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Abstract

Over the years the selection of procedures present in SMT Solving has grown
a lot, with one of the latest algorithms dating just a few years ago. It should
not matter whether the interest is in linear real arithmetic or in non-linear real
arithmetic, while having a collection this varied and with algorithms ranging
from the well known Simplex algorithm to new procedures such like Subtropical
Satisfiability. Satisfiability modulo theories solving is an extension of Satisfia-
bility Checking. In the domain of Satisfiability modulo theories it is determined
whether formulas of first-order logic are satisfiable or not. For this, theory
solvers are introduced. Because of the importance of this domain and the very
limited number of generated exercises present for SMT, it is necessary to convey
to the students exercises consisting of these theory solvers, in order to under-
stand and learn them.

This thesis aims to describe the already two mentioned algorithms, Simplex
and Subtropical Satisfiability, in addition with Interval Constraint Propagation
and to present a way to generate exercises that can be used then for teaching
purposes. The quality criterias can differ from one algorithm to another and
they will be presented alongside each algorithm. As an example, for the simplex
procedure it is important to make sure that a minimum number of pivoting
steps is present and that at the end only integer values are to be found in the
tableau. Another goal of this thesis is to elucidate the difficulties that come up
when generating such algorithms and future work that can be accomplished in
order to improve the generating of these algorithms or to expand to a larger
number of procedures.
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Chapter 1

Introduction

With the growth of Satisfiability Modulo Real Algebra’s library of present procedures
and its presence in many domains, grows also the need of learning these procedures.
In this domain SAT solvers are used in combination with theory solvers to solve the
desirable decision problem for formulas of first-order logic. These decision problems
are meant to determine if a conjunction of formulas is satisfiable or not. Theory
solvers are introduced in order to deal with many kinds of formulas. These theory
solvers range from being used for linear integer arithmetic formulas to non-linear
real arithmetic formulas. This thesis is focusing on three theory solvers, mainly on
the Simplex algorithm and its first stage for dealing with linear integer arithmetic
procedure decisions, on Interval Constraint Propagation and Subtropical Satisfiability,
with both being incomplete and approached for real arithmetic.

The Simplex algorithm is used to find a solution for the constraints, that are given
as input. This would be the first step that is usually present in the Simplex approach.
The second stage consists of minimizing or maximizing the solution, depending on the
requirements of the problem. This part is omitted by the theory solvers in SMT, as it
is not of interest. On the other hand, as mentioned before, the ICP and Subtropical
Satisfiability solvers deal with non-linear real arithmetic problems. The ICP uses
interval arithmetic and the extension of Newton’s method to find a way to contract
the intervals that contain the roots of the polynomial. Every present variable has
a lower and an upper bound, and these bounds are used in the propagation step.
One downside of ICP would be the fact that it is not complete, meaning that in
some cases the algorithm might return Unknown as output, instead of a propagated
interval. The Subtropical Satisfiability algorithm deals with multivariate polynomials
and uses the Intermediate Value Theorem to find solutions, when having values for
which the polynomials are greater and lesser then 0. It is a very fast method, but
may return Unknown in some cases. For this reason, this two procedures can be used
in combinations with other theory solvers.

The goal of this thesis is to provide these three procedures in detail and to present
a way to generate exercises for them, with the question of the problem and with every
step of the solutions being presented. The question of the problem is meant to explain
the students what is expected of them when solving the exercises. Having generated
exercises can end up being beneficial for both the students and the institute. The
institute can, in matter of minutes, generate a finite but large number of exercises,
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which come, as mentioned before, with the question and solution and can be trans-
formed directly into PDF documents. Especially under the current circumstances
these generated exercises can facilitate an easier way to organise online exams, which
can be more than welcomed by a lot of students. Another goal would be to explain
the difficulties that can occur when trying to generate such exercises and the quality
requirements needed for these exercises, which can range from having a fixed number
of steps before completion to having only integer values, that are easier to be calcu-
lated by students.
The contributions of this thesis are meant to help a future work in this domain of gen-
erating such kind of exercises, by explaining how they are generated and, as mentioned
before, what kind of difficulties transpire. Some of these difficulties are resolved, while
some are left for future work.

Starting with chapter 2 every procedure will have its own section, where the gen-
eral knowledge of the algorithm will first be presented followed by the quality require-
ments that are expected when generating problems. The chapters will end with the
generation of every one of these methods, where an example will be present, showing
how these created exercises are presented in form of a PDF document. The thesis
will finalize with a quick summary followed by related work present in the domain of
generating exercises and future work that can be brought.



Chapter 2

Simplex

2.1 First stage
A procedure that can be used when given a set of linear real arithmetic constraints,
is the simplex method. Usually, the simplex algorithm is used for finding an optimal
solution to linear programming problems, but its first step is used by SMT Solvers to
find a solution to the system of the linear constraints. The given input consists of a
number of constraints of the form:

n∑
j=1

aijxj ./i bj , (2.1)

with aij , bj ∈ Q, ./i ∈ {= , ≤ , ≥} for i ∈ {1,...,m} with m constraints. The solution
of the system will constitute a convex polyhedron.

Example 2.1.1. For the three constraints, x1 + x2 ≥ 2; −2x1 + x2 ≥ 0 and −x1 +
x2 ≥ 0, it can be seen in the following figure how a geometrical representation of the
constraints would look like:

−1 0 1 2 3 4 5

0

2

4

x1

x
2

Figure 2.1: The system of constraints defining a convex polyhedron
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For simplicity reasons only inequalities that are not strict are considered. Ex-
tensions of the simplex algorithm for strict inequalities have been brought, like for
example in [KBD13].

