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1 Introduction

This thesis introduces a two-step optimization framework, which calculates the optimal
tilt and azimuth angles of a photovoltaic (PV) module based on annual plane-of-array
irradiance for a given location. Additionally, it proposes a self-shading model, which is
then used to determine the optimal inter-row gap for a given area of the PV park based
on the levelized cost of electricity. The different underlying models are introduced and
compared, and the results of the optimization are validated.

1.1 Motivation

Photovoltaik (PV) parks play a critical role in Germany’s energy transition within
the broader framework of the European Union’s goal of achieving carbon neutrality
by 2050. Ground-mounted PV systems, in particular, are central to scaling up so-
lar capacity because of their ability to contribute significantly to national electricity
generation while reducing dependence on conventional energy sources. Recent data
from Germany’s Federal Statistical Office (Destatis) [3] underlines this importance: in
the first half of 2025, electricity generation from PV increased by 27.9% compared to
the same period in 2024, reaching 39.3 billion kilowatt-hours. With a share of 17.8%
of total domestic electricity production, PV became the third most important energy
source, surpassing natural gas. This significant growth is attributed both to the ex-
pansion of installed capacity and unusually high sunshine duration, highlighting PV’s
rapidly growing role in Germany’s energy mix.

Conventional Energy Sources B {1 2025
Coal H1 2024
Natural Gas
Other Conventional ES
Nuclear Energy
Renewable Energy Sources
Wind Power
Photovoltaics
Biogas
Water Power
Other Renewable ES

0 10 20 30 40 50 60
Share %]

Figure 1: Electricity feed-in from renewable and conventional energy sources [4].

The motivation for developing a simulation model to optimize orientation, tilt, and
row spacing in ground-mounted PV parks lies in the growing demand for efficient, cost-
effective and sustainable solar energy systems. While PV is now one of the fastest-
growing renewable energy technologies, maximizing its performance requires careful
consideration of both technical and economic parameters.



Ground-mounted PV parks are highly sensitive to design factors such as the azimuth
and tilt angle, as well as the row spacing, which directly influence energy yield, land-use
efficiency, shading losses, and overall financial viability. Conventional design practices
often rely on statistical assumptions or generalized guidelines that fail to account for
site-specific conditions such as latitude, local climate, and seasonal solar angles. This
can result in suboptimal layouts, reduced energy production, and higher project costs.

The proposed simulation model provides a systematic framework to evaluate alter-
native configurations before implementation. In addition to integrating solar geometry,
shading analysis, and energy yield estimation, the model is also capable of calculating
the levelized cost of electricity (LCOE) for a planned PV park. This makes it possible
to assess not only technical efficiency but also economic profitability, turning the model
into a comprehensive design and decision-support tool.

Ultimately, this research addresses the urgent need for precise, data-driven tools to
strengthen the efficiency, reliability, and profitability of solar PV projects. Given the
accelerating role of PV in Germany’s power supply, as shown by its rapid capacity
growth and rising contribution to domestic electricity generation, optimizing PV park
design is central not only to the country’s energy transition but also to advancing scal-
able, cost-optimized renewable energy solutions in line with the EU’s carbon neutrality
pathway.

1.2 Outline

First, we introduce which data is needed to perform the simulation of a PV system.
Focusing on solar radiation, as well as parameters of PV modules and inverters, we
cover how they originate, what their relevance in the simulation is, which data is
needed, and how to source them.

Next, we introduce underlying models used by our optimization. Here, we cover why
the model is used and how its results are calculated. If necessary, we compare models
that simulate the same effect.

Then, we start with the first part of our two-step optimization, the optimization of
the module’s orientation. Therefore, we use and compare several models introduced
before, as well as different sources of irradiance. Afterwards, we draw a conclusion,
which combination of models and irradiance data sources is most accurate by compar-
ing them to a validation set and which algorithm is most performant without reducing
the accuracy of the result.

As for the second step, we introduce the self-shading model and its significance
on the optimal inter-row gap. In order to determine the optimal inter-row gap, we
optimize after three evolving objective functions which lead to the optimization after
the minimal levelized cost of electricity. The accuracy of this model is then compared
against a recent PV park in Germany in order to evaluate its accuracy.

In the end, we draw a conclusion, highlight the results of this thesis, and provide an
outlook on the future work.



2 Model Inputs

In order to simulate the performance of a PV system, data about the system and its
environment is necessary. This includes specifications on the components used by the
system, such as the PV module and the inverter. Additionally, data about the solar
radiation at the specific location of the PV system is needed, like the intensity of solar
radiation throughout the year.

2.1 Solar Radiation

Following Wesselak and Voswinckel [21], the source of the solar radiation used by the
photovoltaic effect to produce energy in solar cells lies at the Sun’s core. There, dur-
ing an atomic chain reaction, hydrogen cores fuse to helium cores, releasing a fraction
of the excess energy in form of photons. This causes the Sun’s surface to emit elec-
tromagnetic radiation, whose intensity decreases quadratically with the distance from
the Sun. At Earth’s atmosphere, this radiation is described by the solar constant
Isc = 1366.1 W/m?. The matter of the atmosphere then interacts with the radiation
in the form of reflections and scatterings. This leads to 28 % of the radiation being
reflected back into space and 25 % being absorbed, mainly by steam and ozone. 22 %
of the radiation reaching the atmosphere passes it without interactions and, therefore,
reaches Earth’s surface without reflections and scatterings, the so-called direct radia-
tion, while 25 % reach the surface after such interactions, the so-called diffuse radiation.
These proportions are taken from the averaged radiation balance of the Earth. For a
specific location, the ratio between direct and diffuse radiation differs based on weather
and the Sun’s position. If the weather is clear, the percentage of the direct radiation
rises, while the percentage of the diffuse radiation lowers. During cloudy weather, the
opposite is the case. Similarly, when the Sun is lower in the sky, the path of radiation
through the atmosphere is longer. Therefore, the portion of diffuse radiation rises and
the portion of direct radiation lowers.

To simulate the power output of a PV system, accurate measurements or projections
of the radiation data for the specific location of the PV system are crucial. That is why
performance simulations of a PV system require this data in a structured form. Usu-
ally, the radiation components needed for such a simulation are called direct normal
irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance
(GHI). Whilst DNI measures the direct radiation perpendicularly to the Sun’s direc-
tion, DHI is the diffuse radiation from the atmosphere measured on a horizontal surface
collecting radiation from all points of the sky. In addition to both of these components,
the third one, GHI, is the total solar radiation on a horizontal surface. It is the sum of
the DNI with respect to the solar zenith angle and the DHI as seen in Eq. 1. PV system
performance simulations typically expect these three components as time series aggre-
gated to fixed intervals, e.g. hourly, daily, or monthly. You can obtain this data either
through simulation of a radiation model or by downloading it from a radiation database.



GHI = DHI + DNI - cos 0, (1)

with
GHI  global horizontal irradiance [W/m?|

DHI diffuse horizontal irradiance [W/m?|
DNI direct normal irradiance [W/m?]

0, solar zenith angle [°]

2.1.1 Simulated Radiation Data

As for simulating radiation data, there are multiple viable models which can be cat-
egorized into two groups: clear-sky models or all-sky models. As the name suggests,
clear-sky models are subject to the restriction that there are cloud-free conditions at
all times. All-sky models, on the other hand, take account of weather circumstances,
such as cloudy skies. Therefore, they need access to measurements of weather stations
or geostationary satellites.

