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Abstract

We present a counterexample guided abstraction re�nement (CEGAR) ap-
proach for numeric planning. We modify existing SAT-based approaches by
omitting certain parts of the encoding. This allows for a more compact plan
representation. To derive valid plans from the abstraction we propose multiple
methods of re�nement. In addition, we modify an existing search algorithm by
applying an incremental solving strategy to make use of the encoding's struc-
ture. We provide an implementation extending OMTPlan and evaluate it on
standard benchmarks for numeric planning problems taken from the literature.
The empirical evaluation shows that the incremental solving strategy is an im-
provement to the original method on many domains. Our CEGAR approach
outperforms state-of-the-art methods on smaller problem instances. Scalability
remains challenging on larger instances.
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Chapter 1

Introduction

1.1 AI Planning

Planning is a branch of the arti�cial intelligence research �eld exploring the problem
of enabling an agent to �nd a plan consisting of a sequence of actions. Given an initial
state the entity should reach a state that satis�es a goal condition by executing those
actions. In this context the world in a planning problem instance is modelled by a
set of state variables. The assignment of values to all state variables de�nes a state
of the world.

In order to establish a standard in the planning community for an easier exchange
of planning domains and comparability of research results a Planning Domain De-

scription Language (PDDL) was introduced in 1998 by Drew McDermott. Since the
de�nition of the original PDDL, which only allowed propositional variables, several
updates to the language up to version 3.1 were made. Further, several modelling
languages such as NDL [Rin15] have been developed. The planning problems we con-
sider in this work can be encoded in PDDL2.1 [FL11], which enables the de�nition
of domains for reasoning about numeric quantities.

The earliest methods for solving planning problems are based on explicit state-
space search. Algorithms using this approach use the strategy to explicitly generate
states which can be reached from the initial state. Such algorithms for example are
uniform search algorithms like depth �rst search or heuristic based algorithms such
as A* and variants of it [SS11].

A di�erent approach for planning is the reduction of subproblems to SAT or SMT.
The underlying idea of this approach is to encode the existence of a plan of some �nite
length for some planning problem into a formula. The encoded formula is then solved
by an o�-the-shelf SAT or SMT solver [SD05]. State of the art planning tools, which
are based on further developments of this approach, include Springroll [SRHT16] and
Rantanplan [BEV16].

1.2 Counterexample Guided Abstraction Re�nement

OMTPlan [LGÁT20] is a planning tool, primarily developed to �nd cost optimal plans
for numeric planning problems where actions may have state dependent or constant
costs. The implementation also provides a search algorithm for a satis�cing (not
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optimal) search, which relies on a state based encoding of the existence of a plan
of some length. This encoding allows the parallel execution of multiple actions and
therefore contains encodings of mutexes which ensure that these parallel plans can be
converted to valid sequential plans. Allowing this parallelism has the advantage that
longer plans can be found at an earlier stage in the search. The syntactically derived
mutexes used in the encoding however have the drawback that they restrict some of
the possible parallelism and cause an asymptotically quadratically long encoding in
the worst case.

Our new approach therefore is to encode an abstraction of the existence of a
plan by omitting these mutexes. Subsequently the abstraction will be re�ned during
the search process, in case a model of the abstraction is found which can not be
converted to a sequential plan. The motivation is that doing so, we have an initially
asymptotically linear encoding and need fewer iterations in the search process as more
parallelism is allowed.

1.3 Outline of the Thesis

We introduce a formal de�nition of the planning problems we intend to solve in
Chapter 2, Section 2.1 and make a detailed presentation of the SMT-encoding used
in the algorithm on which our approach is based in Section 2.2.

In Chapter 3, we propose a technical improvement of the original algorithm in
Section 3.1 and describe our CEGAR approach in Section 3.2 in detail. The chapter
is concluded with a brief proof of soundness and completeness of the algorithm.

With an empirical evaluation in Chapter 4 we compare our new approach to both
the original algorithm and another state of the art planning tool. Furthermore we
analyse the encodings and runtimes of the subroutines in our algorithm.

In Chapter 5 we conclude our �ndings through a recapitulation and discuss how
the strengths and weaknesses of our approach, observed in the previous chapter, could
be subject of future work.



Chapter 2

Preliminaries

2.1 Numeric Planning

In the following a planning problem is considered to be from a fragment of numeric
planning, which can be expressed in PDDL2.1 level 2 [FL11]. We follow the notation
introduced in [LGÁT20]. A planning problem is de�ned as a tuple

Π = (VB,VQ, A, I,G) (2.1)

where VB ∩ VQ = ∅ with VB being the set of propositional variables and VQ being
the set of numeric variables in the problem Π. Let dom(v) denote the domain of a
variable v. We set ∀v ∈ VB : dom(v) = B and ∀v ∈ VQ : dom(v) = Q. A state of a
planning problem Π is de�ned through an assignment of all variables V := VB ∪ VQ.
Therefore a state can formally be de�ned as a function s : V → (B∪Q) with s(v) ∈ B
for all v ∈ VB and s(v) ∈ Q for all v ∈ VQ. The set of all states of Π is denoted as S.

A propositional constraint consists of a variable v ∈ VB or the negation ¬v for
v ∈ VB. Considering the usual linear rational arithmetic structure over the signature
τ = {+,−, ·, <, ≤,=,≥, >} with the domain Q, an arithmetic expression e is a
τ − term with function symbols from τ , constants in Q and variables from V. An
arithmetic expression is linear, if and only if no occurrence of the multiplication
operator in e is used to multiply two variables. We only consider linear arithmetic
expressions. A numeric constraint is a τ -formula e1 ∼ e2 with a relation symbol
∼∈ {< , ≤,=,≥, >} and e1, e2 being arithmetic expressions. Constraints are either
numeric or propositional constraints. A condition is a �nite set of constraints. We
use the usual notation s |= Φ to denote that a mapping s models a set of constraints
Φ.

A propositional assignment v := e is the assignment of an element e ∈ {>, ⊥},
representing true and false, to a propositional variable v ∈ VB. We call v := > an
add e�ect and v :=⊥ a delete e�ect. Accordingly, a numeric assignment v := e, an
assignment to v, consists of a numeric variable v ∈ VB and an arithmetic expression e.
The evaluation of a term e under a mapping s is denoted as [[e]]s. We de�ne an e�ect

Ψ as a set of assignments containing at most one assignment per variable v ∈ V.
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For some state s ∈ S, given an e�ect Ψ, the successor of s and Ψ is the unique
state s′ ∈ S with

s′(v) :=

{
[[e]]s if v := e ∈ Ψ

s(v) else
.

Otherwise put, the value of a variable v in the successor state s′ corresponds to the
application of the assignment v := e in the state s, if there is such an assignment in
Ψ and remains unaltered in relation to s otherwise.