First, these inequalities need to be brought to a standard form. This is done by
taking the literals of the form 2.1 and adding slack variables :

n∑
j=1

aijxj − si = 0 , si ./i bj . (2.2)

s1,...,sm are the added slack variables. With the help of these slack variables the
constraints will only consist of equalities. These constraints are then used for the
theory solver comprising the simplex tableau. The tableau includes the two sets
of basic B and non-basic N variables, with the before added slack variables being
the basic variables, which build the identity matrix on the right side of the tableau.
These basic variables are compiled with the help of the other free variables from the
linear constraints. This is the reason why these basic slack variables are also called
dependent variables.
Every row of the tableau consists of these equations expressing the basic variables :∧

si∈B
(si =

∑
xj=N

aijxj) (2.3)

Constraint x1 x2 s1 s2 bound
Assignment 0 0 0 0 0
f1 a11 a12 1 0 b1
f2 a21 a22 0 1 b2

Table 2.1: Abstract form of a tableau with the dependent variables added. This form
is maintained throughout every operation present.

Throughout all operations the algorithm maintains the form of the tableau and an
assignment α for all variables. At first, all variables are assigned the value α(xi) = 0
and the basic variables are the newly added dependent variables. The dependent
variables need to satisfy their bounds. The assignments mentioned before are used
to determine if the variables are violating their bounds or not and will constitute the
solution at the end of the procedure.
If the algorithm finds a dependent variable si, whose bounds are violated then it
appeals to pivoting. Pivoting consists of looking for a non-basic variable xi in the
linear combination of si. The assignment of this found variable can be then either
increased or decreased in order for the dependent variable to maintain its bounds.
While pivoting, the simplex changes its form and location by using one its variables
and shifting it around the hyperplane, while the values of the other variables stay
untouched. After this step the variable xi takes the role of the dependent variable
si in the tableau, becoming a basic variable and building the identity matrix of the
right side of the tableau. At the same time, xi will be replaced in every other linear
combination by si. After these changes, the assignment of si is set to the previously
violated bound. The assignments of the rest of the basic variables xj are increased
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by :

ϑ = α(xj) +
li − α(xj)

aij
, (2.4)

where li constitutes the bound and aij the coefficient present in the tableau. The
algorithm repeats pivoting until no bounds are violated by the dependent variables
anymore or no suitable variables for pivoting were found. If no bounds are violated
with the current assignments, these assignments become the model for the formula.
In case there is a violated bound present, the algorithm needs to send as output an
explanation consisting of the constraints, which combined are unfeasible.
For linear inequalities consisting of integer variables the Branch-and-Bound method
is most commonly used. At the beginning the algorithm works the same, because
if there is no solution found for real variables, there won’t exist any solution for the
integer ones either. If there exists a solution but for at least a variable xj the assigned
value α(xj) is real then the Branch-and-Bound algorithm will try to find a solution
for an integer assignment v ≤ bα(xj)c or v ≥ dα(xj)e.
One problem with Simplex is that cycles can occur where the same pivoting steps are
executed again and again and the bases present are repeated. One easy way to avoid
them is to use Bland’s Rule, which consists of having a determined order in which
variables with violate bounds are picked for pivoting, explained in [Pan90].
This concludes the first step of the Simplex algorithm. As mentioned before, the
second step is two maximize or minimize depending on the requirements the solution
found. Because the theory solver is only preoccupied with the existence of a solution,
this step is omitted.

Constraint x1 x2 bound
Assignment 0 0 0
f1 -1 0 1
f2 6 1 4

Example 2.1.2 (Creation of matrix). The matrix above shows an initial tableau with
the bounds, initial assignments and coefficients. Every value necessary to start the
algorithm is present. The first step is to bring the tableau to a standard form.

Initially the matrix needs to be brought to the standard form. This is done by
increasing the size of the matrix, in this case the number of columns by the number of
rows. Every row should contain a new slack variable. These slack variables also needed
to get the initial assignments and the bounds depending which row(constraint) they
represent. After the preprocessing is done, the algorithm goes through these slack
variables to check if any of these slack variables is violating their bounds.

Constraint x1 x2 s1 s2 bound
Assignment 0 0 0 0 0
f1 -1 0 1 0 1
f2 6 1 0 1 4

Example 2.1.3 (Addition of slack variable). The tableau above shows the extended
matrix after the slack variables were added. The initial assignment for the slack
variables is equal to 0.
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After the addition of slack variables, the bounds of these variables are checked
from left to right. The first slack variable that violates its bound is picked. The order
can also be determined by Bland’s Rule, one aspect that can be added in future work.
Because the matrices that are used are this small, the usage of Bland’s Rule is not a
necessity. When a slack variable has been found, that violates its bound, a candidate
for pivoting needs to be found. After such a candidate has been found, the bound
of the variables is "fixed" and a new violating slack variable is searched for. This
is repeated until no violating variables are present anymore. If this is the case, the
current assignments represent a solution for the linear combination of the constraints.

Constraint s1 x2 x1 s2 bound
Assignment 1 0 -1 -6 0
f1 -1 0 1 0 1
f2 -6 1 0 1 4

Example 2.1.4 (First pivot step). In this example the first violating slack variable
was s1. The candidate for the pivot step was x1. After this step the new assignment
of α(s1) = 1 and α(s2) = −6.

Constraint s1 s2 x1 x2 bound
Assignment 1 4 -1 10 0
f1 -1 0 1 0 1
f2 6 1 0 1 4

Example 2.1.5 (Second pivot step). In this example the second violating slack vari-
able was s2. The candidate for the pivot step was x2. After this step the new assign-
ments are α(s1) = 1 and α(s2) = 4. Because no more slack variable is violating its
bounds, the algorithm terminates and the current assignments constitute the solution.

