
The COMICS Tool
Version 1.0

Computing Minimal Counterexamples for Discrete-Time Markov
Chains

Manual

Nils Jansen, Erika Ábrahám

Contents

1 Introduction 5
1.1 Foundations . 6

2 Getting Started 7
2.1 Running the Binaries . 7

2.1.1 Linux . 7
2.1.2 Microsoft Windows . 7

2.2 Compiling the Source Code . 7
2.2.1 Compiling for Linux . 8
2.2.2 Compiling for MAC OS . 9
2.2.3 Running the self-compiled binaries . 9

3 Input Format 11
3.1 The .dtmc-Format . 11
3.2 The .tra-Format . 11
3.3 The .lab-Format . 12
3.4 The .conf-Format . 12
3.5 The .xml-Format . 14

4 Usage 15
4.1 Command-line Mode . 15

4.1.1 Basic Options . 15
4.1.2 Heuristics . 17
4.1.3 Benchmarks . 18
4.1.4 Output . 18

4.2 Interactive Mode . 18
4.2.1 Introducing the GUI . 18
4.2.2 Structure . 19
4.2.3 Creating a DTMC . 21
4.2.4 Model Checking . 23
4.2.5 Counterexample Generation . 23

3

1 Introduction

COMICS is a stand-alone tool which performs model checking and the generation of counterexamples
for discrete-time Markov Chains (DTMCs). For an input DTMC COMICS computes an abstract
system that carries the model checking information and uses this result to compute a critical
subsystem, which induces a counterexample. This abstract subsystem can be refined and concretized
hierarchically. The tool comes with a command line version as well as a graphical user interface
which allows the user to interactively influence the refinement process of the counterexample. For
more details on the approaches implemented in this tool, we refer to [1, 4, 5].

Figure 1.1: Screenshot of COMICS’s GUI with an instance of the crowds protocol benchmark

In this manual we firstly give a very short introduction to the basic algorithms which are used
in COMICS. In Section 2 we describe how to get the binaries and how to compile the sources for
Linux, Microsoft Windows as well as MAC OS X. Section 3 lists the different input formats the
tool accepts as well as the corresponding syntax and usage. In Section 4 we explain, how COMICS

is used both for the GUI and the command line version together with a running example which
will describe all features of our tool.

We will continuously update this manual, please consider to visit our homepage again for a
new version.

http://www-i2.informatik.rwth-aachen.de/i2/comics/

In case of any questions or remarks, please feel free to contact

Nils Jansen
Theory of Hybrid Systems
RWTH Aachen
52056 Aachen
Germany
nils.jansen@cs.rwth-aachen.de

5

http://www-i2.informatik.rwth-aachen.de/i2/comics/
http://www-i2.informatik.rwth-aachen.de/i2/jansen/
mailto:nils.jansen@cs.rwth-aachen.de

1 Introduction

1 2 3

1

4 5

6 7

1

0.7

0.3

0.66

1

0.5

0.5
0.25 0.25

0.5

0.34

S1 S1.1

(a) Input DTMC

S0

3 1

7 1

0.9

0.1

1 2 3

1

S1 7

1

0.7

0.3

0.66

0.34

0.66

0.34

(b) Model checking result
and concretization of S0

1 2 3

1

4 S1.1

7

1

0.7

0.3

0.34

0.66

1 0.57

0.29
0.14

(c) Concretization of S1

Figure 1.2: Example SCC-based model checking

1.1 Foundations
In this section we briefly explain the algorithms implemented in COMICS (see [4] and [5] for more
details). We use the standard definitions for DTMCs and probabilistic computation tree logic PCTL.
For an detailed introduction to these topics as well as related work we refer to [3].

We consider model checking and counterexample generation for DTMCs and time-unbounded
PCTL properties, which can be reduced to a DTMC M with one initial state sI, a set of target states
T , and an upper probability bound λ ∈ [0, 1] on reaching T from sI. Originally, a counterexample
for a DTMC M and a reachability property is defined as set of finite paths of M leading from sI to
T with a cumulated probability mass greater than λ.

