

Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Processes

Part B: Context-Free Languages

b-it Bonn; March 12-16, 2018

Erika Ábrahám Theory of Hybrid Systems Group RWTH Aachen University

Thanks to Thomas Noll for providing slides

https://ths.rwth-aachen.de/teaching/ws18/b-it-bridging-course/

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Introductory Example I

Example B.1

Syntax definition of programming languages by "Backus-Naur" rules

Here: simple arithmetic expressions

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v are again expressions

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \to 0 | 1 | E + E | E * E | (E)$$

$$E \Rightarrow E * E$$

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$
$$\Rightarrow (E) * E$$

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (0 + E) * 1$$

Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (0 + E) * 1$$

$$\Rightarrow (0 + 1) * 1$$

Context-Free Grammars I

Definition B.3

A context-free grammar (CFG) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

N is a finite set of nonterminal symbols

 Σ is the (finite) alphabet of **terminal symbols** (disjoint from N)

P is a finite set of **production rules** of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $S \in N$ is a start symbol

Context-Free Grammars II

Example B.4

For the above example, we have:

$$N = \{E\}$$
 $\Sigma = \{0, 1, +, *, (,)\}$
 $P = \{E \to 0, E \to 1, E \to E + E, E \to E * E, E \to (E)\}$
 $S = E$

Context-Free Grammars II

Example B.4

For the above example, we have:

```
N = \{E\}
\Sigma = \{0, 1, +, *, (, )\}
P = \{E \to 0, E \to 1, E \to E + E, E \to E * E, E \to (E)\}
S = E
```

Naming conventions:

nonterminals start with uppercase letters terminals start with lowercase letters start symbol = symbol on LHS of first production

⇒ grammar completely defined by productions

Context-Free Languages I

Definition B.5

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).

A **derivation** (of length n) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $1 \le i \le n$ (notation: $\beta \Rightarrow^* \gamma$).

A word $w \in \Sigma^*$ is called **derivable** in G if $S \Rightarrow^* w$.

Context-Free Languages I

Definition B.5

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).

A **derivation** (of length n) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $1 \le i \le n$ (notation: $\beta \Rightarrow^* \gamma$).

A word $w \in \Sigma^*$ is called **derivable** in G if $S \Rightarrow^* w$.

The language generated by G is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.

A language $L \subseteq \Sigma^*$ is called **context-free (CFL)** if it is generated by some CFG.

Two grammars G_1 , G_2 are **equivalent** if $L(G_1) = L(G_2)$.

Context-Free Languages II

Example B.6

The language $\{a^nb^n\mid n\geq 1\}$ is context-free. It is generated by the grammar $G=\langle N,\Sigma,P,S\rangle$ with $N=\{S\}$ $\Sigma=\{a,b\}$ $P=\{S\rightarrow aSb\mid ab\}$

(proof: generating a^nb^n requires exactly n-1 applications of the first and one concluding application of the second rule)

Context-Free Languages II

Example B.6

The language $\{a^nb^n\mid n\geq 1\}$ is context-free. It is generated by the grammar $G=\langle N,\Sigma,P,S\rangle$ with $N=\{S\}$ $\Sigma=\{a,b\}$ $P=\{S\rightarrow aSb\mid ab\}$

(proof: generating a^nb^n requires exactly n-1 applications of the first and one concluding application of the second rule)

Remark: illustration of derivations by derivation trees

root labelled by start symbol

leafs labelled by terminal symbols

successors of node labelled according to right-hand side of production rule

(example on the board)

Context-Free Grammars and Languages

Seen:

Context-free grammars

Derivations

Context-free languages

Context-Free Grammars and Languages

Seen:

Context-free grammars

Derivations

Context-free languages

Open:

Relation between context-free and regular languages

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Context-Free vs. Regular Languages

Theorem B.7

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of CFLs.)

Theorem B.7

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a **proper subset** of CFLs.)