As for the clear-sky models, the most widely adopted model in practice is the In-
eichen model. Its advantages are competitive performance with other models whilst
being simpler, thus requiring less computational complexity. The model computes
clear-sky DNI, GHI, and DHI using solar geometry, absolute airmass, Linke turbidity,
altitude, and extraterrestrial irradiance. The absolute airmass can be derived from the
atmospheric pressure and the relative airmass (Eq. 2).

P

AM, =AM, ———
101325 Pa

(2)

with
AM, absolute airmass [unitless]

AM, relative airmass at sea level [unitless]
P atmospheric pressure [Pa]
101325 Pa  standard sea-level pressure

The relative airmass can be calculated using the numerical constants from Kasten and
Young [8], as well as the solar zenith angle (Eq. 3).

1
AM, = ;
cos (2) + 0.505 72 - (96.079 95 — §,)~ 16364 (3)

Since the extraterrestrial irradiance varies slightly throughout the year, it is calculated
using a Fourier series-based model created by Spencer [20], shown in Eq. 4.

Toxt = Isc[1.000 11 4 0.034 221 - cos (z) + 0.001 28 - sin (x)

4
—0.000719 - cos (2z) 4+ 0.000 077 - sin (2z)] (4)

with
I extraterrestrial irradiance [W/m?]



The Linke turbidity factor can be derived from historical monthly averages, either
by using the monthly value or an interpolated value which smoothes the transition
between months. This leads to the equations of the clear-sky DNI (Eq. 5)

DNI = b - Toy; - exp (—0.09 - AM, - (Tix — 1)) (5)
0.163
b= 0.664 + (6)
fn
altitude
i = e (<20 g

with
altitude altitude m]

Tix Linke turbidity coefficient [unitless]
and GHI (Eq. 8)

GHI = a; « Loyt - sin (h) - exp (—ag - AM, - (fur + foz — (T — 1)) (8)
a; = 5.09 - 1077 - altitude + 0.868 (9)
ag = 3.92 - 1077 - altitude + 0.0387 (10)
altitude
Jha = exp (_ 1250 ) (11)

with
GHI; global horizontal irradiance [W/m?|
ai, ap altitude dependent coefficients (see Eq. 9 and Eq. 10)
AM, absolute airmass [unitless]
fu1, fne coefficients relating the station’s altitude with the altitude of the
atmospheric interactions (see Eq. 7 and Eq. 11)

according to the Ineichen model [7]. Lastly, the DHI can be derived by rearranging
Equation 1 for DHI as in Eq. 12.

DHI = GHI — DNI - cos 6, (12)

Since all-sky models need even more parameters to calculate GHI, DNI, and DHI,
such as cloud parameters (e.g. cloud coverage, optical thickness, type), we focus on
retrieving those values from solar radiation databases.



2.1.2 Solar Radiation Databases

Following pvlib python [17], solar radiation databases differ primarily in the way data
is sourced. First off, there is weather data sourced from ground station measurements.
Under the right conditions, these are the highest quality source of weather information.
On the downside, coverage of such weather stations is limited. Alternatively, there
are mathematical simulations for weather systems using numerical weather prediction
(NWP). The benefit of these models is global coverage, however, by sacrificing spatial
and temporal resolution and data quality. Additionally, many of those models are not
optimised for solar irradiance for PV simulations. Lastly, there is data sourced from the
processing of satellite imagery. Irradiance estimates are calculated using simulations of
solar irradiance models after identification and classification of clouds on the satellites’
images. The data quality of these estimates is not as good as the one of ground
stations, but it is much higher compared to NWP. Due to the high satellite coverage,
data availability is significantly higher than that of ground stations. In contrast to
NWP, weather data from satellites is generally optimised to estimate solar irradiance
for PV applications. Concluding this, measurements from ground stations should be
preferred, directly followed by data derived from satellite imagery, and only if both of
these sources are unavailable, NWP should be considered. There are multiple sources
available, that differ in source type, temporal resolution, spatial coverage, provided
components, format, and licensing, amongst others. In the following, we will compare
different providers.

Starting off with the Deutscher Wetterdienst (DWD), Germany’s national meteoro-
logical service, it provides ground station measurements of 95 stations across Germany.
These measurements are available in ten-minute intervals with historical data depend-
ing on the station. Because it is based off ground stations, spatial coverage depends on
the location of them. The data includes measurements of DNI and GHI, as well as a
quality level and is available in a textual, CSV-like form under the Creative Commons
(CC) BY 4.0 license from their Climate Data Center.

Next, there is the Photovoltaic Geographical Information System (PVGIS) [16], oper-
ated by the European Commission. They maintain multiple solar radiation databases.
On the one hand, there is the satellite-based PVGIS-SARAH3 database with up to
hourly time-series data ranging from 2005 to 2023. PVGIS-SARAHS3 covers Europe,
Central Asia, Africa, and parts of South America with a spatial resolution of 5km.
For the rest of the world, PVGIS-ERAS5 is a reanalysis database with the same tem-
poral resolution, but only with a spatial resolution of roughly 25km. The time-series
data of both databases contain direct, diffuse, and reflected irradiance relative to an
inclined plane, Sun height, air temperature, and wind speed. Since PVGIS is tailored
towards PV systems modelling, there is an option to specify the mounting type (fixed,
horizontal /vertical /both axis tracked), tilt, and azimuth angles of the module and PV
power parameters. There is even an option to optimize tilt and azimuth angles with
regard to the given input parameters. Additionally, there is the option to take terrain
shadows into account for the radiation components using a calculated horizon or your
own horizon data. When using the calculated horizon, data of the ground elevation



with a resolution of approximately 90 m is used to calculate shading effects from local
hills or mountains. For a higher level of detail, when nearby objects like houses or
trees should be considered as well, you can upload your own horizon information.

Another alternative is the Copernicus Atmosphere Monitoring Service (CAMS).
Their solar radiation services combine ground station measurements, numerical weather
prediction, and data derived from satellite imagery to provide historical time-series
data with a temporal resolution of 1 min and a time coverage from 2004 up until now.
Geographical coverage includes Europe, Africa, the Middle East, the Atlantic Ocean,
Brazil, the east of Asia, Oceania, and Australia. The data includes GHI, DHI, and
DNI for an all-sky and a clear-sky model in either ASCII (CSV) or NetCDF format.
It is licensed under CC BY 4.0 and can be accessed through their Atmosphere Data
Store.

Commercial solar radiation data providers like SolarAnywhere, Solcast, and Solargis
offer high-quality datasets derived from satellite imagery, NWP models, and ground
station measurements. However, they are not considered in this study, since our focus
lies on publicly available solar radiation resources exclusively.

2.1.3 Selected Data Sources

As for the solar radiation input data sources, time-series data from both the Ineichen
clear-sky model and the PVGIS-ERAS database are included. On the one hand, the
Ineichen clear-sky model is known for its rigorous physical basis in calculating cloud-
free irradiance. On the other hand, the PVGIS-ERA5 database provides comprehensive
all-sky irradiance data using satellite imagery. These two data sources will be directly
compared to evaluate their performance in representing solar radiation accurately. The
outcome of this comparison will determine which data source is used for the subsequent
simulations.

2.2 PV Modules and Inverters

The conversion of solar radiation energy to electric energy is a two-step process. First
of all, the PV module collects the radiation generating direct current (DC) energy.
Besides the intensity of the radiation, the DC output depends on various character-
istics of the used PV module, such as the nominal maximum power and temperature
coefficients. Since the power grid utilizes alternating current (AC) rather than DC to
transmit the electric energy more efficiently over long distances, we must convert the
DC output to AC in a second step using an inverter. During this conversion, electric
energy is lost due to heat dissipation and switching losses. This also depends on the
characteristics of the used inverter, like the weighted efficiency.