In [1] we proposed a model checking approach for DTMCs based on hierarchical abstraction.
Each SCC of the underlying graph of the input DTMC is abstracted by a state whose outgoing

transitions lead to states outside the SCC and carry the whole probability mass of reaching those
states when once entering the SCC. This abstraction is done recursively in a bottom-up manner:
before abstracting an SCC we first apply abstraction to the sub-SCCs nested in it. The final
result is an abstract DTMC whose only transitions lead from the initial state of the input DTMC
to absorbing states and carry the corresponding reachability probabilities. Fig. 1.2(a) depicts a
DTMC and its nested SCC structure: SCC S1 contains SCC S1.1. The upper graph of Fig. 1.2(b)
depicts the result of the model checking: The probability to reach the target state 3 from the
initial state 0 is 0.9. This abstract DTMC can be also concretized hierarchically. The lower graph
of Fig. 1.2(b) shows the concretization of the abstract state S0: The outgoing edges of S1 carry
the probability mass of all paths leading from the input state 4 of S1 to the output states 3 and 7.
Fig. 1.2(c) shows a further concretization of S1 while SCC S1.1 is still abstracted. Concretizing
also S1.1 would result in the DTMC of Figure 3.1.

Based on this approach, we presented a method to compute and represent counterexamples as
critical subsystems in [4]. These subsystems consist of subsets of the original DTMC’s states and
transitions such that the probability of reaching target states from the initial state within the
subsystem still exceeds the probability bound λ. The method first computes an abstract critical
subsystem for the abstract DTMC resulting from model checking. Inside this abstract DTMC one
or more abstract states are selected and concretized, and a critical subsystem is determined for
the concretized system. This process may be repeated until the system is fully concretized. We
suggested two methods for the computation of critical subsystems: The global search (GS) looks for
for most probable paths through the whole system until the involved states and transitions form a
critical subsystem. The local search (LS) builds critical subsystems incrementally by extending
subsystems with most probable path fragments.

Figure 1.1 shows one abstracted instance of the crowds protocol benchmark [6], where the
probability of reaching the unique target state is displayed in the information panel on the right as
well as on the edge leading from the initial state to the target state. The initial state is abstract
and can therefore be expanded.

6

2 Getting Started

2.1 Running the Binaries

So far, we offer only binaries for Windows and Linux. If you are running a MAC OS system, please
use the sources.

2.1.1 Linux

If you are using one of the pre-compiled binaries and you are running a 64 bit Debian system, you
can start COMICS by changing into directory comics-1.0 and typing

./comics.sh

If this does not work, make sure that the script file is marked as executable:

chmod +x comics.sh

If you are running a 32 bit Debian system, you have to type

./comics 32.sh

By invoking COMICS without parameters or by

./comics.sh --help

the help output is displayed, which is depicted in Example 4.1. If you want to start the graphical
user interface, you have to run

./xcomics.sh

For details on the usage, see Section 4.

2.1.2 Microsoft Windows

Using Microsoft Windows 7, you can start the GUI by executing

xcomics.bat

If you want to use the command-line tool, start

comics.exe

from the Windows console.

2.2 Compiling the Source Code

We have tested the compilation process for Linux, Windows and MAC OS. As the compilation for
Windows requires many third party packages, we recommend to use the pre-compiled binaries for
Windows. However, a description will follow!
In case of any problems with building the tool, please contact nils.jansen@cs.rwth-aachen.de, we
will most probably be able to help you!

7

mailto:nils.jansen@cs.rwth-aachen.de

2 Getting Started

2.2.1 Compiling for Linux

Compiling with bash scripts

In order to build COMICS you have to use the GNU build system (Autotools). The following
non-standard packages have to be installed:

• A Java Development Kit (JDK)1

• GNU Automatic Configure Script Builder (autoconf)

• GNU Generic Library Support Script (libtool)

• GNU C++ Compiler (g++)

The JAVA GUI has to be compiled together with the JNI shared libraries. You have to change into
the scripts folder and execute

./build comics.sh path to java

which is the easiest way to build COMICS. If you add as a parameter your JAVA HOME, which is
the path to your JDK installation, or your JAVA HOME is already set system-wide, the necessary
JNI libraries are built by this script. Please make sure that you have a complete Java
Development Kid installed! If your JDK is, e. g., the OpenJDK Development Kid, possible ways to
build COMICS complete and properly are:

(a) ./build comics.sh /usr/lib/jvm/java-6-openjdk

(b) export JAVA HOME=/usr/lib/jvm/java-6-openjdk

./build comics.sh

(c) ./build comics.sh (and JAVA HOME is already set)

An indication of problems with building the JNI-libraries is the GUI throwing an JAVA exception
when calling Model Checking or Search Counterexample. We have tested the compilation process
both on 64bit and 32bit Debian systems using

• OpenJDK Development Kid 6 (openjdk-6-jdk)

• GNU Autoconf 2.65

• GNU Libtool 2.2.6b

• g++ 4.4.3

You can also compile the command-line tool without using our predefined bash-scripts using inside
the cmdl src directory.

autoreconf --install

./configure

make

1Please make sure that a complete JDK is installed, and not only a JRE (Java Runtime Environment).

8

2.2 Compiling the Source Code

2.2.2 Compiling for MAC OS

The build process is similar to Linux, please make sure to have a complete JDK installed. If your
version of GNU Autoconf doesn’t match, please change the version number specified inside the file

cmdl src/configure.ac

in the first line

AC PREREQ([2.64])

to your version number. Afterwards, calling from the scripts folder

./build comics mac.sh path to jdk

should successfully build the tool. Note, that for many MAC systems the JAVA HOME (path to
jdk) should be /usr/libexec/java home. Don’t use any quotation marks for the paths!

2.2.3 Running the self-compiled binaries

If your sources are successfully built, you can start COMICS by changing into directory scripts

and typing2

./comics.sh

By invoking COMICS without parameters or by

./comics.sh --help

the help output is displayed, which is depicted in Example 4.1. If you want to start the GUI, you
have to run

./xcomics.sh

For details on the usage, see Section 4.

2As the sources are compiled on your own system, it doesn’t matter, if you have a 32 bit or a 64 bit system.

9

3 Input Format

The input format of COMICS may either describe the explicit representation of a DTMC or an
abstract graph which can be concretized. The .dtmc-files describe a DTMC with target states and
one unique initial state. .dtmc-files are the original input for COMICS. .tra- and .lab-files are the
DTMC-input for Mrmc and can be imported1 into COMICS. Abstract graphs are represented by
.xml-files.
In this chapter we will introduce all formats in detail and give some examples. Consider the
following DTMC with input state 1 and target states 3 and 8.

1 2 3

1

4 5

6 7

1

0.7

0.3

0.66

1

0.5

0.5
0.25 0.25

0.5

0.34

S1 S1.1

Figure 3.1: Example DTMC

3.1 The .dtmc-Format

The .dtmc-files contain the number of states and transitions of an DTMC. An unique initial state
and an arbitrary number of target states are defined, and the transition probability matrix is given.
The abstract syntax is defined as follows:

STATES <number of states>

TRANSITIONS <number of transitions>

INITIAL <initial state>

(TARGET <target state>\n)∗ //Arbitrarily many target states

(<start state> <end state> <probability>\n)∗ //Transitions

Syntax of .dtmc-Files

States are presented as positive integers starting with 1. Transitions are given by two integers
identifying the start state and the end state of the transition and its probability which has to be
out of [0, 1]. The transitions have to be ordered in ascending order w. r. t. to firstly the start states
and secondly the end states. Consider Example 3.2 which represents the example DTMC depicted
in Figure 3.1.

3.2 The .tra-Format

The .tra-format is the input format of Mrmc and defined similar to the .dtmc-format. The only
difference is that it contains no information about target states and input state. The .dtmc-format

1So far only by using the graphical user interface.

11

3 Input Format

STATES 7

TRANSITIONS 12

INITIAL 1

TARGET 3

1 2 0.7

1 4 0.25

2 2 0.34

2 3 0.34

3 3 1.0

4 5 1.0

5 3 0.5

5 6 0.5

6 4 0.25

6 5 0.25

6 7 0.5

7 7 1.0

Figure 3.2: Example .dtmc-file

was designed to have the same syntax in order to guarantee the compatibility of both tools and to
easily use the Prism export facilities. Note, that - so far - .tra-files are only supported when
using the graphical user interface of COMICS.