In the above de�nition of a planning problem A is a �nite set of actions. Each
action a ∈ A consists of a condition prea, called the precondition, and an e�ect e�a,
a = (prea, e�a). In general it is customary to also consider the cost of an action, but
here we will remain with this simpler de�nition as the action's costs have no relevance
in the purely satis�cing setting of this work.

With e being a linear arithmetic expression and d ∈ Q we can distinct between a
constant increment v := v + d, a constant decrement v := v − d, a linear increment

v := v+ e, and a linear decrement v := v− e. We say that a numeric constraint e ∼ 0
is simple if and only if every assignment in ∪a∈Ae�a of a variable that appears in e
is a constant increment or a constant decrement. Analogously, a numeric constraint
e ∼ 0 is linear if and only if every assignment in ∪a ∈ Ae�a of a variable that appears
in e is a linear increment or a linear decrement.

An action a is called applicable in a state s, if and only if the state satis�es the
preconditions of the action, i.e. if and only if for all ϕ ∈ prea it holds that s |= ϕ.
The unique initial state is de�ned by a �nite set of constraints I, called the initial

condition. All constraints in I have the form v = e, e ∈ Q for each v ∈ VQ and v or
¬v for each v ∈ VB. The set of goal states is de�ned by a condition G, called the goal
condition.

With this in mind we can �nally come to the de�nition of the sought-after sub-
ject. A plan πn, with n ∈ N denoting the plan's length, is a sequence of actions
πn = 〈a0, ..., an−1〉, a0, ..., an−1 ∈ A such that there exists a unique sequence of states
s0, ..., sn, where s0 |= I, sn |= G and for every i ∈ {1, ...,n} it holds that si−1 |= preai−1

and si is the successor of si−1 and e�ai−1. For the sake of unambiguity we will refer to
these plans as sequential plans and we call plans of later de�ned kinds sequentializable,
if we are able to convert them into a sequential plan.

2.2 Encoding Parallel Plans

Given a planning problem Π = (VB,VQ, A, I,G), the search for a plan in [LGÁT20]
consists of encoding the existence of a plan of up to a certain length h, which is also
being referred to as the horizon, and iteratively increasing that horizon to an arbitrary
upper bound ub as long as no model is found.

In order to make the encoding more e�cient the concept of a parallel plan is used.
A set of actions A′ ⊆ A is independent, i� for any variable v ∈ V where v := e ∈ e�a1
for some action a1 ∈ A′ and some term e there is no a2 ∈ A′, a2 6= a1 where
v := e′ ∈ e�a2 or v appears in a precondition of a2. A parallel plan of length n
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v0 v1 v2

I0 P 0
A|E0

A|F 0
A P 1

A|E1
A|F 1

A G2

Figure 2.1: Illustration of the state based encoding.

is a sequence of independent sets of actions πn = 〈A0, ...,An−1 〉 such that, with
Ai = {ai,j |0 < j ≤ ki}, the action sequence 〈a0,1,...,a0,k0 ,...,an−1,1,...,an−1,kn−1〉 is
a sequential plan for Π. Due to the restriction that each set of actions has to be
independent, parallel plans in general can be sequentialized by ordering the actions
of each action set in any order. The intuition behind enabling this parallelism is that
the existence of a parallel plan of horizon h can be encoded in a formula with a similar
length as the encoding of the existence of a sequential plan with the same horizon, but
the resulting sequentialized plan can have a length of up to h · |A|. This potentially
allows �nding longer plans with less computational expense.

In the following we will describe in detail the encoding used in [LGÁT20]. The
existence of a parallel plan with the horizon h for the planning problem Π is translated
into a state based encoding. For this purpose h+1 state variables {vi|v ∈ V, 0 ≤ i ≤ h}
in the encoding represent h + 1 di�erent states in a parallel plan. Each item in the
sequence that is a plan, is called a step. The state variables correspond to the states
before and after each parallel plan step. We use the upper indices t on terms and
formulas from Π to annotate them with the plan step to which they belong:

vt : vt

(¬v)t : ¬vt

qt : q for q ∈ Q
(e1 • e2)t : et1 • et2 where • ∈ {+,−, ·}
(v ∼ e)t : vt ∼ et where ∼∈ {< , ≤,=,≥, >}

The initial condition I is encoded as:

I0 :
∧

v=q∈I
v0 = q ∧

∧
v∈I

v0 ∧
∧
¬v∈I

¬v0 (2.2)

The goal condition for a certain horizon h is encoded as follows, where ∼∈ {< , ≤,=
,≥, >}:

Gh :
∧

v∼e∈G
vh ∼ eh ∧

∧
v∈G

vh ∧
∧
¬v∈G

¬vh (2.3)

Each step At is encoded using propositional variables at for each action a ∈ A
that can possibly be executed in one parallel step, with 0 ≤ t < h. Now to encode an
action a ∈ A at the time step t the following subformulas are needed. The execution
of the actions implies that all constraints in the precondition of the action are ful�lled:

P ta : at →
∧

ϕ∈prea

ϕt (2.4)
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Further, the execution of the action implies the assignments in the action's e�ect:

Eta : at →
∧

v:=e∈e�a

vt+1 = et ∧
∧

v:=>∈e�a

vt+1 ∧
∧

v:=⊥∈e�a

¬vt+1 (2.5)

For a more compact notation we de�ne:

P tA :
∧
a∈A

P ta (2.6)

EtA :
∧
a∈A

Eta (2.7)

Be Avadd ⊆ A the set of actions with add e�ects and Avdel ⊆ A the set of actions with
delete e�ects on a propositional variable v ∈ VB. Further be Avnum ⊆ A the set of
actions with e�ects on a numerical variable v ∈ VQ. It also needs to be encoded, that
the value of a state variable remains unchanged from one step to the next, if no action
alters it. This part of the encoding is referred to as the frame:

F tA :
∧
v∈VQ

(
(vt = vt+1) ∨

∨
a∈Av

num

at
)

(2.8)

∧
∧
v∈VB

((
(¬vt ∧ vt+1)→

∨
a∈Av

add

at
)

(2.9)

∧
(
(vt ∧ ¬vt+1)→

∨
a∈Av

del

at
))

(2.10)

Now to ensure independence of the set of actions in one parallel step, for each pair of
actions (a1, a2) ∈ A2, a1 6= a2 it is checked whether

(i) a variable appears both in a precondition of a1 and in the e�ect of a2,

(ii) or a variable appears both in a delete e�ect of a1 and in an add e�ect of a2,

(iii) or a variable appears both in a numeric assignment in e�a1 and in a numeric
assignment in e�a2 .

If any of the above cases hold, the actions are considered to be mutually exclusive.
With Am ( A2 being the set of all mutexes1, i.e. 2-tuples of mutually exclusive
actions, we encode:

M t :
∧

(a1,a2)∈Am

(¬at1 ∨ ¬at2) (2.11)

In conclusion, the existence of a parallel plan of length at most h is encoded as:

PhΠ : I0 ∧Gh ∧
∧

0≤t<h

(
F tA ∧ P tA ∧ EtA ∧M t

)
(2.12)

1The set Am does not include tuples of the form (a,a), a ∈ A, as the encoding implies that an

action can only be executed once per step.