2.2.1 PV Modules

Following Wesselak and Voswinckel [21], a PV module is a composition of PV cells.
These PV cells are made of semiconductor material, which is most commonly built



from a p-n junction of doped silicon. The n-layer is doped by adding phosphorus
atoms to the silicon atom lattice to obtain additional electrons, while the p-layer is
doped by adding boron atoms to obtain additional holes. Where these two layers meet,
the excess electrons of the n-layer fill up the holes of the p-layer, creating a depletion
area with an electric field pointing from the n-layer to the p-layer. When a photon
hits the surface of the n-layer and gets absorbed by the semiconductor, it excites an
electron from the valence band to the conduction band, which creates an electron-hole
pair. The electric field of the p-n junction then separates these charges, pushing the
electron towards the n-layer and the hole towards the p-layer. The electrons on the top
of the n-layer build up a voltage, so that, if that layer is connected to the bottom of the
p-layer conductively using suitable contacts, a current flow is established. The level
of voltage and current depends on light intensity, the cell’s surface area, temperature,
and the material’s efficiency.

Parameter Value
Technology Mono-c-Si
Bifacial v
Building-integrated PV (BIPV) X
Peak power at standard test conditions (STC) 551.04 W
Peak power at PVUSA test conditions (PTC) 506.9 W
Module length 2.278 m
Module width 1.134m
Module area (A.) 2.51 m?
Cells in series (N;) 72
Short-circuit current (/g ref) 13.99A
Open-circuit voltage (Vo ref) 49.8V
Current at maximum power point ([ip ref) 13.12A
Voltage at maximum power point (Vip ref) 420V
Temperature coefficient of short-circuit current (o) 0.006295 A /°C
Temperature coefficient of open-circuit voltage (Soc) —0.132468 V /°C
Nominal operating cell temperature (Txocr) 48.7°C
Modified diode ideality factor at reference conditions (ayef) 1.88545
Light-generated current (I, y.f) 14.0029 A
Diode saturation current (o yef) 0.0A
Series resistance (Ry) 0.146 344 Q
Shunt resistance (Rgp ref) 158.173 2
Adjustment factor (Adjust) 12.4951 %
Temperature coefficient of maximum power point (Ypmp) —0.354 %/°C

Table 1: Parameters of the LONGi LR5-72HBD-550M module sourced from the CEC
module database [13].

Using PV module databases, like the ones from the California Energy Commission
(CEC) or Sandia, these parameters can be retrieved for a specific module. In this



thesis, we chose to use the LR5-72HBD-550M panel by LONGi Green Energy Co.
Ltd., since it is a typical module used in recent utility-scale PV parks, such as the
one in Langenenslingen-Wilfingen in Baden-Wuerttemberg, Germany. Its entry in the
CEC database has the parameters listed in Table 1.

2.2.2 Inverters

Since we are optimizing grid-connected PV parks and the power grid operates at AC
current, we need to convert the DC current produced by the PV modules to AC current.
During this conversion, electric energy is lost, depending on several parameters of the
chosen inverter. As with the PV modules, these parameters can be sourced from
databases like CEC or Sandia. The entry of the inverter we chose for the optimization,
the ABB MICRO-0.25-I-OUTD-US-208 (208V), is shown in Table 2.

Parameter Value
Nominal AC output voltage (V) 208V
DC power required to start the inversion process (Pi,) 2.089607 W
AC power rating (Paeo) 250.0 W
DC power input at reference voltage resulting in P,., | 259.588 593 W
(Pdco>

Reference voltage for P, and Py, (Vico) 40.0V
Parameter defining the curvature of the relationship be- —0.000 041

tween AC power and DC power (Cj)
Empirical coefficient allowing Py, to vary linearly with | —0.000091/V
DC voltage input (C})
Empirical coefficient allowing P, to vary linearly with 0.000494/V
DC voltage input (Cs)
Empirical coefficient allowing Cj to vary linearly with | —0.013171/V
DC voltage input (C)

Night tare (Py) 0.075 W
Maximum allowable DC input voltage (Ve max) 50.0V
Maximum allowable DC input current (Z4cmax) 6.6489715 A
Lower limit of the maximum power point voltage win- 30.0V
dow (MPPyyy)

Upper limit of the maximum power point voltage win- 50.0V

dow (MPPhigh)

Table 2: Parameters of the ABB MICRO-0.25-1-OUTD-US-208 (208V) sourced from
the CEC inverter database [13].



3 Simulation of a PV System’s Performance

In order to optimize the orientation and inter-row gap of a PV park, we make use
of several well-established simulation models. First off, for the optimization of the
azimuth and tilt angles, we use the solar position and transposition models to calculate
the plane-of-array (POA) irradiance. Based on the results, we optimize the inter-row
gap of the module rows using a model for the cell temperature, the incidence angle
modifier (IAM), the photovoltaic effect, and the inverter.

3.1 Solar Position Model

The position of the Sun on the horizon is crucial for determining the irradiance which
actually lands on the tilted module plane. For a specified location and date, it is given
by two angles, the zenith angle and the azimuth angle. The zenith angle is the angle
between the Sun’s rays and the local vertical, whereas the azimuth angle specifies the
compass direction of the Sun.

s

w

Figure 2: Sun’s position described by solar azimuth angle v, and solar zenith angle 6,.

To calculate these angles, we make use of the NREL Solar Position Algorithm [19],
which calculates the angles in the period from the year 2001 BCE to 6000 CE with
uncertainties of +/- 0.0003° based on date, time, and location on Earth.

3.2 Transposition Model

A solar transposition model is used to convert the solar irradiance components from a
horizontal or normal plane to the plane-of-array (POA) on a module of any given tilt.
There are multiple models on how to calculate the POA irradiance. In the following,
we introduce two popular ones: the isotropic model, a simple and easy-to-calculate
model, and the Perez model, a more complex and more accurate model.

10



3.2.1 Isotropic Model

The isotropic transposition model [12] is based on the assumption that diffuse radiation
is uniform across the entire sky dome. This means it assumes the scattered light coming
from the horizon has exactly the same intensity as the scattered light coming from the
area around the Sun. That reduces calculating the irradiance on a tilted plane to
a simple geometric problem. Depending on the tilt angle of the plane, the diffuse
radiation is multiplied with a sky view factor (Eq. 13). If the plane is horizontal, the
factor is one, meaning the plane receives all of the diffuse irradiance. If it is vertical,
the factor is 0.5, meaning it sees exactly half of the sky dome, resulting in half of the

diffuse irradiance.
1+ cosp

Fsky = 9

(13)

with
Fyy sky view factor [unitless]

S tilt angle of the plane [°]

Similarly, this concept is applied to ground reflections. Since the ground reflects both
diffuse and direct irradiance, the reflection’s irradiance is based on the GHI multiplied
by the reflectivity factor of the ground (albedo). Instead of the sky view factor, a
ground view factor (Eq. 14) is considered. If the plane is horizontal, the factor is zero,
meaning the plane receives none of the ground-reflected irradiance. If it is vertical, the
factor is 0.5, meaning it sees half of the ground, resulting in half of the ground-reflected

irradiance.
1—cosp

i (14

Fground =

with
Farouna  ground view factor [unitless]

722227

Figure 3: Angle of incidence 6; on a tilted plane.

