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Context-Free Grammars and Languages

Introductory Example |
Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression) ::= 0

1
(Expression) + ( Expression)
(Expression) x { Expression)
((Expression))

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v
are again expressions
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:

E—0[1|E+E|E*E]|(E)
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)*x E
= (E) * 1
= (E+ E) * 1
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=". Thus:
E —>O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

= (
= (
= (
= (
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Context-Free Grammars and Languages

Context-Free Grammars |

Definition B.3
A context-free grammar (CFQG) is a quadruple

G=(N,L,P,S)

where
N is a finite set of nonterminal symbols
2_is the (finite) alphabet of terminal symbols (disjoint from N)
P is a finite set of production rules of the form A — o where Ac Nand a € (NU ¥)*
S € N is a start symbol
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Context-Free Grammars and Languages

Context-Free Grammars Il

Example B.4

For the above example, we have:
N ={E}
Y ={0,1,+,%,(,)}
P={E—0,E—-1E—-E+EE—ExE E— (E)}
S=E
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Context-Free Grammars and Languages

Context-Free Grammars Il

Example B.4

For the above example, we have:
N = {E}
Y ={0,1,+,%(,)}
P={E—0,E—-1E—-E+EE—ExE E— (E)}
S=E

Naming conventions:
nonterminals start with uppercase letters
terminals start with lowercase letters
start symbol = symbol on LHS of first production
= grammar completely defined by productions
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Context-Free Grammars and Languages

Context-Free Languages |

Definition B.5
Let G= (N, X, P, S) be a CFG.
A sentence v € (N U X)* is directly derivable from 5 € (N U X)* if there exist

T=A— a€ Pand 51,52 € (NU Z)* such that 5 — 01Ad» and v = d1 0o
(notation: 5 = ~ or just 5 = 7).

A derivation (of length n) of v from [ is a sequence of direct derivations of the form
)g = 01 = ... = 0pWhere o9 = 3, 0, = 7, and 0, 1 = o;forevery 1 </ <n
(notation: 3 =" 7).

A word w € 2" is called derivable in Gif S =" w.
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Context-Free Grammars and Languages

Context-Free Languages |

Definition B.5

Let G= (N, X, P, S) be a CFG.
A sentence v € (N U X)* is directly derivable from 5 € (N U X)* if there exist
T=A— a € Pandd,do € (NUX)" such that § = 61Ad> and v = 61>
(notation: 5 = ~ or just 5 = 7).
A derivation (of length n) of v from [ is a sequence of direct derivations of the form
)g = 01 = ... = 0pWhere o9 = 3, 0, = 7, and 0, 1 = o;forevery 1 </ <n
(notation: 3 =" 7).
A word w € 2" is called derivable in Gif S =" w.
The language generated by Gis L(G) .= {w e ¥L* | S=" w}.
A language L C 2 " is called context-free (CFL) if it is generated by some CFG.
Two grammars G, G. are equivalent if L(Gy) = L(Gy).
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Context-Free Grammars and Languages

Context-Free Languages i

Example B.6

The language {a"b"” | n > 1} is context-free. It is generated by the grammar
G=(N,X,P,S) with

N = {S}

Y ={a,b}

P={S — aSb | ab}
(proof: generating a”b" requires exactly n — 1 applications of the first and one
concluding application of the second rule)
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Context-Free Grammars and Languages

Context-Free Languages i

Example B.6

The language {a"b"” | n > 1} is context-free. It is generated by the grammar
G=(N,X,P,S) with

N = {S}

Y ={a,b}

P={S — aSb | ab}
(proof: generating a”b" requires exactly n — 1 applications of the first and one
concluding application of the second rule)

Remark: illustration of derivations by derivation trees
root labelled by start symbol
leafs labelled by terminal symbols
successors of node labelled according to right-hand side of production rule

(example on the board)
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Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
Context-free grammars
Derivations
Context-free languages
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Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
Context-free grammars
Derivations
Context-free languages

Open:
Relation between context-free and regular languages
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Context-Free vs. Regular Languages

Outline of Part B

Context-Free vs. Regular Languages
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Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of CFLs.)
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Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of CFLs.)
Proof.

1. Let L be a regular language, and let 2l = (Q, ¥, 9, qo, F) be a DFA which recognises L.
G:= (N,%, P,S) is defined as follows:
-N:=Q,S = q
- ifd(g,a) = q¢,thenqg — aq € P
—ifge F,theng —c € P
Obviously a w-labelled run in 2l from qq to F corresponds to a derivation of w in G, and vice
versa. Thus L(2l) = L(G) (example on the board).