2.2 Quality requirements
The most important aspect that needs to be present when dealing with the simplex
algorithm is that every current coefficient can be easily read from the matrix that
represents the tableau. With the help of this matrix every function present in the
implementation needs to know the locations of the basis variables, the current as-
signments of the variables or, as mentioned before, the coefficients of the constraints.
Every operation should be automated so that the functions can operate on matrices
of different sizes for n×m, for n,m ∈ {1,2,3}.

Another essential feature is a desired number of pivot steps that take place, so
that the algorithm does not end, for example, after just one pivot step when the num-
ber of constraints is 3. This can be ensured that the bounds are all greater than 0,
knowing that all assignments start with 0. If every bound is lesser than 0, then every
constraint is trivially satisfied with the solution being 0. Remember that no strict
inequalities are present. Another way to guarantee at least two steps of pivoting, is
to have some coefficients that are negative. This way the updated assignments for
the dependent variables don’t necessarily exceed 0 even though they were not the
variables present in the pivoting. In addition to this, the randomised coefficients at
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the start can be picked in such a way that, for example, every dependent variable is
present in a pivot step. For instance, for a matrix of the form n, the algorithm will
have n steps until a feasible solution is found. This can be done when calculating
’in advance’ every operation present. If this is not the case, new coefficients will be
randomised. This method can, obviously, be improved, but taking in consideration
how small the matrices are, the alteration will not make a big difference.

One other quality is to have the exercise automatically generated in a PDF doc-
ument, with the question of the problem and solution being presented with every
important step. Important aspects that can be written when presenting the solution
is what candidates are chosen for the following pivot step and the succeeding tableau.

Finally, an aspect that needs to be taken into consideration when dealing with so
many operations, is to ensure that throughout the procedure only integer numbers
are present. Having only integer numbers simplifies the operations a lot. Again, this
can be done by calculating beforehand the coefficients that will occur with the current
randomised numbers. If these numbers don’t satisfy this requirements, new numbers
will be generated. The difficulty lies in having every or almost every operation with
the current coefficients calculated beforehand. After just a few pivoting steps the
number of operations can grow significantly. Here is important to ensure that no
infinite loops can be created. This is guaranteed by checking on whether the desired
integer property of every value is still valid. After the operations were calculated and
the property is valid, the loop can end and the exercise will be presented.

2.3 Generation of exercises

It is important that the user has the ability to choose on how big the tableaus will
be. This can be done by asking what the number of constraints and variables should
be present.
Every exercise can start with a question that is intended to explain the students what
is expected when solving the exercise. For the simplex exercises a question could look
like: "Given the following tableau, consisting of constraints, find a solution. If no
solution can be found, an explanation is required as to why this is the case. " The
first step needed to generate the problem involves the matrix that will contain the
coefficients of the constraints. The rows will represent the number of constrains, while
the columns will symbolize the number of variables. All values can be randomised from
a specific list, so that only desired numbers will be present. Besides the coefficients
of the constraints, the bounds are also generated and are found on the right sides of
the constraints. As mentioned before, it is important that every information needed
can be read from the matrix. For this reason the first row will also contain every
assignment for the variables underneath. Every tableau constitutes a step in the
exercise. After every pivot step a new tableau is shown as output.
After the user decides on the number of constraints and variables the program will
generate the exercise alongside the solution in a PDF document.
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Exercise: Given the following tableau, consisting of con-
straints, bring it to the standard form and find a solution.
If no solution can be found, an explanation is required
as to why this is the case. The order of choosing pivot
candidates can be x1 > x2 > s1 > s2.

Constraint x1 x2 bound
Assignment 0 0 0
f1 -1 0 1
f2 6 1 4

Solution: Added slack variables:

Constraint x1 x2 s1 s2 bound
Assignment 0 0 0 0 0
f1 -1 0 1 0 1
f2 6 1 0 1 4

The slack variable with number 1 is violating its bound,
because 0 < 1.
The candidate chosen for pivoting is the first variable
x1.

Constraint s1 x2 x1 s2 bound
Assignment 1 0 -1 -6 0
f1 -1 0 1 0 1
f2 -6 1 0 1 4

The slack variable with number 2 is violating its bound,
because −6 < 4.
The candidate chosen for pivoting is the second variable
x2.

Constraint s1 s2 x1 x2 bound
Assignment 1 4 -1 10 0
f1 -1 0 1 0 1
f2 6 1 0 1 4

1
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No slack variable is violating its bound. The solution
consists of x1 = −1 and x2 = 10.

2

Figure 2.2: PDF document generated for a simplex exercise.
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Chapter 3

Interval Constraint Propagation

Interval Constraint Propagation [VHMK97] is a procedure that uses propagation of
intervals in order to solve quantifier-free nonlinear real arithmetic formulas. It is in-
complete and even though the output may be ’Unknown’ it can still end up being
useful because of the reduction of the intervals and thus the search space. It is a
procedure that can be used in combination with other theory solvers.
The theory solver Interval Constraint Propagation becomes as input a series of poly-
nomials that can be either univariate or multivariate. Each of these polynomials are
defined over interval domains. Every variable present in these polynomials has a set
of bounds, specifically a lower and an upper bound. In order to deal with these in-
tervals Interval Arithmetic is introduced, which is used for the addition, subtraction,
multiplication and lastly, division.

