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Motivation

® Photovoltaic as a key technology in Germany's energy transition
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Figure: Electricity feed-in from renewable and conventional energy sources in Germany
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Motivation

® Efficiency of PV parks sensitive to
® PV module orientation: azimuth and tilt angles
® PV module row spacing

— Optimization framework determining ideal layout parameters
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Optimization Framework
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Optimal Module
Orientation



Optimal Module Orientation

® What is optimal?

— Capture the most irradiance during the whole year
® How to simulate annual plane-of-array (POA) irradiance?

® Depends on weather conditions — needs irradiance data
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Irradiance Data
Optimal Module Orientation

® [rradiance Components
® Direct normal irradiance (DNI)

® Diffuse horizontal irradiance (DHI)

® Global horizontal irradiance (GHI)

® Can be simulated — Ineichen Clear-Sky model
or sourced from databases — PVGIS-ERAD
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Optimal Module Orientation

® What is optimal?
— Capture the most irradiance during the whole year

® How to simulate annual plane-of-array (POA) irradiance?

® Depends on weather conditions — needs irradiance data
— Hourly irradiance data with components GHI, DNI and DHI

® (Calculate POA irradiance — transposition model
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Transposition Model

Optimal Module Orientation

® |sotropic Model
— diffuse radiation uniform across sky dome

0.
POA = DNI - cos(6;) + DHI - Fy, +GHI - p - Fy g '
]
1 4+ cosf I —cosp
F sky — 3 r ground — I

T

® Perez Model
— anisotropic model

a
POA = DNI - cos(6¢)) + DHI - |(1 = F)) - Fsky + F - E + F,-sinf| +GHI - p - Fgmund

a =max (0,cosf) b =max(cos85°,cosb,)
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Optimal Module Orientation

® What is optimal?
— Capture the most irradiance during the whole year

® How to simulate annual plane-of-array (POA) irradiance?

® Depends on weather conditions — needs irradiance data
— Hourly irradiance data with components GHI, DNI and DHI

® (Calculate POA irradiance — transposition model
— |sotropic and Perez model

— Transpose each irradiance data point, sum up the transposed data
points and norm them to one year
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Optimal Module Orientation

® Optimization algorithm

® Unbounded grid search
— try each combination
and return the maximum

® Bounded grid search
— grid search on reduced
search space
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Optimal Module Orientation

® Validate simulation results with PVGIS' optimal angles

® Perez model with PVGIS irradiance data
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* MAE: 0.625° tilt and 0.75° azimuth
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Optimal Module Orientation

® Differences between used models and algorithms

— Prefer Perez transposition model over isotropic model

%

%

Transposition Model| Isotropic Sky Model | Isotropic Sky Model Perez Model
Irradiance Data Clear Sky Model PVGIS-ERAS PVGIS-ERAS
Accuracy (MAE) 3.375° Filt 4.9375° .tilt O.625°. tilt

4.9375° azimuth 1.4375° azimuth 0.75° azimuth
Unbounded Grid 37.585 s 219.123 s 928.982 s
Bounded Grid 8.458 s 29.065 s 100.283 s
Performance Gain 444.372 % 753.906 % 926.360 %

Prefer PVGIS irradiance data over clear sky model

Prefer bounded grid search over unbounded grid search
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Optimal Inter-Row Gap



Optimal Inter-Row Gap

® What is optimal?
— Trade-off between more module rows and less self-shading
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Half-cut Model

Optimal Inter-Row Gap

® Typically PV modules are split in half horizontally
® |f parts of a string are shaded, electricity production drops
® Half-cut modules have one string per half

® Half-cut model — apply 50% loss per shaded half
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Self-Shading Model

Optimal Inter-Row Gap

® dark blue: no shading loss
® mid blue: 50% shading loss
® light blue: 100% shading loss
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Optimal Inter-Row Gap

® What is optimal?

— Trade-off between more module rows and less self-shading

® Maximize annual POA irradiance
— Apply shading losses to irradiance data

19/29



Optimal Inter-Row Gap
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Optimal Inter-Row Gap

® What is optimal?
— Trade-off between more module rows and less self-shading

® Maximize annual POA irradiance
— Apply shading losses to irradiance data
— Smallest gap produces highest annual POA irradiance

® Minimize Levelized Cost of Electricity (LCOE)
— Account for costs of additional module rows
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Simulate Power Output

Optimal Inter-Row Gap
PV Module Inverter
Parameters Parameters

. Photovoltaic
Irradiance Inverter Power
Data Performance Model Output
Model P

Thermal Model,

Incident Angle
Modifier Model
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Cost Model

Optimal Inter-Row Gap

Category Cost
Utility Module Cost 372 $/KWhqc
Utility Inverter Cost 65 $/kWhac
Utility Structural Balance of System (SBOS) Cost 30 $/m?
Utility Electrical Balance of System (EBOS) Cost 236 $/kWh,,
Utility Fieldwork Cost 61 $/m?
Utility Officework Cost 66 $/kWhqyc
Utility Other Cost 247 $ /KWhqc
Annual Utility Operations and Maintenance (O&M) Cost 16.58 $/a/kWhqc

® Derive total expenditures from PV park parameters

cost
e (Calculate LCOE LCOE = —OTEX
LT- P,
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Optimal Inter-Row Gap
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Optimal Inter-Row Gap

® What is optimal?
— Trade-off between more module rows and less self-shading

® Maximize annual POA irradiance
— Apply shading losses to irradiance data
— Smallest gap produces highest annual POA irradiance

® Minimize Levelized Cost of Electricity (LCOE)
— Account for costs of additional module rows
— Lowest LCOE is not at smallest gap
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Case Study: Solarpark Langenenslingen-Wilflingen

Optimal Inter-Row Gap

® Commenced operation in 2025

® | ocated in Baden Wuerttemberg, Germany

® 60 ha available area

® extrapolated annual energy production of 89.9 GWh

— Simulate this park and compare power output at the optimal inter-
row gap
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Case Study: Solarpark Langenenslingen-Wilflingen

Optimal Inter-Row Gap
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— Optimal inter-row gap of 1.555 m
— Annual power output of 85.380 GWh at a LCOE of 0.054 $/kWh
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Conclusion



Conclusion

® Optimization framework for PV module orientation and inter-row gap

e Optimal orientation — highest POA irradiance

Perez transposition model and PVGIS irradiance data with
bounded grid search

® Optimal inter-row gap
— highest POA irradiance/power output

— lowest LCOE
Self-shading, half-cut and cost model with power output simulation
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Optimal Module Orientation

¢ Validate simulation results with PVGIS' optimal angles

® |sotropic sky model with clear sky model
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e MAE: 3.375° tilt and 4.9375° azimuth
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Optimal Module Orientation

¢ Validate simulation results with PVGIS' optimal angles

® |sotropic sky model with PVGIS irradiance data
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e MAE: 4.9375° tilt and 1.4375° azimuth
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Self-Shading Model

Optimal Inter-Row Gap

h
e O, = arccos 5 h=w-sinp
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Self-Shading Model

Optimal Inter-Row Gap
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