2. An example is {a"b" | n > 1} (see Ex. B.6). O
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Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
CFLs are more expressive than regular languages

12 of 40 Foundations of Informatics/Formal Languages and Processes, Part B
Erika Abraham
b-it Bonn; March 12-16, 2018



Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
CFLs are more expressive than regular languages

Open:
Decidability of word problem
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The Word Problem for CFLs

Outline of Part B

The Word Problem for CFLs
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The Word Problem for CFLs

The Word Problem

Goal: given G= (N, %, P,S) and w € ¥*, decide whether w € L(G) or not
For regular languages this was easy: just let the corresponding DFA run on w,
But here: how to decide when to stop a derivation?

Solution: establish normal form for grammars which guarantees that each nonterminal
produces at least one terminal symbol

= only finitely many combinations to be inspected
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The Word Problem for CFLs

Chomsky Normal Form |

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of
the form
A—BC o A—a
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The Word Problem for CFLs

Chomsky Normal Form |

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of
the form
A—BC o A—a

Example B.9

Let S — ab | aSb be the grammar which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S— AB| AC  (generates L)

A— a (generates {a})

B—b (generates {b})

C — SB (generates {a"b""' | n > 1})
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The Word Problem for CFLs

Chomsky Normal Form |l

Theorem B.10
Every CFL L (with e ¢ L) is generatable by a CFG in Chomsky NF.
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The Word Problem for CFLs

Chomsky Normal Form |l

Theorem B.10
Every CFL L (with e ¢ L) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, ¥, P, S) be some CFG which generates L. The
transformation of P into rules of the form A — BC and A — a proceeds in three
steps:
1. terminal symbols only in rules of the form A — a

(thus all other rules have the shape A — Ay ... A))

2. elimination of “chain rules” of the form A — B
3. elimination of rules of the form A — A, ... A, where n > 2

(details omitted)

]
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The Word Problem for CFLs

The Word Problem Revisited

Goal: givenw € " and G = (N, %, P, S) such that ¢ ¢ L(G), decide if w € L(G)
or not

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

1. transform G into Chomsky NF

2. letw=ay...a,(n>1)

3. letwli,j] =a...gforevery1 <i<j<n

4. consider segments w|i, j] in order of increasing length, starting with w(i. i (i.e., single
letters)

5. in each case, determine N;; :== {A € N | A=" w[i,j]} using a “dynamic programming”
approach:
—i=jN;={AeN|A—= w[ii] e P}
—i<jNy={AeN|3IB,CeNke{i,....,ij—1} :A— BC € P,BE Niy,C € Nyy1,}

6. test whether S € N; , (and thus, whether S =* w[1, n| = w)
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The Word Problem for CFLs

The CYK Algorithm |
Algorithm B.11 (CYK Algorithm)

Input: G = (N, X, P,S) in Chomsky NEw = a;...a, € L
Question: w € L(G)?

Procedure: for i :=1to ndo
N,-’,-::{AEN|A—>a,-€P}
next r;
ford:=1ton—1do % compute N, q4
fori:=1ton—ddo
j = |+ d, N,')j = Q);
fork:=itoj—1do
N,'J L= N,"jU {A c N ‘ JA— BC € P:Bc N,"k, C € Nk—H,j}
next k
next i
next d

Output: “yes”if S € N; ,, otherwise “no”
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The Word Problem for CFLs

The CYK Algorithm Il

Example B.12

G: S—>SA|a
A — BS
B—BB|BS|b|c
w = abaaba

Matrix representation of N ;
(on the board)
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The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
Word problem decidable using CYK algorithm
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The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
Word problem decidable using CYK algorithm

Open:
Emptiness problem
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The Emptiness Problem for CFLs

Outline of Part B

The Emptiness Problem for CFLs
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The Emptiness Problem for CFLs

The Emptiness Problem

Goal: given G = (N, X, P, S), decide whether L(G) = () or not

For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.

Here: test whether start symbol is productive, i.e., whether it generates a terminal word
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The Emptiness Problem for CFLs

The Emptiness Test

Algorithm B.13 (Emptiness Test)

Input: G = (N, %, P, S)
Question: L(G) = 0?
Procedure: mark every a € X as productive;
repeat
1f there is A — « € P such that all symbols in «c productive then
mark A as productive;
end;
until no further productive symbols found,
OQutput: “no” if S productive, otherwise “yes”
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The Emptiness Problem for CFLs

The Emptiness Test

Algorithm B.13 (Emptiness Test)

Input: G = (N, %, P, S)
Question: L(G) = 0?
Procedure: mark every a € X as productive;

repeat

1f there is A — « € P such that all symbols in «c productive then
mark A as productive;
end;
until no further productive symbols found,

OQutput: “no” if S productive, otherwise “yes”

