by solar radiation
at the receiver for each heliostat Hi with mirror surface area Ai and direct normal
irradiation IDNI(t) at time t as follows

Pi(t) = Ai · IDNI(t) · ηcos,i(t) · ηsb,i(t) · ηref,i(t) · ηaa,i(t) · ηspl,i(t), (7)

while taking the cosine effects ηcos,i(t), shading and blocking losses ηsb,i(t), heliostat
reflectivity ηref,i(t), atmospheric attenuation losses ηaa,i(t) and spillage losses ηspl,i(t)
into account. The combined received power from all Nhel heliostats at time t is defined
by

P (t) =

Nhel∑
i=1

Pi(t). (8)

2.2. Thermal model

Inside of the receiver radiant power which is collected by the heliostats on the receiver
gets converted into thermal power by heating up a heat transfer fluid (HTF). The
receiver consists of several plates with a set of tubes through which the HTF flows.
The HTF used in the this model is a molten salt. The thermal model considers three
types of losses that affects the thermal power of the HTF Q̇HTF. First there are the
reflection losses Q̇ref, which are caused by the fact that every material reflects some
radiation. Secondly, the temperature of the receiver causes radiation to be emitted into
the environment, because it is above absolute zero. These losses are called radiation
losses Q̇rad. At last, the convection losses Q̇conv denote the heat dissipation losses of
the HTF. The thermal power of the HTF Q̇HTF is defined as the difference between
the incident radiation Q̇inc and the above mentioned losses as

Q̇HTF = Q̇inc − (Q̇ref + Q̇rad + Q̇conv), (9)

where the incident radiation Q̇inc is obtained from the optical model. Detailed infor-
mation on the thermal model can be found in Heiming [19] and Franke [17].

2.3. Storage model

The storage system consists of a hot storage tank and a cold storage tank. Both store
the HTF, in this case a molten salt, to avoid an additional heat exchanging step,
which would reduce the efficiency. HTF that comes from the receiver tubes fills the
hot storage and increases the amount of stored energy. The HTF can be stored over a
long period of time with low losses.
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When needed, the hot storage is discharged and the HTF enters a heat exchanger,
which is connected to the thermal-hydraulic model. The cooled HTF is then stored in
the cooling tank to be reused later in the receiver.
For the storage tank model it is sufficient to model only the hot storage tank, since
the cold storage tank does not store thermal energy. The power flows in the system
are illustrated in Figure 6. The thermal power coming from the solar block P sb

th (t) is
split up in the power going directly into the power block P sb,pb

th (t), the power charging

the storage P sb,st
th (t) and the excess power P excess

th (t).
The excess power node is needed in this case to model situations in which the thermal
input power surpasses the capacity of the power and storage block.
P pb

th (t) denotes the thermal input power of the power block and it is the sum of the

power coming directly from the receiver P sb,pb
th (t) and the power drawn from the hot

storage P st,pb
th (t).

thermal receiver power block
P sb
th (t) P sb,pb

th (t) P pb
th (t)

storage block

P sb,st
th (t) P st,pb

th (t)

excess energy

P excess
th (t)

Figure 6: Overview on the power flows in between the thermal receiver, power conver-
sion unit and the storage system. Power is flowing from the thermal receiver
either directly into the power block or is fed into the storage. If neither is
possible, it is modeled as excess energy. Furthermore, the storage block can
be discharged to feed the power block. Figure derived from Coumbassa [15].

To maximize power block efficiency, in each time step a simple buffer strategy maximiz-
ing the power input is applied to the power flows in the storage system. The strategy
is derived from Coumbassa [15]. The buffer strategy consists of two operation modes
and works as follows:

• Generate mode [P sb
th ≤ P pb max in

th ]: The thermal power from the receiver does not
exceed the maximal input power of the turbine. As a result, there is no power
directed to the storage and no excess power, i.e.

P sb,st
th := 0, (10)

P excess
th := 0, (11)
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because all the available thermal power is directed to the power block

P sb,pb
th := P sb

th . (12)

Furthermore, any additional power that can be processed by the power block is
drawn from the storage

P st,pb
th := min

(
P pb max in

th − P sb,pb
th , P st max out

th

)
. (13)

If, however, the power flow to the power block does not exceed its minimum
input power (P pb

th < P pb min in
th ), the entire thermal power is instead fed into the

storage and not into the power block

P sb,pb
th := 0, (14)

P st,pb
th := 0, (15)

P sb,st
th := min

(
P sb

th , P
st max in
th

)
, (16)

P excess
th := max

(
0, P sb

th − P sb,st
th

)
. (17)

• Surplus mode[P sb
th > P pb max in

th ]: The thermal power from the receiver exceeds
the maximum input power of the turbine. The power directed from the receiver
to the power block is limited by its maximum input power

P sb,pb
th := P pb max in

th , (18)

As much excess power as possible is stored

P sb,st
th := min

(
P sb

th − P sb,pb
th , P st max in

th

)
, (19)

Remaining power is discarded and no thermal power is drawn from the storage

P excess
th := max

(
0, P sb

th − P sb,pb
th − P sb,st

th

)
, (20)

P st,pb
th := 0. (21)

P st max in
th and P st max out

th denote the maximum charging and discharging power of the
storage system and P pb max in

th and P pb min in
th denote the maximum and minimum input

thermal power of the power block. The thermal energy stored in the hot storage is
denoted by Qst

th and after applying the buffer strategy at time step t it is updated as
follows

Qst
th(t+ ∆t) = Qst

th(t) + (ηst inP
sb,st
th (t)− η−1

st outP
st,pb
th (t)− P loss

th (t)) ·∆t, (22)
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where ηst in is the charging efficiency and ηst out is the discharging efficiency of the
storage system. Additionally, the lost thermal power depends on the amount of stored
energy and the heat loss factor ξst loss

P loss
th (t) = Qst

th(t) · ξst loss. (23)

As the storage capacity is limited by the maximum capacity Qst max
th , at any time t it

must hold, that
Qst

th(t) ≤ Qst max
th . (24)

Finally, the total thermal power which is sent to the power block is given by the sum

P pb
th (t) = P sb,pb

th + P st,pb
th . (25)

2.4. Thermal-hydraulic model

The thermal-hydraulic model describes the conversion of thermal energy into elec-
trical energy in the power block of the CSP plant. The power block consists of a
heat exchanger, a steam turbine, a generator and a cooling system. The molten salt
comes either directly from the receiver or from the thermal storage and enters the
heat exchanger where the thermal power P pb

th of the HTF causes the water to evapo-
rate. The steam then drives the turbine, which generates electricity, and eventually
condenses back into water. Instead of modeling each component individually, the
thermal-hydraulic model from Franke [17] uses a look-up table to determine the effi-
ciency of the power block ηpb as a function of ambient temperature Tambient and turbine

load `. Therefore, the electrical power output P pb
el at time t is given by

P pb
el (t) = ηpb(Tambient, `) · P pb

th (t), (26)

where ηpb may look similar to the power block efficiency shown in Figure 7. When
calculating ηpb for a given time, a bilinear interpolation is applied to the temperature
and load levels to fill in missing data.
An important indicator is the annual energy production (AEP) defined as

EAEP =
365∑
d=1

∫ 24

0

P pb
el (t)dt. (27)

Since the exact calculation of EAEP is a time-consuming task, quadrature methods are
applied to approximate EAEP, which are described in detail in Franke [17].

2.5. Economic model

The economic model evaluates the performance and profitability of a CSP plant. Three
different cost factors have to be considered and hence modeled. First of all, at the
beginning of the lifetime of a CSP plant it has to be planned and built. The one-time
investment costs for the plant, called Cinvest, are made up of various costs, e.g. for
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Figure 7: Diagram of temperature-dependent power block efficiencies for different tur-
bine load levels are shown as lines for a 100 MWth power conversion unit
from TSK Flagsol. A higher turbine load and a lower ambient temperature
result in a higher efficiency of the power conversion. The power block is
designed to run at full load at around 30◦ [19].

land, materials and labor. Running the plant then incurs annual costs for operation
and maintenance, which are denoted by CO&M. The annual income from the production
and sale of electricity is referred to as Crevenue. These costs are modeled as follows:

• Cinvest sums up various one-time investment costs as suggested by Augsburger [9]
and Heiming [19],

Cinvest = C land
invest + Chel

invest + Ctower
invest + Crec

invest + Cst
invest + Cpb

invest, (28)

where each sub-cost is described as follows.

– C land
invest is the cost of purchasing and improving the terrain for the plant site.

– Chel
invest is the investment cost of the heliostat layout. Including material,

labor, manufacturing, management and tooling costs. It depends on the
number of heliostats and the unit cost as well as the cost of cabling the
heliostats,

Chel
invest = chel

invest ·Nhel + Ccable. (29)
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Where Ccable are the costs for cable laying, calculated from the length of
the minimum spanning tree connecting all heliostats and the cable costs per
meter,

Ccable = ccable
invest · `MST. (30)

– Ctower
invest is the cost of the tower.

– Crec
invest is the cost of the receivers, which depends on the unit cost and the

number of receivers,
Crec

invest = crec
invest ·Nrec. (31)

– Cst
invest is the cost of the storage system, which depends on the storage ca-

pacity and the cost per storage unit,

Cst
invest = cst

invest ·Qst max
th . (32)

– Cpb
invest is the cost of the power block, considering its installed capacity,

Cpb
invest = cpb

invest · P pb max out
el . (33)

• The operating and maintenance costs CO&M are defined as a fraction ξO&M of the
investment costs

CO&M = ξO&M · Cinvest. (34)

• The annual revenue (AR) Crevenue depends on the annual energy production and
the hourly electricity tariff πtariff

Crevenue =
365∑
d=1

∫ 24

0

πtariff(t) · P pb
el (t)dt. (35)

With Cinvest, CO&M and Crevenue calculated as described, the economic model considers
the following economic values, where Nlifetime is the project duration in years and rrate

is the nominal interest rate for the investment loan.

• The Levelized Cost of Energy (LCOE) is a measure of the production cost per
MWh. It is a common value used to compare power plants and is defined as

πLCOE =
Cinvest · fannuity + CO&M

EAEP

, (36)

where the annuity factor fannuity is defined as

fannuity =
(1 + rrate)

Nlifetime · rrate

(1 + rrate)Nlifetime − 1
. (37)
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• The Net Present Value (NPV) measures the total profit over the lifetime of the
project. Hence it should be positive. It is defined as the difference between the
present values of all incomes and expenses over the project lifetime considering
the interest rate rrate

CNPV =

Nlifetime∑
`=1

Crevenue − CO&M

(1 + rrate)`
− Cinvest. (38)

• The Internal Rate of Return (IRR) is a measure of the profitability of the
project. It is the interest rate rirr with which the NPV equation (38) reaches zero

Nlifetime∑
`=1

Crevenue − CO&M

(1 + rirr)`
− Cinvest

!
= 0. (39)

A Newton iteration is applied to solve for rirr. For the project to be profitable,
rirr should be larger than the sum of the interest rate rrate and other risk deficits.