STATES <number of states>

TRANSITIONS <number of transitions>

(<start state> <end state> <probability>\n)∗ //Transitions

Syntax of .tra-Files

3.3 The .lab-Format

.lab-files contain information about the list of atomic propositions and their assignment to the
states of a DTMC. It consists firstly of the declaration of a list of atomic propositions and secondly
of states and a list of propositions they are labeled with. This list has to be subset of the declared
list of propositions. Note, that - so far - .lab-files are only supported when using the graphical
user interface of COMICS.

#DECLARATION

<proposition list>

#END

(<state proposition list>)∗

Syntax of .lab-Files

The .tra and .lab files depicted in Figure 3.3 and Figure 3.4 together define again the DTMC of
Figure 3.1 while state 8 is additionally labeled with ERRORLABEL. Note, that one state can have
several labels.

3.4 The .conf-Format

The .conf-files contains all information needed for a counterexample search. Although all
parameters can also be set as command-line parameters or inside the graphical user interface, this

12

3.4 The .conf-Format

STATES 7

TRANSITIONS 12

1 2 0.7

1 4 0.25

2 2 0.34

2 3 0.34

3 3 1.0

4 5 1.0

5 3 0.5

5 6 0.5

6 4 0.25

6 5 0.25

6 7 0.5

7 7 1.0

Figure 3.3: Example .tra-file

#DECLARATION

INITIAL TARGET ERRORLABEL

#END

1 INITIAL

3 TARGET

7 ERRORLABEL

Figure 3.4: Example .lab-file

simplifies structuring the tasks to perform.

TASK counterexample | modelchecking

PROBABILITY BOUND double

DTMC FILE *.tra | *.xml | *.dtmc

REPRESENTATION subsystem | pathset

SEARCH ALGORITHM global |local

ABSTRACTION concrete | abstract

Syntax of .conf-Files

The main task may be the search for a counterexample or just getting the model checking result. A
probability bound can be defined which shall not exceed the model checking probability of the
input system, otherwise the counterexample search will not be carried out. The input files are as
mentioned above. The search algorithm can be specified: global search or local search.

Finally, the user can choose between performing the hierarchical counterexample search on an
abstract system or just search for a critical subsystem directly on the concrete graph. An
example can be found in Figure 3.5: a search for counterexample against a probability bound of
0.2 will be performed on an input file named example manual.dtmc. The search algorithm will be
the global search, and the task will start on an abstract system. This file as well as the
corresponding .dtmc file can be found in any installation of COMICS inside the folder
examples/example manual/. The .dtmc file corresponds to the system depicted in Figure 3.1.

13

3 Input Format

TASK CounterExample

PROBABILITY BOUND 0.2

DTMC FILE example manual.dtmc

SEARCH ALGORITHM global

ABSTRACTION abstract

Figure 3.5: Example .conf-file

3.5 The .xml-Format

The .xml-format stores the whole abstract graph which results from SCC-based model checking
[1]. The root node is named dtmc. It has children scc, target, and prob. scc has as attributes a
unique id and a identifying node node0. Its children are inp (input states), out (output states),
vtx (remaining states), and edge (graph edges). Moreover, again scc can be child of scc. edge
has a flag abs wether it is abstract or not. target identifies the target states of the DTMC and
prob stores the model checking probability.
Note, that if the probability is defined, no model checking is performed for .xml files, as the
probability of reaching target states in the whole system is already saved inside the document. For
the command-line version, the probability actually has to be defined inside the .xml file,
otherwise no search for a counterexample will be performed. An additional feature of the
.xml-format is the storage of state positions on the graph panel, i. e., , if a graph is stored in
.xml-format, the positions of all states will be as before if the file is loaded later.
A deeper understanding of this format is not crucial for using COMICS, as the .xml-files should not
be edited. They are only used to save the abstract graph structure, changes are done at the risk of
having an inconsistent system.

14

4 Usage

In this chapter, we describe the usage of COMICS both for the command-line tool (C++) and the
GUI (JAVA with JNI shared libraries).