Since the plane is not always perpendicular to the Sun’s rays, the DNI must be
scaled with an obliquity factor. Therefore, we multiply it with the cosine of the angle
of incidence (Fig. 3). The factor is one if the angle of incidence is 0°, meaning the tilt
angle of the PV module is the same as the solar zenith angle. Therefore, the plane
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is perpendicular to the Sun’s rays and the DNI applies. If the angle of incidence is
greater, the factor gets smaller. Since the same radiant power is then spread over a
larger actual area, the DNI must be scaled down. Finally, the POA irradiance according
to the isotropic model is the sum of the DNI scaled by the angle of incidence, the DHI
scaled by the sky view factor, and the GHI scaled by the albedo and the ground view
factor (Eq. 15).

POA = DNI - cos (6) + DHI - Fay + GHI - p - Fyrouna (15)
with
POA plane-of-array irradiance [W/m?|
DNI direct normal irradiance [W/m?]
0; angle of incidence [°]
DHI diffuse horizontal irradiance [W/m?|

GHI global horizontal irradiance [W/m?]
p albedo [unitless|

3.2.2 Perez Model

The Perez transposition model [12] is a more sophisticated method compared to the
isotropic model. It is an anisotropic model, meaning it accounts for the fact that the sky
is not uniformly bright. Therefore, the diffuse irradiance gets split into three distinct
parts to better model reality. First off, the background sky brightness is assumed
to be uniform, just like the isotropic model. Then there is the circumsolar region,
the intense brightening around the Sun’s disk, which is treated almost like the direct
beam. Lastly, there is the horizon band, which refers to the brightening often seen
near the horizon, especially in clear skies. To account for the circumsolar region and
the horizon band, two empirically determined factors are introduced, the circumsolar
brightness coefficient and the horizon brightness coefficient. After implementing this
into the equation of the isotropic transposition model (Eq. 15) using its sky (Eq. 13)
and ground view factor (Eq. 14), we receive the equation for the Perez transposition
model (Eq. 18).

a = max (0°, cos 6)) (16)
b = max (cos 85°, cosb,) (17)
POA = DNI-cos (6;)+DHI- [(1 — F) - Fyey + Fi - % + F, - sin 5] +GHI p- Fyrouna (18)

with
0, solar zenith angle [°]
F)  circumsolar brightness coefficient [unitless]
Fyy sky view factor (see Eq. 13)
F, horizon brightness coefficient [unitless]

Fyouna  ground view factor (see Eq. 14)
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3.3 Thermal Model

To simulate the operating temperature of the PV module based on ambient weather
conditions and module mounting configuration, we use the cell temperature and mod-
ule temperature model by Sandia National Laboratories [9]. First, the module back-
surface temperature is calculated, based on irradiance, weather conditions, as well as
the module construction and mounting type (Eq. 19).

Tm =POA -exp(a+b-WS)+ T, (19)
with
Twm module back-surface temperature [°C]
a, b parameters depending on module type and mounting
configuration of the module (Tab. 3)
WS wind speed [m/s]
T, ambient air temperature [°C]

Afterwards, the cell temperature is derived from the module back-surface temperature,
the POA, and a temperature difference parameter (Eq. 20).

B POA

Ty=Tp+——n AT 2
T 1000w /m? (20)

with
T. cell temperature [°C]

AT temperature difference parameter [unitless]

Module Type Mount a b
Glass/cell/glass Open rack —3.47 | —0.0594
Glass/cell/glass Close roof mount | —2.98 | —0.0471
Glass/cell/polymer sheet | Open rack —3.56 | —0.0750
Glass/cell /polymer sheet | Insulated back —2.81 | —0.0455
Polymer /thin-film/steel | Open rack —3.58 | —0.113
22X Linear Concentrator | Tracker -3.23 | —0.130

Table 3: Values of parameters a and b of the Sandia module back-surface temperature
model for common module types and configurations [9].

3.4 Incident Angle Modifier Model

The physical incident angle modifier (IAM) model is used to predict optical losses, like
reflections, at the surface of a PV module based on the actual physical properties of
the materials involved. The model described by Duffie and Beckman [6] is based on
Snell’s law in order to calculate the angle of refraction (Eq. 21). This is used along
with Fresnel’s and Bouguer’s laws to calculate the radiation absorbed by a cell with
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Figure 4: Angle of incidence 6; and angle of refraction 6.

a glass cover (Eq. 22), which uses typical values for the glazing extinction coefficient
and the glazing thickness. The incidence angle modifier itself is then the ratio of the
transmittance for the angle of incidence and 0° (Eq. 23).

sin 6;) (21)

Nair * SIN 6 = Nglags - SIN O, < 0, = arcsin (
Nglass

Ta(b;) = exp (—K : L) : {1 _L (SinQ (6: — &) + tan” (6, — Qi))} (22)

cos 0, 2 \sin? (0, +6;) tan® (6, + 6;)
7'0&(91)
TOé( ) 7'04(0) ( 3)

with
nae refractive index of air ~ 1
Nglass  Tefractive index of glass ~ 1.526
0, angle of refraction [°]
Ta(f;) transmittance-absorbtance product for incidence angle 6; [unitless]

K glazing extinction coefficient ~ 4 1/m (for "water white” glass)
L glazing thickness ~ 2mm (typical value)

K., incidence angle modifier [unitless]

The IAM is then used to calculate the effective irradiance. Therefore, we split the

POA irradiance into its direct, sky diffuse, and ground diffuse components and multiply
each of them with their IAM. The resulting sum is then the effective irradiance.

POAeﬁ - Kroc (Qz) . POAdirect + K’?’Oc (ediffuse) : POAdiffuse + Kfra(eground) : P()AAground (24)

with
POA.s effective POA irradiance [W/m?]
POAgieet  direct component of POA irradiance [W /m?]
Qairuse  diffuse effective angle [°]
POAgisse diffuse component of POA irradiance [W/m?]
Orouna  ground effective angle [°]
POAgoma  ground component of POA irradiance [W /m?]
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3.5 Photovoltaic Performance Model

The electrical power generated by a PV cell is typically modelled by the single diode
model [5]. Its equivalent circuit (Fig. 5) treats the cell as a current source generating
the light current, which is then distributed across a diode resembling the voltage-
dependent current lost to recombination, the shunt resistance representing the current
lost through leakage paths, and the series resistance representing the total internal
resistance the current encounters as it travels through the PV cell components to the
external terminals.

Figure 5: Equivalent circuit of the CEC six parameter PV module model.

After substituting the formulas for the diode current (Eq. 26) and shunt current
(Eq. 27) into the formula for the output current (Eq. 25), we receive the formula of
the CEC six-parameter PV module model by Dobos.

[=1 —Ip— Iy (25)
I-
In=1I- {exp <u) - 1] (26)
a
V+1-R;
Iyy=——2 27
h i (27)

with
I output current [A]

I, light-generated current [A]
Ip voltage-dependent current lost to recombination [A]
Iy, shunt current [A]
Iy diode reverse saturation current [A]
V' output voltage [V]
Ry series resistance [()]
a modified nonideality factor [V]
Ry, shunt resistance [Q]
Out of these six parameters, the light-generated current, the modified nonideality fac-
tor, and the diode reverse saturation current depend on weather conditions like tem-

perature, air mass, and irradiance. Using their values measured at reference conditions,
they can be adjusted to fit the current operating conditions (Eqs. 28 to 31).