• The Payback Period (PP) denotes the number of years Npayback after which the
plant begins to generate profits and is calculated as

Npayback =
log
(

Crevenue−CO&M

Crevenue−CO&M−(Cinvest·rrate)

)
log(1 + rrate)

. (40)

2.6. Modeling existing power plants

This work models existing CSP plants, namely Planta Solar 10 (PS10) [5], Planta Solar
20 (PS20) [6] and Gemasolar [2], all located in the Spanish province of Seville. Table
1 summarizes the settings used for each power plant in the model.
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Parameter PS10 PS20 Gemasolar
Location 37.44◦N 6.25◦W 37.44◦N 6.25◦W 37.56◦N 5.33◦W
Optical model
Number of heliostats Nhel 624 1254 2650
Heliostat layout see Figure 8a see Figure 8b see Figure 8c
Heliostat type rectangular rectangular rectangular
Pedestal height 5.17 m 5.17 m 5.675 m
Canting on-axis on-axis on-axis
Facet surface flat flat flat
Heliostat mirror area 121.3 m2 121.3 m2 115.7 m2

Tower type see Figure 5b see Figure 5b see Figure 5c
Tower height 120 m 170 m 140 m
Gaussian sun sigma σsun 2.35 mrad 2.35 mrad 2.35 mrad
Tracking sigma σtracking 1 mrad 1mrad 1 mrad
Slope sigma σslope 1 mrad 1 mrad 1 mrad
Heliostat reflectivity ηref 88 % 88 % 93 %
Thermal model
HTF material Air Air Salt
Storage model
Storage capacity Qst max

th 20 MWh 20 MWh 299 MWh
Charging efficiency ηst in 97 % 97 % 97 %
Discharging efficiency ηst out 97 % 97 % 97 %
Heat loss factor ξst loss 0.05 %/h 0.05 %/h 0.05 %/h
Thermal-hydraulic model

Power block capacity P pb max out
el 11 MW 20 MW 19.9 MW

Power block efficiency ηpb see Figure 7 see Figure 7 see Figure 7
Economic model
Project lifetime Nlifetime 30 years 30 years 30 years
Interest rate rrate 4.5 % 4.5 % 4.5 %
Energy tariff πtariff 271.188 €/MWh 271.188 €/MWh 271.188 €/MWh
Operation cost factor ξO&M 6 % 6 % 6 %
Land cost Cland 1 M€ 3 M€ 8 M€
Heliostat cost Chel 25 k€/unit 25 k€/unit 25 k€/unit
Heliostat cabling cost Ccable 30 €/m 30 €/m 30 €/m
Tower cost Ctower 2 M€ 5 M€ 15 M€
Receiver cost Csb 5 M€/unit 8 M€/unit 30 M€/unit
Storage cost Cst 100 k€/MWh 100 k€/MWh 100 k€/MWh
Power block cost Cpb 1 M€/MW 1 M€/MW 1 M€/MW
Total investment cost Cinvest ≈ 37 M€ ≈ 70 M€ ≈ 171 M€

Table 1: Overview on the optical, thermal, storage, electrical and economical model
settings for PS10, PS20 and Gemasolar. Note that the economic values shown
are estimates, since accurate information on investment costs is usually not
available.
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(a) Original PS10 heliostat field layout.
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(b) Original PS20 heliostat field layout.
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(c) Original Gemasolar heliostat field layout.

Figure 8: Original heliostat layouts for the three CSP plants PS10 (8a), PS20 (8b)
and Gemasolar (8c). Black dots indicate heliostat positions and the black
hexagon indicate the tower positions. The y-axis points north and the x-
axis points east with units in meters. The background colors indicate the
topography i.e. the elevation above sea level of the plant location.
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2.7. Validation

Since this work aims at optimizing the heliostat layout, which is part of the optical
model, the optical model must be verified. This section validates the optical model, im-
plemented in SunFlower, against the existing Monte Carlo raytracing softwares SolTrace
[34] and Tonatiuh [11].
First, various simple test cases with one or two heliostats were performed to validate
individual functionalities of the raytracer. Subsequently, simulations of entire CSP
plants with hundreds of heliostats were validated.
Each test case was executed multiple times for each tool to obtain an average simulation
result for the optical power at the receiver. This is necessary because the ray tracing
algorithms use the Monte Carlo method, which is based on randomness, thus repeating
the same simulation can lead to slightly different results.

2.7.1. Basic test cases

The following basic test cases are based on the base test case, whose settings are
summarized in Table 2. It considers a setup of a single heliostat with a single flat facet
which is placed 100 meters away from the tower. On the tower, which has a height
and a diameter of 1.2m, a flat receiver of the same size is mounted. The receiver,
the heliostat and the position of the sun are arranged in such a way that the heliostat
reflects all sunlight coming from the south parallel to the ground back into the receiver.
Optical errors, atmospheric attenuation and tower shading are disabled in this case.

• base There are no modifications to the base settings.

• reflectivity Reduces the heliostat reflectivity to 80%.

• small receiver Reduces the receiver area to 0.25 m2.

• multiple facets Replaces the single heliostat facet with four 0.25 m2 facets.

• curved Use an ideal focused facet whose focus point is on the receiver. Also uses
the on-axis canting method and the small 0.25 m2 receiver.

• curved focal length Same setup as the curved test but instead of the ideal focus,
it uses a fixed focal length of 180 m, which is behind the receiver.

• atmospheric attenuation Enabled atmospheric attenuation effect. Note that
SolTrace does not support this functionality.

• polygon Instead of a rectangular heliostat, a flat pentagonal shaped heliostat
with a side length of 2 m and a larger receiver are used.

• sun sigma Gaussian sun sigma set to 2.35 mrad.

• tracking error Tracking error set to 1 mrad.

18



Parameter Value
Sun azimuth 180◦

Sun altitude 0◦

DNI 1000 W/m2

Raytracer
Reflectivity 100%
Atmospheric attenuation off
Tower shading off
Gaussian sun sigma 0 mrad
Tracking sigma 0 mrad
Slope sigma 0 mrad
Heliostats
Positions (0, 100)
Cluster pattern single
Pedestal height 0.6 m
Canting none
Facet surface form flat
Heliostat shape single facet
Facet width 1 m
Facet height 1 m
Horizontal facets count 1
Vertical facets count 1
Tower
Tower height 1.2 m
Tower diameter 1.2 m
Height above receiver 0.0 m
Receiver
Type flat
Count 1
Tilt angle 0.0◦

Orientation angle 0.0◦

Horizontal panels 1
Panel width 1.2 m
Panel height 1.2 m
Horizontal pieces per panel 10
Vertical pieces per panel 10

Table 2: Settings for the base test case.

• slope error Slope error set to 1 mrad.

• tracking slope error Slope and tracking error set to 1 mrad.

• combined sigma errors Slope and tracking error set to 1 mrad and Gaussian sun
sigma set to 2.35 mrad.

• none flat A single PS10 heliostat (see Table 1) with a tilted flat receiver on a 95
m tall tower without canting.

• on axis flat Same as none flat but with on-axis canting.

• off axis angles flat Same as none flat but with off-axis canting.
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• on axis curved Same as on axis flat but with curved facets.

• off axis angles curved Same as off axis angles flat but with curved facets.

• none flat polygon Same as none flat but with a pentagon shaped heliostat with
a side length of 2 m.

• on axis flat polygon Same as none flat polygon but with on-axis canting.

• on axis curved polygon Same as none flat polygon but with curved facets. Note
that Tonatiuh does not support curved triangles.

• blocking One heliostat is at (0,20) and a second one is behind it at (0,40). Both
heliostats are identical to the heliostats from PS10 (see Table 1). The receiver
is placed on a 15m tower. The sun’s position is set so that the light is incident
at an angle of 90◦. This configuration tests if the first heliostat blocks the light
reflected by the second heliostat.

• shading One heliostat is at (0,80) and a second one is behind it at (0,100). Both
heliostats are identical to the heliostats from PS10 (see Table 1). The receiver
is placed on a 95m tower and is tilted downwards slightly by 11.5◦. The sun’s
position is set so that the light is incident from the south at an angle of 0◦,
i.e. parallel to the ground. This configuration tests if the first heliostat casts a
shadow on the second heliostat.

• multiple receivers Instead of a single receiver, three flat receivers are mounted
on a 115 m high tower, which are facing in separate directions. One heliostat is
at (-100,50) and a one second is at (100,50), each aiming at a different receiver.
Both heliostats are identical to the heliostats from PS10 (see Table 1). The sun’s
position is set so that the light is incident from the south with an angle of 80◦.

• external Instead of a flat receiver, an external receiver is mounted on a 95 m
tall tower. The PS10 heliostat is placed at (0,100). The sun is positioned at an
altitude of 90◦ so that it does not shine directly on the receiver. This is important
because Tonatiuh, unlike SolTrace and SunFlower, takes into account the direct
radiation onto the receiver.

• full shadow The PS10 heliostat is placed at (0,50) and the sun is positioned in
the south with an altitude of 45◦, such that the heliostat is completely shaded by
the 95m tower. Since SolTrace does not support the tower shading functionality,
only Tonatiuh is considered for this test case.

• partial shadow The PS10 heliostat is placed at (10,50) and the sun is positioned in
the south with an altitude of 45◦, so that the heliostat is only partially shaded by
the 95m tower. Since SolTrace does not support the tower shading functionality,
only Tonatiuh is considered for this test case.
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• cavity raise Instead of a flat receiver, a cavity receiver is mounted on a 115 m
tall tower. The PS10 heliostat is placed at (15,100) and the sun is positioned in
the south with an altitude of 0◦, so that the heliostat is not shaded by the tower.
Since SolTrace does not support the tower shading functionality, only Tonatiuh is
considered for this test case.