4.1 Command-line Mode

If you are using one of the pre-compiled binaries and you are running a 64 bit Debian system, you
can start COMICS by changing into directory comics-1.0 and typing

./comics.sh

If this does not work, make sure that the binary file is marked as executable:

chmod +x comics.sh

If you are running a 32 bit Debian system, you have to type

./comics.sh 32.sh

By invoking COMICS without parameters or by

./comics.sh --help

the help output is displayed, which is depicted in Example 4.1. Of course, you can also start the
binary files directly instead of the bash scripts.
Many of the basic parameters can already be predefined by loading a .conf-file. If parameters of
the .conf-file and the command-line are inconsistent, those given in the command-line are chosen.
We will shortly explain all of the possible parameters. Comics can be started with an input
.conf-file by

./comics <inputFile.conf>

In case, a .dtmc-file was specified inside the .conf-file, the corresponding tasks are performed
directly. If an .xml-file was specified, model checking will not be performed as the result is already
saved inside the .xml-file. Thus, it makes no sense to invoke model checking as only task when
loading an .xml-file.
To have a quick start, just run

./comics.sh examples/example manual/example manual.conf --concrete

in order to try COMICS on the system depicted in Figure 3.1, using the parameters specified as in
the .conf file of Figure 3.5. The pre-defined search on an abstract system is overwritten by
forcing the --concrete parameter.

4.1.1 Basic Options

• --outputdtmc <filename>

The resulting critical subsystem is saved in the current directory as <filename.dtmc>. If
nothing is specified, a file “result.dtmc” is saved.

15

4 Usage

COMICS - Computing Minimal Subsystems

Copyright (c) RWTH Aachen University 2012

Authors: Nils Jansen, Erika Abraham, Jens Katelaan, Maik Scheffler,

Matthias Volk, Andreas Vorpahl

This is COMICS 1.0. Possible ways to call are:

./comics filename [options]

NOTICE: filepaths have to be relative to the executable!

with options:

--outputdtmc <filename> (Save result as <outputFilename.dtmc>)

--outputxml <filename> (Save result as <outputFilename.xml>)

--saveIterations (Save results of all iterations)

--dtmc (DTMC file only, no config file)

--only model checking (Do not search for a counterexample)

--no model checking (Skip model checking (enforces concrete search))

--abstract | --concrete (Abstract or concrete search algorithm)

--global | --local (Global or local path search)

--subsystem | --pathset (Subsystem- or path-based counter example)

--iterationcount <count> (Do <count> many iterations)

--stepsize <size> (One iteration has <size> concretization steps)

--probBound <bound> (Probability Bound for counterexample search)

Heuristics for the choice of abstract state to concretize:
--choose by probability (By highest outgoing probability)

--choose by degree (By lowest input/output degree)

--choose by membership (By highest relative membership in subsystem)

Benchmarking:

--search-benchmark (Try global, local, concrete, abstract)

--concretization-benchmark (Try concretizing 1, sqrt, all SCCs in each step)

--heuristics-benchmark (Try different concretization heuristics)

--complete-benchmark (Combine all of the above benchmarks - slow!)
Default behavior: --abstract --global --closure

Figure 4.1: Example help-output

• --outputxml <filename>

The resulting critical subsystem is saved as abstract graph possibly containing information
about abstracted SCCs and the model checking result for the subsystem. The filename is
<filename.xml>

• --saveIterations

Every time a critical subsystem is computed for an abstract graph, the corresponding
.dtmc-file is stored in the current directory before further concretization is performed and a
new computation is invoked.

• --dtmc

A .dtmc-file is given as input instead of the standard .conf-file.

• --only model checking

Only the model checking result is returned, no search for a counterexample is performed.

16

4.1 Command-line Mode

• --no model checking

No model checking is performed, only possible for the direct search on a concrete system.
Note, that the tool might not terminate, if the given probability bound is not exceeded by
the input system.

• --abstract

The search for a counterexample is performed on the abstract graph involving concretization.

• --concrete

The search for a counterexample is performed directly on the concrete graph.

• --global

The global search approach is used to find a counterexample, which may be represented as a
critical subsystem or a set of paths of the input system.

• --local

The local search approach is used to find a critical subsystem.

• --subsystem

The resulting counterexample is represented as critical subsystem.

• --pathsum

The resulting counterexample is represented as set of paths.

• --iterationcount <count>

The number of search iterations is fixed by <count>. Afterwards, the program terminates
with a possibly still abstract counterexample. If this parameter is not set, the program will
iterate with a concrete counterexample not containing any abstract SCCs. For large
benchmarks, this concrete system may still be very large.