Chapter 3

A CEGAR Approach for

E�cient Planning

The focus of this work lays on exploring di�erent methods on how the mutex condi-
tions as mentioned in the preliminaries section can be relaxed to allow more paral-
lelism and a simpler encoding. The �rst section of this chapter however introduces
a rather technical alteration of the parallel plan search algorithm, before we explore
the relaxation in the second section.

3.1 Incremental Parallel Search

The parallel plan search in [LGÁT20] consists of iteratively constructing the formula
PhΠ for increasing horizons until an upper bound ub is reached, or the underlying
solver z3 [BdMNW18] �nds a model for the formula, see Algorithm 1.

Algorithm 1 Parallel Search.

Input: Π, ub
1: h := 1
2: while h ≤ ub do
3: encoding = PhΠ
4: solver = z3.Solver()
5: solver.add(encoding)
6: res = solver.check()
7: if res == sat then
8: model = solver.model()
9: return plan(model)

10: end if

11: h += 1
12: end while

13: return 'No plan found within bound.'

This procedure involves encoding and solving the entire formula for each iteration.
However, in the formula for horizon h the encoding of all actions at step t < h − 1
and the encoding of the initial state remain unchanged to the encoding at horizon
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h− 1. To speed up the encoding in each step and potentially make use of internally
derived clauses in the solver, we updated the parallel search procedure to make use of
this incremental structure in the encoding. For this purpose we used the incremental
solver in z3 [BdMNW18], which allows to set backtracking points (push) in-between
formula assertions to the solver and remove the assertions after the last backtracking
point (pop), see Algorithm 2.

Algorithm 2 Incremental Parallel Search.

Input: Π = (VB,VQ, A, I,G), ub
1: h := 1
2: initial_s := I0
3: solver = z3.Solver()
4: solver.add(initial_s)
5: solver.push()
6: while h ≤ ub do
7: encoding = Fh−1

A ∧ Ph−1
A ∧ Eh−1

A ∧Mh−1

8: solver.add(encoding)
9: solver.push()

10: solver.add(Gh)
11: res = solver.check()
12: if res == sat then
13: model = solver.model()
14: return plan(model)
15: end if

16: solver.pop()
17: h += 1
18: end while

19: return 'No plan found within bound.'

3.2 A Relaxation

The use of mutexes in the encoding to ensure independence as de�ned in Equation
2.11 restricts the possible parallelism that can be achieved through the encoding of
a parallel plan excluding the mutexes. The derived mutexes generally may exclude
certain pairs of actions, which do not necessarily interfere in a parallel plan step. Let
us illustrate this through a brief example.

Example 3.2.1. Let us consider the following planning problem.

Π = (VB = ∅,VQ = {x,y}, A, I = {x = 0,y = 0}, G = {x ≥ 1, y ≥ 1}) with
A = {increasex, increasey} and
increasex = ({y ≤ 1},{x = x+ 1})
increasey = ({x ≤ 1},{y = y + 1})

The actions increasex and increasey are considered to be mutually exclusive as
the numeric variable x appears in the precondition of increasey and in the ef-
fect of increasex. The parallel plan with the smallest horizon using the mutex
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encoding from Equation 2.11 therefore has the length 2. One possible solution
would be πmut = 〈{increasex},{increasey}〉. If we exclude the mutexes, already
the (unique) solution for the horizon 1 would yield a sequentializable solution:
πrel = 〈{increasex,increasey}〉.

We want to abstract from the parallel plan and re�ne our search, if the solution
of the abstraction can not be converted to a valid plan as illustrated in Figure 3.1.

Π, h = 1, ub

Solve encoding of abstraction
and re�nement

Max. horizon ub reached?

Increment horizon h

No plan found.

Seqentializable?

Improve re�nement

Plan found.

Unsat

Yes

No

Sat

Yes

No

Figure 3.1: Illustration of the CEGAR approach.

To explore possible bene�ts in a relaxation we de�ne the relaxed parallel plan. Let
us again assume some planning problem Π = (VB,VQ, A, I,G). We previously de�ned
the successor of a state, given the e�ect of an action. For the relaxation, we need to
transfer the notion of a successor of a state s ∈ S to the e�ects of a set of actions A′,
Ψ =

⋃
a∈A′ e�a. We de�ne the successor:

s′(v) :=


[[e]]s if (v := e) ∈ Ψ ∧ ¬∃(v := e′) ∈ Ψ : [[e]]s 6= [[e]]s

s(v) if ¬∃(v := e) ∈ Ψ

undef otherwise

De�nition 3.2.1 (Relaxed Parallel Plan). A relaxed parallel plan of length n is a

sequence of sets of actions πn = 〈A0, ...,An−1〉, with Ai = {ai,j |0 < j ≤ ki} ⊆ A
such that there exists a unique sequence of states s0, ..., sn, where

� s0 |= I, sn |= G

� for every i ∈ {1, ...,n} and ai−1,j ∈ Ai−1 it holds that si−1 |= preai−1,j

� si is the well-de�ned successor of si−1 and Ψ = {e�ai−1,j
|ai−1,j ∈ Ai−1}

The notion of the relaxed parallel plan arises from omitting the mutex encodings
in the parallel plan encoding. Therefore the existence of a relaxed parallel plan of
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length at most h can be encoded using a subformula of the parallel plan encoding:

RhΠ : I0 ∧Gh ∧
∧

0≤t<h

(
F tA ∧ P tA ∧ EtA

)
(3.1)

Corollary 3.2.1. Relaxed parallel plans are not sequentializable in general.

Proof. This can be proven through a concise example. Let us consider a slight modi-
�cation to the previous planning problem.

Π = (VB = ∅,VQ = {x,y}, A, I = {x = 0,y = 0}, G = {x ≥ 1, y ≥ 1}) with
A = {a, b} and
a = ({y < 1},{x = x+ 1})
b = ({x < 1},{y = y + 1})

Here π = 〈{a,b}〉 is a relaxed parallel plan, as for s0(x) := 0,s0(y) := 0 and s1(x) :=
1,s1(y) := 1 holds s0 |= I,s1 |= G and s0 |= {y < 1,x < 1}. All possible sequential-
izations 〈a,b〉, 〈b,a〉 however do not yield a valid sequential plan, as the e�ects and
preconditions of the two actions a and b exclude each other, given the initial state
I.