Test summary Test results are shown in Table 3. Despite the large number of rays
traced, there are still noticeable deviations.
This is caused by the Monte Carlo method and the different implementation in Sun-
Flower, compared to Tonatiuh and SolTrace. In general, Monte Carlo raytracers need
a very large number of traced rays to achieve a high accuracy. Tonatiuh and SolTrace
are forward raytracer tools, that trace every ray through the entire geometry in mul-
tiple stages starting from the light source. SunFlower on the other hand, traces every
ray starting from the facet surface on the heliostats. That is why the number of rays
for SunFlower is measured per square meter of heliostat surface area, while Tonatiuh
and SolTrace receive a total number of rays. Therefore, for Tonatiuh and SolTrace the
number of rays must be raised with increasing geometry size to maintain accuracy.
For example, the simplest test case base shows an absolute average deviation of
2.6× 10−10%, 1.3× 10−4% and 7.5× 10−3% for SunFlower, Tonatiuh and SolTrace, re-
spectively. Figure 9 illustrates the simulation accuracy of all tools for the base test.
It can be seen that the simulation accuracy of SunFlower is accurate, even at a lower
number of rays per square meter, while the simulation results of Tonatiuh and SolTrace
start to converge when more than 1× 104 rays are traced.
Thus, it is assumed that with an increasing number of rays, even larger than the one
chosen for these tests, an even smaller deviation between the tools could be achieved.
Overall, for each test case in Table 3, SunFlower, Tonatiuh and SolTrace agree on the
simulation result with little deviations and a low variance. This indicates that they
would converge to the same result if even more rays were traced.
Further testing of the Gaussian sigma has revealed slight inaccuracies in the imple-
mentation of SolTrace and Tonatiuh. For instance, when increasing the sigma errors,
Tonatiuh and SolTrace increasingly deviate from the theoretical result, as shown in
Figure 10. They behave similarly when the distance of the heliostat to the receiver is
increased. The simulation results of SunFlower for these tests on the other hand show
little deviations to the theoretical results, which are caused by the randomness of the
Monte Carlo method. The sigma error implementation of SunFlower is thus considered
to be correct.
Ultimately, the test cases show the correctness of the tested functionalities of the optical
model of SunFlower.
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Figure 9: Simulation results versus number of traced rays for the base test case. Since
SunFlower traces the given number of rays per square meter of facet area, its
simulation results are accurate even for a small number of rays. SolTrace and
Tonatiuh trace the total number of rays through the entire geometry starting
at the light source, resulting in inaccuracies with a smaller number of rays.
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Figure 10: Test cases revealing an inaccuracy in the implementation of the Gaussian
error sigmas in Tonatiuh and SolTrace. For different sigmas, a single heliostat
was simulated in front of a single flat receiver and the simulation results were
normalized by the theoretical result. SunFlower show little deviation to the
theoretical result, while both Tonatiuh and SolTrace deviate with increasing
sigmas.
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SunFlower Tonatiuh SolTrace
# rays 1× 106 m−2 1× 108 total 1× 107 total
# simulations 10 10 100

Test Reference [W] deviation [%] variance [%] deviation [%] variance [%] deviation [%] variance [%]
base 1000 2.6× 10−10 1.4× 10−29 1.3× 10−4 2.6× 10−6 7.5× 10−3 5.7× 10−5

reflectivity 800 2.2× 10−11 2.9× 10−30 2.6× 10−3 4.1× 10−6 1.1× 10−2 5.9× 10−5

small receiver 250 1.5× 10−4 7.5× 10−31 6.9× 10−3 7.6× 10−6 3.7× 10−3 7.0× 10−5

multiple facets 1000 1.6× 10−13 0 2.7× 10−3 4.1× 10−6 6.1× 10−3 6.1× 10−5

curved 1000 3.7× 10−4 0 2.5× 10−4 9.9× 10−7 5.8× 10−3 5.4× 10−5

curved focal length 1000 2.2× 10−4 3.0× 10−30 4.1× 10−4 9.1× 10−7 2.1× 10−3 5.8× 10−5

atmospheric attenuation 982 4.4× 10−2 6.0× 10−30 4.6× 10−2 1.9× 10−5 - -
polygon 27525 9.6× 10−3 0 1.1× 10−2 3.2× 10−4 1.4× 10−3 10.0× 10−4

sun sigma 804 3.2× 10−2 2.4× 10−5 3.0× 10−2 8.3× 10−6 3.0× 10−2 6.8× 10−5

tracking error 968 4.9× 10−2 2.5× 10−6 5.0× 10−2 5.8× 10−6 5.1× 10−2 4.5× 10−5

slope error 967 5.8× 10−2 3.1× 10−6 5.4× 10−2 5.6× 10−6 4.9× 10−2 7.0× 10−5

tracking slope errors 923 2.9× 10−2 9.3× 10−6 2.7× 10−2 7.1× 10−6 2.9× 10−2 5.3× 10−5

combined sigma errors 753 5.5× 10−2 1.3× 10−5 5.6× 10−2 9.2× 10−6 5.2× 10−2 5.7× 10−5

none flat 119878 2.5× 10−3 0 1.6× 10−3 1.9× 10−3 1.7× 10−4 3.5× 10−3

on axis flat 121308 2.1× 10−3 0 2.8× 10−3 3.0× 10−4 4.6× 10−3 1.5× 10−3

off axis angles flat 118007 4.1× 10−3 0 1.3× 10−3 3.3× 10−4 1.7× 10−3 3.0× 10−3

on axis curved 121315 7.4× 10−4 0 2.7× 10−3 3.4× 10−4 2.6× 10−3 1.9× 10−3

off axis angles curved 118100 3.0× 10−3 0 7.8× 10−4 1.5× 10−4 1.0× 10−3 1.9× 10−3

none flat polygon 27221 1.8× 10−3 0 1.1× 10−3 9.5× 10−4 1.3× 10−3 7.4× 10−4

on axis flat polygon 27519 1.5× 10−3 0 1.5× 10−3 7.7× 10−4 3.0× 10−4 7.5× 10−4

on axis curved polygon 27515 1.6× 10−2 0 - - 7.0× 10−4 8.5× 10−4

blocking 114460 1.4× 10−2 1.9× 10−19 2.2× 10−2 8.2× 10−3 3.2× 10−3 9.3× 10−3

shading 113925 6.9× 10−3 6.1× 10−23 1.2× 10−2 6.3× 10−3 1.3× 10−3 4.6× 10−3

multiple receivers 226637 2.0× 10−3 0 5.5× 10−3 10.0× 10−3 9.0× 10−4 1.6× 10−2

full shadow 0 0 0 0 0 - -
partial shadow 80393 3.8× 10−3 0 3.5× 10−3 1.2× 10−3 - -
cavity raise 91854 5.3× 10−3 0 5.2× 10−3 4.0× 10−2 - -
external 72074 1.1× 10−2 0 1.1× 10−2 1.8× 10−3 2.5× 10−3 4.9× 10−3

Table 3: Simulation results of SunFlower, Tonatiuh and SolTrace for the basic test cases. Using the reference values, simulation
results were normalized and absolute average deviations and variances were calculated. Since Tonatiuh does not
support curved triangles and SolTrace does not support the atmospheric attenuation effect and tower shading,
results for on axis curved polygon as well as atmospheric attenuation, full shadow, partial shadow and cavity raise
are omitted.
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2.7.2. Ray resolution study

Since the dimensions of existing CSP plants are much larger compared to the simple
test cases, a fast but accurate optical simulation for SunFlower is necessary, especially
for the optimization later in this work.
The most important factor influencing the runtime and accuracy of the Monte Carlo
raytracer is the number of rays traced. Increasing the number of rays traced increases
the accuracy of the simulation result, since the Monte Carlo method is based on the
law of large numbers. However, increasing the number of rays traced increases the
computation time, which limits the optimization algorithms that require a large number
of simulation results.
Therefore it is of interest to find out how many traced rays are needed to guarantee a
simulation accuracy of 99.9%. This is an important compromise between low runtime
and high accuracy.
In this test, the optimal number of rays traced per square meter for SunFlower is
evaluated for each presented CSP plant.
For this purpose, each CSP plant was simulated multiple times at three different days
of the year. These days are March 21st, June 21st and December 21st.
On each of these days, thirteen evenly spaced simulations were run between 8:00 and
19:00. This test setup covers a large part of the possible sun positions, as December 21st

is the shortest and June 21st is the longest day of the day, thus covering the lowest and
highest sun altitude in a year. Additionally, March 21st covers sun positions between
the lowest and highest altitude.
Furthermore, realistic DNI data [1] from the region of Seville in Spain was interpolated
and used in the simulations.
Figure 11 illustrates the 36 different solar positions for which each CSP plant was
simulated.
The whole test setup was then run for various numbers of rays per square meter ranging
from one to 265. PS10 was run with up to 265 rays per square meter, PS20 with up
to 128 rays per square meter and Gemasolar with up to 64 rays per square meter.
Since the resulting optical power seems to converge at an increasing number of traced
rays, it is assumed that the simulation results with the highest number of traced rays
per square meter are the most accurate. Thus every simulation results is normalized
by the average result of the same simulation using the highest number of traced rays.

Test summary Figure 12 shows the result of the ray resolution study. It can be
seen that for every CSP plant, the simulation accuracy of SunFlower increases as the
number of rays per square meter increases.
For the largest CSP Gemasolar however, the simulation accuracy converges faster com-
pared to PS10 and PS20. This effect is caused by the law of large numbers, which causes
inaccuracies in the raytracing simulation to cancel each other out, which increases the
simulation accuracy even for a lower number of rays per square meter.
Overall, SunFlower achieves a simulation accuracy of 99.9% or higher for all three
CSP systems with only five rays per square meter of heliostat facet area. For the
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Figure 11: Hourly solar positions on December 21st (bottom), March 21st (middle) and
June 21st (top). The DNI at each solar position is indicated by the line
color. The sun positions are calculated for the same location in Seville from
which the DNI data was measured i.e. 37.41667 (latitude), -5.9 (longitude).

optimization part of this work, the raytracer of SunFlower is therefore configured with
five rays per square meter of facet area.

2.7.3. Existing power plants

Only Tonatiuh was used to validate the simulation results of SunFlower for entire CSP
plants, since SolTrace does not support the important raytracing features for tower
shading and atmospheric attenuation. However, the Gaussian sigma errors for slope,
tracking and sun shape were turned off due to their inaccurate implementation in
Tonatiuh.
PS10, PS20 and Gemasolar is tested on March 21, June 21 and December 21 between
9:00 and 19:00 with the respective DNI, illustrated by Figure 11. These tests cover a
wide range of possible solar positions over the course of a year.
For each test case the optical power on the receiver of the CSP was simulated with the
optical model settings from Table 1. The resulting optical power was then normalized
by the average simulation result of SunFlower to obtain a percentage deviation and
variance.

Test summary The simulation results are summarized in Table 4, Table 5 and Table
6 for PS10, PS20 and Gemasolar.
For every test, the mean deviation of SunFlower is 0% as the reference values are the
mean simulation results of SunFlower. Tonatiuh shows a deviation of less than 0.1% for
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Figure 12: Results of the ray resolution study, which measured the number of traced
rays per square meter against the simulation accuracy for each CSP plant.
Deviations from the mean value are indicated by the colored area around
the darker tinted line that represents the mean value. The dashed horizontal
line indicates a simulation accuracy of 99.9%, which is achievable with five
rays per square meter. The simulation accuracy of the largest CSP plant
Gemasolar converges faster compared to PS10 and PS20 due to the law of
large numbers, since with an increasing plant size inaccuracies in the ray
tracing cancel each other out.