15



a T.
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L= 105(?\?;/&m2 : ?1\5/[ ' [IL,ref + Qe ref - (1 — A?S)ESt) (T — TNOCT):| (29)
Iy :< T. >3,6Xp[1.<% _E ) (30)
Io ref Txoct k A P A
Eg
= 1-0.0002677 - (T — Trocr) (31)
Eg vet
with
aper reference modified nonideality factor [V]
Tnocr nominal operating cell temperature [°C]
AM  air mass [unitless]
It yee  reference light-generated current [A]
Qgseref  Teference temperature coefficient of short-circuit current [unitless]
Adjust adjustment factor [unitless]
Inser reference diode saturation current [A]
k  Boltzmann constant = 1.3807 - 1072 J/K
E, bandgap energy eV
Eq et reference bandgap energy ~ 1.121eV (for silicon)

Now, we can solve the single diode equation under the current operating conditions.
The solution space can be plotted, and the result is called the I-V curve of the module
under those operating conditions. This [-V curve can then be used to determine the
power output of the module. Since electrical power is the product of current and
voltage, we can scan the curve for the maximum power point (MPP), the point where
this product is greatest. This is our power output because, ideally, the maximum power
point tracking (MPPT) controller of the inverter adjusts the voltage accordingly to keep

the MPP.
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3.6 Inverter Model

Using the Sandia Inverter Model [10], we can simulate the AC power output from the
DC power input and DC voltage input. The model captures how inverter efficiency
varies with both load and DC voltage, while also accounting for clipping and tare loss.

Pe= (25 -C-(A=B)) - (Fau = B) +.C- (Pac - B (32
A= Pieo- (1 4+ C1 - (Vae — Viaeo)) (33)
B=Py (14 Cy (Vae — Vo)) (34)
C=Co-(1+C5 (Vae — Vieo)) (35)

with

P,. AC output power [W]
P..o AC power rating [W]
Py DC input power [W]
Py.o DC power input at reference voltage resulting in P,., [W]
Cy parameter defining the curvature of the relationship between
AC power and DC power [unitless]

C1, Cy, C3 empirical parameters describing linear variations [1/V]
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4 Optimization of the Module Orientation

The orientation of the PV modules plays a significant role in the resulting performance
of the PV park. By adjusting the tilt and azimuth angles, the total incident solar
radiation received by the PV modules can be influenced substantially throughout the
year. To capture the most of the solar radiation energy, the solar rays must strike
the modules perpendicularly. In order to find the optimal angles, the changing solar
position throughout the day and the year, as well as weather conditions, must be taken
into consideration.

4.1 Objective Function

The goal of this optimization is to find the pair of tilt and azimuth angles that maxi-
mizes the total solar incident on the module surface over one full year. The tilt angle
is the angle between the module and the horizontal plane, and the range of its values is
0° to 90°. The azimuth angle is the compass direction the module faces, ranging from
0°, facing North, over 90°, facing East, and 180°, facing South, to 360°, facing North
again. Based on the solar radiation input data from chapter 2.1 and the transposition
model, as well as the solar position model from chapter 3, we can define our objective
function as the maximum of the annual POA irradiance for any combination of tilt
and azimuth angles.

4.2 Optimization Algorithm

Before finding the angle pair which maximizes the annual POA irradiance, an algorithm
that calculates the annual POA irradiance for a given orientation and location must be
created. Therefore, we combine the solar position model with a transposition model
and solar radiation data. First, we gather the solar radiation data for the given location.
Depending on the time resolution of the solar radiation data, we then calculate the
solar position for each datapoint using the solar position model. Following, we can
calculate each angle of incidence on the tilted plane. Next, we calculate the POA
irradiance for each datapoint using the transposition model with the solar radiation
data and the angle of incidence. Finally, we add up all of the POA irradiances. If the
solar radiation data had datapoints for exactly one year, this sum is the annual POA
irradiance. Otherwise, it must be normed to one year.

4.2.1 Unbounded Grid Search

The easiest way to find the pair of angles that yield the maximum annual POA irradi-
ance is to try out each combination using an unbounded grid search. By calculating the
annual POA irradiance for each tilt-azimuth angle combination, we make sure that we
definitely find the global maximum. However, since the ranges of the tilt and azimuth
angles are continuous, we must quantize them. In this thesis, we chose a step size of
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1°. After calculating all the annual POA irradiances, we return the tilt and azimuth
angles resulting in the highest annual POA irradiance.

4.2.2 Bounded Grid Search

A full grid search over 0° to 90° tilt and 0° to 360° azimuth covers a large search
space where many combinations, such as those facing away from the equator or tilting
vertically, yield suboptimal results. Therefore, we can bound the search by shrinking
the ranges and exclude such combinations. This comes with the risk of missing a
maximum that lies outside these bounds.
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Figure 6: Annual POA irradiance heatmap as a function of tilt and azimuth at 48° N,
9.5° E, with the marker indicating the tilt-azimuth combination yielding
maximum irradiance.

In Figure 6, you can see a heatmap showcasing the unbounded grid search for a
location in Germany. It showcases the angle combinations that can be excluded, as
previously discussed. Therefore, we chose to shrink the tilt angle range to 20° to 60°
and the azimuth range to 135° to 225°. This reduces the number of combinations from
32400 down to 3600. However, these bounds are chosen for Germany specifically and
need to be adjusted for other locations on the globe, especially those in the southern
hemisphere.

4.3 Results and Validation

In order to decide which transposition model and which irradiance data source to
choose in the optimization, we compare their results to the optimal angles according to
PVGIS’ PV calculator [15]. The models’ results are computed using pvlib python [2].
To make sure the results are consistent, we chose locations in Germany along the
9.5° E longitude line ranging from 47.5° N to 55° N in 0.5° steps. For each location, we
calculate the optimal angles of our simulation with the ones of PVGIS’ simulation. We
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then calculate the Mean Absolute Error (MAE) between the two optimization results
to compare the model composition and choose the best one of them.

4.3.1 Isotropic Sky Model with Clear Sky Model

Comparing the results from the isotropic sky model and the clear sky model to the
optimal angles from PVGIS, you can see there is a substantial difference between them
as shown in Figure 7. With a MAE of 3.375° for the optimal tilt and one of 4.9375°
for the optimal azimuth angles, this combination of models is too inaccurate. It does
not follow the general trends of the validation data from PVGIS. Where PVGIS’ tilt
angles decrease from latitudes 47.5° N to 49° N, the model’s tilt angles increase from
latitudes 47.5° N to 48.5° N. Furthermore, its azimuth angles are always either 180°
or 179°, whereas the ones from the PVGIS validation set fluctuate between 172° and
180°. This is caused by the clear sky model not taking account of terrain shadows.

—@— Isotropic — 1801 >\ ) K »-f-.-.-\-.-
— 48 PVGIS B I
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= = 176 -
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Latitude [°N] Latitude [°N]

Figure 7: Comparison of simulated and PVGIS-derived annual optimal-tilt and az-
imuth angles along 9.5° E using the isotropic and clear sky models.

4.3.2 Isotropic Sky Model with PVGIS Irradiance Data

In order to improve the results of the isotropic sky model, we switch from the clear
sky model to the hourly data from PVGIS-ERA5. Besides the obvious advantage that
cloudy weather is taken into account now, this also has the benefit of including terrain
shadows. As you can see in Figure 8, in comparison to the clear sky model, especially
the optimal azimuth angles align much better with a MAE of 1.4375°. Whilst the
MAE of the optimal tilt angles got a bit worse with 4.9375°, it now better resembles
the trends of PVGIS’ optimal tilt angles. However, it is conspicuous that the optimal
tilt angles are solely lower than the ones from PVGIS, whereas the optimal azimuth
angles are greater than or equal to PVGIS’.
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Figure 8: Comparison of simulated and PVGIS-derived annual optimal tilt and azimuth
angles along 9.5° E, based on the isotropic sky model and PVGIS-ERA5
(2005-2023) weather data.