Having established that relaxed parallel plans are not generally sequentializable,
let alone trivially, we aim at designing an algorithm, which looks for relaxed parallel
plans of increasing horizon and sequentializes a found relaxed parallel plan, if possible.
The procedure derives a re�nement of the initial encoding, in case the relaxed par-
allel plan cannot be sequentialized. For this purpose we introduce several adjustable
concepts, which mostly have orthogonal roles in the overall algorithm. The overall
algorithm is based on the previously introduced incremental solving approach and is
summarized in Algorithm 3. Here R is an initially empty set, containing information
for re�nements of the plain relaxed parallel plan encoding. These are learnt during the
search. The exact de�nition of R depends on the selectable options of the algorithm,
as will be described in detail in the following.

In order to explore di�erent re�nement procedures, the algorithm possesses these
three mostly orthogonal settings and options:

1. Sequentializability check: general, �xed order, syntactical.
This setting de�nes which method will be used to determine whether a relaxed
parallel plan is seqentializable in a certain way.

2. Unsat core: on, o�
This setting de�nes, whether the unsat core of the underlying z3 solver is used.

3. Timesteps: all, current, dynamic
This setting de�nes for which steps the learnt exclusions are encoded in the
re�nement process.

Before describing the adjustable parts of the algorithm in greater detail, we give an
intuitive overview of the procedures.

Analogously to the previously introduced methods, the existence of a relaxed
parallel plan for some planning problem is encoded for increasing horizons. If the
encoding is satis�able for some horizon, a sequentializability check is applied to one
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Algorithm 3 Relaxed Parallel Search.

Input: Π = (VB,VQ, A, I,G), ub
1: h := 1, R := ∅
2: initial_s := I0
3: solver = z3.Solver()
4: solver.add(initial_s)
5: solver.push()
6: while h ≤ ub do
7: re�nement = encode_re�nement(R,h)
8: relaxed_encoding = Fh−1 ∧ Ph−1

A ∧ Eh−1
A

9: solver.add(encoding, re�nement)
10: solver.push()
11: solver.add(Gh)
12: res = solver.check()
13: while res == sat do
14: if sequentializable() then
15: return sequentialize_plan()
16: else

17: solver.pop()
18: update(R)
19: re�nement = encode_re�nement(R,h)
20: solver.add(re�nement)
21: solver.push()
22: solver.add(Gh)
23: res = solver.check()
24: end if

25: end while

26: solver.pop()
27: h += 1
28: end while

29: return 'No plan found within bound.'

relaxed parallel step after the other to determine, whether it is possible to derive a
sequential plan. In case the the sequentializability check returns true, the check
also provides the necessary information to construct the sought sequential plan. If
the sequentializability check returns false, the check yields information for the sub-
sequent re�nement of the relaxed parallel plan encoding. The superordinate setting
is the sequentializability check. Depending on the choice of the sequentializability
check, the other settings may come into play.

The syntactical sequentializability check determines for each relaxed parallel step,
whether the set of actions in that step is independent. If it is not, the re�nement
consists of encoding the corresponding mutexes. With the Timesteps option all, the
mutexes will be encoded for all steps. Analogously, with Timesteps set to current,
the mutexes will be encoded only for the step in which the non-independent relaxed
parallel plan step occurred. The other settings can not be applied under this sequen-
tializability check.
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Ai

si

si+1

ai,0 ai,1 ai,2 ai,3

Independent?

Figure 3.2: Illustration of the syntactical sequentializability check.

The general sequentializability check, determines for each relaxed parallel step
whether there is any sequential plan with actions from the step, corresponding to
the relaxed parallel step. With the Unsat core option o�, the subsequent re�nement
consists of encoding that the actions in the relaxed parallel step cannot simultaneously
appear in any step, if Timesteps is set to all, or only the corresponding step, otherwise.
If Unsat core is set to on, only con�icting actions will be excluded.

Ai

si

si+1

ai,0 ai,1 ai,2 ai,3

Figure 3.3: Illustration of the general sequentializiability check.

The �xed order sequentializability check, assumes a �xed order of all actions. It
then determines for each relaxed parallel step whether the actions in that step can be
executed in the set order from any state. If that is the case, it is subsequently checked,
whether the ordered sequence of actions corresponds to the relaxed parallel step. The
following re�nement also consists of encoding the exclusion of actions in a relaxed
parallel step. Here either all actions or only a con�icting subset are excluded for all
or only one step, depending on the Unsat core and Timesteps settings. Additionally,
if Timesteps is set to dynamic, the exclusion of the set of actions is encoded for all
steps, if the �rst check fails, and for only the corresponding step, if only the second
check fails.
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Ai

si

si+1

ai,0 ai,1 ai,2 ai,3

Figure 3.4: Illustration of the �xed order sequentializability check.

In the following we explain the di�erent methods for testing sequentializability
and how the settings interact in detail.

3.3 Methods for Testing Sequentializability

We developed three di�erent methods for checking the sequentializability of a relaxed
parallel plan. With solving the formula as noted in Line 12 and 23 of Algorithm
3 the solver generates a model J of the formula, if the formula is satis�able. The
sequentializabe() routine called in Line 15 of Algorithm 3 consists of subse-
quently calling sequentializability checks for each relaxed parallel plan step until the
�rst check returns false or all checks succeed. The model J is passed on to each
sequentializability check. In case the encoding is satis�able, the corresponding re-
laxed parallel plan is 〈A0, ...,An−1〉, with Ai = {a ∈ A|JatKJ = >}. Be 〈s0, ..., sn〉
the unique sequence of states corresponding to the found relaxed parallel plan. This
sequence of states can be directly deduced from the model J : si(v) := JviKJ for v ∈ V.
Relaxed parallel plan steps containing only one action are trivially sequentializable
and are not passed to any of the methods.

De�nition 3.3.1 (Align). Given a sequence of actions 〈a0,...,ak−1〉 and a sequence

of states 〈s0,...,sk〉, we say that these sequences align, if and only if

� each action aj , 0 ≤ j < k is applicable in state sj and

� sj is the successor of sj−1 and the e�ect of aj−1, for 0 < j ≤ k.

3.3.1 General Sequentializability Check

The general sequentializability check examines for every step Ai, 0 ≤ i < n, whether
there is some sequence of actions 〈a0,...,aki−1〉, with aj ∈ Ai, 0 ≤ j < ki and ki ≤ |Ai|,
with a unique sequence of states 〈si0,...,siki〉, such that

� si0 = si

� siki = si+1

� 〈a0,...,aki−1〉 and 〈si0,...,siki〉 align
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This translates to the planning problem Πi with an upper bound ub = |Ai|.