3.1 Interval Arithmetic
First of all, the real arithmetic operations need to be partially extended for operation
with intervals. For +,−, ·,÷ : R × R → R, R will be extended to R ∪ {−∞, +∞}.
For two real numbers a,b ∈ R the operations will be defined as:

Addition −∞ b +∞
−∞ −∞ −∞
a −∞ a+ b +∞
+∞ +∞ +∞

Table 3.1: Table consisting of addition arithmetic with −∞ and +∞

Subtraction −∞ b +∞
−∞ −∞ −∞
a +∞ a− b −∞
+∞ +∞ +∞

Table 3.2: Table consisting of subtraction arithmetic with −∞ and +∞
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Multiplication −∞ −∞ < b < 0 0 0 < b < +∞ +∞
−∞ +∞ +∞ 0 −∞ −∞
−∞ < a < 0 +∞ a · b 0 a · b −∞
0 0 0 0 0 0
0 < a < +∞ −∞ a · b 0 a · b +∞
+∞ −∞ −∞ 0 +∞ +∞

Table 3.3: Table consisting of multiplication arithmetic with −∞ and +∞

Division −∞ −∞ < b < 0 0 0 < b < +∞ +∞
a 0 a÷ b a÷ b 0

Table 3.4: Table consisting of division arithmetic with −∞ and +∞

It is to be observed that the tables above are only partial. Cases that don’t show
up in the tables, don’t appear in any exercises either and are not needed.

An interval A is a closed and connected subset of R, which can be defined as
follows:

A = [A ; A] = {v ∈ R |A ≤ v ≤ A}. (3.1)

A ∪ R ∪ {−∞} denotes the lower bound and A ∪ R ∪ {+∞} the upper bound. This
interval A is called bounded if both the lower and upper bounds are unequal −∞ and
+∞. Is this not the case, they are called unbounded. In case of the presence of point
intervals, [v,v] is defined as {v} and can be written simply as v, where v ∈ R.

The operations needed will be presented as in [Kul09]. As mentioned before, when
dealing with intervals, real arithmetic needs to be extended to Interval Arithmetic.
The semantics of every used operator is defined below:

+,−, ·,÷ : I× I→ I, (3.2)

where I is the set of all intervals.

Definition 3.1.1 (Interval Addition). The addition of two intervals A,B with A =
[A ; A] and B = [B ; B] is defined as A+B = [A+B ; A+B] or A+B = ∅ in case
either A or B is empty.

Definition 3.1.2 (Interval Substraction). The addition of two intervals A,B with
A = [A ; A] and B = [B ; B] is defined as A−B = [A−B ; A−B] or A−B = ∅ in
case either A or B is empty.

Definition 3.1.3 (Unary interval minus). −A is defined as 0 − A = [−A ; −A] for
non-empty Interval A = [A ; A].

Definition 3.1.4 (Interval Multiplication). The multiplication of two non-empty in-
tervals A,B with A = [A ; A] and B = [B ; B] is defined as A · B = [min(A · B , A ·
B ,A ·B ,A ·B) ; max(A ·B ,A ·B ,A ·B ,A ·B)] or A ·B = ∅ in case either A or B
is empty.

Example 3.1.1. For two intervals A = [−2; 3] and B = [3; 5] their multiplication is
A ·B = [−6; 15].
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Because this procedure deals with polynomials that are not necessary linear, the
case where an interval is multiplied by itself needs to be taken into consideration.

Definition 3.1.5 (Interval Square). For a non-empty interval A = [A ; A] the square
of A is defined as A2 = (A ·A) ∩ [0 ; +∞].

Example 3.1.2. For an interval A = [−2; 2] its square is equal to [−2; 2]2 = [0; 4].

Definition 3.1.6 (Interval Division). The division of two intervals non-empty A,B

with A = [A ; A] and B = [B ; B] is defined as A · 1
B

= A · [ 1
B

;
1

B
], where 0 /∈ B.

In case 0 ∈ B, the possible results can be depicted from table 3.5. Note that the
interval that results can contain a gap.

A÷B B = [0; 0] B < B B < 0 < B 0 = B < B
0 ∈ A (−∞ ; +∞) (−∞ ; +∞) (−∞ ; +∞) (−∞ ; +∞)
A < 0 ∅ [A/B ; +∞] [−∞;A/B]∪

[A/B ; +∞]
[−∞ ; A/B]

0 < A ∅ [−∞ ; A/B] [−∞;A/B]∪
[A/B ; +∞]

[A/B ; +∞]

Table 3.5: Table consisting of possible cases of dividing when 0 ∈ B

3.2 ICP Algorithm
The aim of the procedure is to find the roots of a polynomial. The interval that
contains the roots proceeds to be propagated, such that the search space becomes
smaller. A method to do such a thing is the Extension of Newton’s Method. The In-
terval Constraint Propagation Module becomes as input a conjunction of inequations
of form p ./ 0 with ./ ∈ {< , ≤ , ≥ , >} and where p is an univariate or multi-
variate polynomial, which is continuously differentiable. On these inequations some
preprocessing steps are required such that the linear and non-linear polynomials are
separated from each other and that the inequations are transformed in equations. In
this case of generation of exercises only univariate polynomials are taken into consid-
eration and only one step of a contraction is performed on each polynomial. Because
of this, the preprocessing is omitted. More information on how the precprocessing
is done and how the algorithm works for multivariate polynomials is to be found in
[SÁRL13]. The algorithm itself consists of choosing randomly or by certain heuris-
tics a contraction canditate, on which the contraction is performed. A contraction
canditate can be comprised of a polynomial p and a variable x present in p. The
contraction step is made with the help of Newton’s extended method.

3.2.1 Extension of Newton’s method
Newton’s method is a root finding algorithm, which consists of producing successively
approximations of the roots of a polynomial. The approximations need to get closer
to the root with every step. If this is not the case, then the method is diverging,
something that can happen often when dealing with linear polynomials, and the
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approximation needs to be stopped. The method starts with a chosen starting point
s0 and the values of the polynomial and its derivative in this point s0. In case the
polynomial is multivariate and consists, for example, of n variables, then by assigning
values to n−1 variables, the resulting polynomial becomes univariate and the method
can be applied. By having the starting point s0

s1 := s0 +
f(s0)

f ′(s0)
(3.3)

will be a better approximation of the root than s0 was. This step is continued until
an appeasable approximation is found. Note that f ′(s0) denotes the derivative of the
polynomial f in point s0.

x

y

f(x) = x2

s0s1

Figure 3.1: A function f(x) = x2 and its derivative f ′(x) in a starting point s0. The
new point s1 will be a better approximation for the root.