PS10 and PS20, as well as less than 0.2% for Gemasolar. Since Tonatiuh was run only
once per test case, there is no variance value. Also, both tools agree on sun positions
with a DNI of zero.
Since for each test case the deviation of Tonatiuh is close to zero, it is assumed that
with an increased number of rays the simulation results of both tools would converge.
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PS10 SunFlower Tonatiuh
# rays 1.51× 107 total 5× 107 total
# simulations 10 1

Test Reference [W] deviation [%] variance [%] deviation [%] variance [%]
21. Mar. 09h ≈ 1.40× 107 0 9.72× 10−19 3.18× 10−2 -
21. Mar. 11h ≈ 2.83× 107 0 3.80× 10−18 6.91× 10−2 -
21. Mar. 13h ≈ 2.93× 107 0 4.72× 10−18 2.27× 10−2 -
21. Mar. 15h ≈ 2.69× 107 0 1.38× 10−18 6.72× 10−2 -
21. Mar. 17h ≈ 1.52× 107 0 7.71× 10−19 9.93× 10−2 -
21. Mar. 19h 0 0 0 0 -
21. Jun. 09h ≈ 1.87× 107 0 9.18× 10−20 1.08× 10−2 -
21. Jun. 11h ≈ 3.26× 107 0 2.36× 10−18 1.90× 10−3 -
21. Jun. 13h ≈ 3.86× 107 0 2.95× 10−18 1.12× 10−2 -
21. Jun. 15h ≈ 3.73× 107 0 2.88× 10−18 5.80× 10−3 -
21. Jun. 17h ≈ 2.73× 107 0 2.15× 10−18 2.12× 10−2 -
21. Jun. 19h ≈ 4.36× 106 0 3.09× 10−19 2.46× 10−2 -
21. Dec. 09h ≈ 2.86× 106 0 3.12× 10−19 9.47× 10−2 -
21. Dec. 11h ≈ 2.38× 107 0 1.21× 10−18 1.71× 10−2 -
21. Dec. 13h ≈ 2.97× 107 0 6.03× 10−18 3.68× 10−2 -
21. Dec. 15h ≈ 2.54× 107 0 2.13× 10−18 4.28× 10−2 -
21. Dec. 17h ≈ 6.32× 106 0 3.42× 10−20 3.79× 10−2 -
21. Dec. 19h 0 0 0 0 -

Table 4: Simulation results of SunFlower and Tonatiuh for PS10 for 18 different solar
positions and DNI values, which are illustrated in Figure 11. Simulation
results are normalized by the average simulation result of SunFlower. Since
only a single simulation of Tonatiuh was performed, there is no variance value.
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PS20 SunFlower Tonatiuh
# rays 3.04× 107 total 3× 107 total
# simulations 10 1

Test Reference [W] deviation [%] variance [%] deviation [%] variance [%]
21. Mar. 09h ≈ 2.80× 107 0 7.87× 10−19 5.81× 10−2 -
21. Mar. 11h ≈ 5.69× 107 0 4.10× 10−18 7.18× 10−2 -
21. Mar. 13h ≈ 5.90× 107 0 3.33× 10−18 3.66× 10−2 -
21. Mar. 15h ≈ 5.43× 107 0 2.34× 10−18 3.80× 10−2 -
21. Mar. 17h ≈ 3.05× 107 0 1.04× 10−18 6.85× 10−3 -
21. Mar. 19h 0 0 0 0 -
21. Jun. 09h ≈ 3.77× 107 0 6.03× 10−19 1.12× 10−2 -
21. Jun. 11h ≈ 6.57× 107 0 4.13× 10−19 3.55× 10−2 -
21. Jun. 13h ≈ 7.78× 107 0 9.25× 10−19 3.68× 10−2 -
21. Jun. 15h ≈ 7.54× 107 0 2.33× 10−18 9.53× 10−3 -
21. Jun. 17h ≈ 5.53× 107 0 6.08× 10−19 3.17× 10−2 -
21. Jun. 19h ≈ 8.84× 106 0 4.34× 10−19 4.45× 10−2 -
21. Dec. 09h ≈ 6.05× 106 0 2.33× 10−20 1.39× 10−3 -
21. Dec. 11h ≈ 4.67× 107 0 2.65× 10−18 6.89× 10−2 -
21. Dec. 13h ≈ 5.90× 107 0 3.54× 10−18 2.82× 10−2 -
21. Dec. 15h ≈ 4.99× 107 0 6.19× 10−19 9.15× 10−2 -
21. Dec. 17h ≈ 1.11× 107 0 6.60× 10−20 4.38× 10−3 -
21. Dec. 19h 0 0 0 0 -

Table 5: Simulation results of SunFlower and Tonatiuh for PS20 for 18 different solar
positions and DNI values, which are illustrated in Figure 11.

Gemasolar SunFlower Tonatiuh
# rays 1.53× 107 total 1× 107 total
# simulations 10 1

Test Reference [W] deviation [%] variance [%] deviation [%] variance [%]
21. Mar. 09h ≈ 4.98× 107 0 6.88× 10−21 3.79× 10−2 -
21. Mar. 11h ≈ 9.95× 107 0 4.67× 10−21 1.27× 10−1 -
21. Mar. 13h ≈ 1.03× 108 0 1.27× 10−20 3.57× 10−2 -
21. Mar. 15h ≈ 9.44× 107 0 2.96× 10−21 1.04× 10−2 -
21. Mar. 17h ≈ 5.30× 107 0 2.70× 10−21 2.18× 10−2 -
21. Mar. 19h 0 0 0 0 -
21. Jun. 09h ≈ 7.65× 107 0 4.79× 10−21 1.42× 10−1 -
21. Jun. 11h ≈ 1.29× 108 0 2.27× 10−20 2.80× 10−2 -
21. Jun. 13h ≈ 1.52× 108 0 4.66× 10−20 9.74× 10−2 -
21. Jun. 15h ≈ 1.47× 108 0 1.02× 10−20 1.70× 10−1 -
21. Jun. 17h ≈ 1.07× 108 0 2.08× 10−21 5.43× 10−2 -
21. Jun. 19h ≈ 1.73× 107 0 1.72× 10−21 7.35× 10−3 -
21. Dec. 09h ≈ 1.07× 107 0 5.50× 10−22 4.47× 10−2 -
21. Dec. 11h ≈ 7.42× 107 0 2.56× 10−21 1.19× 10−2 -
21. Dec. 13h ≈ 9.30× 107 0 7.12× 10−21 1.36× 10−1 -
21. Dec. 15h ≈ 7.89× 107 0 1.07× 10−20 5.78× 10−2 -
21. Dec. 17h ≈ 1.89× 107 0 1.50× 10−20 1.60× 10−2 -
21. Dec. 19h 0 0 0 0 -

Table 6: Simulation results of SunFlower and Tonatiuh for Gemasolar for 18 different
solar positions and DNI values, which are illustrated in Figure 11.
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3. Heliostat layout-optimization

The goal of the heliostat layout-optimization is to find positions for all heliostats in
the field, such that an objective function is maximized. This optimization problem
is difficult to solve, since the search space is large as there are innumerable possible
heliostat positions.
To reduce the search space, a common approach is to utilize patterns for the heliostat
layouts. The heliostat layouts of the presented CSP plants are also based on patterns
as shown in Figure 8. Such patterns have the advantage that there are only a few
parameters describing the whole heliostat layout, which reduces the search space.
The decreased search space also limits the pattern approach, since it is not guaranteed
that the optimal solution for the heliostat layout problem can be described as a pattern.
However, as with many difficult optimization problems, a good solution calculated in
a reasonable time is preferred over the optimal solution, whose calculation can take
exponentially longer.
Another optimization approach is local search, a variable neighborhood descent algo-
rithm that looks at only one heliostat at a time and tries to move it to a local maximum
of the objective function, which results in an increased performance of the entire helio-
stat layout. However, this approach also only finds local optima, which can be much
worse than the global optimum.
This work combines both the pattern and local search approach in a multi-step opti-
mization pipeline, which may achieve better results than each algorithm on its own.
This multi-step approach first optimizes a pattern layout, which is then fed into the
local search algorithm, which tries to further improve the solution by moving the he-
liostats to a local optimum individually.
In the following sections, four patterns and two algorithms for solving the pattern
optimization problem are presented, then the local search algorithm is introduced.

3.1. Pattern optimization

The following sections introduce different geometrical patterns, which are used to pa-
rameterize the heliostat field layout. Section 3.1.5 presents a simple combinatorial
solver and the downhill simplex algorithm, both of which can be used to find optimal
parameters for the patterns.

3.1.1. Staggered Cornfield

The staggered cornfield pattern, derived from Lipps and Vant-Hull [24], places the
heliostats on a north-south aligned grid in which every odd row is staggered to allow
for a close packing while avoiding blocking effects. The linear factors `x, `y and the
exponential factors sx, sy are used to control the spacing between columns and rows
such that the heliostat density decreases with increasing distance from the tower. Note
that for sx = 1 and sy = 1, the cornfield pattern is regular i.e. the heliostat density
is constant. Due to the axis symmetric shape of the pattern, it is only necessary to
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generate heliostat positions in the first quadrant. The heliostat position on the i-th
row and j-th column with i, j ∈ N0 is computed by

xj =

{
`x ·D · 0.5 · (jsx + (j + 1)sx) if i = 1 mod 2

`x ·D · jsx otherwise,
(41)

yi = `y ·D · isy , (42)

where D is the heliostat diameter. These positions are then mirrored to the other
quadrants, as visualized in Figure 13. The parameters and their ranges that control
the shape of the pattern are listed in Table 7. The upper limits were determined
empirically, while the lower limits must be equal to one, to ensure that the heliostat
density decreases at greater distances from the tower and no heliostat collide.

dy ·D

dx ·D

Figure 13: Illustration of the staggered cornfield pattern, which is generated in the first
quadrant (black dots) and mirrored to the other quadrants (gray dots). The
tower is indicated by a hexagon, `x and `y are linear scaling factors and D
is the heliostat diameter.