• --stepsize <count>

The number of concretization steps per iteration is fixed by <size>.

• --probBound

The probability bound for the counterexample search. If a .conf-file is loaded the value
specified there will be overwritten.

4.1.2 Heuristics

We have implemented a large number of heuristics for the automatic choice of the next abstract
SCC to concretize. The three heuristics which performed best are offered for selection.

• --choose by probability

The abstract SCC which has the highest outgoing probability inside the critical subsystem is
chosen.

17

4 Usage

• --choose by degree

The abstract SCC with the lowest input/output-degree is chosen.

• --choose by membership

The abstract SCC with the highest number of ingoing and outgoing transitions is chosen. To
this we refer as the highest-membership inside the critical subsystem.

In our tests, the highest-membership heuristic performed best, while the choice by input/output
degree delivered mostly worse results than using no heuristics.

4.1.3 Benchmarks

In order to do extensive tests with our tool, the user can choose between a number of
benchmarking options, were several tasks are performed.

• --search-benchmark

A test for the global search vs. the local search is performed both on abstract and on
concrete systems.

• --concretization-benchmark

A hierarchical search on an abstract system is performed, where

1. At each step only 1 abstract SCC is concretized.

2. For n visible abstract SCCs in the system, at each step
√
n SCCs are concretized.

(SQRT-heuristics).

3. At each step all abstract SCCs are concretized.

In our tests, the SQRT-heuristic performed best.

• --heuristics-benchmark

The three heuristics for automatic choice of next abstract SCCs are tested against each
other, see Section 4.1.2.

4.1.4 Output

As mentioned before, the resulting critical subsystem is stored in the current directy either as
.dtmc- or as .xml-file. Additionally, the intermediate results may be saved. In any case, a short
summary of the search process is saved as counter example summary.txt.
An example of such a summary is depicted in Figure 4.2. The task was as given in the .conf file
of Figure 3.5 which is available in the COMICS installation. The command was

./comics.sh examples/example manual/example manual.conf --concrete

4.2 Interactive Mode

4.2.1 Introducing the GUI

The GUI was implemented using the JGraph library [2] and aims at making the process of finding
a counterexample user-interactive and thereby increasing the usability of probabilistic
counterexamples.

18

4.2 Interactive Mode

----------- STATISTICS ----------

Task: Counterexample for P(t)<0.2

Counter example size: 4 states, 3 transitions

Model Checking result of original system: 0.9

Closure probability: 0.7

Time of counter example computation: 0 secs [Without Pre-/Post processing]

Search params: CONCRETE, GLOBAL, CLOSURE-based

Base node selection for concretization: Select All Visible

Additional selection criterion: None

Number of concretizations per step: 1

During the 1 refinement steps the following number of shortest paths/closures

were computed:

step | #paths | #closures | #conc. scc

1 | 1 | 1 | 1

Total #paths: 1, total #closures: 1, total #concretized SCCs: 1

Figure 4.2: Example: Summary-file of Counterexample Generation

A user can load instances of DTMC benchmarks by using the .dtmc, .tra or .xml formats.
Additionally, he can model his own examples by the in-built graph-editor. SCC-based model
checking [1] can be performed by calling the C++-library via JNI. Afterwards, critical subsystems
for certain probability bounds can be computed automatically [4] or user-guided in the sense that
the states can be conretized for further inspection. Note, that the GUI is not suited to load rather
large problem instances. We strongly suggest to apply some steps of the counterexample search by
using the command-line mode and afterwards to load the small, abstract graph into the GUI. If
the graph is loaded but still too big or unordered for debugging purposes, a smooth zoom and
several layouting algorithms are offered.
If a user opens .xml-file representing an abstract graph, the actual model checking result of the
system is included. Therefore, the graph can not be edited but only concretized or abstracted.
The counterexample generation can be called at any point. If a concrete graph is loaded, model
checking has to be applied beforehand in order to guarantee completeness in the sense that the
probability actually can be exceeded.