This method is extended in order to cope with interval-valued polynomials. It was
presented by [HR97]. This extension makes use of the first-order version of Taylor’s
theorem, which denotes that

∀s,x ∈ A ∃ξ ∈ A : f(x) = f(s) + (x+ s) · f ′(ξ), (3.4)

where f is a interval-valued polynomial, x a variable present in f , A a starting interval
for x and s can denote the center point in interval A. In case f is a multivariate
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polynomial A becomes a set box of intervals for every variable in f , but, as stated
before, in this case only univariate polynomials are taken into consideration when
generating them. Assuming that f ′(ξ) is not equal to 0, transforming the equation
from above for a root x of f , then:

x = s− f(s)

f ′(ξ)
. (3.5)

By replacing ξ with the whole interval A, it results the following equation:

A′ = s− f(s)

f ′(A)
. (3.6)

Note that if f ′(A) is not equal to zero, but carries a zero, the resulting interval A′
will contain a gap and it will be calculated as in Table 3.5.

Example 3.2.1. Let f = x2 − 2x + 1 with its root in 1 with a starting interval
A = [0,3] and a sample point s = 3. Having the polynomial and A, the evaluation of
the set of derivatives of f in A can start, where f ′ = 2x− 2.

f ′(A) = [2; 2] · [0; 3]− [2; 2] = [−2; 4].
The next step is to evaluate the polynomial f for the sample point s0 :

f(3) = 32 − 2 · 3 + 1 = 4.

After this, the contraction step can begin :
The set of possible zeros in A :

s− f(s)

f ′(A)
= [3,3]− [4; 4]

[−2; 4] = [−∞; 2] ∪ [4; +∞].

Then new contracted interval A′ will be:

A′ = [0; 3] ∩ ([−∞; 2] ∪ [4; +∞]) = [0; 2].

3.3 Quality requirements
As mentioned before, because of simplicity reasons, only univariate polynomials are
taken into consideration. In addition to this only one step of propagation is done on
every polynomial present.
The most important aspect when generating such polynomial root finding problems is
to know beforehand these roots. In a similar way on how the coefficients are generated
for the simplex algorithm, the roots of every polynomial will be stored in a matrix,
where every row represents a polynomial. With the help of Vieta’s formulas the co-
efficients of these polynomials can be calculated. By knowing the interval on which
the roots are found, the starting interval for Newton’s method A can be produced,
for example by containing all but one root. If the polynomial possesses only one root,
then that root should be included. Another benefit of knowing the roots in advance
is to evaluate how good the propagation at the end is.

Vieta’s formulas can be used to construct the coefficients of a polynomial with the
help of the roots. By the fundamental theorem of algebra every polynomial of grad n
is set to have n complex roots. These roots don’t have to be distinct.
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Definition 3.3.1 (Vieta’s Formulas). For a polynomial f = axx
n + an−1x

n−1 + ...+
a1x + a0, with roots r1, r2,...,rn, the Vieta’s Formulas can be written in a condensed
way as : ∑

1≤i1≤i1≤...≤ik≤n(ri1 · ri2 · ... · rik) = (−1)k an−k
an

.

The indeces ensure that the roots are taken i at the time.

Keeping an eye on the time and space complexity is also very important. As it
will be mentioned in the future work chapter of this thesis, the implementations of
every algorithm is far from perfect. Because ICP contains very many operations it is
important that the generating does not take too long. For this reason some methods
can be implemented together. For example, evaluating an interval in a function and
constructing the derivative of this function can be done in the same loop of the same
method. As it can be observed in Example 3.2.1 the only time the evaluating of a
function for an interval is necessitated is for the the set of derivatives of the polyno-
mial for the given interval.

The precision of the operations is also very important. Because of this, the GMP
Library was used, which is a precision arithmetic library. This library does not have
a predefined value for infinity, so one had to implemented. By doing this, also the
operations need to be overloaded in order to cope with the newly defined infinity
value. The most important operators are overloaded the same way the real arithmetic
is expanded for infinity.

The biggest difficulty present when dealing with interval arithmetic comes from the
fact that for two intervals A = [A ; A] and B = [B ; B] the result of [A ; A]+[−B ; −B]
differs from [A ; A]− [B ; B]. Because of the way the coefficients are stored in a ma-
trix, it is important for every method to know how to deal with a negative value. For
example, if a coefficient is a < 0, then the methods that deal with interval arithmetic
will interpret it as a point interval −[a; a], and not as +[−a;−a] or −[−a;−a].

As by the simplex algorithm, a question comes with every generated exercise in
order to explain what is meant to be calculated. Every exercise comes with the
solution, consisting of the most important steps when solving the problem. Again, as
by the Simplex procedure, the exercises are generated as PDF Document.

3.4 Generation of exercises
Every operation needs to be overloaded in order to work with intervals. Intervals
can be constructed with the help of a structure, which contains a lower and an
upper bound. The generation starts with the number of polynomials needed, plus the
number of roots for every polynomial. As mentioned before, every root is stored as
an coefficient on a row in a matrix.

Example 3.4.1. If the user intends to have two polynomials, both with 3 roots, then
the following matrix will be generated :

Polynomial r1 r2 r3
f1 1 2 0
f2 0 1 -2



3.4. Generation of exercises 25

Having the roots, the following polynomials will be constructed :

f1 = x3 − 3x2 + 2x, and f2 = x3 + x2 − 2x.