4.3.3 Perez Model with PVGIS Irradiance Data

To improve the results of the isotropic sky model, we switch to the more realistic Perez
model and receive the results shown in Figure 9. This model has a MAE of 0.625°
for the optimal tilt angle and 0.75° for the optimal azimuth angle. It also follows the
trends of the angles from PVGIS with only slight differences and no outliers.

447 —@— DPecrez — 1807 |
5 PVGIS Q
< 43 2 178
= <
= =
= 42 = 176 -
= iS
= << )
g =
2, 41 A g 174 4
o g, )

o
40 172
48 50 52 54 48 50 52 54
Latitude [*N] Latitude [°N]

Figure 9: Comparison of simulated and PVGIS-derived annual optimal tilt and azimuth
angles along 9.5° E, based on the Perez model and PVGIS-ERAS5 (2005-2023)
weather data.

21



4.3.4 Performance

In the previous comparisons, we ran the optimization using the unbounded grid search
algorithm. However, we could also use the bounded grid search algorithm and still
receive the same results, since we never left the specified bounds in any way.

In order to quantify the performance gains of the bounded grid search algorithm
compared to the unbounded grid search algorithm, we performed a benchmark test of
the previous three combinations of transposition models and irradiance data sources.
Therefore, we chose the coordinates 48° N, 9.5° E and ran each simulation with the
benchmarking tool hyperfine [14]. It calculates the mean execution time of a command
over a series of ten runs. This mean execution time is then chosen as the runtime of
the algorithm in the comparison (Table 4). The benchmarks were executed on an
Apple Mac Studio with an Apple M1 Max (10-core CPU @ 3.23 GHz, 24-core GPU
@ 1.30 GHz), 32GiB unified memory, running macOS 15.6.1 (24G90), and Python
3.13.11.

Transposition Irradiance Data | Unbounded | Bounded Performance
Model Source Grid Search | Grid Search | Gain
Isotropic Sky Clear Sky Model | 37.585s 8.458's 444.372 %
Model

Isotropic Sky PVGIS-ERA5 219.123s 29.065s 753.906 %
Model

Perez Model PVGIS-ERAb5 928.982 s 100.283 s 926.360 %

Table 4: Time comparison results between the unbounded and bounded grid search
algorithms.

The results of the benchmark show performance gains up to nine times faster, as
expected, while still yielding the same optimization output. Although the performance
gains of the bounded grid search algorithm for the isotropic sky model and clear sky
model are not as significant as those for the isotropic sky model with PVGIS-ERA5
data or the Perez model with PVGIS-ERAS data, they are still significant enough to
recommend the bounded grid search algorithm over the unbounded one. Considering
the overall performance of the models, we recommend using the Perez transposition
model in conjunction with irradiance data from PVGIS-ERA5 and the bounded grid
search algorithm.
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5 Optimization of the Inter-Row Gap

In ground-mounted PV solar parks, the PV modules are typically arranged in rows.
With the preceding optimization of the tilt and azimuth angles, we now know how to
align a single row to collect the maximal irradiance throughout a whole year. When
adding a second row, the question arises: how far the two rows should be placed
apart? This distance between the panel rows is called the inter-row gap. Defining the
optimum in this case is not as trivial as finding the optimal alignment. On the one
hand, you want to minimize the gap in order to place as many panels as possible into
the available area for the PV solar park. However, reducing the inter-row gap to zero,
meaning having no gap at all, results in the anterior row casting a shadow onto the
posterior row when the solar elevation angle is too low. This is called self-shading. So,
on the other hand, you want to minimize the irradiance losses from self-shading, which
means increasing the gap. In order to find the optimal balance between these two
effects, we introduce a realistic model that simulates the losses caused by self-shading.

5.1 Self-Shading Model

In order to calculate the losses due to self-shading, we introduce a geometric model to
calculate the shadow cast at each solar elevation angle. Therefore, we assume the Sun
and the two PV module rows lie in the same plane, neglecting the difference between
the Sun’s azimuth angle and the PV module’s azimuth angle. With the panel width,
the tilt angle, and the inter-row gap, we can calculate the shallowest solar elevation
angle at which no self-shading happens.

h
Qrull = AICCOS — (36)

h=w-sinf (37)
with

agq  shallowest solar elevation angle without self-shading [°]
h  height difference between the PV module’s highest and lowest edges [m]
D inter-row gap [m]
w PV module’s width [m]
S PV modules’s tilt angle [°]

If the solar elevation angle is shallower, the anterior PV module casts a shadow onto
the posterior one. This causes a loss in energy yield of the posterior PV module. In
this model, we assume a simplified half-cut PV module. Therefore, we split the PV
module horizontally in half. When any part of a half is shaded, we assume that this
half does not yield any energy anymore. This means, we can calculate another solar
elevation angle which is the shallowest solar elevation angle at which the panel still
yields 50 % of its energy. Any shallower solar elevation angle results in no energy yield.
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Figure 10: Geometric formulation to calculate oy, the smallest solar elevation angle
for which the anterior row’s shadow misses the posterior row.

AAAAAA44444444

Figure 11: Geometric formulation to calculate the smallest solar elevation angle for
which the anterior row’s shadow misses the upper half of the posterior row’s
PV module.

h
Qlhalf = AICCOS 5 (38)
/
D'=D+ % (39)
w' =w-sinf (40)

with

anae  shallowest solar elevation angle with 50 % self-shading [°]
D" inter-row gap to the middle of the posterior PV module row [m]
w' PV module’s projected width [m]

Depending on the solar elevation angle, we now have three different states of energy
yield: when the solar elevation angle is steeper than or equal to oy, the posterior PV
module has no loss due to self-shading. When the solar elevation angle is steeper than
or equal to apnur and shallower than gy, the posterior PV module has 50 % loss due
to self-shading. And lastly, when the solar elevation angle is shallower than oy, the
posterior PV module has 100 % loss due to self-shading. Note that the loss applies
only to the direct POA irradiance, so even at 100 % loss the PV module could still
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Figure 12: Visualization of the solar elevation angle intervals resulting in no (dark
blue), half (mid blue) and full (light blue) self-shading,.
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yield power, but only from the, typically much lower, sky diffuse and ground diffuse
POA irradiance components.

5.2 Objective Functions

Finding the optimal inter-row gap depends on the objective you want to optimize.
Throughout this chapter, we focus on three objectives. First off, we want to find the
optimal inter-row gap for the highest annual POA irradiance. In the next step, we want
to simulate the AC power yield and optimize the inter-row gap for the highest annual
AC power. Lastly, we introduce a cost model to calculate the levelized cost of energy
(LCOE), which we will then use to find the optimal inter-row gap that minimizes the
LCOE.

5.3 Optimizing after POA Irradiance

Since the self-shading model applies losses to the DNI of the irradiance data, we com-
bine it with the transposition model. As for the transposition model and the irradi-
ance data, we choose the Perez transposition model in conjunction with the PVGIS-
SARAHS3 hourly irradiance data set as in Chapter 4.3.3. This means for each data
point of the PVGIS data set, we calculate the current solar elevation angle based on
the solar position model. Depending on the tilt angle of the anterior PV module, we
derive the loss factor for the direct POA irradiance from that solar elevation angle.
After applying the Perez transposition model, this loss factor gets multiplied with the
direct POA irradiance component. Summing up the shaded direct POA irradiance with
the diffuse POA irradiance, we get the total shaded POA irradiance. After calculating
this for each data point of the PVGIS data set, summing up the total shaded POA
irradiances and norming them to one year, we get the annual shaded POA irradiance
for that specific inter-row gap. Figure 13 shows how the inter-row gap and the caused
self-shading affect the POA irradiance of the posterior PV module rows.