4.2.2 Structure

Consider at first Figure 4.3: On top is the menubar, right below is the toolbar located. On the left
side is the graph-panel, where DTMCs are displayed, on the right side is the information-panel,
where a user can see lists of all states, edges and target states. The DTMC of Fig. 1.2(a) is
displayed in the graph-panel, while all relevant information is also displayed at the information
panel. This small example is accessible on the homepage1 as well as in the examples folder in the
downloaded version of COMICS.

The Menubar

The following menus are offered:

• File

1http://www-i2.informatik.rwth-aachen.de/i2/comics/

19

http://www-i2.informatik.rwth-aachen.de/i2/comics/

4 Usage

Figure 4.3: COMICS - GUI

– Reset : Resets the current DTMC

– Open file: Opens .dtmc, .conf, .tra or .xml

– Import labels : Opens .lab and gives the choice to declare target states and initial state
by labels

– Save: Saves .dtmc

– Save as XML: Saves .xml2

– Export to MRMC : Saves .tra

– Eport labels: Writes information about target states and input states into .lab

– Exit : Exits the GUI

• Tools

– Search states: Searches for states

– Center initial state: Initial state is highlighted and centered

– Transform to 1 target : Introduces new unique target state

– Hide isolated states: States without ingoing or outgoing edges are hidden

– Check consistency : Checks if all states have discrete probability distributions

• Graph

– Choose color : The color of all state-types can be chosen

– Layout : A number of different layout algorithms is offered

• Zoom

2Note, that if no model checking result is specified, the corresponding tag will be left empty inside the .xml file.

20

4.2 Interactive Mode

• Help

The Toolbar

The toolbar includes all necessary operations for creating and modifying graphs as well as buttons
for model checking and counterexample generation. Note, that in some cases not all functions are
available, in particular: First, the graph is not modifiable when an .xml-file is loaded, as the total
model checking result of the system has to stay invariant. Secondly, before model checking is
applied, no counterexample search is possible.

4.2.3 Creating a DTMC

The first operation is to add a state. This is simply done by activating the Add State button and
clicking on the graph-panel, see Figure 4.4. Edges can be added, if the Add Edge Button is
activated either by subsequently selecting the first and second state of the edge or by dragging a
line from one state to another (Figure 4.5). A dialog pops up which asks for the probability of the
edge. Note, that the entered number has to be a floating point number out of [0, 1].

Figure 4.4: GUI - Add State

21

4 Usage

Figure 4.5: GUI - Add Edge

The context menu for states offers to select or de-select a state as target states (Figure 4.6) and to
define the unique inital state.

22

4.2 Interactive Mode

Figure 4.6: GUI - Context menu for states

4.2.4 Model Checking

If the initial state and at least one target state are specified, you can apply SCC-based model
checking by just pressing the button Model Checking. The corresponding JNI library is called and
the resulting abstract graph is displayed. Figure 4.7 shows the abstract graph resulting from
applying model checking to the graph of Figure 4.3. The probability of reaching target states from
the initial state is displayed in the information-panel. In case the input DTMC had states with
outgoing probabilities less than 1, the user is asked, if corresponding self-loops should be added.
The graph resulting from SCC-based model checking may be refinable. You can open the context
menu of abstract SCCs, which are magenta colored rectangular states, by right-clicking them and -
if available - choose the option expand. This is one concretization step. The result of expanding
state 1 is depicted in Figure 4.8 and corresponds the example shown in Figure 1.2(b).

4.2.5 Counterexample Generation

You can now apply the search for a counterexample, this is done by pressing the button Search
Counterexample. Note, that this button is only available, if the model checking result is defined. If
you press the button, a dialogue pops up where the first parameters for the counterexample search
can be specified (See Figure 4.9). The choices are:

• Perform a search on the Abstract system including concretization steps or a search directly
on the Concrete system.

• Use the Global search algorithm or the Local search algorithm.

• Represent the counterexample as critical Subsystem or as a set of paths (Pathset).

If a .conf file was loaded, all options are selected as defined in the file. Note, that the local search
implies the representation as critical subsystem.

23

4 Usage

Figure 4.7: GUI - Model Checking Applied, Abstract State is refinable

Figure 4.9: GUI - Specify Parameters for Counterexample Search

24

4.2 Interactive Mode

Figure 4.8: GUI - Abstract state 1 expanded

After the search parameters are set, you are asked to specify an probability bound which shall be
reached or exceeded by the computed counterexample, see Figure 4.10. Offered is the actual model
checking probability or, if available, the bound which is specified in the .conf file. The model
checking probability is the highest bound that can be reached. Note, that in many cases this
bound implies a hard computation.