Πi = (VB,VQ, Ai, Ii, Gi) ,where (3.2)

Ii = {v = JviKJ |v ∈ V} (3.3)

Gi = {v = Jvi+1KJ |v ∈ V} (3.4)

The following formula prohibits the simultaneous execution of two actions in one step:

LtA :
∧

a1,a2∈A,a1,6=a2

(¬at1 ∨ ¬at2) (3.5)

With this, one can encode the existence of a sequential plan of length at most |Ai|
for the planning problem Πi:

SΠi : Ii0 ∧Gi|Ai| ∧
∧

0≤t<|Ai|

(
F tAi ∧ P tAi ∧ EtAi ∧ LtAi

)
(3.6)

In essence, the sequentializability check encodes the existence of a sequential plan of
length at most |Ai| of the planning problem Πi for each 0 ≤ i < n. If all formulas are
satis�able, the plan is recognized as sequentializable. It is therefore possible to create
a sequential plan for the original planning problem by concatenating the sequential
plans for each of the Πi planning problems:

πn = 〈s0
0,...,s

0
k0 , ..., s

n−1
0 ,...,sn−1

kn−1
〉 (3.7)

It should be noted that this method does not only check, whether the actions in
each relaxed parallel step can be ordered suitably, but also allows to repeat and omit
actions as long as the corresponding plan does not exceed the given maximal length.

Abstraction Re�nement In case a sequentializability check does not recognize a
relaxed parallel plan step as sequentializable, we want to re�ne our abstract relaxed
parallel plan. The re�nement should at least exclude the same non-sequentializable
solution and optimally should exclude as many other non-sequentializable solutions
of the abstraction as possible. This is where the settings 2. and 3. play a decisive
role.

The procedure is formally summarized in Algorithm 4, with Π = (VB,VQ, A, I,G)
being the planning problem and Ai a relaxed parallel plan step.

Algorithm 4 General Sequentializability Check.

Input: Π, Ai
1: encoding = SΠi

2: re�nement_solver.add(encoding)
3: res = re�nement_solver.check()
4: if res == sat then
5: model = re�nement_solver.model()
6: return True, plan(model)
7: end if

8: return False, None
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If the sequentializability check returns False for the relaxed parallel plan step
Ai and Unsat core is set to o�, we re�ne by excluding the set of actions Ai from
appearing in one relaxed parallel step. This means that the update(R) function in
Algorithm 3 is de�ned as in Algorithm 5.

Algorithm 5 update(R), Sequentializability check: General, Unsat core: o�

Input: R,Ai
1: R = R ∪ {Ai}

Now, when setting Unsat core to on we intend to make use of the con�ict analysis
provided by the z3 solver instance. To do this, each formula, which is part of the
encoding of the semantics of executing one speci�c action (i.e. P ta and E

t
a), is asserted

to the solver together with a label. This label allows the attribution of the formula to
the corresponding unique action. With the unsat core activated, the solver returns a
subset of the labels UC, which indicates the subset of formulas involved in the con�ict
that led to the unsat result. Due to the fact that we created labels for the encoding
of each action at each step, we can use the unsat core UC to derive a potentially more
precise re�nement, by excluding the set of actions, which corresponds to the unsat
core. This is done by de�ning the update(R) function as done in Algorithm 6.

Algorithm 6 update(R), Sequentializability check: general, Unsat core: on

Input: R,Ai, UC
1: R = R ∪ {a ∈ Ai | a is in UC}

Finally, with the Timestep setting we can specify for which steps the re�nement
in R should be encoded. If Timestep is set to all the encode_refinement(R)
method from Algorithm 3 behaves such that the following formula is asserted to the
solver:

∧
Ai∈R

 ∧
0≤t<h

¬

( ∧
a∈Ai

at

) (3.8)

Analogously, if Timestep is set to Current the encode_refinement(R) method
behaves such that the following formula is asserted to the solver:

∧
Ai∈R

¬

( ∧
a∈Ai

ai

)
(3.9)

We refer to each subformula consisting of the negation of a conjunction of a set of
action variables for some timestep t derived from an unsequentializable relaxed parallel
plan step as an invariant encoding.

The dynamic option allows for the seqentializiability check to decide whether a
given re�nement should be encoded for all timesteps or only the timestep it occurred
in. However, we only make use of this feature with the �xed order sequentializability
check.
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Example 3.3.1. We illustrate the general sequentializability check in the relaxed
parallel search through a small example. Let us assume the following planning
problem.

Π = (VB = ∅,VQ = {x,y,z}, A, I,G)

I = {x = 0,y = 0,z = 0}
G = {x ≥ 1, y ≥ 1, z ≥ 1}
A = {a, b, c, d} and
a = ({y < 1},{x = x+ 1})
b = ({x < 1},{y = y + 1})
c = ({x ≥ 1},{y = y + 1})
d = ({x ≤ 0},{z = z + 1})

Now, applying the relaxed parallel search method with Seq. check: general, Unsat

core: o�, Timesteps: all to this problem would start by encoding the formula
R1

Π. This formula has a unique model yielding the unique relaxed parallel plan
〈A1 = {a,b,d}〉. To test the sequentializability of the plan, the formula SΠ1 is
encoded. This formula is unsatis�able as the actions a and b can not be executed
subsequently in any order given the initial state. Subsequently the previous relaxed
parallel plan encoding is re�ned to:

R1
Π ∧ ¬(a1 ∧ b1 ∧ d1)

The re�ned formula is unsatis�able, because the re�nement excludes the only model
of R1

Π. Therefore the horizon is incremented and a formula expressing the existence
of a longer relaxed parallel plan is encoded. Due to the Timestep option being set
to all the re�nement encoding is amended correspondingly:

R2
Π ∧ ¬(a1 ∧ b1 ∧ d1) ∧ ¬(a2 ∧ b2 ∧ d2)

This formula has several models. For simplicity let us assume that the solver �nds
the model with the corresponding relaxed parallel plan 〈A1 = {a,d}, A2 = {c}〉.
During the sequentializability check the corresponding formula SΠ1 is encoded.
It has a unique model ordering the actions in A1 to 〈d, a〉. The relaxed parallel
plan step A2 is recognized to be trivially sequentializable due to containing only a
single action. Consequently the relaxed parallel search terminates, returning the
sequential plan 〈d, a, c〉.

In the (not relaxed) parallel search given the same planning problem mutexes for
each pair of actions from A are encoded, as the variable x appears in either the
precondition or e�ect of each action. Consequently the encodings PhΠ for h = 1 and
h = 2 are unsatis�able and a plan is only found at horizon h = 3.



Methods for Testing Sequentializability 25

Lemma 3.3.1. Given a planning problem Π = (VB,VQ, A, I,G), two states si,si+1

and a subset Ai ⊆ A, if the general sequentializability check, returns a sequence of

actions 〈a0,...,aki−1〉, with aj ∈ Ai, 0 ≤ j < ki and ki ≤ |Ai|, then there is a sequence

of states 〈si0,...,siki〉, such that si0 = si, s
i
ki

= si+1 and 〈a0,...,aki−1〉 and 〈si0,...,siki〉
align .

Proof. As described above, based on the input the existence of a sequential plan
of a length less of equal to |Ai| for the planning problem Πi is encoded. Given the
correctness of the encoding of the existence of a sequential plan, the lemma follows.