Example B.14

G: S— AB| CA A— a (on the board)
B—BC|AB C—aB|b
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The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
Emptiness problem decidable based on productivity of symbols
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The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
Emptiness problem decidable based on productivity of symbols

Open:
Closure properties of CFLs
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Closure Properties of CFLs

Outline of Part B

Closure Properties of CFLs
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2,let G = (N, X, P;, S;) with L; :== L(G;) and Ny N N, = (). Then
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2let G, = (N, X, P;, S;) with L; := L(G;) and N; N N> = (). Then

G:=(N,L,P,S)withN:={S}UN;UN,and P:= {S — S$;S;} U P; U P, generates
Ly - Lo;
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2let G, = (N, X, P;, S;) with L; := L(G;) and N; N N> = (). Then

G:=(N,L,P,S)withN:={S}UN;UN,and P:= {S — S$;S;} U P; U P, generates
Ly - Lo;

G:=(N,L,P,S)withN:={S}UN;UN,and P:={S — S; | S;} U P; U P, generates
L1 U LQ; and
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For/ = 1,2, let G,’ = <N,’7 Z, P,’7 S,> with L; := L(G,) and Ny N No = @ Then
G:=(N,L,P,S)withN:={S}UN;UN,and P:= {S — S$;S;} U P; U P, generates
Ly - Lo;
G:=(N,L,P,S)withN:={S}UN;UN,and P:={S — S; | S;} U P; U P, generates
L4 U Ly; and
G:=(N,X,P,S) with N:={S}UN;and P:={S — ¢ | S;S} U P; generates Lj.
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Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.
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Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

Both L := {abc’ | k,I € N} and L, := {a*b/c | k, | € N} are CFLs, but not
LN Ly ={a"b"c" | n € N} (without proof).
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Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.
Both Ly := {a"b*c' | k,/1 € N} and L, := {a*b/c’ | k, I € N} are CFLs, but not
LN Ly ={a"b"c" | n € N} (without proof).
If CFLs were closed under complement, then also under intersection (as L N L, = L1 U Ly).

[]
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Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results

Class weE L L=1() Ly =L,

Reg | +(A38) +(A40) +(A42)
CFL | +(B.11) +(B.13) -
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Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results

Class we L L= Ly =L,
Reg +(A.38) +(A.40) +(A.42)
CFL +(B.11)  +(B.13) —
Closure Results
Class | L L, LtUL  LiNL L L*
Reg +(A.28) +(A.18) +(A.16) +(A.14) +(A.29)
CFL +(B.15) +(B.15) —-(B.16) —-(B.16) + (B.15)
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Closure Properties of CFLs

Closure Properties

Seen:
Closure under concatenation, union and iteration
Non-closure under intersection and complement
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Closure Properties of CFLs

Closure Properties

Seen:
Closure under concatenation, union and iteration
Non-closure under intersection and complement

Open:
Automata model for CFLs
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Pushdown Automata

Outline of Part B

Pushdown Automata
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Pushdown Automata

Pushdown Automata |

Goal: introduce an automata model which exactly accepts CFLs
Clear: DFA not sufficient

(missing “counting capability”, e.g. for {a"b"” | n > 1})

DFA will be extended to pushdown automata by

— adding a pushdown store which stores symbols from a pushdown alphabet and uses a special
bottom symbol

— adding push and pop operations to transitions
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Pushdown Automata

Pushdown Automata ll

Definition B.17

A pushdown automaton (PDA) is of the form 2l = (Q, XL, I, A, qo, Z, F) where
Q is a finite set of states
2_is the (finite) input alphabet
[ is the (finite) pushdown alphabet
AC(QxT xX.)x(QxT*)is afinite set of transitions
Qo € Q is the initial state
Z; is the (pushdown) bottom symbol
F C Qs a set of final states

Interpretation of ((q, Z, x), (¢',0)) € A: if the PDA 2l is in state g where Z is on top
of the stack and x is the next input symbol (or empty), then 2l reads x, replaces Z by
0, and changes into the state ¢'.
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Pushdown Automata

Configurations, Runs, Acceptance

Definition B.18
Let2( = (Q, X, T, A, qo, Z, F) be a PDA.
An element of Q x " x X" is called a configuration of 2.
The initial configuration for input w € ¥* is given by (qo, Zo, w).
The set of final configurations is given by F x {¢} x {c}.
If ((q,Z,x),(q,0)) € A, then (q, Zv, xw) - (q', 6y, w) for every v € I'*, w € ¥*.
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Pushdown Automata