25

4 Usage

Figure 4.10: GUI - Specify Probability Bound for Counterexample

At last, several options are offered for the number of search iterations and the concretization of
abstract SCCs (Figure 4.11):

26

4.2 Interactive Mode

Figure 4.11: GUI - Specify Parameters for Concretization

Search/concretize until concrete system returns All concretizations and search steps are done
automatically until a concrete system without any abstract SCCs is returned.

Choose number of search/concretization iterations The number of iterations can be specified
by the user as Number of automatic steps. This may be very practical for large systems
which cannot be displayed by the GUI, because after a certain number of iterations the
current - still abstract - critical subsystem may be reasonably smaller.

No automatic concretization Concretization is only done by the user, who has the possibility to
expand arbitrary states of interest (see Figures 4.7). One search iteration is done, and the
critical subsystem is displayed. Afterwards, the user can start a new search. If no states
were concretized before, an error message is given.

Heuristics for the abstract SCC to concretize As described in Section 4.1.2, we offer three
heuristics for the choice of the next abstract SCC which will be automatically concretized.
The three choices are:

Probability: by highest outgoing probability The abstract SCC which has the highest
outgoing probability inside the critical subsystem is chosen.

Degree: by lowest input/output degree The abstract SCC with the lowest
input/output-degree is chosen.

Membership: by highest relative membership in subsystem The abstract SCC with the
highest number of ingoing and outgoing transitions is chosen. To this we refer as the
highest-membership inside the critical subsystem.

Count of SCCs to concretize in each step The user can choose, how many of the currently
visible abstract SCCs are to be concretized in one concretization step.

27

4 Usage

Square root: concretize only square root of all possible If n abstract SCCs are visible in
the current critical subsystem, in each concretization step

√
n abstract SCCs are

concretized.

One: concretize only one Exactly one abstract SCCs is concretized in each step.

All: concretize all All visible abstract SCCs are concretized.

Finally, the concrete critical subsystem resulting if all parameters are chosen as offered for the
input DTMC from Figure 4.3 is depicted in Figure 4.12.

Figure 4.12: GUI - Resulting Critical Subsystem for example manual.dtmc

28

Bibliography

[1] Erika Ábrahám, Nils Jansen, Ralf Wimmer, Joost-Pieter Katoen, and Bernd Becker. DTMC
model checking by SCC reduction. In Proc. of QEST, pages 37–46. IEEE CS, 2010.

[2] Jay Bagga and Adrian Heinz. JGraph – A Java based system for drawing graphs and running
graph algorithms. In Proc. of Graph Drawing, volume 2265 of LNCS, pages 459–460.
Springer-Verlag, 2001.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

[4] Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter Katoen, and Bernd
Becker. Hierarchical counterexamples for discrete-time Markov chains. In Proc. of ATVA,
volume 6996 of LNCS, pages 443–452. Springer, 2011.

[5] Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter Katoen, and Bernd
Becker. Hierarchical counterexamples for discrete-time Markov chains. Technical Report
AIB-2011-11, RWTH Aachen University, 2011.

[6] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security, 1(1):66–92, November 1998.

29

	1 Introduction
	1.1 Foundations

	2 Getting Started
	2.1 Running the Binaries
	2.1.1 Linux
	2.1.2 Microsoft Windows

	2.2 Compiling the Source Code
	2.2.1 Compiling for Linux
	2.2.2 Compiling for MAC OS
	2.2.3 Running the self-compiled binaries

	3 Input Format
	3.1 The .dtmc-Format
	3.2 The .tra-Format
	3.3 The .lab-Format
	3.4 The .conf-Format
	3.5 The .xml-Format

	4 Usage
	4.1 Command-line Mode
	4.1.1 Basic Options
	4.1.2 Heuristics
	4.1.3 Benchmarks
	4.1.4 Output

	4.2 Interactive Mode
	4.2.1 Introducing the GUI
	4.2.2 Structure
	4.2.3 Creating a DTMC
	4.2.4 Model Checking
	4.2.5 Counterexample Generation