It should be noted that it also holds that, if there is a sequence of states 〈si0,...,siki〉,
such that si0 = si, siki = si+1 and 〈a0,...,aki−1〉 and 〈si0,...,siki〉 align, the general
sequentializability check returns some sequence of actions from Ai. However, the
returned sequence of actions is not unique and for our purposes it su�ces to show
Lemma 3.3.1.

3.3.2 Fixed Order Sequentializability Check

For the �xed order sequentializibility check initially a total ordering < of the actions
in A is set. In the current implementation this order is picked without any particular
strategy. The method can be executed in two stages for every step Ai, 0 ≤ i < n.

The global �xed order sequentializability check examines, whether there is a se-
quence ρAi

= 〈si0,...,si|Ai|〉 of states, such that ρAi
and the sequence of actions result-

ing from the ordering of Ai according to < align. The objective of this is to determine
whether the actions may ever occur in one step.

If we use σ<Ai
: Ai → {0,...,|Ai| − 1} to assign to each action its positions after one

would order Ai, we can encode the problem of the existence of said sequence into the
following formula. For the sake of readability we abbreviate σ<Ai

trough σ

OgAi
:
∧
a∈Ai

(aσ(a) ∧ Pσ(a)
a ∧ Eσ(a)

a ∧ Fσ(a)
{a} ) (3.10)

The local �xed order sequentializability check adds the requirement, that si0 = si
and siki = si+1. This is necessary to determine whether the actions in Ai ordered
according to < form a suitable sequence of actions given a concrete initial and �nal
state. Conveniently it su�ces to amend the previous formula to encode the additional
requirement.

OlAi
: OgAi

∧
∧
v∈VQ

(v0 = si(v) ∧ v|Ai| = si+1(v)) (3.11)

∧
∧

v∈VQ,si(v)=>

v0 ∧
∧

v∈VQ,si+1(v)=>

v|Ai| (3.12)

∧
∧

v∈VQ,si(v)=⊥

¬v0 ∧
∧

v∈VQ,si+1(v)=⊥

¬v|Ai| (3.13)

Abstraction Re�nement The usage of the unsat core and the corresponding re-
�nement is analogous to the general sequentializability check. Also the all, current

options for the Timesteps setting are exactly analogue. Additionally we have the
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dynamic setting, which distinguishes between the local and the global �xed order se-
quentializability check. If for the relaxed parallel step already the global check returns
unsat, the re�nement is encoded for all steps:

∧
0≤t<h

¬

( ∧
a∈Ai

at

)
(3.14)

The reasoning being that in this case it is implied that there is no sequence of states
ρ, such that ρ and the sequence of ordered actions from Ai align. Accordingly, if the
global check returns sat and the local check returns unsat the re�nement is encoded
only for the corresponding step:

¬

( ∧
a∈Ai

ai

)
(3.15)

Example 3.3.2. For the purpose of illustration we will view another concise ex-
ample. Let us solve the following planning problem with the relaxed parallel search
method and Seq. check: �xed order, Unsat core: o�, Timesteps: dynamic:

Π = (VB = {x1},VQ = {y1,y2,y3}, A, I,G)

I = {x1 =⊥ ,y1 = 0,y2 = 0,y3 = 0}
G = {y1 > 0,y2 > 0,y3 ≥ 1}
A = {a, b, c, d} and
a = ({¬x1},{x1, y1 = y1 + 1})
b = ({¬x1},{x1, y2 = y2 + 1, y3 = y3 + 1})
c = ({x1},{y2 = y2 + 1})
d = ({x1,y2 = 0},{y3 = y3 + 1})

We assume a lexicographical ordering of the actions.
Initially the relaxed parallel plan for horizon h = 1 is encoded R1

Π. The formula
has a unique model, giving the relaxed parallel plan 〈A0 = {a,b}〉. The correspond-
ing formula OgA0

of the global �xed order sequentializability check is unsatis�able,
as action a deactivates the precondition of action b. Therefore the re�nement
¬(a ∧ b) will be encoded for every step. The re�ned relaxed parallel plan encoding
R1

Π ∧ (¬(a0 ∧ b0)) is unsatis�able. Thus, the formula is encoded for the subsequent
horizon:

R2
Π ∧ (¬(a0 ∧ b0)) ∧ (¬(a1 ∧ b1)) (3.16)

This yields the relaxed parallel plan 〈A0 = {a}, A1 = {c,d}〉. Now the global
sequentializability check for A1 passes, but the local check fails. This is due to the
fact that executing c directly before d enables the precondition of d if and only if
y2 = −1. Consequently the re�nement ¬(c ∧ d) is only encoded for the step t = 1:

R2
Π ∧ (¬(a0 ∧ b0)) ∧ (¬(a1 ∧ b1)) ∧ (¬(c1 ∧ d1)) (3.17)
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This formula is unsatis�able leading us to the the encoding for horizon h = 3:

R3
Π ∧ (¬(a0 ∧ b0)) ∧ (¬(a1 ∧ b1)) ∧ (¬(c1 ∧ d1)) ∧ (¬(a2 ∧ b2)) (3.18)

The above encoding has multiple models. For the sake of brevity, we assume that
the solver �nds the solution which yields the relaxed parallel plan 〈A0 = {a}, A1 =
{d}, A2 = {c}〉, directly resulting in �nding the sequential plan 〈a,d,c〉.

Lemma 3.3.2. Given a planning problem Π = (VB,VQ, A, I,G), two states si,si+1

and a subset Ai ⊂ A, if the �xed order sequentializability check, returns a sequence of

actions 〈a0,...,aki−1〉, with aj ∈ Ai, 0 ≤ j < ki and ki = |Ai|, then there is a sequence

of states 〈si0,...,siki〉, such that si0 = si, s
i
ki

= si+1 and 〈a0,...,aki−1〉 and 〈si0,...,siki〉
align.

Proof. Given the correctness of the encoding for the local �xed order sequentializ-
ability check, we know that the check returns a sequence of states 〈a0,...,ak〉, only
if aj = a′ ⇔ σ(a′) = j, k = |Ai| and there is a sequence of states meeting the
requirements stated above.

3.3.3 Syntactical Sequentializability Check

The relaxed parallel search with the syntactical sequentializability check, see Algorithm
7, corresponds to parallel search with a reactive mutex encoding. Instead of encoding
all syntactically derived mutexes from the start, the set of actions in each relaxed
parallel step is checked for independence with the same criteria, as for the mutexes
in the parallel search.

Algorithm 7 Syntactical Sequentializability Check

Input: Ai
1: mutexes = computeMutexes(Ai)
2: if mutexes == ∅ then
3: return True, tuple(Ai)
4: end if

5: return False, None

Only in case a non-independent set is found, the mutex excluding this step, will
be encoded, see Algorithm 8.

Algorithm 8 update(R), Sequentializability check: syntactical

Input: R,Ai
1: mutexes = computeMutexes(Ai)
2: R = R ∪ {mutexes}

The all, current options for the Timesteps setting are analogue to the previous
methods. As this method is restricted to the syntactical analysis of abstract actions,
all other settings do not �nd any application.
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Example 3.3.3. To illustrate this method in comparison to the parallel search we
consider the following planning problem and Timesteps: current.