Proof.

- 1. Let L be a regular language, and let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA which recognises L. $G := \langle N, \Sigma, P, S \rangle$ is defined as follows:
 - $-N := Q, S := q_0$
 - if $\delta(q, a) = q'$, then $q \to aq' \in P$
 - if q ∈ F, then q → ε ∈ P

Obviously a w-labelled run in \mathfrak{A} from q_0 to F corresponds to a derivation of w in G, and vice versa. Thus $L(\mathfrak{A}) = L(G)$ (example on the board).

2. An example is $\{a^nb^n \mid n \ge 1\}$ (see Ex. B.6).

Context-Free Grammars and Languages

Seen:

CFLs are more expressive than regular languages

Context-Free Grammars and Languages

Seen:

CFLs are more expressive than regular languages

Open:

Decidability of word problem

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

The Word Problem

Goal: given $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not

For regular languages this was easy: just let the corresponding DFA run on w.

But here: how to decide when to stop a derivation?

Solution: establish **normal form** for grammars which guarantees that each nonterminal produces at least one terminal symbol

⇒ only **finitely many combinations** to be inspected

Chomsky Normal Form I

Definition B.8

A CFG is in **Chomsky Normal Form (Chomsky NF)** if every of its productions is of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

Chomsky Normal Form I

Definition B.8

A CFG is in **Chomsky Normal Form (Chomsky NF)** if every of its productions is of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

Example B.9

Let $S \to ab \mid aSb$ be the grammar which generates $L := \{a^nb^n \mid n \ge 1\}$. An equivalent grammar in Chomsky NF is

```
S 	oup AB \mid AC (generates L)

A 	oup a (generates \{a\})

B 	oup b (generates \{b\})

C 	oup SB (generates \{a^nb^{n+1} \mid n \ge 1\})
```

Chomsky Normal Form II

Theorem B.10

Every CFL L (with $\varepsilon \notin L$) is generatable by a CFG in Chomsky NF.

Chomsky Normal Form II

Theorem B.10

Every CFL L (with $\varepsilon \notin L$) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let $G = \langle N, \Sigma, P, S \rangle$ be some CFG which generates L. The transformation of P into rules of the form $A \to BC$ and $A \to a$ proceeds in three steps:

- 1. terminal symbols only in rules of the form $A \rightarrow a$ (thus all other rules have the shape $A \rightarrow A_1 \dots A_n$)
- 2. elimination of "chain rules" of the form $A \rightarrow B$
- 3. elimination of rules of the form $A \rightarrow A_1 \dots A_n$ where n > 2

(details omitted)

The Word Problem Revisited

Goal: given $w \in \Sigma^+$ and $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$, decide if $w \in L(G)$ or not

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

- 1. transform *G* into Chomsky NF
- 2. let $w = a_1 \dots a_n \ (n \ge 1)$
- 3. let $w[i,j] := a_i \dots a_j$ for every $1 \le i \le j \le n$
- 4. consider segments w[i, j] in order of increasing length, starting with w[i, i] (i.e., single letters)
- 5. in each case, determine $N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i,j]\}$ using a "dynamic programming" approach:
 - $-i = j: N_{i,i} = \{A \in N \mid A \to w[i,i] \in P\}$ $-i < j: N_{i,ij} = \{A \in N \mid \exists B, C \in N, k \in \{i, ..., j-1\} : A \to BC \in P, B \in N_{i,k}, C \in N_{k+1,j}\}$
- 6. test whether $S \in N_{1,n}$ (and thus, whether $S \Rightarrow^* w[1, n] = w$)