Parameter Range Description
`x [1, 1.5] x-axis linear factor [D]
`y [1, 1.5] y-axis linear factor [D]
sx [1, 1.5] x-axis exponential factor
sy [1, 1.5] y-axis exponential factor

Table 7: Parameters of the staggered cornfield pattern. To avoid heliostat collisions
`x and `y must not be less than one. Furthermore, to allow for a decreased
heliostat density further away from the tower, sx and sy are greater or equal
to one. The upper limits were empirically determined.
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3.1.2. Hexagon

The hexagon pattern, based on a patent by Pham et al. [29], places the heliostats on
the edges of concentric hexagons around the tower. Each hexagon has at least one more
heliostat per edge than the previous one, which automatically results in a staggered
layout. The density of the layout is controlled by the density factor d, which influences
the distance between each heliostat `sep as

`sep = d ·D, (43)

where D is the heliostat diameter.
Furthermore, d controls the distance between adjacent hexagons. The side length `i
for the i-th hexagon is computed inductively as

`i =

{
`sep i = 1

`i−1 + max
(
`sep,

d·`i−1·hhel
htower−hhel

)
i > 1,

(44)

where hhel is the height of the heliostat, which is approximated by D
2

and htower is the
height of the tower. For hexagons close to the tower, the distances between hexagons
is equal to the distance between heliostats `sep. With increasing distance to the tower,

the blocking distance of the heliostats of the previous hexagon `i−1·hhel
htower−hhel is considered,

which is computed by the intercept theorem. It is also scaled by the density factor d.
To compute the heliostat positions on the edges of the i-th hexagon, first the j-th
corner position for j ∈ {0, ..., 5} is calculated as

pcorner
i,j =

(
`i · cos(j · π

3
)

`i · sin(j · π
3
)

)
. (45)

Since for the i-th hexagon holds `i ≥ i · `sep, b `i
`sep
c heliostats are distributed between

each neighboring corner points, as visualized in Figure 14. In addition to the density
parameter d, scaling is implemented according to Equation 56 to 58, which is controlled
by the angle β and the scaling factor s. All parameters of the hexagon pattern and
their feasible value ranges are listed in Table 14. The lower limit for the density factor
d ensures that heliostats do not collide, while the upper limit was chosen to be as close
to one to keep the layout as dense as possible. The range for s was chosen to be close
to one, while the range for β allows for scaling along every possible axis.

3.1.3. Radial staggered

The radial staggered pattern is based on the work of Collado and Guallar [14] and
is recognizable in many commercially operated CSP plants. Instead of straight lines,
heliostats are positioned on concentric circles around the tower. Similarly to the corn-
field pattern, the heliostats on each successive circle are staggered to achieve a close
packing while avoiding blocking effects. As illustrated in Figure 15a, the circles are
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pcorner3,0

pcorner3,1pcorner3,2

pcorner3,3

pcorner3,4 pcorner3,5

`1 = d ·D

`2 = 2 · d ·D

`3 = 3 · d ·D

(a) First three hexagons and their side
length `i.

β

(b) Scaled hexagon pattern, β = 90 and
s = 0.8.

Figure 14: Illustration of the first three hexagons of the hexagon pattern (14a) and its
scaling (14b) along the y-axis by 80%. The tower is indicated by the filled
hexagon.

Parameter Range Description
d [1.0, 2.0] density factor [D]
s [0.5, 1.5] elliptical scaling factor
β [0.0, 180.0] angle of scaling axis [◦]

Table 8: Parameters of the hexagon pattern. To avoid heliostat collisions, d has to be
greater than one. The ranges for s were chosen to be close to one, while β
has to be between zero and 180 degrees, which allows for scaling along every
possible axis.

grouped in different zones Zi, in which the number of heliostats per circle Ni is equal
to avoid heliostat collisions. Ni is calculated by

Ni =

⌊
π

arcsin( `sep
2ri,1

)

⌋
, (46)

where ri,j is the radius of the j-th circle within the i-th zone and `sep is the distance
between two heliostats on a circle. This safety distance depends on the heliostat
diameter D and the density scaling factor d as

`sep = d ·D. (47)

A distinction is made between the radius delta between two circles in the same zone
and those between successive zones. The radius delta between ri,j and ri,j+1 in the i-th
zone is calculated as
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∆rcircle
i,j = max

(√
3D

2
,

ri,j · hhel

htower − hhel

)
, (48)

while the radius delta to the first circle of a potential new zone Zi+1 is calculated as

∆rzone
i,j = max

(
D,

ri,j · hhel

htower − hhel

)
. (49)

Within a zone, the densest possible layout is allowed, which is achieved by ∆rcircle
i,j =

√
3D
2

[14]. However, as the number of heliostats between zones changes, staggered
heliostat positions are not guaranteed. ∆rzone

i,j thus has to be at least as large as the
heliostat diameter D.
Furthermore, for both radius deltas a simple heuristic is used to avoid blocking effects
for heliostats on large circles. This is done by estimating the blocking distance of the
heliostats on the current circle by solving the intercept theorem

ri,j ·hhel
htower−hhel , where hhel

is the height of the heliostats, which is estimated by D
2

.
Based on these rules the pattern is created, illustrated in Figure 15a, starting from the
first circle inside the first zones, whose radius is set to the height of the tower

r1,1 = htower. (50)

After each circle, it is necessary to decide whether to create a new circle in the same
group or a whole new zone. For this decision, the heuristic proposed by Collado and
Guallar [14] is used, which creates a new zone if at least twice as many heliostats fit in
the initial circle of the potential new zone compared to the current zone. If Equation
51 holds, the new zone Zi+1 is created with Equation 52, otherwise a new circle within
the current zone Zi is created with Equation 53. π

arcsin( `sep
2(ri,j+∆rcirclei,j )

)

 ≥ 2 ·Ni. (51)

ri+1,1 = ri,j + ∆rzone
i,j (52)

ri,j+1 = ri,j + g ·∆rcircle
i,j . (53)

In Equation 53, the radius delta is scaled by the growth factor g. Furthermore, the
pattern is extended with two parameters s and β. These parameters control the ellip-
tical scaling of the circles along an arbitrary axis, as described by Equation 56 to 58
and illustrated in Figure 15b.
All parameters and their value ranges are listed in Table 9. The density factor d
controls the density of heliostats on a single circle and has to be close to one, but
must not be less than one so that the heliostats are closely packed without colliding.
However, the growth factor g, which controls the density of the circles, should be close
to one but may be even less than one to allow for an even denser packing. The scaling

33



factor s should be close to one to allow a slight stretching or shrinking of the overall
pattern. Finally β has a range between zero and 180 degrees to allow for scaling along
every possible axis.

g ·∆rcircle1,1

∆rzone1,2

g ·∆rcircle2,1

d ·D

d ·D

d ·D

r1,1
r1,2

Z1

r2,1
r2,2

Z2

(a) Radial staggered pattern.

β

(b) Scaled pattern, β = 90 and s = 0.8.

Figure 15: Circles of the first two zones of the radial staggered pattern (15a) and its
elliptical scaling (15b) along the y-axis by 80%.

Parameter Range Description
d [1, 1.5] heliostat density factor [D]
g [0.5, 1.5] radius growth factor
s [0.5, 1.5] elliptical scaling factor
β [0.0, 180.0] angle of scaling axis [◦]

Table 9: Parameters of the radial staggered pattern. The range for d has to be close
to one but not less than one, while the range of g has to be close to one. The
limits for s were chosen to be close to one, while a value of β between zero
and 180 degrees enables the pattern to be scaled along every possible axis.

3.1.4. Spiral

The spiral pattern is based on the biomimetic pattern of Noone et al. [28]. It is inspired
by the sunflower, whose seeds are arranged in a spiral pattern. Its advantage is the
continuously decreasing density of heliostats with increasing distance to the tower.
This allows for dense packing of efficient heliostats close to the tower and less dense
packing further away from the tower, reducing shadowing and blocking effects. The
k-th position for this pattern is calculated as polar coordinates (αk, rk). The original
spiral pattern has two parameters a and b, which control the growth of the radial
component, which is defined as,
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rk = akb. (54)

The angular component is linearly proportional to k and is related to the golden ratio
1+
√

5
2

,

αk = 2πk · (1 +
√

5

2
)−2. (55)

Figure 16a illustrates the polar coordinates for the first heliostat in the original spiral
pattern.
The original spiral pattern is extended by two new parameters s and β, which control
the scaling s of the spiral along an axis defined by the angle β.
To scale the original spiral, first the polar coordinates (αk, rk) are converted to Carte-
sian coordinates (x′′k, y

′′
k),

x′′k = rk · cos(αk) (56)

y′′k = rk · sin(αk). (57)

The position (x′′k, y
′′
k) is then rotated clockwise around the origin by β degrees,

x′k = x′′k · cos(−β)− y′′k · sin(−β) (58)

y′k = x′′k · sin(−β) + y′′k · cos(−β). (59)

After scaling the x-axis by the factor s, the rotation is reversed by rotating counter-
clockwise by β degrees,

xk = s · x′k · cos(β)− y′k · sin(β) (60)

yk = s · x′k · sin(β) + y′k · cos(β). (61)

The final heliostat position is (xk, yk). This scaling along an axis results in an elliptical
spiral, which is illustrated by Figure 16b. If s = 1, the original spiral pattern is
obtained. Each parameter and its feasible value range is listed in Table 10. The value
ranges for a and b were empirically determined with the combinatorial solver. As β
is between zero and 180 degrees, the pattern can be scaled along every possible axis.
The limits for the scaling factor s were chosen to be close to one.

3.1.5. Pattern optimization algorithms

Parameterized heliostat layouts are optimized by finding combinations of parameters
which maximize the objective function. This section introduces the pattern evaluation
process as well as a simple combinatorial search and the more complex downhill simplex
algorithm.
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r1

α1

(a) Original spiral pattern.

β

(b) Scaled spiral, β = 90 and s = 0.8.

Figure 16: Polar coordinates of the first heliostat in the original spiral pattern (16a)
and its elliptical scaling (16b) along the y-axis by 80%.

Parameter Range Description
a [0, 5] linear density factor
b [0.5, 1] exponential density factor
s [0.5, 1.5] elliptical scaling factor
β [0.0, 180.0] angle of scaling axis [◦]

Table 10: Parameters of the spiral pattern. The ranges for a and b were empirically
determined using the combinatorial solver. The limits for s were chosen to
be close to one, while a value of β between zero and 180 degrees enables the
pattern to be scaled along every possible axis.

Pattern evaluation The process of evaluating a pattern is split up in different steps.
In the first step, a pattern with up to eight times as many heliostats as desired is
generated for the given parameters. On one hand, this is necessary for heliostat fields
such as PS10 or PS20 that extend only to the north; on the other hand, this is useful for
later selecting the most efficient positions from the superset. The next step is to remove
invalid heliostat positions, which include colliding heliostats or heliostats outside the
field boundaries. If the number of heliostat position is less or equal the number of the
desired heliostats afterwards, the layout is evaluated for the given objective function
by an annual simulation of the CSP.
Otherwise, the optical efficiencies of the heliostats in the superset is evaluated with
an annual simulation, selecting the most efficient ones. After that, a second annual
simulation is necessary to compute the score of the given objective function. This
method was also used by Noone et al. [28].
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Combinatorial search The combinatorial search iterates through combinations of the
parameters of the pattern, evaluating the objective function for each and selecting the
parameters that maximize the objective function.
For a pattern with N parameters value ranges pmin

i , pmax
i ∈ R, pmin

i ≤ pmax
i and reso-

lutions ri ∈ N>0 for each parameter pi, i ∈ {1, ..., N} are given. The parameter steps
considering the parameter resolution are computed as,

pki = pmin
i +

k

ri
· (pmax

i − pmin
i ). (62)

The set containing all parameter combinations is then given as,

P = {(pk11 , ..., p
kN
N ) | pkii ∈ R, 0 ≤ ki < ri}. (63)

The combinatorial search terminates after each of the parameter combinations in P
is evaluated. Thus, the runtime depends on the size of P , which depends on the
resolutions of the parameters as,

|P | =
N∏
i=1

ri. (64)

This algorithm is therefore quite inefficient, as no optimal parameter combination can
be found at low resolutions. At higher resolutions on the other hand, the runtime
of the combinatorial search grows quickly. Therefore, parameter configurations that
produce a pattern with fewer than the desired number of heliostat positions are not
evaluated to speed up the algorithm. Additionally, the evaluation of a heliostat layout,
which performs an annual simulation of the entire CSP plant, has been parallelized so
that multiple parameter combinations can be simulated simultaneously.