Π = (VB = ∅,VQ = {y1,y2,y3}, A, I,G)

I = {x = 0,y = 0,z = 0}
G = {x ≥ 1, y ≥ 1, z ≥ 1}
A = {a, b, c} and
a = ({y = 0},{z = z + 1})
b = ({y ≤ 0},{x = x+ 1, y = y + 1})
c = ({y > 0},{z = z + 1})

The initial encoding R1
Π has a unique solution with the relaxed parallel plan

〈A0 = {a,b}〉. The sequentializability check �nds the �rst step not to be sequen-
tializable due to the variable y occurring in the precondition of a and an e�ect
of b. Subsequently the encoding is re�ned to R1

Π ∧ ¬(a0 ∧ b0), which is unsatis-
�able. Finally, a unique model is found for the encoding with the next horizon
R2

Π ∧ ¬(a0 ∧ b0). This results in the relaxed parallel plan 〈A0 = {b}, A1 = {c}〉
from which the sequential plan 〈b, c〉 is directly derived. Solving the same planning
problem with the parallel search would make it necessary to encode mutexes for
each pair of actions for all steps. Therefore the �nal encoding would correspond to:

R1
Π ∧ ¬(a0 ∧ b0) ∧ ¬(a0 ∧ c0) ∧ ¬(b0 ∧ c0) (3.19)

∧ ¬(a1 ∧ b1) ∧ ¬(a1 ∧ c1) ∧ ¬(b1 ∧ c1) (3.20)

Lemma 3.3.3. Given a planning problem Π = (VB, VQ, A, I, G), two states si,si+1

and a subset Ai ⊂ A, if the syntactical sequentializability check, returns a sequence of

actions 〈a0,...,aki−1〉, with aj ∈ Ai, 0 ≤ j < ki and ki = |Ai|, then there is a sequence

of states 〈si0,...,siki〉, such that si0 = si, s
i
ki

= si+1 and 〈a0,...,aki−1〉 and 〈si0,...,siki〉
align.

Proof. Due to requiring independence of the set of actions Ai, the syntactical sequen-
tializability check, returns the sequence of actions 〈a0,...,aki−1〉 only if, 〈Ai〉 is a relaxed
parallel plan for the planning problem Π′ = (VB,VQ, A, Ii = {v = JvKsi |v ∈ V},
Gi = {v = JvKsi+1

|v ∈ V}). Assuming the correctness of the notion of a parallel plan
the sequence 〈a0,...,aki−1

〉 su�ces said conditions.

3.3.4 Soundness and Completeness.

Theorem 3.3.4. The relaxed parallel search is sound.

Proof. Be 〈a0,...,aj−1〉 a plan found for some numeric planning problem Π = (VB, VQ,
A, I, G). Following Lemmata 3.3.2, 3.3.1 and 3.3.3, we can deduct that the plan can
be split into i ≤ j subsequences ρk = 〈ak,0,...,ak,lk−1〉, 0 ≤ k < i, such that there are
i sequences of states ηk = 〈sk,0,...,sk,lk〉, 0 ≤ k < i where for each 0 ≤ k < i it holds
that ρk and ηk align and for k < i − 1 it holds that sk,lk = sk+1,0. Through the
encoding it is ensured that s0,0 |= I and si−1,li−1

|= G. Hence 〈a0,...,aj−1〉 is a valid
plan for the planning problem Π.
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Theorem 3.3.5. The relaxed parallel search is complete.

Proof. Be Π = (VB, VQ, A, I, G) any numeric planning problem, which has a solution
in form of a plan 〈a0,...,aj−1〉.

Given the correctness of the encoding of the existence of a sequential plan with
length less or equal to j, there is a model J , such that J |= RjΠ ∧

∧
0≤t<h L

t
A.

At each horizon in the relaxed parallel search there are only �nitely many iterations
of re�nement, as each re�nement excludes the previous model and does not allow for
models, which were not models of the formula prior to the re�nement. Therefore the
relaxed parallel search either �nds some correct plan at a horizon smaller then j or
reaches the horizon j.

The formula in the relaxed parallel search at horizon j is the conjunction of RjΠ
and the encoding of some re�nement Encref . As J |= RjΠ ∧

∧
0≤t<h L

t
A (encoding

of a sequential plan) it is implied that J |= RjΠ and J |= Encref , because while∧
0≤t<h L

t
A excludes the execution of more then one action at any step, Encref only

excludes the simultaneous execution of some sets of actions with at least two actions
for some steps. Consequently the relaxed parallel search �nds a valid plan for Π at
the latest when reaching horizon h.
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Chapter 4

Experimental Results

We evaluate an implementation extending OMTPlan on standard benchmarks for
numeric planning problems taken from the literature. All experiments were executed
on the same machine running under Debian and possessing 192GB of memory and
four 12-core AMD Opteron 6172 processors each with a frequency of 2.1GHz. All of
the search methods were single threaded.

We ran several small tests to observe the behaviour of our relaxed parallel search
under di�erent settings. The universally best setting turned out to be:

1. Sequentializability check: general

2. Unsat core: on

3. Timesteps: all

In the following the relaxed parallel search with the above settings will be referred to
as CEGAR.

4.1 Comparisons

We compared the CEGAR method and the incremental parallel search to both the
parallel search and the state of the art planning software springroll [SRHT16] on a
broader set of instances with a timeout of 30 minutes. In the following plots VBS
represents the virtual best solver with regards to the other planning algorithms. The
resulting solving times for domains containing only simple conditions can be seen in
Table 4.1 and for domains also containing linear conditions in Table 4.2.

4.2 Analysis

The overall highest coverage is achieved by springroll. Especially on domains where
long plans are needed, the encoding used in springroll has a clear advantage. The
incremental parallel search poses a clear improvement of the parallel search on many
instances and has the overall best performance on some domains.
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Domain # CEGAR par. incr. springroll parallel VBS
C T C T C T C T C T

fn-counters-inv 10 9 2696 10 2295 10 10 10 1282 10 9
fn-counters 10 10 920 10 497 10 9 10 911 10 8
satellite 20 6 1039 5 2072 3 324 5 1993 7 2197
depots numeric 20 3 1277 5 2934 4 1728 3 2154 6 4119
sailing 20 6 1457 4 15 0 0 11 6699 11 6667
farmland 20 0 0 0 0 20 19 0 0 20 19
fn-counters-rnd 20 20 330 20 182 20 17 20 317 20 13
gardening 20 12 1739 12 1537 20 31 14 1225 20 29
rover-numeric 20 12 3324 13 2108 11 2382 12 5416 13 2073
zeno-travel-small 10 10 1076 9 2086 * * 10 2170 10 1076

Total 170 88 13857 88 13726 98 4521 95 22168 127 16209

Table 4.1: Coverage (C) and total solving time (T) in seconds for domains with simple
conditions. The number of tested instances per domain is noted in the (#)-column.
*Springroll crashed while parsing instances of the zeno-travel-small domain.

