Exercises (Context-Free Languages)

1 Context-Free Grammars

2 Context-Free and Regular Languages

Exercise: Show that every regular expression can directly be translated into an equivalent context-free grammar.

$$\frac{A}{2} = \frac{A}{2} + \frac{A}$$

Bring the following CTG in Chowsey normal from:

$$S \rightarrow AB = |BAB| B$$

$$A \rightarrow SB| b |BaB$$

$$B \rightarrow ABS | A | BBB$$

$$S \rightarrow AB Va | BAB | B$$

$$S \rightarrow AB Va | BAB | B$$

$$A \rightarrow SB | b | BNaB$$

$$A \rightarrow SB | b | BNaB$$

$$A \rightarrow SB | b | BNaB$$

$$B \rightarrow ABS| A | V_{b}Va$$

$$B \rightarrow ABS| A | V_{b}Va$$

$$A \rightarrow SB | b | BNaB$$

$$B \rightarrow ABS| A | V_{b}Va$$

$$B \rightarrow ABS| A | V_{b}Va$$

$$A \rightarrow SB | b | BNaB$$

$$B \rightarrow ABS| A | V_{b}Va$$

$$B \rightarrow SB | b | BNaB$$

$$B \rightarrow ABS | A | V_{b}Va$$

$$B \rightarrow SB | b | BNaB$$

$$B \rightarrow ABS | A | BAB | B = B$$

$$B \rightarrow ABS | A | BAB | B = B$$

$$B \rightarrow ABS | A | V_{b}Va$$

$$B \rightarrow SB | b | BNaB = B \rightarrow SB | b | BAB = B \rightarrow SB = B \rightarrow SB = B \rightarrow SB = B \rightarrow SB$$

N 5 - 3 6

(i) Gusike the tequation of with
$$G = (Z, N, P, S)$$

 $P = \{S \rightarrow aS \mid Sb \mid a \mid b\}$ $\Sigma = \{a, b\}$ $N = \{S\}$
i) Describe the sed of delibe $(N \cup E)^*$ that can be derived from S in G.
ii) Describe $L(G)$.
iii) Jis $L(G)$ regular? Explaint
iv) Assume grammar G' with
 $S \rightarrow aS'$
 $S' \rightarrow Sb \mid a \mid b$
Describe $L(G')$ and whether (t is regular. Explaint informally.
ii) $a^* (a \mid b) b^*$
iii) $a^* (s \mid a \mid b) b^*$
iv) $a^* (s \mid a \mid b) b^*$
iv) $A = (s \mid a \mid b) b^*$
iv) $S \rightarrow aS' \rightarrow aS_{S}$
 a_{SS}
 a_{SS}
 $a^* (a \mid a \mid b) b^m$ $M \ge a$
 $a^m (aa \mid ab) b^m$ $M \ge a$