The CYK Algorithm I

Algorithm B.11 (CYK Algorithm)

```
Input: G = \langle N, \Sigma, P, S \rangle in Chomsky NF, w = a_1 \dots a_n \in \Sigma^+
Question: w \in L(G)?
Procedure: for i := 1 to n do
                 N_{i,j} := \{A \in N \mid A \rightarrow a_i \in P\}
              next i:
              for d := 1 to n - 1 do % compute N_{i,i+d}
                 for i := 1 to n - d do
                   j:=i+d; N_{i,j}:=\emptyset;
                    for k := i to i - 1 do
                       N_{i,i} := N_{i,i} \cup \{A \in N \mid \exists A \rightarrow BC \in P : B \in N_{i,k}, C \in N_{k+1,i}\}
                    next k
                 next i
              next d
Output: "yes" if S \in N_{1,n}, otherwise "no"
```

The CYK Algorithm II

Example B.12

```
G: S \rightarrow SA \mid a
A \rightarrow BS
B \rightarrow BB \mid BS \mid b \mid c
w = abaaba
```

Matrix representation of $N_{i,j}$

(on the board)

The Word Problem for Context-Free Languages

Seen:

Word problem decidable using CYK algorithm

The Word Problem for Context-Free Languages

Seen:

Word problem decidable using CYK algorithm

Open:

Emptiness problem

The Emptiness Problem for CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

The Emptiness Problem

Goal: given $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not

For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.

Here: test whether start symbol is productive, i.e., whether it generates a terminal word

The Emptiness Test

```
Algorithm B.13 (Emptiness Test)
```

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?
Procedure: mark every a \in \Sigma as productive;
             repeat
                if there is A \to \alpha \in P such that all symbols in \alpha productive then
                  mark A as productive;
                end:
             until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"
```

The Emptiness Test

```
Algorithm B.13 (Emptiness Test)
```

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?
Procedure: mark every a \in \Sigma as productive;
             repeat
                if there is A \to \alpha \in P such that all symbols in \alpha productive then
                  mark A as productive;
                end:
             until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"
```

Example B.14

$$G: S o AB \mid CA \qquad A o a \qquad \qquad \text{(on the board)} \ B o BC \mid AB \qquad C o aB \mid b$$

The Emptiness Problem for CFLs

Seen:

Emptiness problem decidable based on productivity of symbols

The Emptiness Problem for CFLs

Seen:

Emptiness problem decidable based on productivity of symbols

Open:

Closure properties of CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

```
For i=1,2, let G_i=\left\langle N_i,\Sigma,P_i,S_i\right\rangle with L_i:=L(G_i) and N_1\cap N_2=\emptyset. Then G:=\left\langle N,\Sigma,P,S\right\rangle with N:=\{S\}\cup N_1\cup N_2 \text{ and }P:=\{S\to S_1S_2\}\cup P_1\cup P_2 \text{ generates }L_1\cdot L_2; G:=\left\langle N,\Sigma,P,S\right\rangle with N:=\{S\}\cup N_1\cup N_2 \text{ and }P:=\{S\to S_1\mid S_2\}\cup P_1\cup P_2 \text{ generates }L_1\cup L_2; and
```

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

```
For i=1,2, let G_i=\left\langle N_i,\Sigma,P_i,S_i\right\rangle with L_i:=L(G_i) and N_1\cap N_2=\emptyset. Then G:=\left\langle N,\Sigma,P,S\right\rangle with N:=\{S\}\cup N_1\cup N_2 \text{ and }P:=\{S\to S_1S_2\}\cup P_1\cup P_2 \text{ generates }L_1\cdot L_2; G:=\left\langle N,\Sigma,P,S\right\rangle with N:=\{S\}\cup N_1\cup N_2 \text{ and }P:=\{S\to S_1\mid S_2\}\cup P_1\cup P_2 \text{ generates }L_1\cup L_2; and G:=\left\langle N,\Sigma,P,S\right\rangle with N:=\{S\}\cup N_1 \text{ and }P:=\{S\to \varepsilon\mid S_1S\}\cup P_1 \text{ generates }L_1^*.
```

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

Both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

Both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).

If CFLs were closed under complement, then also under intersection (as $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$).