One might expect the graph of a smooth limited growth function, but instead, we
observe the graph of a limited growth function with a kink at an inter-row gap between
77 cm and 84 cm. This can be explained when additionally the percentage of each loss
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Figure 13: Impact of inter-row spacing on the annual POA irradiance received by the
self-shaded posterior PV module in comparison to the anterior one at 50° N,
9.5° E.

is plotted for each inter-row gap as in Figure 14. Up to an inter-row gap of 77 cm, the
posterior PV module is shaded at all times. This causes a loss of either 50 % or 100 %.
Starting from 84 cm, the inter-row gap is big enough that no self-shading happens at
times. Because the model uses this threshold system, there is an abrupt transition
which causes the kink.
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Figure 14: Proportions of losses applied to the direct POA irradiance component of
the anterior PV module row for a range of inter-row gaps at 50° N, 9.5° E.

In order to find the optimal inter-row gap that maximizes the total annual POA
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irradiance, we now require the available length of the area of the solar park measured
perpendicularly to the orientation of the panel rows. This length must be bigger than
two times the projected width of a PV module. Otherwise, the length is too short to
fit two PV module rows; therefore, no inter-row gap exists. So, the minimum number
of PV module rows is two since a second PV module row cannot result in less total
annual POA irradiance even if it is shaded. The maximum number of PV module rows
can be calculated by dividing the length by the projected PV module width.

Nmax = I_JJ (41)

with
Nmax maximum number of PV module rows [unitless]

[ length of the area of the solar park [m]

To calculate the inter-row gap for a given number of PV module rows which are spaced
evenly across the available length, we use the following equation:

_l—N-w’

Dy = 42
= (42

with
Dy inter-row gap for N PV module rows [m]

N number of solar panel rows [unitless]
To calculate the total annual POA irradiance, we sum up the annual POA irradiance

without self-shading for the first row and N times the annual POA irradiance with
self-shading for the respective inter-row gap:

POAt = POAcg + N - POAghaded Dy (43)
with

POA, total annual POA irradiance [W h]
POA,., unshaded annual POA irradiance [W h]
POAghadedpy  annual POA irradiance with shading losses for inter-row gap Dy [W h]

Lastly, we compare the total annual POA irradiances for all N between Np,;, and Npax.

The results of such a comparison are shown in Figure 15. There we used the di-
mensions of a typical PV module and the LR5-72HBD-550M panel by LONGi Green
Energy Technology Co. Ltd. with a length of 2.278 m. For the area of the solar park,
we chose a length of 30 m. As for the location, we chose 50° N, 9.5° E. The tilt angle
of the panel has been determined by the simulation introduced in 4.3.3, which resulted
in 42°. The results of this simulation suggest choosing as many PV module rows as
you can fit into the area of the solar park. However, the gain in total POA irradiance
gradually decreases.

27



—_
W
o
o
(aw]
1

12000 A

kWh,/m?]

10000 A

8000

6000
4000 ‘
2000 '
0 1 2 3 4 5 6 7 8 9

Losses [%)]

Annual POA Irradiance

10 11 12 13 14 15 16 17 18
Number of Solar Panel Rows

I No Loss Full Loss

I Half Loss —@— Total POA Irradiance

Figure 15: Total annual POA irradiance and proportions of self-shading losses, as a
function of the number of panel rows accommodated within a 30m long
solar park at 50° N, 9.5° E.

5.4 Optimizing after Power Output

As an intermediary step, we reformulate the optimization objective to the power out-
put of the solar park. In order to estimate the power output of a PV module, the POA
irradiance is turned into DC and then AC power by using several simulation models.
Using the IAM model introduced in Chapter 3.4, we calculate the effective irradiance
on the tilted plane from the POA irradiance. Additionally, the Sandia thermal model
(Chapter 3.3) is used to calculate the temperature of the cells. With these simulated
values and the parameters of the CEC PV module database (Chapter 2.2.1), we can
now use the CEC six-parameter PV module model introduced in Chapter 3.5 to sim-
ulate the DC power output. Combining this with the parameters of the CEC inverter
database (Chapter 2.2.2), we use the Sandia Inverter Model introduced in Chapter 3.6
to simulate the AC power output. As discussed in Chapter 2.2, we picked a typical
PV module (LONGi LR5-72HBD-550M) and inverter (ABB MICRO-0.25-I-OUTD-
US-208 (208V)) from the CEC PV module and CEC inverter database. These picks
are exemplarily and can be easily swapped out for other PV modules or inverters from
any database providing the parameters listed in Chapter 2.2. As for the location, we
choose again 50° N and 9.5° E, where the optimal tilt and azimuth angles are 42° and
175° based on our optimization from 4.3.3.

Since POA irradiance and AC output correlate, we get a similar result as with the
optimization after maximum POA irradiance, as you can see in Figure 16. The optimal
inter-row gap is the smallest, in order to fit the most panels into the available area
length of the solar park.
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Figure 16: Total annual AC power and proportions of self-shading losses, as a function
of the number of panel rows accommodated within a 30 m long solar park
at 50° N, 9.5° E.

5.5 Optimizing after Levelized Cost of Electricity

The idea behind the optimization of LCOE is that while more PV module rows yield
more power in total, they are also less efficient due to self-shading losses. Therefore, it
is crucial to find the ideal tradeoff between energy production and component costs. As
for the definition of the component costs, the NREL [18] divided the costs of a utility-
scale PV system into the categories shown in Table 5. These costs are either dependent
on the power production, such as the DC-rated capacity measured in $/kWy., the AC-
rated capacity measured in $/kW,., and the capacity of the storage system in §/kWh,
or dependent on the size of the PV system, as for the area of the system measured in
$/m?.

Since we model a grid-connected solar park, we can omit the ESS cost. As for
the DC-rated capacity, we retrieve the total maximum DC power our selected solar
module can produce under standard test conditions from the CEC table. Once we
know how many of those modules fit into a single row, we can calculate the total
DC-rated capacity per PV module row. Using a typical DC/AC ratio of 1.2, we can
calculate the required AC-rated capacity per PV module row by dividing the DC-rated
capacity by the chosen DC/AC ratio. Now we can calculate the row-dependent cost
like this:

COStrow = (COStmed + COStofe + COStotn) * CAPpe + (COStiny + COStEROS) - CAPAC

In contrast to our algorithm to optimize the inter-row gap after power output, we now
consider a square area instead of adding up the energy per square meter of each row.
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Category Cost
Utility Module Cost 372%/kWge
Utility Inverter Cost 65 $/kW,.
Utility Energy Storage System (ESS) Cost 323 $/kWh
Utility Structural Balance of System (SBOS) Cost 30 $/m?
Utility Electrical Balance of System (EBOS) Cost 236 $/kW,.
Utility Fieldwork Cost 61$/m?
Utility Officework Cost 66 $/kWqe
Utility Other Cost 2478 /kW
Annual Utility Operations and Maintenance (O&M) Cost | 16.58 $/a/kW

Table 5: Utility-scale module, inverter, energy storage, SBOS, EBOS, office work,
O&M, and other capital costs [18].