Because every value is read from finite lists containing the possible values for the
roots, it can happen that a polynomial contains a root more than once. In that case,
even though the desired number of roots was d, the polynomial will contain only d−1
roots. With the help of the values in this matrix and Vieta’s Formulas the coefficients
of every polynomial is calculated and stored in a new matrix. Again, every row will
constitute a polynomial and every column will represent the power.

Example 3.4.2. For the example from before, the following matrix would be created,
which constitutes the two polynomials :

Polynomial x0 x1 x3 x4

f1 0 2 -3 1
f2 0 -2 1 1
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After having the polynomials constructed and the roots, a sample point s0 and a
starting interval A are chosen in accordance with the roots. Having every important
information needed, the algorithm can start with calculating the derivative of the
polynomial for the interval A. The other value needed is the function value for point
s0. Having every value needed the generated exercise in form a PDF Document can
be constructed :

Exercise: Given the following polynomial f = x2−2x+1,
with the constraint f = 0, with the starting interval
A = [0, 3] and a sample point s = 3, perform one step of
constraint propagation using the Extension of Newton’s
method :

Solution:

f ′ = 2x− 2.

The set of derivatives of f is :

f ′(A) = [2; 2] · [0; 3]− [2; 2] = [−2; 4].
Evaluation of f in point s0 = 3 :

f(3) = 32 − 2 · 3 + 1 = 4.

The set of possible zeros in A :

s− f(s)

f ′(A)
= [3, 3]− [4; 4]

[−2; 4] = [−∞; 2] ∪ [4; +∞].

Then new contracted interval A′ will be:

A′ = [0; 3] ∩ ([−∞; 2] ∪ [4; +∞]) = [0; 2].

1
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Subtropical Satisfiability

4.1 Subtropical Satisfiability algorithm
Subtropical Satisfiability is a fast method that finds a strictly positive solution to
constraints of the form

f ./i 0, with ./i ∈ {> , ≥,=}, (4.1)

where f ∈ Z[x1,...,xn] with x = (x1,...,xn) as a vector of variables, is multivariate
polynomial. The moment a solution is found, the procedure returns it, but in case
no solution was found, the constraints may still hold. Because of this Subtropical
Satisfiability is incomplete. For this reason, as by ICP, it can be used in combination
with other theory solvers. As a procedure, it was first explained in [Stu15] and then
improved a few years later in [FOSV17].

The method starts with evaluating the polynomial in point 1, with the hope that
f(1,...,1) < 0. If f(1,...,1) = 0 and f = 0 was given as a constraint, Subtropical
Satisfiability can return 1 as a solution. If f(1,...,1) > 0 the method considers −f
instead. With f(1,...,1) < 0, the procedure tries to find a positive solution p, such
that f(p) > 0. It uses then the Intermediate Value Theorem, which states, that a
continues function, with a positive and negative value, contains a zero.

Definition 4.1.1 (Frame of a polynomial). For f ∈ Z[x1,...,xn] with x = (x1,...,xn)
it stands:

frame(p) = {pi | i ∈ {1,...,n}} for
∑

i=1,2,...n fpi
xpi

i .

Every frame pi can be partitioned into positive and negative frames, according to
the sign that fpi has.

frame+ = {pi ∈ frame(p) | fpi
> 0}, frame− = {pi ∈ frame(p) | fpi

< 0}.
(4.2)

Example 4.1.1. f = 3x3y − 4y2 + 2x2y2, with frame(f) = {(3,1); (0,2); (2,2)}.
The positive and negative frames are then chosen based on the sign of the coefficient :
frame+(f) = {(3,1); (2,2)} and frame−(f) = {(0,2)}.
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Definition 4.1.2 (Convex hull). For S ∈ Rd conf(S) ⊆ Rd is the unique inclusion-
minimal convex that contains S.

With the help of the convex hull, the Newton polytope can be defined:

Definition 4.1.3 (Newton polytop). The Newton polytope of a polynomial f is the
convex hull of its frame, such that newton(f) = conv(frame(f)).

Example 4.1.2. 0 1 2 3 4
0

1

2

3

4

A1

A2A3

For f = 3x3y− 4y2 +2x2y2 the above graph shows the newton polytope of its frames.

Definition 4.1.4 (Face of polytop). Let P ⊆ Rd be a polytop. A face of P with
respect to a vector n ∈ Rd is

face(n,P ) = {p ∈ P | nT p ≥ nT q} for every q ∈ P .

Every face that has a dimension of 0 is called a vertex. V (P ) denotes all vertices
in P . p ∈ V (P ) if and only if nT p > nT q for all q ∈ P \ {p}, for a vector n ∈ Rd.
Because frame(f) is always finite, it holds that

V (frame(f)) ⊆ frame(f) ⊆ newton(f).

Lemma 4.1.1. Be S ⊂ Rd finite and p ∈ S. Then it holds that the two following
statements are equivalent:
(1.) p is a vertex of conv(S) for a vector n ∈ Rd.
(2). A hyperplane H can be found, such that nTx+ c = 0 that strictly separates from
any other q ∈ S. The normal vector n is directed from H towards p.

Having found such a face p ∈ conv(S) and a hyperplane H that separates it from
the q ∈ conv(S) \ {p}, this face will dominate the entire polynomial in the direction
of the normal vector n with n ∈ Rd. With the help of a such hyperplane p will be
found, with all positive coordinates, such that f(p) > 0.

Lemma 4.1.2. Let f be a multivariate polynomial and p ∈ frame(f) a vertex of
newton(f) with respect to a vector n ∈ Rd. Then for all a ∈ R+ there is a a0 ∈ R+,
with a ≥ a0, such that :

(1.) |fpan
T p| > |∑q∈P\{p} fqa

nT q| and
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(2.) sign(f(an)) = sign(fp).