Donwhill Simplex The downhill simplex, also known as the Nelder-Mead method
[27], is a numerical method originally used to find the minimum of a function. For
this application, the algorithm was adapted to search for the maximum of an objective
function f .
For a pattern with N parameters, the algorithm operates on N+1 points x1, ..., xN+1 ∈
RN that form a so called simplex, which is the simplest possible polytope in RN . For
instance, a simplex in two dimensions is a triangle. The algorithm iteratively applies
a sequence of operations on the initial simplex to replace the worst of its points, thus
moving the entire simplex to a local maximum. The initial simplex is computed by
randomly generating a single point xN+1 ∈ RN from the pattern’s parameter bounds,
while the remaining points xi, i ∈ {1, ..., N} are equal to xN+1 except for the i-th com-
ponent, which is slightly changed. The algorithm then proceeds as follows (illustrated
for N = 2):

1. Terminate if the maximum number of iterations imax is reached. Restart with
a new initial simplex if one of two conditions is met. First: if the standard
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deviation of the performance of the simplex points is below a certain threshold
ε > 0 √∑N+1

i=1 (f(xi)− f̂)2

N
< ε, (65)

where f̂ is the mean performance of of the simplex points

f̂ =
1

N

N+1∑
i=1

f(xi). (66)

Second: as the results of the simulation vary due to randomness, an additional
termination condition is the decreasing size of the simplex. Therefore, the same
root-mean-square deviation is computed for each dimension of the simplex points.
If the maximum standard deviation is below the threshold ε the iteration is
restarted.

2. Order the simplex points according to the performance of the corresponding
parameterized heliostat layout considering the objective function f

f(x1) ≥ f(x2) ≥ ... ≥ f(xN+1), (67)

such that xN+1 generates the worst performing pattern.

x3

x2

x1

Figure 17: Ordered simplex points.

3. Compute the centroid point xm, excluding the worst point xN+1

xm =
1

N

N∑
i=1

xi. (68)

4. Reflect the worst point xN+1 on the centroid xm

xr = xm + ρ(xm − xN+1), (69)
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x3

x2

x1

xm

Figure 18: Centroid point xm.

where ρ > 0 is the reflection coefficient. If the reflection point performs better
than the best point f(x1) < f(xr), go to step 5. Otherwise, if the reflection
point still performs better than the second worst point f(x1) ≥ f(xr) ≥ f(xN),
replace the worst point xN+1 = xr and go to step 1. Otherwise, the reflection
point performs worse than the second worst point f(xr) < f(xN), thus go to step
6.

x3

x2

x1

xm

xr

Figure 19: Reflection operation computing xr.

5. Expand the reflection point

xe = xm + γ(xr − xm), (70)

where γ > 1 is the expansion coefficient. Replace the worst point by either the
reflection or expansion point and go to step 1.

xN+1 =

{
xe iff(xe) > f(xr),

xr otherwise.
(71)

6. Contract either xN+1 or xr, depending on which point performs better

xc =

{
xm + β(xN+1 − xm) iff(xN+1) > f(xr)

xm + β(xr − xm) otherwise,
(72)
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x3

x2

x1

xm

xe

Figure 20: Expansion operation computing xe.

where 0 < β < 1 is the contraction coefficient. If the contracted point is better
or equal to the worst point, replace it with the contracted point xN+1 = xc and
go to step 1.

x3

x2

x1

xm

xc

x3

x2

x1

xm

xr

xc

Figure 21: Contraction operation on x3 (left) and xr (right), computing xc.

7. Shrink the entire simplex, while keeping the best point x1 in place. Thus replace
every point

xi = x1 + σ(xi − x1), (73)

where 0 < σ < 1 is the shrinking coefficient.

x3

x2

x1x3

x2

Figure 22: Shrinking operation.
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The standard values for the four coefficients listed in Table 11 are used. Although
the downhill simplex method does not converge very fast, it is robust and simple to
implement as it does not rely on derivatives. To validate the feasibility of the listed
ε, PS10 was optimized for AEP with a spiral pattern where imax = 100 was the only
termination criterion. As shown in Figure 23 the size of the simplex converges towards
zero, meaning that the points of the simplex move closer and closer together, which
indicates that the algorithm has found a local maximum. With a convergence threshold
of ε = 0.01, as indicated in Figure 23b, the algorithm would restart the current iteration
with a new randomly generated simplex if it fell below this threshold.

Parameter Value Description
ρ 1 Reflection coefficient
γ 2 Expansion coefficient
β 0.5 Contraction coefficient
σ 0.5 Shrinking coefficient
ε 0.01 Termination threshold
imax 100 Max. number of iterations

Table 11: Configuration of the downhill simplex method, consisting of the default val-
ues for the coefficients and the termination parameters.

Verification To verify the results of the downhill simplex algorithm, it was run with
the spiral pattern on PS10 and the neighborhood of the best found parameter com-
bination was inspected using the combinatorial method. The inspected optimization
result is a = 0.685, b = 0.901, s = 0.872 and β = 141.48. Although the spiral pattern
consists of four parameters, only the neighborhood of the solution in the a, b and s, β
planes are shown in Figure 24. Nevertheless, it can be seen that the optimization result
is indeed a local maximum regarding the AEP, as the patterns close to the solution do
not yield better AEP results.

3.2. Local Search optimization

The local search algorithm is the second part of the multi-step heliostat layout opti-
mization pipeline. The algorithm is used to refine the given heliostat layout, which
was generated by one of the patterns. While the pattern optimization optimizes every
heliostat position at once, the key feature of this algorithm is the local optimization
of each heliostat, which takes local features such as neighboring heliostats and local
topography into account.
The local search optimization is a variable neighborhood descent algorithm [18]. The al-
gorithm is given an initial solution, a heliostat layout consisting of the two-dimensional
positions of each heliostat Hi on the field

Linit = {Hi ∈ R2 | i ∈ {1, ..., Nhel}} (74)
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Figure 23: A single downhill simplex run for the spiral pattern on PS10. For each
iteration the AEP improvement (23a) and the simplex size (23b) is shown.
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Figure 24: Neighborhood of the downhill simplex solution a = 0.685, b = 0.901, s =
0.872, β = 141.48 for the spiral pattern for PS10, computed by the combi-
natorial method. The a, b plane (left) and s, β plane (right) show that there
are no close solution with a higher AEP. The centered solution thus depicts
a local maximum for the AEP.
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and an objective function f , which evaluates a solution and that is to be maximized.
The algorithm then iterates over different neighborhoods of the solution and moves to
a local maximum in each one with respect to the objective function.
The core idea behind the local search algorithm is that the local maximum for one
neighborhood is not necessarily a local maximum for a different neighborhood. Addi-
tionally, a global maximum is a local maximum for all possible neighborhood [18], thus
iteratively inspecting different neighborhood structures prevents the algorithm from
converging to a local maximum.

Neighborhood structure The i-th neighborhood Ni(L) of the heliostat layout L is
defined as the set of layouts where only the position of the i-th heliostat is changed.
Instead of repositioning the heliostat on a rectangular grid, as done by Buck [12] and
Reinholz et al. [30], the heliostats are moved on a circular grid consisting of ncircle

equidistant circles centered around the original position, on which there are nposition

equidistant positions each. Formally, it is defined as

Ni(L) = {L \ {Hi}∪{Hi + movec,pi } | c ∈ {0, ..., ncircle}, p ∈ {0, ..., nposition− 1}}, (75)

where the move term movec,pi for the i-th heliostat and the p-th position on the c-th
circle is defined as,

movec,pi =

(
c · ri · cos(2π p

nposition
)

c · ri · sin(2π p
nposition

)

)
. (76)

p = nposition is not considered, as movec,0i and move
c,nposition

i are equal.
The radius ri is not only depending on the diameter D of the heliostat but also pro-
portionally on the distance of the heliostat Hi to the tower. This was done similarly
for rectangular grids by Buck [12]. This allows heliostats which are far away to per-
form larger movements, while heliostats closer to the tower, which are typically packed
close together, can make small adjustments without colliding with each other. For the
heliostat Hi with diameter D and euclidean distance dtower

i to the tower, the radius for
the circular grid is defined as

ri = `circle ·
dtower
i

104
·D, (77)

where the parameter `circle controls the proportional increase of the radius with increas-
ing distance of the heliostat to the tower. The term is scaled by 104 because tests have
shown that reasonable values for `circle are between one and ten.
Overall, Table 12 lists the parameters which define the i-th neighborhood Ni(L) of a
solution L. Additionally, Figure 25 shows the 17 possible moves of heliostat Hi on
the circular grid for parameters ncircle = 2 and nposition = 8, which define the i-th
neighborhood Ni(L).
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Parameter Description
`circle Scaling factor of circle radius
ncircle Number of equidistant circles
nposition Number of equidistant positions on a circle

Table 12: Parameters that define the i-th neighborhood Ni(L) of a solution L.
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Figure 25: Illustration of the 17 possible moves in circular grid of the neighborhood
Ni(L) of heliostat Hi for ncircle = 2 and nposition = 8. The radius ri depends
on the diameter of Hi and its distance to the tower as defined in Equation
77.

Algorithm With the definition of a neighborhood structure, the local search algo-
rithm, shown in Algorithm 1, is implemented as follows.
It is initialized with a heliostat layout Linit. The algorithm repeatedly iterates over ev-
ery heliostat. An order of heliostats in ascending efficiency is chosen, starting with the
least efficient. For every heliostat Hj it then evaluates every solution in its neighbor-
hood of the current solution Nj(Li) in iteration i. Any solution in the neighborhood is
discarded if the move of Hj is invalid, e.g. if Hj collides with another heliostat. From
the remaining heliostat layouts, the one which maximizes f is selected, i.e. it finds
the best possible valid move of the i-th heliostat on the circular grid. The algorithm
terminates if the maximum number of iterations imax is reached or the new heliostat
layout shows less than ε improvement over the last iteration.