This means we also know the row-independent cost which, is calculated like this:
COStarea = (COStsos + COStaq) - area

Like the previous algorithm for power output, we calculate the possible amounts of
rows with their corresponding inter-row gaps. For each of these possible amounts of
rows, we calculate the total capital expenditures (CAPEX) like this:

costoaprx = COStaren + COStrow + N

Besides CAPEX, there are also annual operational expenditures (OPEX) which can
be calculated analogously using the O&M cost and the AC-rated capacity:

costoprx = costogm - cappc - N

The resulting total expenditures (TOTEX) depend on the lifetime of the investment.
We used a typical lifetime for utility-scale ground-mounted PV parks of 30 years.

COStTOTEX = COStCAPEX + COStopEX -LT

With the annual AC output and a specified lifetime, which we set to 30 years, we can
calculate the LCOE for each inter-row gap like this:

costToTEX

LCOE =
co LT - P,

When plotted, like in Figure 17, you receive a U-shaped curve for the LCOE values.
The optimal inter-row gap is the one with the lowest corresponding LCOE value. In
a study from July 2024, the Fraunhofer ISE [11] reported that large ground-mounted
PV systems achieve LCOE values between 0.041 € /kWh and 0.050 € /kWh in southern
Germany and 0.057€/kWh to 0.069€/kWh in northern Germany. Therewith, our
simulation in southern Germany at 50° N, 9.5° E, which has an optimal inter-row gap
at 1.4524m and a LCOE of 0.0527 $/kWh, which are approximately 0.0448 € /kWh,
fits in perfectly.
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Figure 17: LCOE and total annual AC power, as a function of the size of the inter-row
gap between PV module rows accommodated within a 30 m long and 30 m
wide PV park at 50° N, 9.5° E.

5.6 Validation: Case Study Solarpark Langenenslingen-Wilflingen

To validate the optimization algorithm, we selected the Langenenslingen-Wilfingen so-
lar park [1] in Germany as a benchmark case study. This facility was chosen due to
its representative design parameters for ground-mounted PV installations in Germany
and because it commenced operation in the current year, ensuring that configura-
tion parameters, technology choices, and performance data reflect the latest module
efficiencies and market cost structure relevant to today’s LCOE optimization. To pa-
rameterize the validation case, the site’s coordinates (48.123° N, 9.358° E) were used
to derive the solar position and irradiance data, while the available land (60ha of a
78 ha footprint) constrained feasible row counts and inter-row distances. The modules
in use are the LONGi LR5-72HBD-550M units, whose parameters from the CEC PV
module database were applied in the self-shading and PV performance models. The
extrapolated annual energy production of 89.9 GW h was adopted as the operational
reference for computing prediction error and validating the algorithm’s LCOE-optimal
inter-row gap.

After optimizing the orientation angles using our simulation introduced in chap-
ter 4.3.3, we ran the self-shading model and calculated the optimal LCOE. As for the
inputs of the models needed to compute the LCOE, we use the parameters of the
LONGi LR5-72HBD-550M PV module and the ABB MICRO-0.25-I-OUTD-US-208
(208V) inverter. Additionally, we use the total available area of 60 ha to compute the
width of the park. As for the shape of the park, we assume a quadratic area that is
aligned to the optimal azimuth angle calculated in the first step. This means our park
has a width of 774.597m. The results of the optimization after LCOE are plotted in
Figure 18. The optimization suggests an optimal inter-row gap of 1.555 m, yielding an
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Figure 18: LCOE and total annual AC power, as a function of the size of the inter-row
gap between PV module rows for the Solarpark Langenenslingen-Wilfingen
at 48.123° N, 9.358° E.

annual AC output of 85.380 GW h at a LCOE of 0.054 $/kWh. This aligns with the
extrapolated annual energy production of the park with an error of 5.028 %. Addition-
ally, with an LCOE equivalent to 0.046 € /kWh, it lies in the boundaries for southern
Germany of 0.041 € /kWh to 0.050 €/kWh as reported by the Fraunhofer ISE [11].
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6 Conclusion

The objective of this paper was to develop an optimization framework for finding the
best orientation and inter-row gap of a PV park. Therefore, we first introduced a selec-
tion of sources for irradiance data, as well as parameters for a typical PV module and
an inverter. Next, we covered all relevant models necessary for simulating the perfor-
mance of a PV park. Then, we proposed our two-step optimization framework, which
consists of the optimization of the orientation as the first step and the optimization of
the inter-row gap as a second step.

As for the optimization of the orientation, we optimized the tilt and azimuth angles
of the fixed ground-mounted PV module after maximal annual POA irradiance. For
this optimization, we compared two transposition models, the isotropic model and the
Perez model, and two irradiance data source, a generative approach using the clear-
sky model and the irradiance database PVGIS-ERA5. By comparing the results of the
optimization with different underlying models to the optimal orientation suggested by
PVGIS, we concluded that the Perez transposition model in conjunction with irradiance
data from PVGIS-ERAS5 was the most accurate. Additionally, we noticed that the
runtime performance of that optimization can be significantly improved by adding
location-dependent bounds to the grid-search algorithm. This sped up the optimization
nine times, without sacrificing accuracy of the output.

Then we covered the second step of our optimization framework. Here we introduced
a self-shading model which we used to simulate the effect of smaller inter-row gaps on
the PV system’s performance. Optimizing the inter-row gap was not as trivial as
optimizing the orientation of the PV modules since with higher inter-row gaps the in-
dividual PV module rows produce more energy due to less self-shading, but you can fit
less PV modules into the same area. This is why we chose to evolve our objective func-
tion from maximal annual POA irradiance, over maximal annual AC power output, to
minimal LCOE. When optimizing after maximal annual POA irradiance and maximal
annual AC power output, with increasing number of PV module rows the annual yield
rises. This means, if you want to capture the most solar radiation or produce the most
power choosing the smallest inter-row gap possible is optimal. However, this causes
a large portion of the modules to be unproductive due to shading losses. In order to
accomodote for this, we introduced a cost model which was then used to calculate the
LCOE for each inter-row gap. In contrast to the previous objective functions, choosing
the lowest inter-row gap did not result in the lowest LCOE due to the high TOTEX
of the higher number of PV modules. Instead, the optimal inter-row gap with the
lowest LCOE was always around 1.5m at the locations we simulated. Increasing the
gap further would increase the LCOE as well because the produced AC power would
decrease faster than the decreasing TOTEX. A case study, where we compared our
optimization results to the specifications of a modern PV park in Germany, showed
that our optimization has small deviations but is quite accurate in general.
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6.1 Future Work

Although this thesis provides a comprehensive analysis of optimizing the layout of PV
parks, several aspects remain for future investigation.

First, you could optimize the orientation and inter-row gap based on different pay-
ment models. One could consider adapting the layout to maximize profit using the
stock prices for electric energy. This could have the effect, that instead of south-facing
azimuth angles, east- or west-facing azimuth angles are preferred. Since the demand
for electrical energy is the highest during the morning and the evening, the lower so-
lar energy yield during these hours could be compensated by higher feed-in revenues.
Additionally, there might be feed-in tariffs during noon, because then typically the
tendency is that more energy can be produced than consumed.

Furthermore, we only considered grid-connected, fixed ground-mounted PV modules.
One could investigate whether single- or double-tracked modules are more profitable.
The tracking ensures higher power yields, but comes with higher investment and main-
tenance costs. Similarly, electric storage systems could be used to aggregate electric
energy during times where much power can be produced, but the demand on the power
grid is low, in order to sell it during times where the demand is higher. However, these
storage systems come with additional costs as well.

Lastly, we modelled the area of the PV park whose inter-row gap is to be optimized
as a square with the equivalent area. However, this model is a simplification that can
be improved. So instead of a square area, one could incorporate the real shape of the
PV park, in order to provide more precise results.
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