All that is needed to find a point p with all positive coordinates, such that f(p) > 0,
is to find a p ∈ frames+(f), which is a vertex of frames(f) with respect to a
vector n ∈ Rd. If such a point p is found the second part of the lemma assures that
sing(f(an)) = sing(fp) = 1, for a a ∈ R+ that is large enough. If sing(f(an)) =
sing(fp) = 1 holds then f(an) > 0 and thus, the point with all positive coordinates
has been found. The problem can be brought down to having such a p ∈ frames+(f)
and finding a hyperplane H : nTx+ c = 0 that separates it from the frame(f) \ {p}.
Let frame(f) ⊂ Rd and n ∈ Rd, then the problem can be encoded as:

ϕ(p,frame(f),n,c) = (nT p+ c > 0 ∧
∧

q∈frames(f)\{p}

nT q + c < 0), (4.3)

where p ∈ frame+(f). This is a linear problem with d + 1 real variables n and c.
This problem can be solved with an extension of the simplex algorithm in such a
way that it can work with strict inequalities. Because the interes is in finding the
entire solution set, the linear problem will be solved, in this case, with the help of
Fourier-Motzkin method.

After having f(1,...,1) < 0 < f(p), where p consists of real coordinates, the root
can be found on the straight line from (1,...,1) to p. This consits of three steps. First,
a new univariate polynomial f ′ is to be constructed from the original multivariate
polynomial f , by parameterising all variables in a new variable t ∈ [0; 1], such that
the straight line mentioned above is crossed. Then a root t0 is to be found for f ′ with
the help of bisection, for example. Finally, the root of f can be constructed as a point
on the straight line from (1,...,1) to p for the parameter t0 found in the second step.

4.2 Fourier-Motzkin

Fourier-Motzkin is the earliest method for solving linear inequality systems. It was
discovered by Fourier in 1826 and then re-discovered by Motzkin in 1936. It evolves
around the idea of variable elimination. After a variable is picked and eliminated, an
equisatisfiable formula materializes that does not contain the picked and eliminated
variable anymore. This step is repeated until all variables have been eliminated. The
method makes use of the lower and upper bounds of the variable to create inequalities
that do not contain that variable. For a variable xn the constraints can be subdivided
in constraints that put no bound on xn, in constraints that constitute a lower bound
for xn and constraints that compose an upper bound.
For an inequality of the form

∑n
j=1 aij · xj ≤ bi and a variable xn it stands that:

ain · xn = bi ·
∑n−1

j=1 aij · xj . According to the coefficient ain the the constraints can,
as mentioned before, constitute a lower or an upper bound for xn:

(1) : ain > 0⇒ xn ≤
bi
ain
−

n−1∑
j=1

aij
ain
· xj (upper bound),

(2) : ain < 0⇒ xn ≥
bi
ain
−

n−1∑
j=1

aij
ain
· xj (lower bound).

(4.4)
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Let βl and βu be the lower bound and, respectively, the upper bound for variable xn.
For each pair of this kind, a new constraint can be added in the system such that
βl ≤ βu. As explained before, this is done for every variable until the last constraint
comprises the solution of the system. This method works also if the linear problem
has both strict and non-strict inequalities, but because the Fourier-Motzkin algorithm
will only be used for the Subtropical Satisfiability method, which contains only strict
inequalities, that part will be omitted.

4.3 Quality requirements
The user can choose on how long the polynomial created will be by giving as input
the number of terms that the polynomial will have. By doing this, the difficulty of
the problem can vary, because the linear problem, with which the set of hyperplanes
is found, becomes bigger. Another aspect, that can influence the difficulty of an ex-
ercise for Subtropical Satisfiability, is the form of the constraint. If, for example, the
constraint created is of the form f > 0, the problem is solved by just finding a point
for which the polynomial in that point is bigger than zero.

The generated exercises will only contain one polynomial with two variables of
the form fxy. Because of this, every information needed for this kind of a multi-
variate polynomial can be stored, again, in a matrix. The generated numbers can
be randomised from different lists, depending on their role, for example, if they are
to represent the power of the variables or just coefficients. The reason behind it is,
that the powers should, in this case, not be negative and instead of randomising the
numbers until every value is positive, it would be much easier and convenient to just
have a second list, which is only used for the powers. The only input given is the
number of coefficients desired. Having the number of coefficients the matrix can be
constructed. The first value from the first column will be given from a list consisting
of three numbers −1, 0 and 1. This values will represent the relation of the polynomial
with 0. If the value is, for example, −1 it means that the constraint is of the form
f > 0. 0 will represent the equality and 1 will be used for ≥. The rest of the column
will remains zero. The first row will represent the coefficients, the second one will
represent the powers of the first variable x and the third the powers for the second
variable y.

Coefficient -1 -3 2
x 0 3 0
y 0 4 3

Example 4.3.1. The generated matrix above is representing the constraint −3x3y4+
2y3 > 0. This matrix contains every information needed in order to start the generated
exercise.

After the matrix is created it is checked, depending on whether f(1,1) < 0, if the
polynomial needs to be inverted. The inversion consists of only switching the negative
frames with the positive ones.
The second step consists of saving a current positive frame in an array, such that a
new matrix can be constructed as in 4.3. With the help of this new matrix the linear
problem will be solved.
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Example 4.3.2. For a constraint of the form 0 = −3x2y4 + 4x3y3 + 2x1y2 the
following linear problem would be created. Note that, f(1,1) = 3, for f = −3x2y4 +
4x3y3 + 2x1y2. Because of this, the polynomial −f is taken into consideration :

bound px py c
0 < 2 4 1
0 > 3 3 1
0 > 1 2 1

In this example the linear problem tries to find the set of hyperplanes that separate
the frame (2,4).

The matrix will then be brought to a triangular form. In this way, at the end, the
solution set can be read directly from the matrix. In order to create a hyperplane,
values should be picked for c, followed by py and then px. The values need to respect
the constraints. The correctness is guaranteed by building the correct linear problem
with the help of a matrix and then bringing the matrix into the correct triangular form.