Overview of Decidability and Closure Results

Decidability Results							
Class	$w \in L$	$L=\emptyset$	$L_1 = L_2$				
Reg	+ (A.38)	+ (A.40)	+ (A.42)				
CFL	+ (B.11)	+ (B.13)	_				

Overview of Decidability and Closure Results

Decidability Results							
Class	$w \in L$	$L=\emptyset$	$L_1 = L_2$				
Reg	+ (A.38)	+ (A.40)	+ (A.42)				
CFL	+ (B.11)	+ (B.13)	_				

Closure Results							
Class	$L_1 \cdot L_2$	$L_1 \cup L_2$	$L_1 \cap L_2$	L	L *		
Reg	+ (A.28)	+ (A.18)	+ (A.16)	+ (A.14)	+ (A.29)		
CFL	+ (B.15)	+ (B.15)	- (B.16)	- (B.16)	+ (B.15)		

Closure Properties

Seen:

Closure under concatenation, union and iteration Non-closure under intersection and complement

Closure Properties

Seen:

Closure under concatenation, union and iteration Non-closure under intersection and complement

Open:

Automata model for CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Pushdown Automata I

Goal: introduce an automata model which exactly accepts CFLs

Clear: DFA not sufficient

(missing "counting capability", e.g. for $\{a^nb^n \mid n \geq 1\}$)

DFA will be extended to pushdown automata by

- adding a pushdown store which stores symbols from a pushdown alphabet and uses a special bottom symbol
- adding push and pop operations to transitions

Pushdown Automata II

Definition B.17

A pushdown automaton (PDA) is of the form $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ where

Q is a finite set of **states**

Σ is the (finite) **input alphabet**

Γ is the (finite) pushdown alphabet

 $\Delta \subseteq (Q \times \Gamma \times \Sigma_{\varepsilon}) \times (Q \times \Gamma^*)$ is a finite set of **transitions**

 $q_0 \in Q$ is the **initial state**

 Z_0 is the (pushdown) bottom symbol

 $F \subseteq Q$ is a set of **final states**

Interpretation of $((q, Z, x), (q', \delta)) \in \Delta$: if the PDA $\mathfrak A$ is in state q where Z is on top of the stack and x is the next input symbol (or empty), then $\mathfrak A$ reads x, replaces Z by δ , and changes into the state q'.

Configurations, Runs, Acceptance

Definition B.18

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

An element of $Q \times \Gamma^* \times \Sigma^*$ is called a **configuration** of \mathfrak{A} .

The **initial configuration** for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .

The set of **final configurations** is given by $F \times \{\varepsilon\} \times \{\varepsilon\}$.

If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.

Configurations, Runs, Acceptance

Definition B.18

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

An element of $Q \times \Gamma^* \times \Sigma^*$ is called a **configuration** of \mathfrak{A} .

The **initial configuration** for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .

The set of **final configurations** is given by $F \times \{\varepsilon\} \times \{\varepsilon\}$.

If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.

 \mathfrak{A} accepts $w \in \Sigma^*$ if $(q_0, Z_0, w) \vdash^* (q, \varepsilon, \varepsilon)$ for some $q \in F$.

The language accepted by $\mathfrak A$ is $L(\mathfrak A):=\{w\in\Sigma^*\mid \mathfrak A \text{ accepts }w\}.$

A language L is called PDA-recognisable if $L = L(\mathfrak{A})$ for some PDA \mathfrak{A} .

Two PDA $\mathfrak{A}_1, \mathfrak{A}_2$ are called **equivalent** if $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Examples

Example B.19

1. PDA which recognises $L = \{a^nb^n \mid n \ge 1\}$ (on the board)

Examples

Example B.19

- 1. PDA which recognises $L = \{a^nb^n \mid n \ge 1\}$ (on the board)
- 2. PDA which recognises $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length; on the board)

Examples

Example B.19

- 1. PDA which recognises $L = \{a^nb^n \mid n \ge 1\}$ (on the board)
- 2. PDA which recognises $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length; on the board)

Observation: \mathfrak{A}_2 is nondeterministic: whenever a construction transition is applicable, the pushdown could also be deconstructed

Deterministic PDA

Definition B.20

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called **deterministic (DPDA)** if for every $q \in Q, Z \in \Gamma$,

- 1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
- 2. if there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε) -transition in Δ .