Heliostat subgrouping The local search algorithm needs to evaluate the objective
function at least Nhel · (ncircle · nposition + 1) times per iteration.
Even for PS10 with the neighborhood defined by ncircle = 2 and nposition = 8 as shown
in Figure 25, this results in 10608 evaluations of f per iteration.
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Algorithm 1 LocalSearch

1: function LocalSearch(Linit)
2: L0 ← Linit

3: i← 0
4: repeat
5: i← i+ 1
6: Li ← Li−1

7: for j ∈ {1, ..., Nhel} do
8: Li ← arg maxL∈Nj(Li)

f(L)

9: until i ≥ imax or
f(Li)−f(Li−1)

f(Li−1)
≤ ε

As the objective function f performs an annual simulation of the entire heliostat field,
its evaluation time is the most time consuming part of the local search algorithm. As
the optical model was already optimized in terms of speed versus accuracy in Section
2.7.2, the local search algorithm itself must be accelerated.
An intuitive approach for optimizing the runtime of the local search is to limit the
evaluation of the objective function to a subgroup around the moved heliostat. This
is reasonable, since the performance of a heliostat is mainly influenced by shading and
blocking of sunlight by its neighboring heliostats and less by heliostats further away.
Therefore, a simulation of the entire heliostat layout is not necessary to decide which
of the ncircle · nposition + 1 moves maximizes f for given a heliostat.
A similar approach was taken by Buck [12], who only considered a subgroup of the
eleven nearest heliostats around the one who is being optimized.
Instead of taking a fixed size subgroup around a heliostat, a circular subgroup whose
radius depends on the heliostat diameter D is considered. The subgroup set Sj around
heliostat Hj, which includes every heliostat that has an euclidean distance of `subgroup·D
or less to Hj is defined as

Sj = {Hk | |Hj −Hk| ≤ `subgroup ·D}. (78)

Figure 26 shows the average number of heliostats in the subgroup set for different
subgroup scalings. For `subgroup = 5, the subgroup sets for PS10, PS20 and Gemasolar
contain around 30 heliostats. Restricting the evaluation of the objective function f
to the subgroup set Sj when optimizing heliostat Hj, compared to the evaluation of
the entire heliostat layout, lead to a massive runtime reduction of the local search
algorithm. Algorithm 2 indicates this change over Algorithm 1 in blue. A summary
over all parameters which control this algorithm is given in Table 13.
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Figure 26: Average subgroup size for PS10, PS20 and Gemasolar for different subgroup
scalings `subgroup. With increasing `subgroup the subgroup size approaches the
number of heliostats Nhel in the entire layout.

Algorithm 2 LocalSearch with Subgrouping

1: function LocalSearch(Linit)
2: L0 ← Linit

3: i← 0
4: repeat
5: i← i+ 1
6: Li ← Li−1

7: for j ∈ {1, ..., Nhel} do
8: Li ← arg maxL∈Nj(Li)

f |Sj
(L)

9: until i ≥ imax or
f(Li)−f(Li−1)

f(Li−1)
≤ ε

Subgroup study As the size of the subgroup set Si heavily influences the runtime
of Algorithm 2, it is necessary to find values for `subgroup that yield good optimization
results in a feasible time. For this test, the original layout of PS10 was optimized for
AEP with different values for the subgroup scaling factor. A neighborhood structure
with eight positions on two circles with a radius scaling factor of one was chosen.
Furthermore, the maximum number of iterations was set to ten and the convergence
criterion to 0.01%. Table 14 summarizes the settings for this test.
The results of each test run are shown in Figure 27. It can be seen that the runtime
per iteration increases with an increasing subgroup radius, as the subgroup size and
therefore the total number of simulated heliostats increases. However, the maximum
improvement does not seem to scale with the subgroup size. The AEP improvement
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Parameter Description
`circle Scaling factor of circle radius
ncircle Number of equidistant circles
nposition Number of equidistant positions on a circle
imax Maximum number of iterations
ε Minimum improvement
`subgroup Scaling factor of the subgroup set
f Objective function

Table 13: Summary of all parameters, which control Algorithm 2. The parameters of
the first block define the neighborhood structure, those of the second block
control the termination behavior, and those of the last block control the
optimization objective.

for values of `subgroup greater than five, compared to `subgroup = 5 is not significant,
while the runtime gets much worse. Therefore, `subgroup = 5 was chosen to be constant,
since this configuration provided the best AEP improvement in the shortest time.

Parameter Value
`circle 1
ncircle 2
nposition 8
imax 10
ε 0.01 %
`subgroup {3, 4, 5, 6, 7, 8}
f AEP

Table 14: Settings of the local search algorithm with subgrouping when run on the orig-
inal PS10 heliostat layout with different values for `subgroup for the subgroup
tests.

Parameter study With the subgroup radius factor `subgroup set to five, it is of inter-
est to further determine good parameter combinations of the neighborhood structure.
For this purpose, Algorithm 2 was run on the original layout of PS10 with different
combinations for the number of circles ncircle, number of positions per circle nposition

and the circle radius factor `circle.
The test results are shown in Figure 28. It can be clearly seen that the algorithm
performs significantly worse for `circle less than three than with a value greater or equal
to three, regardless of the other two parameters. Moreover, three positions per circle
and a single circle performs relatively badly.
The top five parameter combinations resulting in the highest AEP improvement over
the original heliostat layout of PS10 are listed in Table 15. The best performing
combination `circle = 8, ncircle = 2 and nposition = 6 was chosen. Since the neighborhood
set contains only 13 positions to be evaluated, this also has a positive effect on the
runtime.
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Figure 27: Results of the local search algorithm with subgrouping on the original PS10
layout for different values for the subgroup scaling `subgroup. All settings for
this test are listed in Table 14.
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Figure 28: PS10 AEP optimization results of Algorithm 2 for different combinations
for the parameters ncircle, nposition and `circle of the neighborhood structure.

Convergence study To determine a feasible termination condition, Algorithm 2 was
run with the five best performing parameter combinations from Table 15 as long as
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Parameter
`circle 8 6 5 7 6
ncircle 2 3 3 2 3
nposition 6 5 7 7 7
max. AEP improvement 0.620 % 0.616 % 0.597 % 0.587 % 0.587%

Table 15: Five best performing parameter combinations of the neighborhood structure,
yielding the highest AEP improvement over the original heliostat layout of
PS10.

there was a positive improvement over the previous iteration, i.e., a positive relative
improvement. Figure 29 shows the relative improvement of these five combinations per
iteration. As time progressed, the relative improvement over the last iteration quickly
decreased until eventually a negative relative improvement was made. This is likely
caused by inaccuracies due to the tradeoffs in the number of rays in ray tracing and
the subgrouping approach.
As the highest relative improvements are made in the first two iterations of the lo-
cal search, a minimum relative improvement of 0.03% was chosen as a convergence
criterion as a tradeoff between runtime and good optimization results. The chosen
parameter configuration would thus terminate after at most four iterations for the
original heliostat layout of PS10, although the relative improvement rises above this
threshold in the sixth iteration. The maximum number of local search iterations imax

was also set to five, to further restrict the runtime of the algorithm. An overview on
the final parameter configuration for the local search algorithm is given in Table 16.

Parameter Value
`circle 8
ncircle 2
nposition 6
imax 5
ε 0.03 %
`subgroup 5
f AEP

Table 16: Final parameter configuration of the local search algorithm with subgroup-
ing.

Verification To verify that the local search algorithm for heliostat layout optimization
works as intended, it was run on the original heliostat layouts of PS10, PS20, and
Gemasolar. The resulting AEP improvements are listed in Table 17. The local search
was able to improve the original layouts of PS10 by 0.466%, PS20 by 0.106% and
Gemasolar by 1.932%. Additionally, the optimized layouts, overlaid with the original
heliostat layouts can be found in Figures 33, 38 and 43. It is noticeable that the terrain
influences the decisions of the local search algorithm, as, for example, heliostats are
moved uphill to reduce shadowing and blocking effects.
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Figure 29: Relative improvements for each iterations of the local search algorithm for
the top five parameter combinations. As time progresses, the relative im-
provements quickly decrease until eventually a negative relative improve-
ment is made. The chosen convergence criterion marks the boundary after
which the algorithm would terminate.

PS10 PS20 Gemasolar
AEP original layout 26.819 GWh 51.112 GWh 88.639 GWh
AEP optimized layout 26.944 GWh 51.167 GWh 90.352 GWh
AEP improvement 0.466% 0.106% 1.932%
Local search iterations 3 2 5
Figure 33 38 43

Table 17: Results of AEP optimization of the local search algorithm on the original
layouts of PS10, PS20 and Gemasolar.

4. Case study

For the case study, the AEP of the heliostat layouts were optimized for PS10, PS20
and Gemasolar using the presented multi-stage optimization pipeline. First, for each
CSP plant and pattern, the pattern parameters were optimized using the downhill
simplex method. The optimized pattern parameters for PS10, PS20 and Gemasolar
are listed in Table 18, 20 and 22. These optimized patterns were then fed into the local
search algorithm (LS). The resulting heliostat layouts of the pattern optimization and
the multi-step optimization were compared in terms of their AEP in Table 19, 21 and
23, using the original layouts as a reference. Finally, the effects of AEP optimization
on the annual revenue (AR), internal rate of return (IRR), net present value (NPV),
payback period (PP) and levelized cost of energy (LCOE) were compared between the
pattern optimization and the multi-step optimization in Figure 30, 31 and 32.
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4.1. Layout optimization for PS10

Pattern Parameters Section
Cornfield `x = 1.18907 `y = 1.00924 sx = 1.01895 sy = 1.28248 3.1.1
Hexagon d = 1.54698 s = 0.73040 β = 0.0 3.1.2
Radial staggered d = 1.35155 g = 0.85277 s = 0.97925 β = 83.813 3.1.3
Spiral a = 0.59600 b = 0.92237 s = 0.84737 β = 138.134 3.1.4

Table 18: PS10 optimized parameters for the Cornfield, Hexagon, Radial staggered and
Spiral patterns.