Again, as by the Simplex and ICP procedures, the exercises should be created in a
PDF Document. This PDF Document will come with the question, that explains the
students what is expected to be calculated and with the solution, which will consist
of every important operation that takes place in this procedure.

4.4 Generation of exercises

As mentioned before, the generation starts with the number of terms in the polynomial
desired. With this number, the matrix containing every important value will be
generated. The coefficients can be randomised from different lists, depending on the
role of the coefficient. After evaluating the polynomial in point 1, the positive and
negative frames are created. The program will proceed in trying to find a solution
set for the existence of a hyperplane separating a positive frame from the rest of the
frames. The positive frame with the biggest coefficients will be chosen. By doing this,
the probability that this frame can be separated is bigger. Note that, for example in
figure 4.1.2, if a frame were to exist in the middle of the polytope, then that frame
would not be separable.
After the linear problem is solved, the PDF Document including the exercise can be
created.
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Exercise: For the following polynomial f over the real domain and
constraint, find the solution set for a hyperplane separating a posi-
tive frame p from the rest of the frame(f):

0 = −3x2y4 + 4x3y3 + 2x1y2

Solution: f(1, 1) = 3. Because the value of f in point 1 is greater
than zero, −f will be considered.
The set of positive frames is

frames+(f) = {(2, 4)}
The set of negative frames is

frames−(f) = {(3, 3), (1, 2)}
The positive frame, for which a separating hyperplane is searched is
(2, 4). The linear program for finding a hyperplane is constructed :

bound px py c
0 < 2 4 1
0 > 3 3 1
0 > 1 2 1

Bringing the matrix in a triangular form :

bound px py c
0 < 2 4 1
0 > 0 −3 −0.50
0 > 0 0 0.50

0.50 · c < 0⇒ c < 0 (1)

−3 · py − 0.50 · c < 0⇒ py > −0.16c (2)

2 · px + 4 · py + c > 0⇒ px > −2 · py − 0.50 · c (3)

The three inequalities constitute the solution set. Picking a value for
c, followed by py and then followed by px, will represent a hyperplane
separating the positive frame for the rest.

1



Chapter 5

Conclusion

5.1 Summary

The aim of this thesis was to present a way of generating exercises for algorithms
often used in the domain of Satisfiability modulo theories for students. These exercises
are meant to help the students understand the fundamentals of every algorithm by
consisting of problems that only contain easy constraints. These exercises include
almost every operation that can be present in the three algorithms. As explained
before, every example comes with the question, that explains the student what is
expected to be calculated and, most important, with the solution. Although the
number of exercises that can be generated in this manner is limited, the size of the
list that contains the integer values, with which the exercises are generated, guarantees
that a fair amount of them can be created. Because of this amount, these exercises can
be easily generated and used, for example, for online exams, that are very common
because of the current circumstances and preferred by many students. Because some
aspects of this generation are not perfect and because not every algorithm used in
SMT is present in this thesis, the opportunity for future work arises. This can consist
of improving the complexity on how the exercises are generated, of generating more
algorithms or of rising the number of possible exercises created.

5.2 Related work

As mentioned before, there are not a lot of works that handle generation of exercises,
especially for the domain of SAT and SMT solving. Prof. Kovács from the Vienna
University of Technology (TU Wien) has been publishing a few papers with the goal
of presenting ways to generate exercises for SAT/SMT Solving problems. This year
a paper was published, [HKR21], which introduced a way of generating this kind of
exercises meant for online exam sheets. In this paper it is explained how for generating
these exercises, values are stored and randomised with the help of lists, the same way
on how the exercises of the procedures, presented in this thesis, are generated.
There exists, on the internet, a number of online tools meant to solve linear problems.
Some of this tools can also randomise the starting values and thus, generating a linear
problem. A great online tool for solving and generating Simplex problems is the
Atozmath.com, made by Piyush N Shah. This site can also generate polynomials for
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which the roots are searched, with the help of the Newton’s method, for example.

5.3 Future work
As mentioned before, the generated algorithms can be improved, especially when it
comes to the complexity. For the simplex algorithm, when randomising the starting
coefficients, the process starts over when at some point in the future, with the given
values, a number is not integer. A more efficient way to implement this would be
to store the coefficients that are randomised throughout the algorithm and only to
change the values, for which the integer property is violated. For example, if at the
end a value is not integer because of the last coefficient randomised, then the algorithm
should not start from the beginning randomising the entire tableau, but only this last
coefficient. The problem is, that the tableaus are from the start very small and the
time complexity would not change a lot. A second problem would be the difficulty
in implementing such thing. The program should be able to tell that only because of
this one coefficient, the integer property is violated. More obvious improvements can
be brought to the other two algorithms, such as ICP or Subtropical Satisfiability. In
these two algorithms, at least two matrices are created to store information needed.
For example, for the ICP method, the program starts with a matrix that contains
only the the roots of the polynomials and then proceeds in creating a new matrix for
the coefficients. On top of this, throughout the implementations there are a lot of
temporal variables created to store values. So from the aspect of space complexity
the algorithms can also be improved.
Another obvious aspect, that can be improved, is the addition of more procedures
currently presented in the domain of SMT. These algorithms can vary from methods
that are used in combination with other theory solvers such as Branch and Bound
or Fourier-Motzkin to complicated ones such as Virtual Substitution [Wei88] or CAD
[Col75].
Finally, another improvement, that was brought up in the summary of the thesis, is
the raise of number of exercises that can be generated. Currently the algorithms use,
for generating these problems, lists of values, lists that range from 5 to 10 values.
Increasing the number of these values or implementing a better way of randomising
them, can increase the number of exercises that can be generated.
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