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• Photovoltaic as a key technology in Germany’s energy transition

Motivation
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• Efficiency of PV parks sensitive to 

• PV module orientation: azimuth and tilt angles 

• PV module row spacing 

→ Optimization framework determining ideal layout parameters

Motivation
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Optimization Framework
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Agenda
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• What is optimal? 
→ Capture the most irradiance during the whole year 

• How to simulate annual plane-of-array (POA) irradiance? 

• Depends on weather conditions → needs irradiance data

Optimal Module Orientation
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• Irradiance Components 

• Direct normal irradiance (DNI) 

• Diffuse horizontal irradiance (DHI) 

• Global horizontal irradiance (GHI) 

• Can be simulated → Ineichen Clear-Sky model 
or sourced from databases → PVGIS-ERA5

Optimal Module Orientation
Irradiance Data
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• What is optimal? 
→ Capture the most irradiance during the whole year 

• How to simulate annual plane-of-array (POA) irradiance? 

• Depends on weather conditions → needs irradiance data 
→ Hourly irradiance data with components GHI, DNI and DHI 

• Calculate POA irradiance → transposition model

Optimal Module Orientation

9



/29

• Isotropic Model 
→ diffuse radiation uniform across sky dome 

 

      

• Perez Model 
→ anisotropic model 

 

     

POA = DNI ⋅ cos(θi) + DHI ⋅ Fsky + GHI ⋅ ρ ⋅ Fground

Fsky =
1 + cos β

2
Fground =

1 − cos β
2

POA = DNI ⋅ cos(θi) + DHI ⋅ [(1 − F1) ⋅ Fsky + F1 ⋅
a
b

+ F2 ⋅ sin β] + GHI ⋅ ρ ⋅ Fground

a = max (0, cos θi) b = max (cos 85∘, cos θz)

Optimal Module Orientation

Transposition Model
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• What is optimal? 
→ Capture the most irradiance during the whole year 

• How to simulate annual plane-of-array (POA) irradiance? 

• Depends on weather conditions → needs irradiance data 
→ Hourly irradiance data with components GHI, DNI and DHI 

• Calculate POA irradiance → transposition model 
→ Isotropic and Perez model 

→ Transpose each irradiance data point, sum up the transposed data 
points and norm them to one year

Optimal Module Orientation
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• Optimization algorithm 

• Unbounded grid search 
→ try each combination 

and return the maximum 

• Bounded grid search 
→ grid search on reduced 

search space

Optimal Module Orientation
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• Validate simulation results with PVGIS’ optimal angles 

• Perez model with PVGIS irradiance data 

  

• MAE: 0.625° tilt and 0.75° azimuth
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Optimal Module Orientation

13

https://commons.wikimedia.org/wiki/File:Karte_Deutschland.svg


/29

• Differences between used models and algorithms 

→ Prefer Perez transposition model over isotropic model 
→ Prefer PVGIS irradiance data over clear sky model 
→ Prefer bounded grid search over unbounded grid search

Optimal Module Orientation
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Transposition Model Isotropic Sky Model Isotropic Sky Model Perez Model
Irradiance Data 

Source
Clear Sky Model PVGIS-ERA5 PVGIS-ERA5

Accuracy (MAE) 3.375° tilt 
4.9375° azimuth

4.9375° tilt 
1.4375° azimuth

0.625° tilt 
0.75° azimuth

Unbounded Grid 
Search

37.585 s 219.123 s 928.982 s
Bounded Grid 

Search
8.458 s 29.065 s 100.283 s

Performance Gain 444.372 % 753.906 % 926.360 %



Optimal Inter-Row Gap
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• What is optimal? 
→ Trade-off between more module rows and less self-shading

Optimal Inter-Row Gap
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• Typically PV modules are split in half horizontally 

• If parts of a string are shaded, electricity production drops 

• Half-cut modules have one string per half 

• Half-cut model → apply 50% loss per shaded half

Optimal Inter-Row Gap
Half-cut Model
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• dark blue: no shading loss 
• mid blue: 50% shading loss 
• light blue: 100% shading loss

Optimal Inter-Row Gap
Self-Shading Model

18

αfull
αhalf



/29

• What is optimal? 
→ Trade-off between more module rows and less self-shading 

• Maximize annual POA irradiance 
→ Apply shading losses to irradiance data

Optimal Inter-Row Gap
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→

Optimal Inter-Row Gap
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• What is optimal? 
→ Trade-off between more module rows and less self-shading 

• Maximize annual POA irradiance 
→ Apply shading losses to irradiance data 
→ Smallest gap produces highest annual POA irradiance 

• Minimize Levelized Cost of Electricity (LCOE) 
→ Account for costs of additional module rows

Optimal Inter-Row Gap
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Optimal Inter-Row Gap
Simulate Power Output
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• Derive total expenditures from PV park parameters 

• Calculate LCOE     LCOE =
costTOTEX

LT ⋅ Pac

Optimal Inter-Row Gap
Cost Model
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Category Cost
Utility Module Cost 372 $/kWhdc

Utility Inverter Cost 65 $/kWhac

Utility Structural Balance of System (SBOS) Cost 30 $/m2

Utility Electrical Balance of System (EBOS) Cost 236 $/kWhac

Utility Fieldwork Cost 61 $/m2

Utility Officework Cost 66 $/kWhdc

Utility Other Cost 247 $/kWhdc

Annual Utility Operations and Maintenance (O&M) Cost 16.58 $/a/kWhdc
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Optimal Inter-Row Gap
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• What is optimal? 
→ Trade-off between more module rows and less self-shading 

• Maximize annual POA irradiance 
→ Apply shading losses to irradiance data 
→ Smallest gap produces highest annual POA irradiance 

• Minimize Levelized Cost of Electricity (LCOE) 
→ Account for costs of additional module rows 
→ Lowest LCOE is not at smallest gap

Optimal Inter-Row Gap
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• Commenced operation in 2025 

• Located in Baden Wuerttemberg, Germany 

• 60 ha available area 

• extrapolated annual energy production of 89.9 GWh 

→ Simulate this park and compare power output at the optimal inter-
row gap

Optimal Inter-Row Gap
Case Study: Solarpark Langenenslingen-Wilflingen
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→ Optimal inter-row gap of 1.555 m 
→ Annual power output of 85.380 GWh at a LCOE of 0.054 $/kWh
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Optimal Inter-Row Gap
Case Study: Solarpark Langenenslingen-Wilflingen
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• Optimization framework for PV module orientation and inter-row gap 

• Optimal orientation → highest POA irradiance 
Perez transposition model and PVGIS irradiance data with 
bounded grid search 

• Optimal inter-row gap 
→ highest POA irradiance/power output 
→ lowest LCOE 
Self-shading, half-cut and cost model with power output simulation

Conclusion
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• Validate simulation results with PVGIS’ optimal angles 

• Isotropic sky model with clear sky model 

  

• MAE: 3.375° tilt and 4.9375° azimuth
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• Validate simulation results with PVGIS’ optimal angles 

• Isotropic sky model with PVGIS irradiance data 

  

• MAE: 4.9375° tilt and 1.4375° azimuth
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• αfull = arccos
h
D

h = w ⋅ sin β

Optimal Inter-Row Gap
Self-Shading Model
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• αhalf = arccos
h

2 ⋅ D′￼
D′￼= D +

w′￼

2
w′￼= w ⋅ sin β

Optimal Inter-Row Gap
Self-Shading Model
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