Configurations, Runs, Acceptance

Definition B.18
Let2( = (Q, X, T, A, qo, Z, F) be a PDA.
An element of Q x " x X" is called a configuration of 2.
The initial configuration for input w € ¥* is given by (qo, Zo, w).
The set of final configurations is given by F x {¢} x {c}.
If ((q,Z,x),(q,0)) € A, then (q, Zv, xw) - (q', 6y, w) for every v € I'*, w € ¥*.
2 accepts w € X*if (qo, 2o, W) F* (g, ¢, ¢) for some g € F.
The language accepted by 2 is L(2() := {w € ¥* | %l accepts w}.
A language L is called PDA-recognisable if L = L(2[) for some PDA %I.
Two PDA 24, 2L, are called equivalent if L(2(1) = L(25).
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Pushdown Automata

Examples
Example B.19

1. PDA which recognises L = {a"b" | n > 1}
(on the board)
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Pushdown Automata

Examples
Example B.19

1. PDA which recognises L = {a"b" | n > 1}
(on the board)

2. PDA which recognises L = {ww" | w € {a, b}*}
(palindromes of even length; on the board)
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Pushdown Automata

Examples
Example B.19

1. PDA which recognises L = {a"b" | n > 1}
(on the board)

2. PDA which recognises L = {ww" | w € {a, b}*}
(palindromes of even length; on the board)

Observation: %[, is nondeterministic: whenever a construction transition is
applicable, the pushdown could also be deconstructed
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Pushdown Automata

Deterministic PDA

Definition B.20

APDAR = (Q,%,I, A, q, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € %, then there is no (q, Z, ¢)-transition in A.

Remark: this excludes two types of nondeterminism:
1.1t ((9,Z, x), (a1, 61)), (9, Z, ), (@2, 02)) € A:

(qq ) 5177 W) . (q7 Z/% XW) - (q/27 5277 W)
2. if ((qa 27 a)> (qq ) 51))7 ((q7 Za 5)7 (q/27 52)) € A:

(q4751f}/7 W) B (q7 ZV? aW) = (q./27 5277 aW)
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Pushdown Automata

Deterministic PDA

Definition B.20

APDAR = (Q,%,I, A, q, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € %, then there is no (q, Z, ¢)-transition in A.

Remark: this excludes two types of nondeterminism:

1. if ((Q7 Z7 X)? (q4751))7 ((qa 27 X)? (qé7 52)) € A

(QQ75177 W) . (q7 Z/%XW) - (Q./Qa 5277 W)
2. f ((Qa Z, a)> (qq ) 51))7 ((qv Z, 5)7 (q./27 52)) € A:

(q475177 W) - (qa ZfYa aW) - (q./27 5277 aW)

Corollary B.21

In a DPDA, every configuration has at most one —-successor.
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Pushdown Automata

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally
not true for PDA-recognisable languages)
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Pushdown Automata

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally
not true for PDA-recognisable languages)

Example B.22

The set of palindromes of even length is PDA-recognisable, but not
DPDA-recognisable (without proof).
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Pushdown Automata

PDA and Context-Free Languages |

Theorem B.23
A language is context-free iff it is PDA-recognisable.
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Pushdown Automata

PDA and Context-Free Languages |

Theorem B.23
A language is context-free iff it is PDA-recognisable.

Proof.

<: omitted

=:let G= (N, %, P, S) be a CFG. Construction of PDA 2(5 recognising L(G):
2l simulates a derivation of G where always the leftmost nonterminal of a
sentence is replaced (“leftmost derivation”)
begin with S on pushdown
if nonterminal on top: apply a corresponding production rule
if terminal on top: match with next input symbol

(cf. formal construction on following slide)
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Pushdown Automata

PDA and Context-Free Languages Il

Proof of Theorem B.23 (continued).

—=: Formally: 2g := (Q, %, I, A, qo, Zo, F) is given by
Q= {qo}
[=NUX
foreach A — a € P: ((qo, A, €),(qo, ) € A
foreacha e ¥: ((qo, a, a), (q,¢)) € A
ZO =S
F:=Q
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Pushdown Automata

PDA and Context-Free Languages Il

Proof of Theorem B.23 (continued).

—=: Formally: 2g := (Q, %, I, A, qo, Zo, F) is given by
Q:={q}
[=NUX
foreach A — a € P: ((qo, A, €),(qo, ) € A
foreacha e ¥: ((qo, a, a), (q,¢)) € A

ZO =S
F:=Q
Example B.24

“Bracket language”, given by G:
S—={()1(s)|ss

(on the board)
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Outlook

Outline of Part B

Outlook
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Outlook

Outlook
Equivalence problem for CFG and PDA (“L(Xi) = L(X2)?")
(generally undecidable, decidable for DPDA)
Pumping Lemma for CFL
Greibach Normal Form for CFG
Construction of parsers for compilers

Non-context-free grammars and languages (context-sensitive and recursively
enumerable languages, Turing machines—see Week 4)
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