Domain # CEGAR par. incr. springroll parallel VBS
C T C T C T C T C T

zeno-travel-linear 10 8 102 9 1104 * * 10 2271 10 1644
fo counters rnd 20 20 23 20 12 20 19 20 23 20 11
fo counters inv 20 20 1803 18 805 20 30 20 566 20 27
sailing ln 20 1 20 1 60 0 0 1 39 1 20
farmland ln 20 4 1048 2 1262 20 20 3 803 20 20
tpp 20 4 48 4 108 0 0 5 1562 5 1422
fo counters 20 20 952 20 192 20 26 20 268 20 23

Total 138 85 4068 82 3633 88 101 87 6128 104 3171

Table 4.2: Coverage (C) and total solving time (T) in seconds for domains with linear
conditions. The number of tested instances per domain is noted in the (#)-column.
*Springroll crashed while parsing instances of the zeno-travel-linear domain.

In order to gain a deeper understanding of the behaviour of our abstraction re�ne-
ment process, we recorded further statistics. To compare the encoding of the CEGAR
method to the (not relaxed) parallel search we counted the number of mutex encod-
ings in the encoding of the parallel plan and the number of encoded invariants, see
Equation 3.8, which amend the relaxed parallel plan encoding. These statistics are
shown for instances of the domain zeno-travel-linear in Table 4.3.

At a closer look, the data suggests that the CEGAR method often does perform
signi�cantly better than the parallel search and for some domains better than all other
measured search methods for the �rst few instances of the domain. Unfortunately this
advantage does not appear to scale with rising complexity of the problem instances.
This can be attributed to multiple causes. Fore one, for smaller problem instances
the combinatorial complexity of solving the encoding is negligible in relation to the
expense of constructing the encoding. Here, the CEGAR method has an advantage
due to its shorter encoding. With rising combinatorial complexity this advantage
becomes insigni�cant. Further, with an increasing horizon the sequentializability
checks become more complex as more formulas have to be encoded and solved and
more re�nement might be needed until a valid plan can be found.
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Instance CEGAR parallel
horizon invariants T horizon mutexes T

0 6 12 2 8 4608 14
1 5 0 1 6 3456 8
2 4 4 2 5 9630 18
3 5 35 7 5 12105 22
4 5 35 10 6 27552 54
5 7 182 38 7 38780 84
6 6 102 23 8 52928 126
7 6 18 19 7 161175 392
8 - - - 9 234225 730
9 - - - 9 263925 824

Table 4.3: Solving time (T) in seconds, horizon and number of encodings of in-
variants/mutexes of the last encoding for instances of the domain zeno-travel-linear.
Timed out instances are marked with '-'.

Table 4.3 very well represents strong points and weak points of our CEGAR ap-
proach. From instances 0 to 7 the CEGAR search allows for shorter and far more
lightweight encodings resulting in a vastly quicker solving time. This e�ect however
does not appear to be scaleable as for the more complex instances 8 and 9 the re-
�nement process abruptly becomes too complex and the search does not terminate
within the given 30 minute timeout.

To analyse this e�ect in greater detail, we logged the time of each subroutine and
visualized them in Figure 4.5 and 4.6. Both �gures are bar graphs showing the total
solving time of the parallel incremental and CEGAR search for one instance. Each bar
is divided into rectangles where the lower end of the rectangle corresponds to the time
of the start of a subroutine in the search and the height corresponds to the duration
of that subroutine. Each rectangle is annotated with the name of that subroutine, if
the height su�ces to avoid collisions. In Figure 4.5 we can observe that the CEGAR
search has a quicker encoding process and due to only needing one re�nement, �nds
a plan in almost half the time the parallel incremental search needs. In Figure 4.6
we again see that this advantage does not scale well as a more complex instance of
the same domain requires a much higher number of re�nements resulting in a longer
total solving time in relation to the parallel incremental search.
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Figure 4.1: Cactus plot for the satellite domain. The instances are ordered by in-
creasing CPU time.
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Figure 4.2: Cactus plot for the rover-numeric domain. The instances are ordered by
increasing CPU time.
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Figure 4.3: Cactus plot for the zeno-travel-small domain. The instances are ordered
by increasing CPU time.
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Figure 4.4: Cactus plot for the tpp domain. The instances are ordered by increasing
CPU time.
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Figure 4.5: Illustration showing the total solving time (T) and duration of the most
time consuming subroutines in the parallel and CEGAR search for instance 4 of the
rover-numeric domain.
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Figure 4.6: Illustration showing the total solving time (T) and duration of most time
consuming subroutines in the incremental parallel and CEGAR search for instance
12 of the rover-numeric domain.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we discussed an existing SMT-based approach to numeric planning and
viewed its encoding in detail. We developed a modi�ed version of that algorithm,
which takes advantage of the incremental structure of the encoding.

Further we proposed a new approach of allowing parallelism in the encoding of
plans by introducing a relaxation of the original encoding and de�ning an algorithm,
that applies a re�nement procedure on this abstraction to �nd plans. We also intro-
duced multiple methods for some of the subroutines of this algorithm.

With an empirical evaluation we compared our new approaches to both the orig-
inal algorithm and another state of the art SMT-based planning tool. Our main
�ndings were that our CEGAR method outperforms the other methods on many
small problem instances and speci�c domains, but generally has scalability issues.
The incrementality update, despite not scaling well on all domains, generally poses a
signi�cant improvement of the original search.

5.2 Future Work

The �ndings of this thesis immediately yield the basis for two open tasks.
First, since the encoding for the satis�cing setting of numeric planning used in

OMTPlan is the basis for the encoding used for optimal planning, it would be inter-
esting to investigate whether an incremental solving strategy could be applied there
too.

Second, the issue of scalability of our CEGAR approach could be further re-
searched. One could attempt to integrate the CEGAR method into the incremental
parallel search by developing a method to switch form the abstraction to the regular
mutex encoding after a certain horizon or problem complexity.

Another potentially promising approach, that we left unexplored yet, would be to
leverage parallelism to speed up the sequentializability check and re�nement process.
In our implementation we only used one solver instance for all sequentializability
checks in order to speed up the encoding process and take advantage of potential
bene�ts of incremental solving. The opposing approach would be to solve the se-
quentializability check for each relaxed parallel plan step in parallel. As the input of
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each check is �xed after �nding a relaxed parallel plan, the checks could directly be
executed in parallel. This might not only speed the process up, but could also lead to
needing fewer re�nement iterations. In the current implementation the sequentializ-
ability check terminates after the �rst not sequentializable relaxed parallel plan step.
With a parallel execution of the checks, multiple invariants could be derived in one
re�nement iteration.
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