Remark: this excludes two types of nondeterminism:

- 1. if $((q, Z, x), (q'_1, \delta_1)), ((q, Z, x), (q'_2, \delta_2)) \in \Delta$: $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, xw) \vdash (q'_2, \delta_2 \gamma, w)$
- 2. if $((q, Z, a), (q'_1, \delta_1)), ((q, Z, \varepsilon), (q'_2, \delta_2)) \in \Delta$: $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, aw) \vdash (q'_2, \delta_2 \gamma, aw)$

Deterministic PDA

Definition B.20

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called **deterministic (DPDA)** if for every $q \in Q, Z \in \Gamma$,

- 1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
- 2. if there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε) -transition in Δ .

Remark: this excludes two types of nondeterminism:

1. if
$$((q, Z, x), (q'_1, \delta_1)), ((q, Z, x), (q'_2, \delta_2)) \in \Delta$$
:

$$(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, xw) \vdash (q'_2, \delta_2 \gamma, w)$$

2. if
$$((q, Z, a), (q'_1, \delta_1)), ((q, Z, \varepsilon), (q'_2, \delta_2)) \in \Delta$$
:
 $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, aw) \vdash (q'_2, \delta_2 \gamma, aw)$

Corollary B.21

In a DPDA, every configuration has at most one ⊢-successor.

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Example B.22

The set of palindromes of even length is PDA-recognisable, but not DPDA-recognisable (without proof).

PDA and Context-Free Languages I

Theorem B.23

A language is context-free iff it is PDA-recognisable.

PDA and Context-Free Languages I

Theorem B.23

A language is context-free iff it is PDA-recognisable.

Proof.

PDA and Context-Free Languages II

Proof of Theorem B.23 (continued).

```
\Rightarrow: Formally: \mathfrak{A}_G:=\left\langle Q,\Sigma,\Gamma,\Delta,q_0,Z_0,F\right\rangle is given by Q:=\left\{q_0\right\} \Gamma:=N\cup\Sigma for each A\to\alpha\in P: ((q_0,A,\varepsilon),(q_0,\alpha))\in\Delta for each a\in\Sigma: ((q_0,a,a),(q_0,\varepsilon))\in\Delta Z_0:=S F:=Q
```

b-it Bonn; March 12-16, 2018

PDA and Context-Free Languages II

Proof of Theorem B.23 (continued).

```
\Rightarrow: Formally: \mathfrak{A}_G:=\left\langle Q,\Sigma,\Gamma,\Delta,q_0,Z_0,F\right\rangle is given by Q:=\left\{q_0\right\} \Gamma:=N\cup\Sigma for each A\to\alpha\in P: ((q_0,A,\varepsilon),(q_0,\alpha))\in\Delta for each a\in\Sigma: ((q_0,a,a),(q_0,\varepsilon))\in\Delta Z_0:=S F:=Q
```

Example B.24

"Bracket language", given by G:

$$\mathcal{S}
ightarrow \langle
angle \mid \langle \mathcal{S}
angle \mid \mathcal{S} \mathcal{S}$$

(on the board)

Outlook

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Outlook

Outlook

Equivalence problem for CFG and PDA (" $L(X_1) = L(X_2)$?") (generally undecidable, decidable for DPDA)

Pumping Lemma for CFL

Greibach Normal Form for CFG

Construction of parsers for compilers

Non-context-free grammars and languages (context-sensitive and recursively enumerable languages, Turing machines—see Week 4)