Heliostat layout AEP Improvement Figure
Original (real-world) 23.4 GWh [5] - 8a
Original 26.819 GWh - 8a
Cornfield 26.502 GWh -1.183 %
Cornfield + LS 26.775 GWh -0.165 % 34
Hexagon 26.933 GWh 0.424 %
Hexagon + LS 27.040 GWh 0.825 % 35
Radial staggered 27.008 GWh 0.705 %
Radial staggered + LS 27.067 GWh 0.927 % 36
Spiral 26.953 GWh 0.501 %
Spiral + LS 27.060 GWh 0.898 % 37

Table 19: PS10 AEP of the original layout, compared to the optimized patterns from
Table 18 as well as the presented multi-step optimization that additionally
performs a local search. The estimated annual energy production of the real
PS10 plant is about 23.4 GWh.
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Figure 30: Impact of AEP optimization of PS10 with pattern optimization and multi-
step optimization on the economic values, which are normalized to the orig-
inal layout.
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4.2. Layout optimization for PS20

Pattern Parameters Section
Cornfield `x = 1.00482 `y = 1.02122 sx = 1.04334 sy = 1.21462 3.1.1
Hexagon d = 1.40661 s = 0.79272 β = 0.0 3.1.2
Radial staggered d = 1.42959 g = 0.75772 s = 0.88296 β = 92.416 3.1.3
Spiral a = 1.24243 b = 0.78726 s = 0.93436 β = 0.0 3.1.4

Table 20: PS20 optimized parameters for the Cornfield, Hexagon, Radial staggered and
Spiral patterns.

Heliostat layout AEP Improvement Figure
Original (real-world) 48 GWh [6] - 8b
Original 51.112 GWh - 8b
Cornfield 50.633 GWh -0.937 %
Cornfield + LS 50.889 GWh -0.436 % 39
Hexagon 51.273 GWh 0.316 %
Hexagon + LS 51.311 GWh 0.391 % 40
Radial staggered 51.297 GWh 0.363 %
Radial staggered + LS 51.402 GWh 0.567 % 41
Spiral 51.225 GWh 0.221 %
Spiral + LS 51.313 GWh 0.393 % 42

Table 21: PS20 AEP of the original layout, compared to the optimized patterns from
Table 20 as well as the presented multi-step optimization that additionally
performs a local search. The estimated annual energy production of the real
PS20 plant is about 48 GWh.
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Figure 31: Impact of AEP optimization of PS20 with pattern optimization and multi-
step optimization on the economic values, which are normalized to the orig-
inal layout.
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4.3. Layout optimization for Gemasolar

Pattern Parameters Section
Cornfield `x = 1.11822 `y = 1.00008 sx = 1.08718 sy = 1.18231 3.1.1
Hexagon d = 1.6 s = 0.62243 β = 5.059 3.1.2
Radial staggered d = 1.13883 g = 1.07047 s = 0.90689 β = 152.230 3.1.3
Spiral a = 1.02115 b = 0.83696 s = 0.80007 β = 159.977 3.1.4

Table 22: Gemasolar optimized parameters for the Cornfield, Hexagon, Radial stag-
gered and Spiral patterns.

Heliostat layout AEP Improvement Figure
Original (real-world) 80 GWh [2] - 8c
Original 88.639 GWh - 8c
Cornfield 88.690 GWh 0.058 %
Cornfield + LS 89.870 GWh 1.389 % 44
Hexagon 89.652 GWh 1.144 %
Hexagon + LS 90.368 GWh 1.951 % 45
Radial staggered 90.369 GWh 1.952 %
Radial staggered + LS 90.541 GWh 2.146 % 46
Spiral 90.370 GWh 1.954 %
Spiral + LS 90.516 GWh 2.118 % 47

Table 23: Gemasolar AEP of the original layout, compared to the optimized patterns
from Table 22 as well as the presented multi-step optimization that addi-
tionally performs a local search. The estimated annual energy production of
the real Gemasolar plant is about 80 GWh.
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Figure 32: Impact of AEP optimization of Gemasolar with pattern optimization and
multi-step optimization on the economic values, which are normalized to
the original layout.
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4.4. Discussion

The first thing to note is that the AEP of the modeled CSP plants significantly differs
from the estimated AEP of the real CSP plants. The AEP yielded by the simulation
differed by 14.6% for PS10, 6.5% for PS20 and 10.8% for Gemasolar. These deviations
may occur for several possible reasons. On the one hand, the plant’s cited real-world
AEP values are estimated or planned values that fluctuate in reality simply due to
weather conditions. On the other hand, the CSP model does not perfectly reflect
reality, e.g. energy losses due to maintenance work or due to overheating of the receiver
during phases of strong solar radiation are not taken into account. Furthermore, the
model simplifies the energy storage and power generation processes and assumes the
same generator with different capacity for all three CSP plants. Finally, the model
requires accurate technical information about the power plants, but this is difficult to
obtain, due to the incompleteness and inaccuracy of publicly available information on
CSP plants.
The results of the case-study show that the four presented patterns perform differently.
Considering only the pattern optimization, the hexagon pattern, radial staggered pat-
tern and the spiral pattern outperform the original layouts. The staggered cornfield
pattern performs the worst and is even significantly worse than the original layout of
the PS10 and PS20 plants.
Compared to the pattern optimization, the multi-step optimization manages to further
improve the heliostat layouts through the use of the local search. In general, the radial
staggered pattern performs slightly better than the spiral pattern, closely followed by
the hexagon pattern. Despite the local search, the staggered cornfield pattern performs
the worst, even worse than the original layout for the PS10 and PS20 plants. The
multi-step optimization generated the best performing heliostat layouts for all three
CSP plants using the radial staggered pattern. The improvement of the AEP compared
to the original heliostat layout was 0.927% for PS10, 0.567% for PS20, and 2.146% for
Gemasolar (Table 19, 21, 23).
An AEP improvement of around one percent may not sound like much, but it should
be noted that this means a similarly high AR improvement of tens to hundreds of
thousands of euros per year. This results in an increased profitability of the CSP plant
without incurring additional operating and maintenance costs.
The best performing layout for PS10 was able to increase the IRR by 1.59%, NPV by
2.56% and reduce the PP by 1.76% (Figure 30). For PS20 the best performing heliostat
layout increased the IRR by 0.95%, NPV by 1.53% while the PP was reduced by 1.05%
(Figure 31). Finally, the best performing layout for Gemasolar was able to increase
the IRR by 5.42%, NPV by 16.03%, while decreasing the PP by 5.59% (Figure 32).
Overall, the LCOE compared to the original layout was reduced by 1% for PS10, 0.6%
for PS20 and 2.15% for Gemasolar, which enables renewable electricity from these CSP
plants to be more competitive on the electricity market.
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5. Conclusion

In this work, a novel multi-step optimization pipeline for heliostat layouts in CSP plants
was developed. The underlying CSP model implemented in the SunFlower project was
presented and the optical sub-model was successfully validated against the existing
raytracing softwares Tonatiuh and SolTrace.
For the first step in the multi-step optimization pipeline, a pattern-based optimization
using the downhill simplex method was implemented and applied to one of four different
parametrized patterns. The search spaces of the three most promising patterns were
extended by scaling along an arbitrary axis. For the second step of the pipeline,
a pattern-free local search optimization algorithm was developed which refined the
optimized patterns.
In a case-study, three Spanish CSP plants, PS10, PS20 and Gemasolar, were modeled
and their heliostat layout were optimized using the multi-step optimization pipeline.
The results of the case study show that multi-step optimization not only provides better
results than pattern optimization alone, but can also improve the original layouts and
thus increase the profitability and competitiveness of these CSP plants.

Limitations Despite good results, there are some limitations to the multi-step opti-
mization algorithm.

• Long runtime
The runtime depends linearly on the number of desired heliostats in the field.
Due to ever larger CSP plants with more and more heliostats, this optimization
pipeline is becoming increasingly slower. Especially the pattern evaluation (Sec-
tion 3.1.5) slows down the downhill simplex algorithm since most of the time an
additional annual simulation of a substantially larger pattern is needed to select
the most efficient heliostat positions.

• Local search
After a few iterations, the local search algorithm worsen the AEP of the heliostat
layout as seen in Figure 29, indicating that the algorithm moves heliostats to more
inefficient positions. This is probably due to the subgrouping approach, which
ignores the influence of non-adjacent heliostats. Additionally, it may also be due
to inaccuracies caused by the subgrouping and a small number of rays traced per
square meter.

Another disadvantage of the local search is that very regular patterns can become
quite chaotic due to local optimization as seen in the optimized heliostat fields
in the appendix, which is a problem for maintenance roads through the heliostat
field.
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Future work To further improve the performance of the multi-step heliostat layout
optimization, it may be of interest to investigate the following ideas:

• Improve simulation runtime
The optimization heavily benefits from an improved simulation runtime as more
possible layouts can be tested in the same amount of time. The existing model
may be analyzed to find ways to parallelize computations. Especially the ray-
tracer of the optical model, which is the most time-consuming part of the entire
model simulation may benefit from parallelization. It may even be possible to
utilize the GPU to further accelerate the raytracing.

• Pattern evaluation
The current pattern evaluation (Section 3.1.5) needs to evaluate a substantially
larger pattern to be able to select the most efficient heliostat positions. A more
runtime efficient approach is to select the desired heliostat positions based on
their position in the field using an approach similar to the precomputed Yearly
Normalized Energy Surface map as proposed by Sanchez and Romero [32].

• Pattern parameters
Additional parameters, which increase the search space for the pattern optimiza-
tion may be investigated.

• Pattern optimization
Other derivative-free optimization algorithms such as the Multilevel Coordinate
Search [20] may be implemented and their number of evaluations and convergence
behavior compared with the downhill simplex method.

• Pattern-free optimization
Instead of the local search, other pattern-free optimization algorithms such as
Simulated Annealing, which can be initialized with a given heliostat layout, may
be implemented and their performance in the multi-step optimization pipeline
compared with local search.
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A. Optimized heliostat layouts

−400 −200 0 200 400
0

200

400

600

800

60

65

70

75

E
le
va
ti
on

ab
ov
e
se
a
le
ve
l
[m

]

Figure 33: Original PS10 layout (red) and optimized layout (black) from the local
search algorithm.
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Figure 34: Staggered cornfield pattern for PS10 before (red) and after local search
optimization (black).
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Figure 35: Hexagon pattern for PS10 before (red) and after local search optimization
(black) .
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Figure 36: Radial staggered pattern for PS10 before (red) and after local search opti-
mization (black) .
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Figure 37: Spiral pattern for PS10 before (red) and after local search optimization
(black) .
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Figure 38: Original PS20 layout (red) and optimized layout (black) from the local
search algorithm.
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Figure 39: Staggered cornfield pattern for PS20 before (red) and after local search
optimization (black).
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Figure 40: Hexagon pattern for PS20 before (red) and after local search optimization
(black).
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Figure 41: Radial staggered pattern for PS20 before (red) and after local search opti-
mization (black).
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Figure 42: Spiral pattern for PS20 before (red) and after local search optimization
(black).
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Figure 43: Original Gemasolar layout (red) and optimized layout (black) from the local
search algorithm.
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Figure 44: Staggered cornfield pattern for Gemasolar before (red) and after local search
optimization (black).
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Figure 45: Hexagon pattern for Gemasolar before (red) and after local search optimiza-
tion (black).
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Figure 46: Radial staggered pattern for Gemasolar before (red) and after local search
optimization (black).
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Figure 47: Spiral pattern for Gemasolar before (red) and after local search optimization
(black).
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